[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2802768B2 - Composite sintered alloy and steel support in heating furnace - Google Patents

Composite sintered alloy and steel support in heating furnace

Info

Publication number
JP2802768B2
JP2802768B2 JP1052708A JP5270889A JP2802768B2 JP 2802768 B2 JP2802768 B2 JP 2802768B2 JP 1052708 A JP1052708 A JP 1052708A JP 5270889 A JP5270889 A JP 5270889A JP 2802768 B2 JP2802768 B2 JP 2802768B2
Authority
JP
Japan
Prior art keywords
alloy
sintered alloy
composite sintered
steel
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1052708A
Other languages
Japanese (ja)
Other versions
JPH02232335A (en
Inventor
紘一 柳井
秀雄 藤田
淳 船越
斌 篠崎
裕幸 蘭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1052708A priority Critical patent/JP2802768B2/en
Publication of JPH02232335A publication Critical patent/JPH02232335A/en
Application granted granted Critical
Publication of JP2802768B2 publication Critical patent/JP2802768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、クロム炭化物粒子とFe−Cr合金とからなる
均一混合組織を有する複合焼結合金、およびその複合焼
結合金からなる加熱炉内鋼材支持部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composite sintered alloy having a homogeneous mixed structure composed of chromium carbide particles and an Fe-Cr alloy, and a heating furnace made of the composite sintered alloy. The present invention relates to a steel support member.

〔従来の技術〕[Conventional technology]

鋼材加熱炉内の被加熱鋼材(スラブ、ビレット等)を
支持する部材、例えばウォーキングビームコンベア式加
熱炉において、第1図のように、移動ビームおよび固定
ビームであるスキッドパイプ(20)に形設されるスキッ
ドボタン(10)(その頂面に鋼材が担持される)とし
て、従来より高合金鋼(10Ni−20Cr−Fe系鋼)や高Co合
金鋼(50Co−20Ni−Fe系鋼)等の耐熱合金が使用されて
きた。
In a member for supporting a steel material (slab, billet, etc.) to be heated in a steel material heating furnace, for example, a walking beam conveyor type heating furnace, a skid pipe (20) which is a moving beam and a fixed beam is formed as shown in FIG. Skid buttons (10) (on which a steel material is supported on the top surface) are made of high alloy steel (10Ni-20Cr-Fe steel) or high Co alloy steel (50Co-20Ni-Fe steel). Heat resistant alloys have been used.

近時、加熱炉操業の高温化が進み、1300℃をこえる高
温操業が一般化しつつあり、それに対するスキッドボタ
ンの材質改善策として、セラミック(クロム炭化物、窒
化けい素、アルミナ等)の粒子を、耐熱金属、例えば金
属コバルト、Co合金(UMCo50等)、または高合金鋼(0.
1C−27Cr−17Ni−40Co−Fe系)と複合化した混合組織を
有する焼結材料(複合焼結合金)の実用化がこころみら
れている。この複合焼結合金は、セラミック粒子と金属
(以下、「基地金属」ともいう)との複合効果によりセ
ラミック単相焼結材の脆弱さを緩和すると共に、耐熱金
属単相材を凌ぐ高温特性を確保することを意図したもの
である。
Recently, high temperature operation of heating furnace operation is progressing, and high temperature operation exceeding 1300 ° C is becoming popular, and as a measure to improve the material of skid buttons, ceramic (chromium carbide, silicon nitride, alumina, etc.) particles are Refractory metals such as metallic cobalt, Co alloys (such as UMCo50), or high alloy steels (0.
Practical use of a sintered material (composite sintered alloy) having a mixed structure combined with (1C-27Cr-17Ni-40Co-Fe system) has been attempted. This composite sintered alloy reduces the brittleness of the ceramic single-phase sintered material by the composite effect of the ceramic particles and the metal (hereinafter, also referred to as “base metal”), and has a high-temperature property that exceeds that of the heat-resistant metal single-phase material. It is intended to be secured.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記複合焼結合金に使用されるセラミックは多岐に亘
るが、クロム炭化物粒子(Cr3C2等)は、硬質、高強度
で、熱的安定性も良好なセラミックであるので、これを
耐熱金属と複合化することにより高温特性のすぐれた複
合焼結合金を得ることができるはずである。ところが、
その複合焼結合金の高温強度は予想外に低く、例えば、
Cr3C2クロム炭化物粒子と金属コバルトからなる複合焼
結合金は、その構成材料が高融点(Cr3C2:約1950℃、C
o:約1495℃)であるに拘らず、1300℃をこえる高温域
(例えば1350℃)での圧縮変形抵抗性は小さく、鋼材荷
重による変形を生じ易い。このため、複合焼結合金を例
えば鋼材加熱炉内のスキッドボタンとして使用する場
合、1300℃を越える近時の高温操炉条件においては、耐
用寿命の改善、メンテナンスの軽減、操炉効率の改善等
をそれほど期待することができない。なお、耐熱鋼との
複合構造をもたせた焼結合金の場合、1300℃をこえる高
温域での使用において耐酸化性の低下とそれによる材質
の著しい劣化を生じることがある。
The ceramics used in the above composite sintered alloys vary widely, but chromium carbide particles (such as Cr 3 C 2 ) are hard, high-strength, and have good thermal stability. It should be possible to obtain a composite sintered alloy having excellent high-temperature properties by forming a composite. However,
The high-temperature strength of the composite sintered alloy is unexpectedly low, for example,
The composite sintered alloy composed of Cr 3 C 2 chromium carbide particles and metallic cobalt has a high melting point (Cr 3 C 2 : about 1950 ° C, C
o: approx. 1495 ° C.), the resistance to compressive deformation in a high temperature range exceeding 1300 ° C. (for example, 1350 ° C.) is small, and deformation due to steel load is likely to occur. For this reason, when a composite sintered alloy is used as a skid button in a steel heating furnace, for example, in recent high-temperature operating conditions exceeding 1300 ° C., the service life can be improved, maintenance can be reduced, the operating efficiency can be improved, etc. Can not expect so much. Incidentally, in the case of a sintered alloy having a composite structure with heat-resistant steel, when used in a high temperature range exceeding 1300 ° C., the oxidation resistance may be lowered and the material may be significantly deteriorated.

本発明は複合焼結合金に関する上記問題点を解決する
ことを目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems relating to a composite sintered alloy.

〔課題を解決するための手段および作用〕[Means and actions for solving the problem]

本発明は、クロム炭化物粒子と基地金属とからなる複
合焼結合金において、基地金属が、5〜50重量%のFeを
含有するFe−Cr合金であることを特徴としている。
The present invention is characterized in that in a composite sintered alloy composed of chromium carbide particles and a base metal, the base metal is an Fe-Cr alloy containing 5 to 50% by weight of Fe.

以下、本発明について詳しく説明する。 Hereinafter, the present invention will be described in detail.

本発明の複合焼結合金の基地金属を構成するFe−Cr合
金は固溶態型合金(固相線と接する液相線極小部のFe
量:約80重量%、温度:約1507℃)である。そのFe−Cr
合金におけるFe含有量を5〜50重量%としたのは、複合
焼結合を高融点化し、高温域、殊に1300℃をこえる温度
域における十分な強度を確保し、併せて良好な焼結性を
保証するためである。この基地金属の組成と焼結性およ
び融点について説明すれば次のとおりである。
The Fe—Cr alloy constituting the base metal of the composite sintered alloy of the present invention is a solid solution type alloy (Fe of the liquidus line minimum portion in contact with the solidus line).
Amount: about 80% by weight, temperature: about 1507 ° C). The Fe-Cr
The Fe content in the alloy is set to 5 to 50% by weight because the composite sintered joint has a high melting point, ensures sufficient strength in the high temperature range, especially in the temperature range exceeding 1300 ° C, and has good sinterability. It is to guarantee. The composition, sinterability and melting point of this base metal will be described below.

クロム炭化物粒子と金属粉末とからなる焼結原料粉末
混合物の焼結処理においては、クロム炭化物粒子から金
属分への炭素の拡散固溶を生じるので、得られる焼結合
金の基地金属の融点は焼結処理前に比べて低いものとな
る。金属コバルト、Co合金、高NiCr合金鋼等を基地金属
とする従来の複合焼結合金では、焼結過程で生じる炭素
の拡散固溶による融点降下が著しく、例えば金属コバル
ト(融点:約1495℃)とCr3C2炭化物粒子を複合化して
得られる焼結合金の融点は約1309℃前後となる。従来の
複合焼結合金の高温強度が予想外に低いのは、このよう
に基地金属の融点が著しく低下することによる。
In the sintering process of the sintering raw material powder mixture composed of the chromium carbide particles and the metal powder, since the diffusion of carbon from the chromium carbide particles to the metal is caused to form a solid solution, the melting point of the base metal of the obtained sintered alloy is reduced. It is lower than before the binding process. In conventional composite sintered alloys using metal cobalt, Co alloys, high NiCr alloy steels, etc. as base metals, the melting point drop due to the diffusion and solid solution of carbon generated in the sintering process is remarkable. For example, metallic cobalt (melting point: about 1495 ° C) The melting point of a sintered alloy obtained by compounding Cr and C 3 C 2 carbide particles is about 1309 ° C. The unexpectedly low high-temperature strength of the conventional composite sintered alloy is due to such a remarkable decrease in the melting point of the base metal.

この基地金属の低融点化に伴う複合焼結合金の高温強
度の不足は、基地金属として金属クロム(Cr)を使用す
ることにより改善することができる。クロム(融点:約
1830℃)と炭素との二元合金(共晶型合金)の共晶点
(C:約3.8重量%)の温度は約1498℃であるので、焼結
工程で炭素の固溶濃化が生じても、その融点は1498℃を
下ることはないからである。しかし、その反面基地金属
(Cr)が高融点・低蒸気圧であるがために、焼結性が低
く、焼結合金内にピンホールやクラック等の焼結欠陥が
生じ易いという難点がある。
The shortage of high-temperature strength of the composite sintered alloy accompanying the lowering of the melting point of the base metal can be improved by using metal chromium (Cr) as the base metal. Chromium (melting point: approx.
The temperature of the eutectic point (C: about 3.8% by weight) of a binary alloy (eutectic type alloy) of carbon at 1830 ° C) is about 1498 ° C. However, its melting point does not fall below 1498 ° C. However, on the other hand, since the base metal (Cr) has a high melting point and a low vapor pressure, there is a problem that sinterability is low and sintering defects such as pinholes and cracks easily occur in the sintered alloy.

そこで、本発明は、5〜50重量%のFeを合金化したFe
−Cr合金を基地金属とすることとし、これにより基地金
属の焼結性と高融点確保の両面の要請を満足させてい
る。本発明において、Fe添加量の下限を5重量%(固相
線温度:約1765℃、液相線温度:1810℃)としたのは、
焼結体内のピンホールや亀裂欠陥の防止に必要な焼結性
を確保するためであり、他方50重量%(固相線温度:約
1525℃、液相線温度:1580℃)を上限としたのは、それ
をこえると焼結体の高温強度の確保が困難となるからで
ある。なお、基地金属中のFe量が増大すると、クロム炭
化物粒子が複炭化物((Cr,Fe)3C2等)に変化すること
に伴う耐酸化性の低下と焼結合金材料特性の劣化を生じ
るが、Fe量を前記のように50重量%以下に制限すれば、
上記クロム炭化物粒子の相変化とそれに伴う材質劣化は
実質的に回避される。上記Fe−Cr合金の焼結性と高融点
・高強度の確保、並びにクロム炭化物粒子の変化に伴う
耐酸化性低下の防止の各面から規定されるFe量のより好
ましい範囲は、10〜40重量%である。
Accordingly, the present invention provides a method of alloying 5 to 50% by weight of Fe.
-The Cr alloy is used as the base metal, which satisfies the requirements of both the sinterability and the high melting point of the base metal. In the present invention, the lower limit of the amount of Fe added is set to 5% by weight (solidus temperature: about 1765 ° C., liquidus temperature: 1810 ° C.)
This is to ensure the sinterability necessary to prevent pinholes and crack defects in the sintered body, while the other 50% by weight (solidus temperature: approx.
The upper limits of 1525 ° C. and the liquidus temperature of 1580 ° C. are because exceeding the upper limits makes it difficult to secure high-temperature strength of the sintered body. When the amount of Fe in the base metal increases, the chromium carbide particles change into double carbides (such as (Cr, Fe) 3 C 2 ), resulting in a decrease in oxidation resistance and deterioration in the properties of the sintered alloy material. However, if the amount of Fe is limited to 50% by weight or less as described above,
The phase change of the chromium carbide particles and the deterioration of the material accompanying the phase change are substantially avoided. More preferable range of the Fe amount defined from each aspect of securing the sinterability and high melting point and high strength of the Fe-Cr alloy, and preventing a decrease in oxidation resistance due to a change in chromium carbide particles is 10 to 40. % By weight.

Fe−Cr合金に複合されるクロム炭化物粒子は、Cr
3C2、Cr7C3、Cr23C6等であってよく、これらの二種以上
の混合粒子であってもよい。また、その粒径は、例えば
1〜100μmであってよい。
The chromium carbide particles composited with the Fe-Cr alloy are Cr
It may be 3 C 2 , Cr 7 C 3 , Cr 23 C 6 or the like, or may be a mixed particle of two or more of these. The particle size may be, for example, 1 to 100 μm.

複合焼結合金におけるクロム炭化物粒子の割合は任意
であり、その焼結合金の用途、要求特性に応じて決定す
ればよい。例えば、加熱炉内の鋼材搬送部材の用途で
は、重量物である鋼材の荷重に耐える十分な高温強度を
確保するために、クロム炭化物粒子の割合を約5重量%
以上とするのがよく、より好ましくは10重量%以上であ
る。もっとも、クロム炭化物粒子の割合があまり高くな
ると、マトリックス金属の占める相対的割合の減少に伴
う靭性の低下傾向をみるので、スキッドボタンの場合に
は、鋼材の衝撃によるカケやクラック等の防止に必要な
耐衝撃性を確保するために、クロム炭化物粒子の割合は
約80重量%までとするのがよく、より好ましくは70重量
%を上限とする。
The ratio of the chromium carbide particles in the composite sintered alloy is arbitrary, and may be determined according to the use and required characteristics of the sintered alloy. For example, in the application of a steel material conveying member in a heating furnace, the ratio of chromium carbide particles is set to about 5% by weight in order to secure sufficient high temperature strength to withstand the load of heavy steel material.
The content is preferably at least 10% by weight. However, if the ratio of chromium carbide particles is too high, the toughness tends to decrease as the relative ratio of matrix metal decreases, so in the case of skid buttons, it is necessary to prevent chips and cracks due to the impact of steel. In order to ensure high impact resistance, the proportion of chromium carbide particles is preferably up to about 80% by weight, more preferably 70% by weight.

本発明の複合焼結合金は、クロム炭化物粉末と、Fe−
Cr合金粉末との均一な混合粉末を出発原料とし、公知の
各種焼結法、好ましくは熱間静水圧加圧焼結法を適用す
ることにより製造される。焼結原料粉末混合物の調製に
おいては、Fe−Cr合金粉末に代えて、Fe粉末とCr粉末の
混合物を使用して構わないが、その場合は、混合・分散
の均一性やMA(メカニカル・アロイング)効果等の点か
らアトライタ等の高エネルギボールミルによる混合粉砕
を行うのが好ましい。熱間静水圧加圧焼結は、原料粉末
混合物を適宜の金属カプセル(例えば、軟鋼、炭素鋼、
ステンレス鋼)に充填し、脱気密封したうえ、温度約10
00〜1300℃、加圧力約1000〜2000kg f/cm2に適当時間
(例えば、2〜4時間)保持することにより達成され
る。焼結完了後の冷却は、例えば24時間を要して常温ま
で降下させるようにすればよい。上記焼結処理過程でク
ロム炭化物からマトリックス金属への炭素の拡散固溶を
生じるが、それによる融点降下は少なく、後記実施例に
も示すようにクロム炭化物粒子の配合割合の如何にかか
わらず、得られる焼結合金は約1500℃ないしそれをこえ
る高融点を有し、高温域においても高い圧縮強度を示
す。
The composite sintered alloy of the present invention comprises a chromium carbide powder and Fe-
It is manufactured by applying various known sintering methods, preferably a hot isostatic pressing sintering method, using a homogeneous mixed powder with a Cr alloy powder as a starting material. In preparing the sintering raw material powder mixture, a mixture of Fe powder and Cr powder may be used instead of the Fe-Cr alloy powder, in which case the uniformity of mixing / dispersion and MA (mechanical alloying) are used. From the viewpoint of effects, etc., it is preferable to carry out mixing and pulverization using a high energy ball mill such as an attritor. Hot isostatic pressing sintering involves mixing the raw material powder mixture into appropriate metal capsules (eg, mild steel, carbon steel,
(Stainless steel), degassed and sealed, and the temperature is about 10
This is achieved by maintaining the temperature at 00 to 1300 ° C. and the pressure of about 1000 to 2000 kg f / cm 2 for an appropriate time (for example, 2 to 4 hours). Cooling after the completion of sintering may be performed, for example, by lowering to room temperature in 24 hours. In the above sintering process, the diffusion of carbon from chromium carbide to the matrix metal is caused by solid solution, but the drop in melting point is small, and as shown in Examples below, regardless of the mixing ratio of the chromium carbide particles, The resulting sintered alloy has a high melting point of about 1500 ° C. or higher, and exhibits high compressive strength even at high temperatures.

なお、焼結工程の別のプロセスとして、原料粉末混合
物をラバーに充填し冷間静水圧プレスを加えて圧粉成形
体を形成し、これに粗機械加工を施したうえ、カプセル
内に密封して熱間静水圧加圧焼結を行う方法、または粗
機械加工を加えた圧粉成形体を不活性雰囲気や水素ガス
雰囲気下に常圧焼結し、もしくは真空下に焼結する方
法、所望によりその焼結体を更に熱間静水圧加圧焼結す
る方法、あるいは原料粉末混合物をホットプレスに付し
て焼結する方法等を適用することもできる。
In addition, as another process of the sintering process, the raw material powder mixture is filled in rubber, cold isostatic pressing is applied to form a green compact, which is subjected to rough machining and sealed in a capsule. Hot isostatic pressing sintering, or a method of sintering a green compact subjected to rough machining at normal pressure in an inert atmosphere or a hydrogen gas atmosphere, or sintering under vacuum, In this case, a method of further sintering the sintered body by hot isostatic pressing or a method of subjecting the raw material powder mixture to hot pressing and sintering can be applied.

本発明の複合焼結合金を例えば加熱炉内の鋼材支持部
材として使用する場合、その部材は必ずしも全体を本発
明の複合焼結合金とする必要はなく、第1図に示したス
キッドボタンの場合には、スキッドパイプ(20)に当接
する側の下半部分(11)、すなわちスキッドパイプ(2
0)からの伝導伝熱による十分な冷却作用が及ぶ部分は
従来の耐熱合金(例えば、高Cr高Ni系合金鋼)とし、そ
の上半部分(12)を本発明の複合焼結合金で形成したも
のであってもよい。そのスキッドボタンは、上半部分
(12)となる本発明の複合焼結合金のブロックと、別途
準備した下半部分(11)となる耐熱合金のブロックとを
溶接、または固相接合等で結着する方法により製作する
ことができ、あるいは、複合焼結合金の原料粉末もしく
はその圧粉成形体を耐熱合金ブロックと共にカプセル内
に密封して熱間静水圧加圧焼結を行う方法等による製作
することもできる。
When the composite sintered alloy of the present invention is used, for example, as a steel support member in a heating furnace, the member does not necessarily need to be entirely the composite sintered alloy of the present invention, and the skid button shown in FIG. The lower half (11) of the side that comes into contact with the skid pipe (20), that is, the skid pipe (2
The part where sufficient cooling action by conduction heat transfer from (0) is exerted is a conventional heat-resistant alloy (eg, high Cr high Ni alloy steel), and the upper half (12) is formed of the composite sintered alloy of the present invention. May be done. The skid button is formed by welding or solid-phase joining of the composite sintered alloy block of the present invention to be the upper half (12) and the heat-resistant alloy block to be the lower half (11) separately prepared. It can be manufactured by the method of performing hot isostatic pressing and sintering by sealing the raw material powder of the composite sintered alloy or its green compact together with the heat-resistant alloy block in a capsule. You can also.

〔実施例〕〔Example〕

クロム炭化物粉末と基地金属粉末を高エネルギボール
ミルで混合粉砕し、その粉末混合物(クロム炭化物:平
均粒径2μm、金属粉末平均粒径:10μm)を軟鋼製カ
プセルに充填して脱気密封したうえ、熱間静水圧加圧焼
結に付し、温度1100℃,加圧力1200kg f/cm2で2時間を
要して焼結を行い、その後24時間を要して常温まで降下
させて供試焼結合金のブロック(Φ100×150)を得
た。
The chromium carbide powder and the base metal powder are mixed and pulverized by a high energy ball mill, and the powder mixture (chromium carbide: average particle diameter 2 μm, metal powder average particle diameter: 10 μm) is filled into a mild steel capsule and degassed and sealed. subjected to hot isostatic pressure sintering, the temperature 1100 ° C., was sintered over a period of 2 hours under a pressure 1200 kg f / cm 2, subjected to subsequent lowered to room temperature over a period of 24 hours試焼A bonded gold block (Φ100 × 150) was obtained.

各供試焼結合金の成分組成を第1表に示す。表中、N
o.1〜8は適量のFeを含むFe−Cr合金を基地金属とする
発明例、No.101およびNo.102は比較例であり、No.101は
金属クロムを、No.102は金属コバルトをそれぞれ基地金
属とした例である。
Table 1 shows the component composition of each test sintered alloy. In the table, N
o.1 to 8 are invention examples using Fe-Cr alloy containing an appropriate amount of Fe as a base metal, No. 101 and No. 102 are comparative examples, No. 101 is metal chromium, No. 102 is metal cobalt Are base metals.

各供試焼結合金について、焼結欠陥(ピンホール等)
の検査、融点、高温圧縮強度(at.1350℃)の測定、お
よび耐酸化性試験を行って第1表右欄に示す結果を得
た。なお、表中、「焼結欠陥」は、複合焼結合金ブロッ
クを径方向および軸方向に切断分割し、その切断面を顕
微鏡観察した結果を示している。また、「耐酸化性」
は、各供試焼結合金ブロックを1350℃に設定された大気
雰囲気炉中に48時間保持する酸化試験後、酸化による表
面劣化状況を肉眼観察により判定した。同欄の○マーク
は、酸化のないことを意味している。
Sintering defects (pinholes, etc.) for each test sintered alloy
Inspection, melting point, measurement of high temperature compressive strength (at 1350 ° C.), and oxidation resistance test were performed, and the results shown in the right column of Table 1 were obtained. In the table, "sintering defect" indicates the result of cutting the composite sintered alloy block in the radial direction and the axial direction, and observing the cut surface with a microscope. Also, "Oxidation resistance"
After the oxidation test in which each of the test sintered alloy blocks was held in an atmosphere furnace set at 1350 ° C. for 48 hours, the state of surface deterioration due to oxidation was determined by visual observation. The ○ mark in the same column means that there is no oxidation.

第1表に示したように、金属クロムとクロム炭化物を
複合化した焼結合金(No.101)は、高融点を有してはい
るが、焼結性が低いために焼結体内にピンホールおよび
クラックが生じており、またそのために高圧圧縮強度も
低いレベルにある。金属コバルト(Co)を基地金属とし
た焼結合金(No.102)は焼結性の問題はなくピンホール
等のない健全性を有してはいるが、融点が1310℃前後と
低く、高温域での圧縮強度が劣っている。これに対し
て、Fe5〜50%を含むFe−Cr合金を基地金属としクロム
炭化物と複合化した発明例No.1〜8は、改良された焼結
性によりピンホール、クラック等のない健全性を有して
いると共に、ほぼ1500℃ないしそれ以上の高融点を有
し、高温域での強度にすぐれている。また耐酸化性もよ
く高温酸化性雰囲気での使用に十分耐えることがわか
る。
As shown in Table 1, the sintered alloy (No. 101), which is a composite of chromium metal and chromium carbide, has a high melting point, but has low sinterability, so that the pin Holes and cracks have occurred and the high pressure compressive strength is also at a low level. Sintered alloy (No.102) using metallic cobalt (Co) as a base metal has no problem of sintering and has soundness without pinholes, but its melting point is as low as around 1310 ° C and high temperature. The compressive strength in the region is inferior. In contrast, Invention Examples Nos. 1 to 8 in which a Fe-Cr alloy containing 5 to 50% of Fe was used as a base metal and composited with chromium carbide, exhibited soundness without pinholes and cracks due to improved sinterability. And has a high melting point of about 1500 ° C. or higher, and has excellent strength in a high temperature range. It is also seen that the material has good oxidation resistance and can withstand use in a high-temperature oxidizing atmosphere.

〔発明の効果〕 本発明に係るクロム炭化物粒子とFe−Cr合金とからな
る複合焼結合金は、ピンホールやクラック等のない健全
性・高緻密性を有し、かつ高融点で高温域においても高
強度を失わず、また高温での耐酸化性を備えているの
で、これらの諸特性を要求される部材、殊に加熱炉内の
スキッドボタン等の鋼材支持部材として有用であり、そ
の耐久性の向上、メンテナンスの軽減、操炉効率の向上
等の諸効果をもたらす。
[Effect of the Invention] The composite sintered alloy composed of the chromium carbide particles and the Fe-Cr alloy according to the present invention has soundness and high density without pinholes and cracks, and has a high melting point and a high temperature range. Since it does not lose high strength and has oxidation resistance at high temperatures, it is useful as a member requiring these various properties, especially as a steel support member such as a skid button in a heating furnace. Various effects such as improvement of performance, reduction of maintenance, and improvement of furnace operation efficiency are brought.

【図面の簡単な説明】[Brief description of the drawings]

第1図は加熱炉内鋼材搬送部材の例を示す断面図であ
る。 10:スキッドボタン、20:ビーム(スキッドパイプ)。
FIG. 1 is a sectional view showing an example of a steel material transport member in a heating furnace. 10: Skid button, 20: Beam (skid pipe).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠崎 斌 大阪府枚方市中宮大池1丁目1番1号 久保田鉄工株式会社枚方製造所内 (72)発明者 蘭 裕幸 大阪府枚方市中宮大池1丁目1番1号 久保田鉄工株式会社枚方製造所内 (56)参考文献 特開 平1−263240(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 29/06 C22C 32/00 C22C 1/05 C21D 1/00 116 F27D 3/00──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Bin Shinozaki 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture Inside the Hirakata Works of Kubota Iron Works Co., Ltd. (72) Inventor Hiroyuki Ran 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture No. 1 Kubota Iron Works Co., Ltd. Hirakata Works (56) References JP-A-1-263240 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 29/06 C22C 32/00 C22C 1/05 C21D 1/00 116 F27D 3/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】クロム炭化物粒子と、Fe5〜50重量%を含
有するFe−Cr合金とからなる均一混合組織を有する焼結
体であることを特徴とする複合焼結合金。
1. A composite sintered alloy characterized by being a sintered body having a uniform mixed structure comprising chromium carbide particles and an Fe-Cr alloy containing 5 to 50% by weight of Fe.
【請求項2】加熱炉内の被加熱鋼材を支持する鋼材支持
部材において、少なくとも被加熱鋼材と接触する頂部側
が、請求項1に記載の複合焼結合金からなることを特徴
とする加熱炉内鋼材支持部材。
2. A steel material supporting member for supporting a steel material to be heated in a heating furnace, wherein at least a top side of the steel material in contact with the steel material to be heated is made of the composite sintered alloy according to claim 1. Steel support members.
JP1052708A 1989-03-03 1989-03-03 Composite sintered alloy and steel support in heating furnace Expired - Lifetime JP2802768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052708A JP2802768B2 (en) 1989-03-03 1989-03-03 Composite sintered alloy and steel support in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052708A JP2802768B2 (en) 1989-03-03 1989-03-03 Composite sintered alloy and steel support in heating furnace

Publications (2)

Publication Number Publication Date
JPH02232335A JPH02232335A (en) 1990-09-14
JP2802768B2 true JP2802768B2 (en) 1998-09-24

Family

ID=12922394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052708A Expired - Lifetime JP2802768B2 (en) 1989-03-03 1989-03-03 Composite sintered alloy and steel support in heating furnace

Country Status (1)

Country Link
JP (1) JP2802768B2 (en)

Also Published As

Publication number Publication date
JPH02232335A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
JPH0747793B2 (en) Oxide dispersion strengthened heat resistant sintered alloy
JP2607157B2 (en) Heat-resistant alloy for supporting steel material to be heated in heating furnace
JP2010215951A (en) Sintered composite sliding component and manufacturing method therefor
JP2802768B2 (en) Composite sintered alloy and steel support in heating furnace
CN106086493B (en) A kind of method that fast low temperature sintering prepares CuCr alloy materials
EP0441574B1 (en) Skid member using Fe/Cr dispersion strengthened alloys
JPH0832942B2 (en) Composite sintered alloy, heat resistant member and steel support member in heating furnace
EP2045346B1 (en) Method for producing a sintered composite sliding part
JPH0297614A (en) Steel material transferring member in heating furnace
JPH02233990A (en) Refractory and steel support member in heating furnace
JPS60145954A (en) Chromium carbide sintered body for heated material supporting surface of heating furnace
US5779823A (en) Carbon or boron modified titanium silicide
JP2005262321A (en) Composite roll made of cemented carbide
JPH0418956B2 (en)
JPH02258947A (en) Heat-resistant sintered alloy and steel material supporting member in heating furnace
JPS63255329A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JPH04301049A (en) Heat resisting alloy for support surface member for steel material to be heating in heating furnace
JPH0297615A (en) Steel material carrying member in heating furnace and manufacture thereof
JP6015557B2 (en) Bonding material, manufacturing method thereof, and member bonding method
GB2312681A (en) A sintering method for a W-Ni-Mn type heavy alloy.
CA2035618A1 (en) Skid rail alloy
JP2004315950A (en) Heat resistant and wear resistant member, and its production method
JPH0394042A (en) High temperature oxidation-resistant and compression-resistant material
JPS63186837A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JPH04301048A (en) Heat resisting alloy for support surface member for steel material to be heated in heating furnace