JP2010215951A - Sintered composite sliding component and manufacturing method therefor - Google Patents
Sintered composite sliding component and manufacturing method therefor Download PDFInfo
- Publication number
- JP2010215951A JP2010215951A JP2009062482A JP2009062482A JP2010215951A JP 2010215951 A JP2010215951 A JP 2010215951A JP 2009062482 A JP2009062482 A JP 2009062482A JP 2009062482 A JP2009062482 A JP 2009062482A JP 2010215951 A JP2010215951 A JP 2010215951A
- Authority
- JP
- Japan
- Prior art keywords
- outer member
- sintered
- mass
- powder
- inner member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Supercharger (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、焼結部材からなる外側部材と、溶製鋼からなる内側部材とを焼結拡散接合により一体化した焼結複合部品に関するものであり、特に、外側部材として、高温耐摩耗性に優れた焼結部材を適用した焼結複合摺動部品、およびその製造方法に係る。 The present invention relates to a sintered composite part in which an outer member made of a sintered member and an inner member made of molten steel are integrated by sintered diffusion bonding, and is particularly excellent as a high temperature wear resistance as an outer member. The present invention relates to a sintered composite sliding part to which a sintered member is applied, and a manufacturing method thereof.
粉末冶金法は、ニアネットシェイプに造形できることや、溶製材料では得られない複合材料を製造できること等の利点を有することから各種産業用の部品に適用されてきており、特に自動車および自動二輪車部品においては、その適用範囲が拡大してきている。このような適用範囲の拡大において、近年では、例えば、排気装置部品(特許文献1)やターボチャージャ用部品(特許文献2)のような、高温における耐摩耗性や耐蝕性が要求される部品へも適用が進んでいる。 The powder metallurgy method has been applied to various industrial parts because it has advantages such as being able to form a near net shape and producing composite materials that cannot be obtained by melting materials, especially automobile and motorcycle parts. The scope of application is expanding. In such an expansion of the application range, in recent years, for example, parts that require wear resistance and corrosion resistance at high temperatures, such as exhaust device parts (Patent Document 1) and turbocharger parts (Patent Document 2). Is also being applied.
上記のターボチャージャ用部品で用いられる焼結材料は、耐摩耗性が付与されているため靱性が低く、構成部品によっては強度が不足する。このため、鋼材と組み合わせて、耐摩耗性が必要な外側部材を焼結材料で構成し、強度が必要となる内側部材を鋼材で構成する試みがなされている。しかしながら、両部材をろう付けで接合すると、高温での使用時に、ろう材が熔解して部材が脱落する虞がある。また、焼結材料は多孔質であるため、熱や電気の伝導度が劣ること、気孔内にガスが残留して溶接部にブローホールを生じやすいこと、変態歪みによる焼割れを生じやすいこと等により溶接には不向きである。さらに、外側部材に内側部材を圧入もしくは外側部材を内側部材にカシメにより固定すると、靱性に乏しい焼結材料に割れが生じ易い。これを避けるため圧入代を小さくすると、両部材の接合強度が低くなり、使用時に脱落する虞がある。 The sintered material used in the above turbocharger parts has low toughness because of being given wear resistance, and the strength is insufficient depending on the component parts. For this reason, an attempt has been made to configure an outer member that requires wear resistance with a sintered material in combination with a steel material and an inner member that requires strength with a steel material. However, if both members are joined by brazing, there is a risk that the brazing material will melt and the member may fall off when used at a high temperature. In addition, since the sintered material is porous, heat and electrical conductivity are inferior, gas is left in the pores and blowholes are likely to occur in the welded part, and cracking due to transformation strain is likely to occur. Therefore, it is not suitable for welding. Furthermore, when the inner member is press-fitted into the outer member or the outer member is fixed to the inner member by caulking, the sintered material having poor toughness is likely to crack. If the press-fitting allowance is reduced in order to avoid this, the joint strength between the two members is lowered, and there is a risk of dropping during use.
そこで、本発明は、ターボチャージャ用部品として好適な、高温下での耐摩耗性および耐蝕性に優れた焼結部材からなる外側部材を、溶製鋼からなる内側部材に良好に接合した焼結複合摺動部品およびその製造方法を提供することを目的とする。 Accordingly, the present invention provides a sintered composite in which an outer member made of a sintered member excellent in wear resistance and corrosion resistance at high temperatures, which is suitable as a turbocharger component, is well bonded to an inner member made of molten steel. An object of the present invention is to provide a sliding component and a manufacturing method thereof.
上記目的を達成する本発明の第1の焼結複合摺動部品は、質量比でCr:23.8〜44.3%、Mo:1.0〜3.0%、Si:1.0〜3.0%、P:0.1〜1.0%、C:1.0〜3.0%、残部Feおよび不可避不純物からなる全体組成を有し、密度比が95%以上で基地中に炭化物が分散するFe基耐摩耗性焼結部材からなる外側部材と、溶製のステンレス鋼からなる内側部材とからなり、前記外側部材に形成された孔部に前記内側部材が嵌合するとともに拡散接合して一体になっていることを特徴とする。 The first sintered composite sliding part of the present invention that achieves the above object has a mass ratio of Cr: 23.8 to 44.3%, Mo: 1.0 to 3.0%, Si: 1.0 to 3.0%, P: 0.1-1.0%, C: 1.0-3.0%, the whole composition consisting of the balance Fe and inevitable impurities, with a density ratio of 95% or more in the base It consists of an outer member made of Fe-based wear-resistant sintered member in which carbides are dispersed and an inner member made of molten stainless steel, and the inner member is fitted and diffused in a hole formed in the outer member. It is characterized by being joined together.
また、上記目的を達成する本発明の第2の焼結複合摺動部品は、質量比で、Cr:19.7〜41.9%、Ni:5.0〜15.0%、Mo:0.8〜2.8%、Si:0.8〜2.8%、P:0.1〜1.0%、C:1.2〜4.4%、残部Feおよび不可避不純物からなる全体組成を有し、密度比が95%以上でオーステナイト基地中に炭化物が分散するFe基耐摩耗性焼結部材からなる外側部材と、溶製のステンレス鋼からなる内側部材とからなり、前記外側部材に形成された孔部に前記内側部材が嵌合するとともに拡散接合して一体になっていることを特徴とする。 Moreover, the 2nd sintered composite sliding component of this invention which achieves the said objective is Cr: 19.7-41.9%, Ni: 5.0-15.0%, Mo: 0 by mass ratio. 0.8 to 2.8%, Si: 0.8 to 2.8%, P: 0.1 to 1.0%, C: 1.2 to 4.4%, balance Fe and unavoidable impurities And an outer member made of an Fe-based wear-resistant sintered member in which carbide is dispersed in an austenite base with a density ratio of 95% or more, and an inner member made of molten stainless steel, and the outer member The inner member is fitted into the formed hole and diffused and joined together.
さらに、上記目的を達成する第1の焼結複合摺動部品の製造方法は、上記第1の焼結複合摺動部品を製造する方法であり、具体的には、質量比で、Cr:25〜45%、Mo:1〜3%、Si:1〜3%、C:0.5〜1.5%、残部Feおよび不可避不純物よりなる組成の鉄基合金粉末に、P:10〜30質量%の鉄−リン合金粉末を1.0〜3.3質量%および黒鉛粉末を0.5〜1.5質量%添加して混合した原料粉末を用い、原料粉末を、溶製鋼からなる内側部材と嵌合する孔部を有する外側部材形状に圧粉成形し、得られた外側部材圧粉体の嵌合用孔部に、溶製のステンレス鋼からなる内側部材を嵌合させた後、焼結して外側部材の焼結と、外側部材と内側部材との拡散接合を同時に行って一体化させることを特徴とする。 Furthermore, the manufacturing method of the 1st sintered composite sliding component which achieves the said objective is a method of manufacturing the said 1st sintered composite sliding component, Specifically, by mass ratio, Cr: 25 To an iron-based alloy powder having a composition comprising -45%, Mo: 1 to 3%, Si: 1 to 3%, C: 0.5 to 1.5%, balance Fe and inevitable impurities, P: 10 to 30 mass % Of an iron-phosphorus alloy powder of 1.0-3.3 mass% and graphite powder of 0.5-1.5 mass% added and mixed, the raw material powder is an inner member made of molten steel The outer member shape having a hole portion to be fitted is compacted, and the inner member made of molten stainless steel is fitted into the fitting hole portion of the obtained outer member compact, and then sintered. Then, sintering of the outer member and diffusion bonding of the outer member and the inner member are simultaneously performed and integrated.
そして、上記目的を達成する第2の焼結複合摺動部品の製造方法は、上記第2の焼結複合摺動部品を製造する方法であり、具体的には、上記の第1の焼結複合摺動部品の製造方法において、原料粉末にニッケル粉末を添加、もしくは鉄基合金粉末にNiを含有させて、原料粉末に対して5.0〜15.0質量%となる量のNiを添加するとともに、上記黒鉛粉末の添加量を0.8〜3.0質量%としたことを特徴とする。 And the manufacturing method of the 2nd sintered composite sliding component which achieves the said objective is a method of manufacturing the said 2nd sintered composite sliding component, Specifically, said 1st sintering In the manufacturing method of composite sliding parts, nickel powder is added to the raw material powder, or Ni is added to the iron-based alloy powder, and Ni is added in an amount of 5.0 to 15.0% by mass with respect to the raw material powder. In addition, the amount of the graphite powder added is 0.8 to 3.0% by mass.
本発明の焼結複合摺動部品の製造方法において、内側部材と嵌合させる外側部材として、上記の圧粉体に替えて、圧粉体を予備焼結した後再圧縮した予備焼結再圧体を用いると、外側部材の密度をより高めることができ、その結果、耐摩耗性および耐蝕性を向上させることができる。 In the manufacturing method of the sintered composite sliding part of the present invention, as an outer member to be fitted with the inner member, a pre-sintering re-pressure obtained by pre-sintering the green compact and recompressing it instead of the green compact described above When the body is used, the density of the outer member can be further increased, and as a result, the wear resistance and the corrosion resistance can be improved.
本発明の焼結複合摺動部品は、高温下における耐摩耗性および耐蝕性を有する焼結部材を外側部材とし、高温下における耐蝕性を有するステンレス鋼を内側部材として、両者を拡散接合により一体にしたものであるから、高温環境下においても良好な耐摩耗性、耐蝕性および強度を有するとともに、良好な接合強度を有する。また、本発明の焼結複合摺動部品の製造方法では、外側部材の焼結と、外側部材と内側部材の拡散接合を同時に行うため、上記の焼結複合摺動部品を高い効率で製造することができる。 The sintered composite sliding part of the present invention uses a sintered member having wear resistance and corrosion resistance at high temperatures as an outer member, and stainless steel having corrosion resistance at high temperatures as an inner member, and both are integrated by diffusion bonding. Therefore, it has good wear resistance, corrosion resistance and strength even in a high temperature environment, and also has good bonding strength. Moreover, in the manufacturing method of the sintered composite sliding part of this invention, since sintering of an outer member and diffusion joining of an outer member and an inner member are performed simultaneously, said sintered composite sliding part is manufactured with high efficiency. be able to.
本発明の第1の焼結複合摺動部品の外側部材としては、特許文献2の焼結合金が適しており、具体的には、質量比で、Cr:23.8〜44.3%、Mo:1.0〜3.0%、Si:1.0〜3.0%、P:0.1〜1.0%、C:1.0〜3.0%、残部Feおよび不可避不純物からなる全体組成を有し、密度比が95%以上で基地中に炭化物が分散する焼結合金が適している。 As the outer member of the first sintered composite sliding part of the present invention, the sintered alloy of Patent Document 2 is suitable, specifically, Cr: 23.8 to 44.3% by mass ratio, Mo: 1.0-3.0%, Si: 1.0-3.0%, P: 0.1-1.0%, C: 1.0-3.0%, balance Fe and unavoidable impurities A sintered alloy having a total composition as described above and having a density ratio of 95% or more and in which carbides are dispersed in the matrix is suitable.
本発明の第1の焼結複合摺動部品の外側部材のCrは、外側部材の基地の耐熱性および耐食性の向上に寄与する。CrはCと結合して微細な粒状の炭化物を外側部材の基地中に均一に形成し、それにより外側部材の耐摩耗性を向上させるとともに、基地中のCrが耐食性を担うため、外側部材に充分な耐摩耗性と耐酸化性を付与する。上記Crの効果を外側部材の基地中に均一に作用させるため、Crは鉄基合金粉末の形態で付与する。ここで、鉄基合金粉末のCrの含有量が25質量%に満たないと、Cr炭化物の析出量が少なくなり、外側部材の耐摩耗性が不充分になるとともに、耐熱性および耐食性が低下する。一方、Crの含有量が45質量%を超えると粉末の圧縮性が著しく損なわれる。よって、鉄基合金粉末のCrの含有量は25〜45質量%とする。 The Cr of the outer member of the first sintered composite sliding part of the present invention contributes to the improvement of the heat resistance and corrosion resistance of the base of the outer member. Cr combines with C to form fine granular carbide uniformly in the base of the outer member, thereby improving the wear resistance of the outer member, and Cr in the base bears corrosion resistance. Provide sufficient wear and oxidation resistance. In order to make the effect of Cr uniformly work in the base of the outer member, Cr is applied in the form of iron-based alloy powder. Here, if the content of Cr in the iron-based alloy powder is less than 25% by mass, the amount of Cr carbide precipitated decreases, the wear resistance of the outer member becomes insufficient, and the heat resistance and corrosion resistance decrease. . On the other hand, if the Cr content exceeds 45% by mass, the compressibility of the powder is significantly impaired. Therefore, the content of Cr in the iron-based alloy powder is 25 to 45 mass%.
本発明の第1の焼結複合摺動部品の外側部材のMoは、外側部材の基地の耐熱性および耐食性向上に寄与するとともに、Cと結合して炭化物を形成し外側部材の耐摩耗性を向上させる。MoもCrと同様、その効果を基地全体に均一に作用させるため鉄基合金粉末の形態で付与する。鉄基合金粉末のMoの含有量が1質量%に満たないと、基地の耐熱性および耐食性向上の効果が乏しく、一方、3質量%を超えてもその効果はさほど顕著には現れない。よって、鉄基合金粉末中のMoの含有量は1〜3質量%とする。 Mo of the outer member of the first sintered composite sliding part of the present invention contributes to improving the heat resistance and corrosion resistance of the base of the outer member, and combines with C to form a carbide to increase the wear resistance of the outer member. Improve. Mo is applied in the form of an iron-based alloy powder so that the effect of Mo is uniformly applied to the entire base as in the case of Cr. If the content of Mo in the iron-base alloy powder is less than 1% by mass, the effect of improving the heat resistance and corrosion resistance of the base is poor, while the effect is not so noticeable even if it exceeds 3% by mass. Therefore, the content of Mo in the iron-base alloy powder is 1 to 3% by mass.
本発明の第1の焼結複合摺動部品の外側部材のSiは、外側部材の焼結性を向上させる作用を有する。鉄基合金粉末のSiの含有量が1%未満ではその効果が乏しく、一方、3質量%を超えると鉄基合金粉末が硬くなり過ぎて圧縮性が著しく損なわれる。よって、鉄基合金粉末中のSiの含有量は1〜3質量%とする。 Si of the outer member of the first sintered composite sliding part of the present invention has an effect of improving the sinterability of the outer member. If the Si content of the iron-based alloy powder is less than 1%, the effect is poor. On the other hand, if it exceeds 3% by mass, the iron-based alloy powder becomes too hard and the compressibility is significantly impaired. Therefore, the content of Si in the iron-based alloy powder is 1 to 3% by mass.
本発明の第1の焼結複合摺動部品の外側部材のPは、Cとともに焼結時にFe−P−C液相を発生させて焼結体の緻密化を促進して外側部材の密度比を95%以上にする。
このとき同時に、外側部材圧粉体より発生するFe−P−C液相が溶製のステンレス鋼からなる内側部材の外径面に濡れて外側部材の焼結体と内側部材の拡散接合を促進するとともに、外側部材圧粉体に設けられた嵌合用孔部の内径面が収縮して、外側部材圧粉体の嵌合用穴部の内径面が内側部材の外径面を締め込む圧力が発生し、この圧力が両者の拡散接合を促進する。
P of the outer member of the first sintered composite sliding part of the present invention generates a Fe-PC liquid phase during sintering together with C to promote densification of the sintered body, thereby increasing the density ratio of the outer member. Is 95% or more.
At the same time, the Fe-PC liquid phase generated from the outer member green compact is wetted by the outer surface of the inner member made of molten stainless steel to promote diffusion bonding between the outer member sintered body and the inner member. In addition, the inner diameter surface of the fitting hole provided in the outer member green compact shrinks, and the inner diameter surface of the outer member green compact fitting hole generates a pressure to tighten the outer diameter surface of the inner member. This pressure promotes diffusion bonding between the two.
このような焼結時の液相化を促進して外側部材の緻密化および外側部材と内側部材の拡散接合を図るために、Pは鉄−リン合金粉末の形態で添加する。鉄−リン合金粉末の混合粉末への添加量は、全体組成中のPの含有量が0.1質量%未満では液相発生量が乏しく、十分な緻密化が達成できず密度比が95%を下回るようになり、一方、全体組成中のPの含有量が1.0質量%を超えると基地が脆化し耐食性も劣化する。 P is added in the form of an iron-phosphorus alloy powder in order to promote the liquid phase formation during the sintering so as to achieve the densification of the outer member and the diffusion bonding between the outer member and the inner member. The amount of iron-phosphorus alloy powder added to the mixed powder is such that when the P content in the overall composition is less than 0.1% by mass, the amount of liquid phase generated is poor, and sufficient densification cannot be achieved, resulting in a density ratio of 95%. On the other hand, if the content of P in the overall composition exceeds 1.0% by mass, the matrix becomes brittle and the corrosion resistance deteriorates.
本発明の第1の焼結複合摺動部品の外側部材のCは、液相化温度を下げるため、焼結時にFe−P−C液相を発生させ、外側部材の緻密化および外側部材と内側部材の拡散接合を促進する。また、CはCr、Moと炭化物を形成して外側部材の耐摩耗性向上に寄与する。全体組成中のCの含有量が1.0質量%未満ではこれらの効果が乏しい。一方、3.0質量%を超えると、外側部材の基地が脆化するとともに、炭化物の析出量が増大することにより、ベーン等の相手材を摩耗させたり、基地中のCr量を低減させて耐熱性および耐食性の低下を招く。よって、全体組成中のCの含有量は1.0〜3.0質量%とする。 C of the outer member of the first sintered composite sliding component of the present invention generates a Fe-PC liquid phase during sintering in order to lower the liquidus temperature, Promotes diffusion bonding of the inner member. C forms a carbide with Cr, Mo, and contributes to an improvement in wear resistance of the outer member. When the content of C in the overall composition is less than 1.0% by mass, these effects are poor. On the other hand, if it exceeds 3.0% by mass, the base of the outer member becomes brittle and the amount of precipitation of carbide increases, so that the counterpart material such as vane is worn or the amount of Cr in the base is reduced. Reduces heat resistance and corrosion resistance. Therefore, the content of C in the overall composition is 1.0 to 3.0% by mass.
ただし、Cの全量を黒鉛粉末の形態で付与すると、鉄基合金粉末はCr、MoがFe基地中に固溶された状態の粉末となり、鉄基合金粉末が硬くなり過ぎて圧縮性が損なわれる。また、多量の黒鉛粉末の使用も原料粉末の圧縮性を損なう。そのため、Cの一部を鉄基合金粉末の形態で付与し、残りのCを黒鉛粉末の形態で付与する。Cの一部を鉄基合金粉末の形態で付与すると、鉄基合金粉末中のCr、Moが炭化物として鉄基合金粉末中に析出し、鉄基合金粉末の基地中に固溶されるCr、Moの量が低減されるため、鉄基合金粉末の圧縮性を改善できる。さらに、残りのCを黒鉛粉末の形態で混合粉末に与えることにより、原料粉末自体の圧縮性も改善できる。このとき、鉄基合金粉末のCの含有量が0.5質量%未満であると、Fe基地中に固溶するCr、Moの量が多くなるため、鉄基合金粉末が硬くなって圧縮性が損なわれ、一方、1.5質量%を超えると鉄基合金粉末中に析出する炭化物の量が多くなりすぎ、逆に鉄基合金粉末の硬さが高くなる。したがって、鉄基合金粉末のCの含有量は0.5〜1.5質量%とし、残部の0.5〜1.5質量%は黒鉛粉末として混合粉末に添加する。 However, when the total amount of C is applied in the form of graphite powder, the iron-base alloy powder becomes a powder in which Cr and Mo are dissolved in the Fe base, and the iron-base alloy powder becomes too hard and the compressibility is impaired. . Further, the use of a large amount of graphite powder also impairs the compressibility of the raw material powder. Therefore, a part of C is applied in the form of iron-based alloy powder, and the remaining C is applied in the form of graphite powder. When a part of C is applied in the form of an iron-base alloy powder, Cr in the iron-base alloy powder, Mo precipitates in the iron-base alloy powder as carbides, and Cr is dissolved in the base of the iron-base alloy powder, Since the amount of Mo is reduced, the compressibility of the iron-based alloy powder can be improved. Furthermore, the compressibility of the raw material powder itself can be improved by supplying the remaining C to the mixed powder in the form of graphite powder. At this time, if the C content of the iron-based alloy powder is less than 0.5% by mass, the amount of Cr and Mo dissolved in the Fe base increases, so the iron-based alloy powder becomes hard and compressible. On the other hand, if the amount exceeds 1.5% by mass, the amount of carbide precipitated in the iron-base alloy powder becomes too large, and conversely, the hardness of the iron-base alloy powder increases. Therefore, the C content of the iron-based alloy powder is 0.5 to 1.5 mass%, and the remaining 0.5 to 1.5 mass% is added to the mixed powder as graphite powder.
以上より、本発明の第1の焼結複合摺動部品の外側部材のための原料粉末は、質量比で、Cr:25〜45%、Mo:1〜3%、Si:1〜3%、C:0.5〜1.5%、残部:Feおよび不可避不純物からなる鉄基合金粉末と、P:10〜30質量%、残部:Feおよび不可避不純物からなる鉄−リン合金粉末と、黒鉛粉末とからなり、鉄基合金粉末に鉄−リン合金粉末を1.0〜3.3質量%および黒鉛粉末を0.5〜1.5質量%添加し、混合した混合粉末を用いる。 From the above, the raw material powder for the outer member of the first sintered composite sliding part of the present invention has a mass ratio of Cr: 25 to 45%, Mo: 1 to 3%, Si: 1 to 3%, C: 0.5 to 1.5%, balance: iron-based alloy powder composed of Fe and inevitable impurities, P: 10 to 30% by mass, balance: iron-phosphorus alloy powder composed of Fe and inevitable impurities, and graphite powder A mixed powder obtained by adding 1.0 to 3.3 mass% of iron-phosphorus alloy powder and 0.5 to 1.5 mass% of graphite powder to the iron-based alloy powder and mixing them is used.
上記の混合粉末を用い、通常の粉末冶金法の手法で成形−焼結することにより、質量比でCr:23.8〜44.3%、Mo:1.0〜3.0%、Si:1.0〜3.0%、P:0.1〜1.0%、C:1.0〜3.0%、残部Feおよび不可避不純物からなる全体組成を有し、密度比が95%以上で基地中に炭化物が分散する本発明の第1の焼結複合摺動部品の外側部材を作製することができる。 By using the above mixed powder and molding and sintering by a conventional powder metallurgy method, Cr: 23.8 to 44.3%, Mo: 1.0 to 3.0%, Si: 1.0 to 3.0%, P: 0.1 to 1.0%, C: 1.0 to 3.0%, the overall composition composed of the balance Fe and inevitable impurities, and the density ratio is 95% or more Thus, the outer member of the first sintered composite sliding part of the present invention in which carbide is dispersed in the base can be produced.
特に、本発明の第1の焼結複合摺動部品の外側部材は、密度比を95%以上としているので、気孔内での酸化や孔食腐蝕の進行を抑制することができ、耐食性を大幅に向上させることができる。また、微細な粒状のCr炭化物を基地中に分散させることにより、耐摩耗性と耐酸化性を向上させることができる。 In particular, since the outer member of the first sintered composite sliding part of the present invention has a density ratio of 95% or more, it is possible to suppress the progress of oxidation and pitting corrosion in the pores, and greatly improve the corrosion resistance. Can be improved. In addition, by dispersing fine granular Cr carbide in the matrix, the wear resistance and oxidation resistance can be improved.
本発明の第2の焼結複合摺動部品の外側部材は、特許文献3の焼結合金であり、上記の第1の焼結複合摺動部品の外側部材にNiを与えて、外側部材の合金基地にさらに耐食性および高温強さを付与したものである。具体的には、質量比で、Cr:19.7〜41.9%、Ni:5.0〜15.0%、Mo:0.8〜2.8%、Si:0.8〜2.8%、P:0.1〜1.0%、C:1.2〜4.4%、残部Feおよび不可避不純物からなる全体組成を有し、密度比が95%以上でオーステナイト基地中に炭化物が分散するFe基耐摩耗性焼結部材からなる。 The outer member of the second sintered composite sliding part of the present invention is a sintered alloy of Patent Document 3, and Ni is given to the outer member of the first sintered composite sliding part to The alloy base is further provided with corrosion resistance and high temperature strength. Specifically, Cr: 19.7-41.9%, Ni: 5.0-15.0%, Mo: 0.8-2.8%, Si: 0.8-2. 8%, P: 0.1 to 1.0%, C: 1.2 to 4.4%, the overall composition consisting of the balance Fe and inevitable impurities, with a density ratio of 95% or more and carbide in the austenite base It consists of a Fe-based wear-resistant sintered member in which is dispersed.
Niは、外側部材の基地に拡散して固溶強化するとともに、外側部材の基地をオーステナイト化して耐摩耗部材の耐食性および高温強さを向上させる作用を有する。全体組成におけるNiの含有量が5.0質量%未満ではNiの効果が乏しく、一方、Niの含有量が15.0質量%を超えても高温強さはそれ以上向上しないばかりか、高温耐食性が低下する。よって、全体組成におけるNiの含有量(Ni粉の添加量)は5.0〜15.0質量%とする。上記の作用を有するNiを上記の鉄基合金粉末に固溶して与えると、Niの効果が外側部材の基地中に均一に作用するので好ましいが、NiはFe基地への拡散が比較的速いため、Ni粉末の形態で混合粉末に与えてもよい。 Ni diffuses into the base of the outer member and strengthens by solid solution, and has the effect of improving the corrosion resistance and high-temperature strength of the wear-resistant member by austenizing the base of the outer member. When the Ni content in the overall composition is less than 5.0% by mass, the effect of Ni is poor. On the other hand, even if the Ni content exceeds 15.0% by mass, the high-temperature strength is not further improved, and the high-temperature corrosion resistance. Decreases. Therefore, the Ni content (addition amount of Ni powder) in the overall composition is set to 5.0 to 15.0 mass%. When Ni having the above action is dissolved in the iron-based alloy powder, it is preferable because the effect of Ni acts uniformly in the base of the outer member, but Ni diffuses relatively quickly into the Fe base. Therefore, you may give to mixed powder with the form of Ni powder.
一方、上記の量のNiを外側部材の基地に与えると、外側部材の基地をオーステナイト化してCの固溶限を拡大させる。このため本発明の第2の焼結複合摺動部品の外側部材においては、上記の本発明の第1の焼結複合摺動部品の外側部材よりもC量を増加させることが好ましい。しかしながら、全体組成のC量が4.4質量%を超えると、基地が脆化するとともに、炭化物の析出量が増大することによりベーン等の相手材を摩耗させたり、基地中のCr量を低減させて耐熱性および耐食性の低下を招く。このため、本発明の第2の焼結複合摺動部品の外側部材においては、C量の上限を4.4質量%とする。 On the other hand, when the above amount of Ni is applied to the base of the outer member, the base of the outer member is austenitized to expand the solid solubility limit of C. For this reason, in the outer member of the second sintered composite sliding part of the present invention, it is preferable to increase the C amount as compared with the outer member of the first sintered composite sliding part of the present invention. However, if the amount of C in the overall composition exceeds 4.4% by mass, the matrix becomes brittle and the amount of precipitated carbide increases, so that the counterpart material such as vane is worn or the Cr content in the matrix is reduced. This causes a decrease in heat resistance and corrosion resistance. For this reason, in the outer member of the second sintered composite sliding part of the present invention, the upper limit of the C amount is 4.4 mass%.
なお、鉄基合金粉末に与えることができるC量は上記のとおり0.5〜1.5質量%であることから、C量の増加分は黒鉛粉末の形態で与える。このため、本発明の第2の焼結複合摺動部品の外側部材においては、黒鉛粉末の添加量を0.8〜3.0質量%とする。 Since the amount of C that can be given to the iron-based alloy powder is 0.5 to 1.5% by mass as described above, an increase in the amount of C is given in the form of graphite powder. For this reason, in the outer member of the second sintered composite sliding part of the present invention, the amount of graphite powder added is 0.8 to 3.0 mass%.
上記の原料粉末は、内側部材と嵌合する孔部を有する所望の外側部材形状に圧粉成形されて外側部材圧粉体とされる。次いで、外側部材圧粉体の嵌合用孔部に、溶製鋼からなる内側部材を嵌合させて一体に組み立てる。なお、内側部材の溶製鋼としては、高温下における耐蝕性が求められるため、ステンレス溶製鋼を用いる。 The raw material powder is compacted into a desired outer member shape having a hole that fits with the inner member to form an outer member compact. Next, the inner member made of molten steel is fitted into the fitting hole of the outer member green compact, and assembled integrally. In addition, as molten steel of an inner member, since corrosion resistance in high temperature is calculated | required, stainless steel molten steel is used.
なお、外側部材圧粉体は液相収縮するため、外側部材圧粉体の嵌合用孔部に内側部材を隙間嵌めとして、隙間を嵌合用孔部の径の1%以下に設定しても良好な接合状態を得ることができる。しかしながら、隙間嵌めでは焼結時に内側部材の軸心がずれる可能性があるため、隙間をできるだけ小さくする、もしくは締まり嵌めとすることが好ましい。すなわち、外側部材の嵌合用穴部に、それより大径の内側部材を位置調節して圧入すると、焼結時の内側部材の軸心ずれが生じ難くなる。また、締まり嵌めとすると、外側部材圧粉体の嵌合用穴部の内径面と、内側部材の表面が密着して嵌合するため、両者の密着度が大きくなる。ただし、上記の鉄基合金粉末は純鉄粉末等に比べて硬く、外側部材圧粉体の強度が比較的低いため、締め代が嵌合用孔部の径の1%を超えると、嵌合用穴部の引っ張り応力が大きくなり外側部材の破損の虞がある。 Since the outer member green compact undergoes liquid phase shrinkage, it is also possible to set the gap to 1% or less of the diameter of the fitting hole by fitting the inner member into the fitting hole of the outer member green compact. Can be obtained. However, since the axial center of the inner member may be shifted during sintering when the gap is fitted, it is preferable to make the gap as small as possible or make an interference fit. That is, when the inner member having a larger diameter is adjusted and press-fitted into the fitting hole portion of the outer member, it is difficult for the inner member to be misaligned during sintering. Further, when an interference fit is employed, the inner diameter surface of the fitting hole portion of the outer member green compact and the surface of the inner member are closely fitted to each other, so that the degree of adhesion between both is increased. However, since the iron-based alloy powder is harder than pure iron powder and the strength of the outer member green compact is relatively low, when the allowance exceeds 1% of the diameter of the fitting hole, the fitting hole There is a risk that the tensile stress of the part increases and the outer member is damaged.
一体に組み立てられた外側部材圧粉体と内側部材は、焼結炉に投入され、焼結される。この焼結時において、外側部材圧粉体では、鉄−リン合金粉末がFe−P−C共晶液相を発生させ、焼結体を緻密化して収縮させる。一方、溶製鋼からなる内側部材は、加熱により熱膨張する。このため、焼結進行時(800℃以上の温度)においては、外側部材と内側部材との界面で圧力が発生し、両者が強く密着した状態となる。このとき、外側部材と内側部材との界面で両部材の成分元素が相互に固相拡散することにより、両部材の拡散接合が行われる。この結果、外側部材は高温下において優れた耐摩耗性と耐蝕性を有する焼結部材となり、外側部材と内側部材が強固に一体化した焼結複合摺動部品が得られる。 The outer member green compact and the inner member assembled together are put into a sintering furnace and sintered. At the time of sintering, in the outer member green compact, the iron-phosphorus alloy powder generates a Fe—PC—C eutectic liquid phase and densifies and shrinks the sintered body. On the other hand, the inner member made of molten steel is thermally expanded by heating. For this reason, during sintering (at a temperature of 800 ° C. or higher), pressure is generated at the interface between the outer member and the inner member, and the two members are in close contact with each other. At this time, the diffusion bonding of both members is performed by the solid-phase diffusion of the component elements of both members at the interface between the outer member and the inner member. As a result, the outer member becomes a sintered member having excellent wear resistance and corrosion resistance at high temperatures, and a sintered composite sliding part in which the outer member and the inner member are firmly integrated is obtained.
上記の焼結複合摺動部品においては、外側部材に過大な応力が働くことがなく、圧入やカシメによる嵌合時に発生する割れの問題を回避することができる。また、外側部材と内側部材は、両者が冶金的に結合していることから、高い接合強度を有する。 In the above-mentioned sintered composite sliding part, excessive stress does not act on the outer member, and it is possible to avoid the problem of cracks that occur during fitting by press-fitting or caulking. In addition, the outer member and the inner member have high joint strength because they are metallurgically coupled.
上記の方法で得られる外側部材である焼結部材は特有の気孔を有し、気孔の存在により外側部材は比表面積が大きい。腐食(酸化)は表面から生じるため、この気孔の量を低減することにより、より一層の耐蝕性の向上を図ることもできる。 The sintered member, which is an outer member obtained by the above method, has unique pores, and the outer member has a large specific surface area due to the presence of the pores. Since corrosion (oxidation) occurs from the surface, the corrosion resistance can be further improved by reducing the amount of the pores.
その方法の一つとして、内側部材と嵌合させる前に、外側部材圧粉体に予備焼結を施して再圧縮を行い、予備焼結再圧体を作製し、この予備焼結再圧体の嵌合用孔部に内側部材を嵌合させて、上記のように焼結する方法が挙げられる。予備焼結により圧粉体の原料粉末に蓄積されていた圧縮歪みが開放されるため、これを再圧縮することにより、圧粉体よりも密度が高い予備焼結再圧体が得られる。このような密度が高い(気孔量が少ない)材料を焼結することにより、高密度、すなわち気孔量が少なく、比表面積が小さい外側部材が得られる。予備焼結温度としては、原料粉末に蓄積された圧縮歪みを開放するため、600℃以上とすることが好ましい。一方、温度が高過ぎると、原料粉末どうしのネックの成長が始まり、再圧縮に際して緻密化しにくくなるので、上限を1000℃とすることが好ましい。 As one of the methods, before fitting with the inner member, the outer member green compact is pre-sintered and re-compressed to produce a pre-sintered re-pressure body. There is a method in which the inner member is fitted into the fitting hole and sintered as described above. Since the compressive strain accumulated in the raw material powder of the green compact is released by the pre-sintering, a pre-sintered re-pressed body having a density higher than that of the green compact is obtained by re-compressing it. By sintering such a material having a high density (a small amount of pores), an outer member having a high density, that is, a small amount of pores and a small specific surface area can be obtained. The pre-sintering temperature is preferably 600 ° C. or higher in order to release the compressive strain accumulated in the raw material powder. On the other hand, if the temperature is too high, growth of necks between the raw material powders starts and it becomes difficult to densify during recompression, so the upper limit is preferably set to 1000 ° C.
もう一つの方法は、鉄基合金粉末として、主に最大粒径46μm以下の微粉末からなる粉末を用いることである。原料粉末として微粉末を用いると、ブリッジングが発生し易く、成形性が低下するという問題があるが、比表面積が増大し、ネック成長の起点となる粉末どうしの接触部が増大するため、焼結が進行し易く、得られる焼結体は高密度になる。この効果を良好に発揮させるため、鉄基合金粉末における最大粒径46μm以下の微粉末の量は90%以上とすることが好ましい。 Another method is to use a powder mainly composed of fine powder having a maximum particle size of 46 μm or less as the iron-base alloy powder. When fine powder is used as a raw material powder, bridging is likely to occur and moldability is deteriorated. However, since the specific surface area is increased and the contact portion between the powders that is the starting point of neck growth is increased, Sintering easily proceeds, and the resulting sintered body has a high density. In order to exhibit this effect satisfactorily, the amount of fine powder having a maximum particle size of 46 μm or less in the iron-based alloy powder is preferably 90% or more.
さらに、上記の微粉末を用いて焼結性を向上させて緻密化を達成する方法において、微粉末を予め平均粒径80〜150μmの大きさに造粒した造粒粉末の形態で用いると、微粉末を用いることによる成形性の低下の問題を回避でき、焼結時により一層の緻密化が達成される。 Furthermore, in the method of achieving densification by improving the sinterability using the above fine powder, when the fine powder is used in the form of a granulated powder granulated in advance to an average particle size of 80 to 150 μm, The problem of deterioration of moldability due to the use of fine powder can be avoided, and further densification can be achieved during sintering.
[第1実施例]
組成が、質量%で、Cr:30%、Mo:2%、Si:2%、C:1%、および残部がFeと不可避不純物からなる鉄基合金粉末、組成が、P:20質量%、および残部がFeと不可避不純物からなる鉄−リン合金粉末、および黒鉛粉末を用意し、これらの粉末を、表1に示す割合で添加し混合して、表1に併記する全体組成の原料粉末を得た。これらの原料粉末を、
(1)直径30mm、高さ10mmの円板形状(耐摩耗性評価用)
(2)外径30mm、内径20mm、高さ5mmのリング形状(接合性評価用)
(3)10mm×10mm×60mmの柱形状(引張り強さ評価用)
の3種類の形状に成形圧力600MPaで成形した。これら(1)〜(3)形状の成形体試料のうち、(2)形状の接合性評価用試料については、成形後、これを外側部材圧粉体として用いて、外側部材圧粉体の内径に内側部材を嵌合した。内側部材として、JIS規格SUS316相当の溶製鋼製であり、高さが10mmで、外側部材圧粉体の内径に対してその外径が0.1mmの隙間嵌めとなるように機械加工されたピンを用いた。その後、(1)、(3)形状の成形体試料、(2)形状の成形体を用いた成形体嵌合試料をともに、真空雰囲気中1200℃で60分焼結した。
[First embodiment]
The composition is mass%, Cr: 30%, Mo: 2%, Si: 2%, C: 1%, and the iron-base alloy powder consisting of Fe and inevitable impurities, the composition is P: 20% by mass, And an iron-phosphorus alloy powder consisting of Fe and unavoidable impurities and graphite powder, and adding and mixing these powders in the proportions shown in Table 1, Obtained. These raw powders
(1) Disk shape with a diameter of 30 mm and a height of 10 mm (for wear resistance evaluation)
(2) Ring shape with an outer diameter of 30 mm, an inner diameter of 20 mm, and a height of 5 mm (for bondability evaluation)
(3) Column shape of 10 mm x 10 mm x 60 mm (for tensile strength evaluation)
Were molded at a molding pressure of 600 MPa. Among these (1) to (3) shaped molded body samples, the (2) shaped bondability evaluation sample is used as an outer member green compact after molding, and the inner diameter of the outer member green compact is used. The inner member was fitted into the. As an inner member, a pin made of molten steel equivalent to JIS standard SUS316, machined to have a clearance fit of 10 mm in height and 0.1 mm in outer diameter relative to the inner diameter of the outer member green compact Was used. Thereafter, both the (1) and (3) shaped molded body samples and the molded body fitting sample using the (2) shaped molded body were sintered at 1200 ° C. for 60 minutes in a vacuum atmosphere.
作製した(1)形状の耐摩耗性評価用試料については、往復摺動摩擦試験を行い、試験後の摩耗量を測定した。この往復摺動摩擦試験は、上記の円板形状の試験片に、直径:15mm、厚さ22mmのロール(相手材)の側面を所定の荷重で押圧しながら往復摺動させる摩擦試験である。本試験においては、ロール材としてJIS規格SUS316相当の溶製鋼の表面にクロマイズ処理(表面にクロムを被覆するとともに硬質な鉄クロム金属間化合物層を形成して耐摩耗性、耐焼き付き性および耐食性等を向上させる処理)を施したものを用いた。そして、荷重:50N、往復摺動の周波数:40Hz、往復摺動の振幅:1.0mm、試験時間:30min、試験温度:700℃の試験条件の下で往復摺動摩擦試験を行った。 About the produced (1) shape abrasion resistance evaluation sample, the reciprocating sliding friction test was done and the amount of wear after the test was measured. This reciprocating sliding friction test is a friction test in which the disk-shaped test piece is reciprocally slid while pressing a side surface of a roll (a mating member) having a diameter of 15 mm and a thickness of 22 mm with a predetermined load. In this test, the surface of molten steel equivalent to JIS standard SUS316 is chromized as a roll material (the surface is coated with chromium and a hard iron-chromium intermetallic compound layer is formed to provide wear resistance, seizure resistance, corrosion resistance, etc. Used to improve the process. A reciprocating sliding friction test was performed under the test conditions of load: 50 N, reciprocating sliding frequency: 40 Hz, reciprocating sliding amplitude: 1.0 mm, test time: 30 min, test temperature: 700 ° C.
また、作製した(2)形状の接合性評価用試料については、室温にて、外側部材を固定して、内側部材をオートグラフで200MPaまで加圧を行った。このとき、内側部材と外側部材が接合界面で破断したときの荷重を測定し、これを抜出荷重とした。なお、200MPaまで加圧しても破断しなかった試料については、抜出荷重を200MPa以上と記した。 Moreover, about the produced sample for bonding property evaluation of (2) shape, the outer member was fixed at room temperature, and the inner member was pressurized to 200 MPa by an autograph. At this time, the load when the inner member and the outer member were broken at the joint interface was measured, and this was taken as the extraction load. In addition, about the sample which was not fractured even if it pressurized to 200 Mpa, the extraction load was described as 200 Mpa or more.
さらに、作製した(3)形状の引張り強さ評価用試料については、焼結後、引張り試験片形状に機械加工し、800℃に加熱した状態でオートグラフで引張り試験を行い、高温での引張り強さを高温強さとして測定した。 Furthermore, for the prepared sample for evaluating the tensile strength of the shape (3), after sintering, it was machined into a shape of a tensile test piece, subjected to a tensile test with an autograph while heated to 800 ° C., and pulled at a high temperature. Strength was measured as high temperature strength.
表1より、Pを含有しない試料番号01の試料に比して、Pの含有量が0.1質量%の試料番号02の試料では、摩耗量が急減するとともに、抜出荷重、高温強さが大きく増加している。また、P含有量が増加するにつれて、摩耗量はさらに減少し、抜出荷重が著しく向上するとともに、高温強さが向上している。これは、Pの含有により焼結時に液相が発生し、耐摩耗性焼結部材(外側部材圧粉体)が焼結時に収縮して緻密化することによるもので、P含有量が増加するにつれてその効果が大きくなるためである。しかしながら、PはFe基地に固溶してFe基地を脆化させる作用を有するため、Pの含有量が1.0%を超える試料番号05の試料では、基地に固溶するP量が過多となって基地が脆化し、高温強さが低下するとともに、摩耗量が著しく増加している。このことから、全体組成中のP量を0.1〜1.0質量%とすることで、優れた耐摩耗性と良好な接合状態が得られることが確認された。 According to Table 1, compared with the sample No. 01 containing no P, the sample No. 02 having a P content of 0.1% by mass has a sharp decrease in the amount of wear, the extraction load, and the high temperature strength. Has increased significantly. Further, as the P content increases, the wear amount further decreases, the extraction load is remarkably improved, and the high temperature strength is improved. This is because a liquid phase is generated during sintering due to the inclusion of P, and the wear-resistant sintered member (outer member green compact) shrinks and becomes dense during sintering, and the P content increases. This is because the effect increases as the time elapses. However, since P has a function of causing solid dissolution in the Fe base and embrittlement of the Fe base, the sample No. 05 having a P content exceeding 1.0% has an excessive amount of P dissolved in the base. As a result, the base becomes brittle, the high-temperature strength decreases, and the wear amount increases remarkably. From this, it was confirmed that excellent wear resistance and a good bonding state can be obtained by setting the amount of P in the overall composition to 0.1 to 1.0% by mass.
[第2実施例]
第1実施例と同じ鉄基合金粉末、鉄−リン合金粉末、および黒鉛粉末を用い、表2に示す割合で黒鉛粉末の添加量を変えて添加し混合して、表2に併記する全体組成の原料粉末を得た。そして、第1実施例と同様の条件で(1)〜(3)形状の成形体を作製し、(2)形状の外側部材圧粉体に対しては、内側部材を圧入して焼結を行い、試料番号06〜09の試料を得た。これらの試料について、第1実施例と同様にして摩耗量、抜出荷重、および高温強さを測定した。この結果を第1実施例の試料番号03の試料の値とともに表2に示す。
[Second Embodiment]
Using the same iron-base alloy powder, iron-phosphorus alloy powder, and graphite powder as in the first example, adding and mixing the graphite powder in different proportions as shown in Table 2, the total composition listed in Table 2 Raw material powder was obtained. Then, (1) to (3) shaped compacts are produced under the same conditions as in the first example, and the inner member is pressed into the (2) shaped outer member green compact and sintered. The samples No. 06 to 09 were obtained. With respect to these samples, the wear amount, the extraction load, and the high temperature strength were measured in the same manner as in the first example. The results are shown in Table 2 together with the value of the sample No. 03 of the first example.
表2より、黒鉛粉末を添加しない試料番号06の試料に比して、黒鉛粉末を0.5質量%添加した試料番号07の試料では、耐摩耗性焼結部材の摩耗が急減するとともに、抜出荷重が著しく増加し、高温強さも増加している。これは、黒鉛粉末により耐摩耗性焼結部材(外側部材圧粉体)の焼結時の液相化が促進され、外側部材圧粉体が焼結時に液相収縮して緻密化することによるものである。また、黒鉛粉末の添加量が増加するにつれて、クロム炭化物の形成量が増加するため摩耗量はさらに減少している。しかしながら、黒鉛粉末の添加量が1.5質量%を超える試料番号09の試料では、液相発生量が過多となって型くずれが生じたため、その後の試験を中止した。このことから、黒鉛粉末の添加量を0.5〜1.5質量%とすることで、優れた耐摩耗性と良好な接合状態が得られることが確認された。 As shown in Table 2, the wear of the wear-resistant sintered member sharply decreased and the removal of the sample of sample No. 07 to which 0.5% by mass of graphite powder was added as compared with the sample of sample No. 06 to which no graphite powder was added. The output load has increased remarkably, and the high temperature strength has also increased. This is because the graphite powder promotes liquid phase formation during sintering of the wear-resistant sintered member (outer member green compact), and the outer member green compact shrinks and becomes denser during liquid sintering. Is. Further, as the amount of graphite powder added increases, the amount of wear increases further because the amount of chromium carbide formed increases. However, in the sample of Sample No. 09 in which the amount of graphite powder added exceeds 1.5% by mass, the amount of liquid phase generated was excessive and the mold was deformed, so the subsequent test was stopped. From this, it was confirmed that excellent wear resistance and a good bonding state can be obtained by setting the addition amount of the graphite powder to 0.5 to 1.5% by mass.
[第3実施例]
第1実施例の鉄基合金粉末のCr量を表3のように変えた鉄基合金粉末と、第1実施例と同じ鉄−リン合金粉末および黒鉛粉末とを用いて、鉄基合金粉末に対して2.5質量%の鉄−リン合金粉末、および1.0質量%の黒鉛粉末を添加、混合して、表3に併記する全体組成の原料粉末を得た。そして、第1実施例と同様の条件で(1)〜(3)形状の成形体を作製し、(2)形状の外側部材圧粉体に対しては、内側部材を圧入して焼結を行い、試料番号10〜13の試料を得た。これらの試料について、第1実施例と同様にして摩耗量、抜出荷重、および高温強さを測定した。この結果を第1実施例の試料番号03の試料の値とともに表3に示す。
[Third embodiment]
Using the same iron-phosphorus alloy powder and graphite powder as in the first embodiment, the iron-base alloy powder in which the Cr content of the iron-base alloy powder in the first embodiment is changed as shown in Table 3, On the other hand, 2.5% by mass of iron-phosphorus alloy powder and 1.0% by mass of graphite powder were added and mixed to obtain a raw material powder having the entire composition shown in Table 3. Then, (1) to (3) shaped compacts are produced under the same conditions as in the first example, and the inner member is pressed into the (2) shaped outer member green compact and sintered. The sample Nos. 10 to 13 were obtained. With respect to these samples, the wear amount, the extraction load, and the high temperature strength were measured in the same manner as in the first example. The results are shown in Table 3 together with the value of the sample number 03 of the first example.
表3より、鉄基合金粉末中のCr量が20質量%の試料番号10の試料に比して、鉄基合金粉末中のCr量が25〜45質量%の試料番号11、03、12の試料では、耐摩耗性焼結部材の摩耗が減少している。しかしながら、Cr量が増加するにつれて基地中に析出するクロム炭化物の量が増加するため、高温強さは低下する傾向を示している。また、Cr量が増加すると鉄基合金粉末の硬さが増加して、原料粉末の圧縮性が低下するため、鉄基合金粉末中のCr量が45質量%を超える試料番号13の試料では、この圧縮性低下の影響が著しくなって、成形体を成形することができず、その後の試験を中止した。なお、Cr量が20〜45質量%の範囲において、いずれの試料でも200MPaの荷重では破断せず、良好な接合状態が得られている。このことから、鉄基合金粉末中のCr量を25〜45質量%とすることで、優れた耐摩耗性と良好な接合状態が得られることが確認された。 From Table 3, compared with the sample number 10 whose amount of Cr in the iron-base alloy powder is 20% by mass, the sample numbers 11, 03 and 12 whose Cr amount in the iron-based alloy powder is 25 to 45% by mass are shown. In the sample, the wear of the wear-resistant sintered member is reduced. However, as the amount of Cr increases, the amount of chromium carbide precipitated in the matrix increases, so the high temperature strength tends to decrease. In addition, since the hardness of the iron-based alloy powder increases as the Cr amount increases and the compressibility of the raw material powder decreases, in the sample of Sample No. 13 in which the Cr amount in the iron-based alloy powder exceeds 45% by mass, The influence of this decrease in compressibility became significant, and the molded product could not be molded, and the subsequent test was stopped. In addition, in the range whose Cr amount is 20-45 mass%, any sample is not fractured at a load of 200 MPa, and a good bonded state is obtained. From this, it was confirmed that excellent wear resistance and a good bonding state can be obtained by setting the amount of Cr in the iron-based alloy powder to 25 to 45% by mass.
[第4実施例]
第1実施例と同じ鉄基合金粉末、鉄−リン合金粉末、および黒鉛粉末を用い、さらにニッケル粉末を新たに用意して、表4に示す割合でニッケル粉末の添加量を変えて添加し混合して、表4に併記する全体組成の原料粉末を得た。そして、第1実施例と同様の条件で(1)〜(3)形状の成形体を作製し、(2)形状の外側部材圧粉体に対しては、内側部材を圧入して焼結を行い、試料番号14〜20の試料を得た。これらの試料について、第1実施例と同様にして摩耗量、抜出荷重、および高温強さを測定した。この結果をニッケル粉末を添加していない第1実施例の試料番号03の試料の値とともに表4に示す。
[Fourth embodiment]
Using the same iron-base alloy powder, iron-phosphorus alloy powder, and graphite powder as in the first example, and newly preparing nickel powder, changing the addition amount of nickel powder at the ratio shown in Table 4 and adding and mixing Thus, a raw material powder having the entire composition shown in Table 4 was obtained. Then, (1) to (3) shaped compacts are produced under the same conditions as in the first example, and the inner member is pressed into the (2) shaped outer member green compact and sintered. The sample Nos. 14 to 20 were obtained. With respect to these samples, the wear amount, the extraction load, and the high temperature strength were measured in the same manner as in the first example. The results are shown in Table 4 together with the value of the sample No. 03 of the first example to which nickel powder is not added.
表4より、ニッケル粉末を添加してNiを含有させると、Niを含有しない試料番号03の試料に比して、各試料の高温強さが向上している。また、Ni量を増加させると、摩耗量が若干増加するものの、Ni量の増加にしたがって高温強さが増加することがわかる。しかしながら、Ni量が多くなると、高温強さ向上の効果が薄くなっており、15質量%を超えてNiを与えても高温強さの向上が認められない。このことから、Niの含有は高温強さの向上に有効であるが、15質量%を超えてもそれ以上の効果が認められないことから、その上限を15質量%とすべきことが確認された。 From Table 4, when nickel powder is added and Ni is contained, the high-temperature strength of each sample is improved as compared with the sample of sample number 03 not containing Ni. It can also be seen that increasing the amount of Ni increases the high temperature strength as the amount of Ni increases, although the amount of wear increases slightly. However, as the amount of Ni increases, the effect of improving the high temperature strength is diminished, and even if Ni is provided in an amount exceeding 15% by mass, no improvement in the high temperature strength is observed. From this, it is confirmed that the Ni content is effective for improving the high-temperature strength, but even if it exceeds 15% by mass, no further effect is observed, so the upper limit should be 15% by mass. It was.
[第5実施例]
第4実施例と同じ鉄基合金粉末、鉄−リン合金粉末、ニッケル粉末、および黒鉛粉末を用い、表5に示す割合で黒鉛粉末の添加量を変えて添加し混合して、表5に併記する全体組成の原料粉末を得た。そして、第1実施例と同様の条件で(1)〜(3)形状の成形体を作製し、(2)形状の外側部材圧粉体に対しては、内側部材を圧入して焼結を行い、試料番号21〜28の試料を得た。これらの試料について、第1実施例と同様にして摩耗量、抜出荷重、および高温強さを測定した。この結果を第4実施例の試料番号17の試料の値とともに表5に示す。
[Fifth embodiment]
Using the same iron-base alloy powder, iron-phosphorus alloy powder, nickel powder, and graphite powder as in the fourth example, adding and mixing the graphite powder in different proportions as shown in Table 5, mixing together in Table 5 The raw material powder of the whole composition was obtained. Then, (1) to (3) shaped compacts are produced under the same conditions as in the first example, and the inner member is pressed into the (2) shaped outer member green compact and sintered. The sample Nos. 21 to 28 were obtained. With respect to these samples, the wear amount, the extraction load, and the high temperature strength were measured in the same manner as in the first example. The results are shown in Table 5 together with the value of the sample No. 17 in the fourth example.
表5より、黒鉛粉末の添加量が0.8質量%に満たない試料番号21の試料では、摩耗量が大きい値を示している。これは、Niを含有することで基地中へのCの固溶限が拡大し、黒鉛粉末の形態で与えたCが基地中に固溶してクロム炭化物の形成量が低下したためである。また、黒鉛粉末を0.8質量%添加した試料番号22の試料では、クロム炭化物の形成量が増加して耐摩耗性焼結部材の摩耗量が減少しており、黒鉛粉末の添加量が増加するにつれて、クロム炭化物の形成量が増加するため摩耗量が著しく低下している。なお、試料番号21の試料では黒鉛粉末が0.5質量%添加されていることから、液相発生量は足りており、200MPaの荷重の下でも破断しない良好な接合状態を得ている。しかしながら、黒鉛粉末の添加量が増加するにつれて、液相発生量が増加することは実施例2の場合と同様であり、黒鉛粉末の添加量が3.0質量%を超える試料番号28の試料では、液相発生量が過多となって型くずれが生じ、その後の試験を中止した。このことから、Niを含有する場合、黒鉛粉末の添加量は0.8〜3.0質量%とすることで、優れた耐摩耗性と良好な接合状態が得られることが確認された。 From Table 5, the sample No. 21 in which the amount of graphite powder added is less than 0.8% by mass shows a large wear amount. This is because the solid solubility limit of C in the matrix is expanded by containing Ni, and C given in the form of graphite powder is dissolved in the matrix and the amount of chromium carbide formed is reduced. In addition, in the sample of Sample No. 22 to which 0.8% by mass of graphite powder was added, the amount of chromium carbide formed was increased, the amount of wear of the wear-resistant sintered member was decreased, and the amount of graphite powder added was increased. As the amount of chrome carbide increases, the amount of wear decreases significantly. In addition, in the sample of Sample No. 21, since 0.5% by mass of graphite powder is added, the amount of liquid phase generated is sufficient, and an excellent bonded state that does not break even under a load of 200 MPa is obtained. However, as the amount of graphite powder added increases, the amount of liquid phase generated increases in the same manner as in Example 2. In the sample of Sample No. 28 where the amount of graphite powder added exceeds 3.0% by mass. The liquid phase generation amount was excessive and the mold was deformed, and the subsequent test was stopped. From this, when Ni was contained, it was confirmed that excellent wear resistance and a good bonding state can be obtained by adding the graphite powder in an amount of 0.8 to 3.0% by mass.
本発明は、高温下での耐摩耗性および耐蝕性に優れた焼結部材からなる外側部材を、溶製鋼からなる内側部材に良好に接合した焼結複合摺動部品およびその製造方法を提供するものであり、ターボチャージャ用部品等の高温における耐摩耗性や耐蝕性が要求される部品に好適である。 The present invention provides a sintered composite sliding part in which an outer member made of a sintered member excellent in wear resistance and corrosion resistance at high temperatures is well joined to an inner member made of molten steel, and a method for manufacturing the same. It is suitable for parts that require high temperature wear resistance and corrosion resistance, such as turbocharger parts.
Claims (5)
前記原料粉末を、溶製鋼からなる内側部材と嵌合する孔部を有する外側部材形状に圧粉成形し、
得られた外側部材圧粉体の前記嵌合用孔部に、溶製のステンレス鋼からなる内側部材を嵌合させた後、焼結して外側部材の焼結と、外側部材と内側部材との拡散接合を同時に行って一体化させることを特徴とする焼結複合摺動部品の製造方法。 An iron-based alloy powder having a composition comprising Cr: 25 to 45%, Mo: 1 to 3%, Si: 1 to 3%, C: 0.5 to 1.5%, the balance Fe and inevitable impurities. P: Using a raw material powder in which 10 to 30% by mass of iron-phosphorus alloy powder is added and mixed with 1.0 to 3.3% by mass and graphite powder is added to 0.5 to 1.5% by mass,
The raw material powder is compacted into an outer member shape having a hole to be fitted with an inner member made of molten steel,
After the inner member made of molten stainless steel is fitted into the fitting hole of the obtained outer member green compact, sintering is performed to sinter the outer member, and the outer member and the inner member. A method for producing a sintered composite sliding part, wherein diffusion bonding is performed simultaneously and integrated.
After the green compact has been pre-sintered, a re-compressed pre-sintered re-pressed body is formed, and an inner member made of molten steel is fitted into the hole of the pre-sintered re-pressed body, and then sintered. 4. The method for manufacturing a sintered composite sliding part according to claim 3, wherein the outer member is sintered and the outer member and the inner member are simultaneously diffused and integrated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009062482A JP2010215951A (en) | 2009-03-16 | 2009-03-16 | Sintered composite sliding component and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009062482A JP2010215951A (en) | 2009-03-16 | 2009-03-16 | Sintered composite sliding component and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010215951A true JP2010215951A (en) | 2010-09-30 |
Family
ID=42975088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009062482A Abandoned JP2010215951A (en) | 2009-03-16 | 2009-03-16 | Sintered composite sliding component and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010215951A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2511031A1 (en) * | 2011-04-12 | 2012-10-17 | Höganäs Ab (publ) | A powder metallurgical composition and sintered component |
US20130058825A1 (en) * | 2011-09-07 | 2013-03-07 | Hitachi Powdered Metals Co., Ltd. | Sintered alloy and manufacturing method thereof |
JP2013253303A (en) * | 2012-06-08 | 2013-12-19 | Denso Corp | Method for manufacturing sintering-diffusion-bonded component |
US20140248174A1 (en) * | 2013-03-01 | 2014-09-04 | Hitachi Chemical Company, Ltd. | Sintered alloy and manufacturing method thereof |
JP2016188409A (en) * | 2015-03-30 | 2016-11-04 | 日立化成株式会社 | Sinter alloy and manufacturing method therefor |
CN110551938A (en) * | 2019-09-27 | 2019-12-10 | 中国科学院金属研究所 | Alloy powder for melting wear-resistant layer of agricultural machine part |
JP2020516773A (en) * | 2017-04-14 | 2020-06-11 | テネコ・インコーポレイテッドTenneco Inc. | Multi-layer sintered bushing and bearing |
EP3933063A1 (en) * | 2020-07-01 | 2022-01-05 | Garrett Transportation I Inc. | Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys |
-
2009
- 2009-03-16 JP JP2009062482A patent/JP2010215951A/en not_active Abandoned
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2511031A1 (en) * | 2011-04-12 | 2012-10-17 | Höganäs Ab (publ) | A powder metallurgical composition and sintered component |
WO2012140057A1 (en) * | 2011-04-12 | 2012-10-18 | Höganäs Ab (Publ) | A powder metallurgical composition and sintered component |
CN102994896B (en) * | 2011-09-07 | 2016-08-10 | 日立粉末冶金株式会社 | Sintered alloy and preparation method thereof |
US20130058825A1 (en) * | 2011-09-07 | 2013-03-07 | Hitachi Powdered Metals Co., Ltd. | Sintered alloy and manufacturing method thereof |
JP2013057094A (en) * | 2011-09-07 | 2013-03-28 | Hitachi Powdered Metals Co Ltd | Sintered alloy and manufacturing method thereof |
CN102994896A (en) * | 2011-09-07 | 2013-03-27 | 日立粉末冶金株式会社 | Sintered alloy and manufacturing method thereof |
US10006111B2 (en) | 2011-09-07 | 2018-06-26 | Hitachi Powdered Metals Co., Ltd. | Sintered alloy and manufacturing method thereof |
JP2013253303A (en) * | 2012-06-08 | 2013-12-19 | Denso Corp | Method for manufacturing sintering-diffusion-bonded component |
US20140248174A1 (en) * | 2013-03-01 | 2014-09-04 | Hitachi Chemical Company, Ltd. | Sintered alloy and manufacturing method thereof |
US9982563B2 (en) | 2013-03-01 | 2018-05-29 | Hitachi Chemical Company, Ltd. | Sintered alloy and manufacturing method thereof |
US9982562B2 (en) * | 2013-03-01 | 2018-05-29 | Hitachi Chemical Company, Ltd. | Sintered alloy and manufacturing method thereof |
JP2014169468A (en) * | 2013-03-01 | 2014-09-18 | Hitachi Chemical Co Ltd | Sintered alloy and its manufacturing method |
JP2016188409A (en) * | 2015-03-30 | 2016-11-04 | 日立化成株式会社 | Sinter alloy and manufacturing method therefor |
JP2020516773A (en) * | 2017-04-14 | 2020-06-11 | テネコ・インコーポレイテッドTenneco Inc. | Multi-layer sintered bushing and bearing |
JP7314054B2 (en) | 2017-04-14 | 2023-07-25 | テネコ・インコーポレイテッド | Bushing for turbocharger and manufacturing method thereof, and turbocharger |
CN110551938A (en) * | 2019-09-27 | 2019-12-10 | 中国科学院金属研究所 | Alloy powder for melting wear-resistant layer of agricultural machine part |
EP3933063A1 (en) * | 2020-07-01 | 2022-01-05 | Garrett Transportation I Inc. | Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys |
US11492690B2 (en) | 2020-07-01 | 2022-11-08 | Garrett Transportation I Inc | Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6297545B2 (en) | High heat conduction valve seat ring | |
JP2010215951A (en) | Sintered composite sliding component and manufacturing method therefor | |
US6756009B2 (en) | Method of producing hardmetal-bonded metal component | |
AU2002325600B2 (en) | Powder metal scrolls | |
CN1104510C (en) | Powdered metallurgy valve-seat insert piece | |
JP5308123B2 (en) | High-strength composition iron powder and sintered parts using it | |
KR101438602B1 (en) | Sintered alloy for valve seat and manufacturing method of exhaust valve seat using the same | |
JP2003268414A (en) | Sintered alloy for valve seat, valve seat and its manufacturing method | |
KR102350989B1 (en) | A method for producing a sintered component and a sintered component | |
JP2017025921A (en) | Sintered valve seat and process of manufacture of sintered valve seat | |
JP5122904B2 (en) | Manufacturing method of sintered composite sliding parts | |
JP6352959B2 (en) | Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy | |
JP6077499B2 (en) | Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same | |
JP2004211185A (en) | Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method | |
JP6842345B2 (en) | Abrasion-resistant iron-based sintered alloy manufacturing method | |
JP2009035786A (en) | Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature | |
CN110814353A (en) | Method and structural assembly for establishing a connection between metal components | |
JP2012251245A (en) | Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature | |
JPS59209473A (en) | Production of bonding member for sintered hard alloy and sintered steel | |
JP2004232089A (en) | Method of producing component made of iron-based sintered alloy | |
JP3331963B2 (en) | Sintered valve seat and method for manufacturing the same | |
JP3254909B2 (en) | Internal-combustion engine tappet member having high joining strength with chip material | |
JP2013173961A (en) | Valve seat made from iron-based sintered alloy | |
JP3124300B2 (en) | Composite valve seat and method of manufacturing the same | |
JP2011089171A (en) | Hard material with composite structure, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111212 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20120326 |