[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2894990B2 - Thermally expandable microcapsules with excellent heat resistance and solvent resistance - Google Patents

Thermally expandable microcapsules with excellent heat resistance and solvent resistance

Info

Publication number
JP2894990B2
JP2894990B2 JP8153855A JP15385596A JP2894990B2 JP 2894990 B2 JP2894990 B2 JP 2894990B2 JP 8153855 A JP8153855 A JP 8153855A JP 15385596 A JP15385596 A JP 15385596A JP 2894990 B2 JP2894990 B2 JP 2894990B2
Authority
JP
Japan
Prior art keywords
weight
microcapsules
heat
resistance
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8153855A
Other languages
Japanese (ja)
Other versions
JPH0919635A (en
Inventor
輝正 横溝
耕嗣 田中
喜久夫 新沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15571586&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2894990(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Priority to JP8153855A priority Critical patent/JP2894990B2/en
Publication of JPH0919635A publication Critical patent/JPH0919635A/en
Application granted granted Critical
Publication of JP2894990B2 publication Critical patent/JP2894990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は熱膨張性マイクロカ
プセル、特に耐熱性と耐溶剤性に優れた熱膨張性マイク
ロカプセルに関する。 【0002】 【従来の技術】熱可塑性ポリマーを用いて、該ポリマー
の軟化点以下の温度でガス状になる揮発性膨張剤をマイ
クロカプセル化して熱膨張性マイクロカプセルを製造す
る方法は既知である(例えば特公昭42−26524号
公報参照)。また、USP3,615,972号明細書に
は、ポリマーシェルの厚さが対象(均一)なマイクロカプ
セルを製造するのにアクリロニトリル系ポリマーでは約
7〜60重量%のビニリデンクロライドを共重合するこ
と、ジビニルベンゼンなどの架橋剤を使用してポリマー
シェルの溶融または流動粘度を増大させることが開示さ
れている。 【0003】しかしながら、従来の方法によっては耐熱
性と耐溶剤性に優れた熱膨張性マイクロカプセルを得る
ことはできなかった。本発明者らは先に、重合性不飽和
結合を有するモノマーとしてアクリロニトリルを少なく
とも15重量%用いるとマイクロカプセルの耐溶剤性が
向上することを究明したが(特公昭60−21770号
公報参照;この場合、アクリロニトリルの好適な使用量
は該公報、第2頁、第4欄、第19行〜第22行に記載
のように、高々70重量%程度であり、それ以上の使用
量は未反応アクリロニトリルの問題と相俟って全く意図
されていなかった)、十分に満足すべきものではなく、
しかも耐熱性が劣る(約80〜130℃で発泡膨張し、
高温・長時間で発泡倍率が低下する。)という点で改良
の余地が残されていた。 【0004】 【発明が解決しようとする課題】本発明は、従来の製品
に比べて耐熱性に優れ、140℃以下では発泡せず、し
かも耐溶剤性にも優れている熱膨張性マイクロカプセル
を提供せんとするものである。 【0005】 【課題を解決するための手段】本発明は、ニトリル系モ
ノマー80重量%以上、非ニトリル系モノマー20重量
%以下および架橋剤0.1〜1重量%含有する成分から
得られるポリマーを用いて、該ポリマーの軟化点以下の
温度でガス状になる揮発性膨張剤をマイクロカプセル化
した熱膨張性マイクロカプセルであって、殻壁の軟化温
度が135℃以上であり、かつ160℃1分の加熱にお
ける発泡倍率が7以上で、160℃4分の加熱における
発泡倍率が3以上であることを特徴とする熱膨張性マイ
クロカプセルに関する。 【0006】本発明に使用するニトリル系モノマーとし
てはアクリロニトリル、メタクリロニトリル、α−クロ
ルアクリロニトリル、α−エトキシアクリロニトリル、
フマロニトリルまたはこれらの任意の混合物等が例示さ
れるが、アクリロニトリルおよび/またはメタクリロニ
トリルが特に好ましい。ニトリル系モノマーの使用量は
80重量%以上、特に85〜97重量%であり、80重
量%未満では本発明の所期の目的を達成することはでき
ない。 【0007】非ニトリル系モノマーとしてはメタクリル
酸エステル類、アクリル酸エステル類からなる群から選
択される。これらの中メタクリル酸メチル、メタクリル
酸エチル、アクリル酸メチルが特に好ましい。非ニトリ
ル系モノマーの使用量は20重量%以下、好ましくは1
5〜3重量%である。 【0008】架橋剤としてはジビニルベンゼン、ジメタ
クリル酸エチレングリコール、ジメタクリル酸トリエチ
レングリコール、トリアクリルホルマール、トリメタク
リル酸トリメチロールプロパン、メタクリル酸アリル、
ジメタクリル酸1,3−ブチルグリコール、トリアリル
イソシアネート等が例示されるが、トリアクリルホルマ
ールやトリメタクリル酸トリメチロールプロパン等の三
官能性架橋剤が特に好ましい。架橋剤の使用量は0.1
〜1重量%、好ましくは0.2〜0.5重量%である。 【0009】本発明に係わるマイクロカプセルの壁材は
上記の成分にさらに所望により重合開始剤を適宜配合す
ることによって調製される。好適な重合開始剤としては
アゾビスイソブチロニトリル、ベンゾイルパーオキサイ
ド、ラウロイルパーオキサイド、ジイソプロピルパーオ
キシジカーボネート、t−ブチルパーオキサイド、2,
2'−アゾビス(2,4−ジメチルワレロニトリル)等が例
示される。 【0010】マイクロカプセル内に包含される揮発性膨
張剤は上記の配合成分から調製されるポリマーの軟化点
(一般的には約120〜150℃)以下の温度でガス状に
なる物質であり、例えばプロパン、プロピレン、ブテ
ン、ノルマルブタン、イソブタン、イソペンタン、ネオ
ペンタン、ノルマルペンタン、ヘキサン、ヘプタン、石
油エーテル、メタンのハロゲン化物(塩化メチル、メチ
レンクロリド、CCl3F,CCl22等)、テトラアルキル
シラン(テトラメチルシラン、トリメチルエチルシラン
等)等の低沸点液体、加熱により熱分解してガス状にな
るAIBN等の化合物が挙げられるが、イソブタン、ノ
ルマルブタン、ノルマルペンタン、イソペンタン、石油
エーテル等の低沸点液体が特に好適である。 【0011】上記の壁材を用いて揮発性膨張剤をマイク
ロカプセル化する方法は特に限定的ではなく、常法に従
えばよい。特に好適な方法は、例えば特公昭42−26
524号公報に記載のようにして、重合性モノマーおよ
び架橋剤を揮発性膨張剤および重合開始剤と混合し、該
混合物を適宜の乳化分散助剤等を含む水性媒体中で懸濁
重合させる方法である。懸濁重合をおこなう水性媒体の
配合処方も特に限定的ではないが、通常は無機の添加
剤、例えばシリカ、リン酸カルシウム、炭酸カルシウ
ム、塩化ナトリウム、硫酸ナトリウム等のほかに有機添
加剤、例えばジエタノールアミン−アジピン酸縮合物、
ゼラチン、メチルセルロース、ポリビニルアルコール、
ポリエチレンオキサイド、ジオクチルスルホサクシネー
ト、ソルビタンエステル等を脱イオン水に適宜配合し、
酸を用いて系のpHを約3〜4に調整する。 【0012】本発明の熱膨張性マイクロカプセルの粒径
は通常約5〜50ミクロン、特に約12〜25ミクロン
であり、また揮発性膨張剤の包含量は約10〜20重量
%、特に約13〜17重量%である。 【0013】 【実施例】以下、本発明を実施例によって説明する。実施例 1 次の配合処方によって調製した油性混合物および水性混
合物をホモミキサー(特殊機化工業株式会社製)を用い
て加圧下(窒素2kg/m2)、10000rpmで6
0秒間攪拌混合した後、窒素置換した加圧重合反応機
(15L)内へ仕込み、加圧して(2kg/m2)、6
0℃で20時間反応させた。油性混合物 成分 重量部 アクリロニトリル 2450 メタクリル酸メチル 400 トリアクリルホルマール 9 n−ペンタン 550 アゾビスイソブチロニトリル 15 水性混合物(pH3.2) 成分 重量部 脱イオン水 6300 シリカ分散液(固形分20%)1) 1080 重クロム酸カリ(2.5%水溶液) 30 ジエタノールアミン−アジピン酸縮合物2)(50%水溶液) 40 塩化ナトリウム 2200 塩酸 1.5 1) 日産化学株式会社製コロイダルシリカ 2) 酸価100mgKOH/g 【0014】得られた反応生成物を遠心分離機を用いる
濾過と水洗処理に繰り返し付してケーキ状物とし(水分
32%)、これを一昼夜風乾して本発明による熱膨張性
マイクロカプセル(平均粒径約21.4ミクロン)を得
た。 【0015】得られたマイクロカプセルの、各種の溶剤
中に40℃で10日間浸漬した後の熱膨張性の良否を判
定して、該マイクロカプセルの耐溶剤性を調らべた。結
果を表1に示す。また、該マイクロカプセルの種々の加
熱条件下における発泡倍率(塗膜厚比)を調べ、結果を
表2に示す。 【0016】実施例 2 次の配合処方によって油性混合物を調製する以外は実施
例1と同様にして熱膨張性マイクロカプセル(平均粒径
約18.7ミクロン)を製造した。成分 重量部 アクリロニトリル 1900 メタクリロニトリル 900 メタクリル酸メチル 150 トリメタクリル酸トリメチロールプロパン 9 n−ペンタン 350 石油エーテル 200 【0017】得られたマイクロカプセルの耐溶剤性およ
び耐熱性をそれぞれ以下の表1および表2に示す。 【0018】実施例 3 次の配合処方によって油性混合物を調製する以外は実施
例1と同様にして熱膨張性マイクロカプセル(平均粒径
約23.2ミクロン)を製造した。成分 重量部 アクリロニトリル 1750 メタクリロニトリル 800 アクリル酸メチル 300 ジビニルベンゼン 10 n−ヘキサン 350 石油エーテル 200 【0019】得られたマイクロカプセルの耐溶剤性およ
び耐熱性をそれぞれ以下の表1および表2に示す。 【0020】比較例 1 油性混合物を次の配合処方によって調製する以外は実施
例1と同様にしてマイクロカプセル(平均粒径約20.
5ミクロン)を製造した。成分 重量部 アクリロニトリル 900 塩化ビニリデン 2100 ジビニルベンゼン 15 イソブタン 500 【0021】得られたマイクロカプセルの耐溶剤性およ
び耐熱性をそれぞれ以下の表1および表2に示す。 【0022】比較例 2 油性混合物を次の配合処方によって調製する以外は実施
例1と同様にしてマイクロカプセル(平均粒径約24.
7ミクロン)を製造した。成分 重量部 アクリロニトリル 1700 メタクリル酸メチル 1300 ジビニルベンゼン 15 イソペンタン 350 石油エーテル 200 【0023】得られたマイクロカプセルの耐溶剤性およ
び耐熱性をそれぞれ以下の表1および表2に示す。 【0024】比較例 3 油性混合物を次の配合処方によって調製する以外は実施
例1と同様にしてマイクロカプセル(平均粒径22.5
ミクロン)を調製した。成分 重量部 アクリロニトリル 2400 塩化ビニリデン 600 ジビニルベンゼン 15 イソブタン 500 【0025】得られたマイクロカプセルの耐溶剤性およ
び耐熱性をそれぞれ以下の表1および表2に示す。 【0026】 【表1】 【0027】 【表2】【0028】 【発明の効果】本発明によって得られる熱膨張性マイク
ロカプセルは従来のこの種の製品に比べて耐熱性に優
れ、140℃以下では発泡せず、しかも耐溶剤性にも優
れているために、従来の製品では使用が困難であった分
野(例えばポリ塩化ビニル、塩ビゾル、不飽和ポリエス
テル、エポキシ樹脂、ウレタン樹脂、ゴム、熱可塑性樹
脂、溶剤型バインダーなどと混合し、加熱発泡すること
により軽量化、クッション性付与、剛性向上、発泡イン
キとするなどの分野)でも利用することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-expandable microcapsule, and more particularly to a heat-expandable microcapsule excellent in heat resistance and solvent resistance. 2. Description of the Related Art A method for producing thermally expandable microcapsules by using a thermoplastic polymer to microencapsulate a volatile expander which becomes gaseous at a temperature lower than the softening point of the polymer is known. (For example, see Japanese Patent Publication No. 42-26524). US Pat. No. 3,615,972 discloses that about 7 to 60% by weight of vinylidene chloride is copolymerized with an acrylonitrile-based polymer to produce microcapsules having a target (uniform) polymer shell thickness; It has been disclosed to use a crosslinking agent such as divinylbenzene to increase the melt or flow viscosity of the polymer shell. However, it has not been possible to obtain heat-expandable microcapsules having excellent heat resistance and solvent resistance by conventional methods. The present inventors have previously investigated that the use of at least 15% by weight of acrylonitrile as a monomer having a polymerizable unsaturated bond improves the solvent resistance of microcapsules (see Japanese Patent Publication No. 60-21770; In this case, the preferred amount of acrylonitrile used is at most about 70% by weight, as described in the official gazette, page 2, column 4, line 19 to line 22, and the amount used above is unreacted acrylonitrile. Was not intended at all in conjunction with the issue of
Moreover, heat resistance is inferior (expands and expands at about 80 to 130 ° C,
Foaming ratio decreases at high temperature and long time. ) There was room for improvement. SUMMARY OF THE INVENTION The present invention relates to a heat-expandable microcapsule which is superior in heat resistance to conventional products, does not foam at 140 ° C. or lower, and has excellent solvent resistance. It will not be provided. SUMMARY OF THE INVENTION The present invention provides a polymer obtained from a component containing at least 80% by weight of a nitrile monomer, at most 20% by weight of a non-nitrile monomer, and 0.1 to 1% by weight of a crosslinking agent. A heat-expandable microcapsule obtained by microencapsulating a volatile expander which becomes gaseous at a temperature equal to or lower than the softening point of the polymer, wherein the softening temperature of the shell wall is 135 ° C. or higher and 160 ° C. The present invention relates to a heat-expandable microcapsule, which has an expansion ratio of 7 or more upon heating for 1 minute and an expansion ratio of 3 or more upon heating for 4 minutes at 160 ° C. The nitrile monomers used in the present invention include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile,
Fumaronitrile or an arbitrary mixture thereof is exemplified, but acrylonitrile and / or methacrylonitrile are particularly preferred. The amount of the nitrile monomer used is 80% by weight or more, particularly 85 to 97% by weight, and if it is less than 80% by weight, the intended object of the present invention cannot be achieved. [0007] The non-nitrile monomer is selected from the group consisting of methacrylates and acrylates. Of these, methyl methacrylate, ethyl methacrylate and methyl acrylate are particularly preferred. The amount of the non-nitrile monomer used is 20% by weight or less, preferably 1% by weight.
5 to 3% by weight. Examples of the crosslinking agent include divinylbenzene, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, triacrylformal, trimethylolpropane trimethacrylate, allyl methacrylate,
Examples thereof include 1,3-butyl glycol dimethacrylate and triallyl isocyanate, and a trifunctional crosslinking agent such as triacrylformal or trimethylolpropane trimethacrylate is particularly preferable. The amount of crosslinking agent used is 0.1
11% by weight, preferably 0.2-0.5% by weight. [0009] The wall material of the microcapsule according to the present invention is prepared by appropriately blending a polymerization initiator with the above components, if desired. Suitable polymerization initiators include azobisisobutyronitrile, benzoyl peroxide, lauroyl peroxide, diisopropyl peroxydicarbonate, t-butyl peroxide,
2'-azobis (2,4-dimethylvaleronitrile) and the like are exemplified. The volatile swelling agent contained in the microcapsules is the softening point of the polymer prepared from the above ingredients.
(Generally about 120 to 150 ° C.) a substance which becomes gaseous at a temperature of not more than, for example, propane, propylene, butene, normal butane, isobutane, isopentane, neopentane, normal pentane, hexane, heptane, petroleum ether, methane Low boiling point liquids such as halides (methyl chloride, methylene chloride, CCl 3 F, CCl 2 F 2 etc.), tetraalkylsilanes (tetramethylsilane, trimethylethylsilane etc.) Examples include compounds such as AIBN, and low-boiling liquids such as isobutane, normal butane, normal pentane, isopentane, and petroleum ether are particularly preferred. The method for microencapsulating the volatile swelling agent using the above-mentioned wall material is not particularly limited, and may be in accordance with a conventional method. A particularly preferred method is described, for example, in JP-B-42-26.
No. 524, a method in which a polymerizable monomer and a crosslinking agent are mixed with a volatile swelling agent and a polymerization initiator, and the mixture is subjected to suspension polymerization in an aqueous medium containing an appropriate emulsifying and dispersing aid. It is. The formulation of the aqueous medium in which the suspension polymerization is carried out is not particularly limited, but usually, in addition to inorganic additives such as silica, calcium phosphate, calcium carbonate, sodium chloride and sodium sulfate, organic additives such as diethanolamine-adipin Acid condensates,
Gelatin, methylcellulose, polyvinyl alcohol,
Polyethylene oxide, dioctyl sulfosuccinate, sorbitan ester, etc. are appropriately mixed in deionized water,
The pH of the system is adjusted to about 3-4 with acid. The particle size of the heat-expandable microcapsules of the present invention is usually about 5 to 50 microns, especially about 12 to 25 microns, and the content of the volatile expander is about 10 to 20% by weight, especially about 13%. 1717% by weight. Hereinafter, the present invention will be described with reference to examples. Example 1 An oily mixture and an aqueous mixture prepared according to the following formulation were mixed under pressure (2 kg / m 2 of nitrogen) at 10,000 rpm using a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.).
After stirring and mixing for 0 second, the mixture was charged into a nitrogen-substituted pressure polymerization reactor (15 L), pressurized (2 kg / m 2 ),
The reaction was performed at 0 ° C. for 20 hours. Oily mixture component parts by weight Acrylonitrile 2450 Methyl methacrylate 400 Triacrylformal 9 n-pentane 550 Azobisisobutyronitrile 15 Aqueous mixture (pH 3.2) Component part by weight Deionized water 6300 Silica dispersion (solid content 20%) 1 ) 1080 Potassium dichromate (2.5% aqueous solution) 30 Diethanolamine-adipic acid condensate 2) (50% aqueous solution) 40 Sodium chloride 2200 Hydrochloric acid 1.5 1) Colloidal silica manufactured by Nissan Chemical Co., Ltd. 2) Acid value 100 mg KOH / g The obtained reaction product is repeatedly subjected to filtration using a centrifuge and washing with water to obtain a cake (water content: 32%), which is air-dried all day and night to obtain the heat-expandable microcapsules according to the present invention. An average particle size of about 21.4 microns) was obtained. After immersing the obtained microcapsules in various solvents at 40 ° C. for 10 days, the quality of the thermal expansion was judged, and the solvent resistance of the microcapsules was determined. Table 1 shows the results. The expansion ratio (coating thickness ratio) of the microcapsules under various heating conditions was examined. The results are shown in Table 2. Example 2 A heat-expandable microcapsule (average particle size: about 18.7 microns) was produced in the same manner as in Example 1 except that an oily mixture was prepared according to the following formulation. Ingredients by weight Acrylonitrile 1900 Methacrylonitrile 900 Methyl methacrylate 150 Trimethylolpropane trimethacrylate 9 n-Pentane 350 Petroleum ether 200 The solvent resistance and heat resistance of the obtained microcapsules are shown in Tables 1 and 2 below. It is shown in FIG. Example 3 A heat-expandable microcapsule (average particle size: about 23.2 microns) was produced in the same manner as in Example 1 except that an oily mixture was prepared according to the following formulation. Component parts by weight Acrylonitrile 1750 Methacrylonitrile 800 Methyl acrylate 300 Divinylbenzene 10 n-Hexane 350 Petroleum ether 200 The solvent resistance and heat resistance of the obtained microcapsules are shown in Tables 1 and 2, respectively. Comparative Example 1 Microcapsules (average particle size of about 20.000) were prepared in the same manner as in Example 1 except that an oily mixture was prepared according to the following formulation.
5 microns). Component weight parts Acrylonitrile 900 Vinylidene chloride 2100 Divinylbenzene 15 Isobutane 500 The solvent resistance and heat resistance of the obtained microcapsules are shown in Tables 1 and 2 below, respectively. Comparative Example 2 Microcapsules (average particle size of about 24.000) were prepared in the same manner as in Example 1 except that an oily mixture was prepared according to the following formulation.
7 microns). Component parts by weight Acrylonitrile 1700 Methyl methacrylate 1300 Divinylbenzene 15 Isopentane 350 Petroleum ether 200 The solvent resistance and heat resistance of the obtained microcapsules are shown in Tables 1 and 2, respectively. Comparative Example 3 Microcapsules (average particle size 22.5) were prepared in the same manner as in Example 1 except that the oily mixture was prepared according to the following formulation.
Micron) was prepared. Component parts by weight Acrylonitrile 2400 Vinylidene chloride 600 Divinylbenzene 15 Isobutane 500 The solvent resistance and heat resistance of the obtained microcapsules are shown in Tables 1 and 2, respectively. [Table 1] [Table 2] The heat-expandable microcapsules obtained according to the present invention have better heat resistance than conventional products of this type, do not foam at 140 ° C. or lower, and have excellent solvent resistance. Therefore, it is difficult to use conventional products (for example, polyvinyl chloride, PVC, sol, unsaturated polyester, epoxy resin, urethane resin, rubber, thermoplastic resin, solvent type binder, etc. Accordingly, it can be used in fields such as weight reduction, provision of cushioning property, improvement of rigidity, and foaming ink.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新沼 喜久夫 大阪府八尾市渋川町2丁目1番3号 松 本油脂製薬株式会社内 (56)参考文献 特開 昭56−113338(JP,A) 特公 昭58−42209(JP,B2) 特公 昭53−45440(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kikuo Niinuma               Matsu, 2-3 1-3 Shibukawacho, Yao City, Osaka Prefecture               Hon Yushi Pharmaceutical Co., Ltd.                (56) References JP-A-56-113338 (JP, A)                 Japanese Patent Publication No. 58-42209 (JP, B2)                 Tokiko Sho 53-45440 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 1.ニトリル系モノマー80重量%以上、非ニトリル系
モノマー20重量%以下および架橋剤0.1〜1重量%
含有する成分から得られるポリマーを用いて、該ポリマ
ーの軟化点以下の温度でガス状になる揮発性膨張剤をマ
イクロカプセル化した熱膨張性マイクロカプセルにおい
て、非ニトリル系モノマーがメタクリル酸エステル類お
よびアクリル酸エステル類からなる群から選択される1
種または2種以上のモノマーであり、該ポリマーの軟化
点が135℃以上であり、且つ160℃1分の加熱にお
ける発泡倍率が7以上で、160℃4分の加熱における
発泡倍率が3以上であることを特徴とする熱膨張性マイ
クロカプセル。
(57) [Claims] 80% by weight or more of nitrile type monomer, 20% by weight or less of non-nitrile type monomer and 0.1 to 1% by weight of crosslinking agent
In a heat-expandable microcapsule obtained by microencapsulating a volatile expander that becomes gaseous at a temperature equal to or lower than the softening point of the polymer using a polymer obtained from the contained component, the non-nitrile monomer includes methacrylates and 1 selected from the group consisting of acrylic esters
A kind or two or more kinds of monomers, the softening point of the polymer is 135 ° C. or more, and the expansion ratio at heating at 160 ° C. for 1 minute is 7 or more, and the expansion ratio at heating at 160 ° C. for 4 minutes is 3 or more. A heat-expandable microcapsule, characterized in that:
JP8153855A 1996-06-14 1996-06-14 Thermally expandable microcapsules with excellent heat resistance and solvent resistance Expired - Lifetime JP2894990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8153855A JP2894990B2 (en) 1996-06-14 1996-06-14 Thermally expandable microcapsules with excellent heat resistance and solvent resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8153855A JP2894990B2 (en) 1996-06-14 1996-06-14 Thermally expandable microcapsules with excellent heat resistance and solvent resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13060286A Division JPS62286534A (en) 1986-06-04 1986-06-04 Manufacture of thermal expansion microcapsule

Publications (2)

Publication Number Publication Date
JPH0919635A JPH0919635A (en) 1997-01-21
JP2894990B2 true JP2894990B2 (en) 1999-05-24

Family

ID=15571586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8153855A Expired - Lifetime JP2894990B2 (en) 1996-06-14 1996-06-14 Thermally expandable microcapsules with excellent heat resistance and solvent resistance

Country Status (1)

Country Link
JP (1) JP2894990B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365641B1 (en) 1999-09-29 2002-04-02 Matsumoto Yushi-Seiyaku Co Ltd Process for producing heat-expandable microcapsules
US6903143B2 (en) 2000-03-27 2005-06-07 Matsumoto Yushi-Seiyaku Co., Ltd. Process for producing thermo-expansive microcapsules
US7232607B2 (en) 2000-04-28 2007-06-19 Kureha Corporation Thermally foamable microsphere and production process thereof
WO2007074773A1 (en) 2005-12-27 2007-07-05 Sekisui Chemical Co., Ltd. Molded foam article and method of producing molded foam article
US7252882B2 (en) 2000-04-28 2007-08-07 Kureha Corporation Thermally foamable microsphere and production process thereof
WO2010052972A1 (en) 2008-11-07 2010-05-14 積水化学工業株式会社 Thermally expandable microcapsule and foam-molded article
JP2012126827A (en) * 2010-12-15 2012-07-05 Sekisui Chem Co Ltd Heat-foamable particle and method for producing foam
US9102805B2 (en) 2008-09-30 2015-08-11 Sekisui Chemical Co., Ltd. Masterbatch for foam molding and molded foam

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613810B1 (en) 1998-01-26 2003-09-02 Kureha Kagaku K.K. Expandable microspheres and process for producing the same
WO2000037547A2 (en) * 1998-12-10 2000-06-29 Zms, Llc Expandable polymeric microspheres
KR20030089702A (en) 2001-03-14 2003-11-22 세키스이가가쿠 고교가부시키가이샤 Hollow polymer particles, method for preparing hollow polymer particles, porous ceramic filter, and method for preparing porous ceramic filter
MXPA03010759A (en) 2001-05-25 2005-09-08 Univ Lehigh Expandable microspheres for foam insulation and methods.
EP1508604B2 (en) * 2002-05-24 2016-11-16 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microcapsule and use thereof
JP2004168790A (en) * 2002-11-15 2004-06-17 Sekisui Chem Co Ltd Thermally expandable microcapsule
DE60336075D1 (en) 2002-12-25 2011-03-31 Matsumoto Yushi Seiyaku Kk THERMALLY EXPANDABLE ICIC-CAPSULE, MANUFACTURE OF FORMING FOAM AND FORMING FOAM
JP4530682B2 (en) * 2004-02-20 2010-08-25 三洋化成工業株式会社 Thermally expandable microcapsules
JP2006137926A (en) * 2004-10-15 2006-06-01 Sanyo Chem Ind Ltd Method for producing hollow resin particle
KR20110058095A (en) 2009-11-25 2011-06-01 제일모직주식회사 Heat-expandable microparticles having good expandability and even particle diameter
US20160160000A1 (en) 2013-08-28 2016-06-09 Matsumoto Yushi-Seiyaku Co., Ltd. Process for producing heat-expandable microspheres
US10731021B2 (en) 2015-06-29 2020-08-04 Matsumoto Yushi-Seiyaku Co., Ltd. Process for producing heat-expandable microspheres and application thereof
SE545557C2 (en) 2017-12-21 2023-10-24 Matsumoto Yushi Seiyaku Kk Resin composition comprising at least one base resin and heat-expandable microspheres, molded article and heat-expandable microspheres
WO2021056229A1 (en) * 2019-09-25 2021-04-01 Dow Global Technologies Llc Non-solvent 2k polyurethane artificial leather composition, artificial leather prepared with same and preparation method thereof
SE2450866A1 (en) * 2022-02-24 2024-08-26 Matsumoto Yushi Seiyaku Kk Heat-expandable microspheres and use thereof
FR3134107A1 (en) 2022-03-30 2023-10-06 Saint-Gobain Glass France Adhesive composition for a glass article comprising expansion means and laminated glazing for automobiles comprising such a composition
FR3135413A1 (en) 2022-05-13 2023-11-17 Saint-Gobain Glass France Mirror that can be easily removed from a support on which it is stuck

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60460B2 (en) * 1976-09-30 1985-01-08 ユニチカ株式会社 How to collect dust in the warping room
JPS6021770B2 (en) * 1980-02-14 1985-05-29 松本油脂製薬株式会社 Method for manufacturing thermally expandable microcapsules

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365641B1 (en) 1999-09-29 2002-04-02 Matsumoto Yushi-Seiyaku Co Ltd Process for producing heat-expandable microcapsules
US6903143B2 (en) 2000-03-27 2005-06-07 Matsumoto Yushi-Seiyaku Co., Ltd. Process for producing thermo-expansive microcapsules
US7232607B2 (en) 2000-04-28 2007-06-19 Kureha Corporation Thermally foamable microsphere and production process thereof
US7252882B2 (en) 2000-04-28 2007-08-07 Kureha Corporation Thermally foamable microsphere and production process thereof
WO2007074773A1 (en) 2005-12-27 2007-07-05 Sekisui Chemical Co., Ltd. Molded foam article and method of producing molded foam article
US9102805B2 (en) 2008-09-30 2015-08-11 Sekisui Chemical Co., Ltd. Masterbatch for foam molding and molded foam
WO2010052972A1 (en) 2008-11-07 2010-05-14 積水化学工業株式会社 Thermally expandable microcapsule and foam-molded article
KR20110092268A (en) 2008-11-07 2011-08-17 세키스이가가쿠 고교가부시키가이샤 Thermally expandable microcapsule and foam-molded article
US9109096B2 (en) 2008-11-07 2015-08-18 Sekisui Chemical Co., Ltd. Thermally expandable microcapsule and foam-molded article
JP2012126827A (en) * 2010-12-15 2012-07-05 Sekisui Chem Co Ltd Heat-foamable particle and method for producing foam

Also Published As

Publication number Publication date
JPH0919635A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
JP2894990B2 (en) Thermally expandable microcapsules with excellent heat resistance and solvent resistance
JPH0515499B2 (en)
JP5159726B2 (en) Thermally expandable microcapsules and uses thereof
JP3659979B2 (en) Thermally expandable microcapsule and its production method
EP1598405B1 (en) Thermoexpansible microsphere, process for producing the same and method of use thereof
EP1288272B2 (en) Heat-expandable microsphere and production process thereof
JP5107718B2 (en) Thermally expandable microsphere and method for producing the same
JP4633987B2 (en) Method for producing thermally expandable microcapsules
JP4172871B2 (en) Thermally expandable microcapsule and method for producing the same
US6617363B2 (en) Method of producing thermally expansive microcapsule
JP5131948B2 (en) Method for producing thermally expandable microcapsules
EP0569234B2 (en) Thermoexpandable microcapsules having small particle size and production thereof
JP2005232274A (en) Thermally expandable microcapsule of high heat resistance and method for producing the same
WO2016088802A1 (en) Large-diameter heat-expanding micro-spheres, and method for producing same
JP2004155999A (en) Thermally expandable microcapsule
JP2002320843A (en) Method for manufacturing thermally expanding microcapsule
JP2005103469A (en) Method of manufacturing heat-expansible microcapsule
JP2004168790A (en) Thermally expandable microcapsule
JP2004210982A (en) Process for preparing thermally expandable microcapsule
JP2004168789A (en) Thermally expandable microcapsule and expandable resin composition
JP2011144255A (en) Thermally expandable microcapsule

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term