JP2891620B2 - High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same - Google Patents
High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the sameInfo
- Publication number
- JP2891620B2 JP2891620B2 JP30240493A JP30240493A JP2891620B2 JP 2891620 B2 JP2891620 B2 JP 2891620B2 JP 30240493 A JP30240493 A JP 30240493A JP 30240493 A JP30240493 A JP 30240493A JP 2891620 B2 JP2891620 B2 JP 2891620B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- hard plate
- strength
- aluminum alloy
- corrosion cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、耐応力腐食割れ性
(以下耐SCC性と記す)に優れ、かつ塗装焼き付け後
にも高強度を有し、成形性も良好なアルミニウム合金板
およびその製造方法に関し、特に缶の蓋材に好適に用い
られる材料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet having excellent resistance to stress corrosion cracking (hereinafter referred to as SCC resistance), high strength even after baking, and good formability, and a method for producing the same. In particular, the present invention relates to a material suitably used for a can lid material.
【0002】[0002]
【従来の技術】ビールや炭酸飲料用の内圧の高い缶の蓋
材には近年の薄肉化の傾向に伴い塗装焼き付け後の耐力
が300N/mm2以上の高強度材が要求され、5000
系アルミニウム合金の中でも5182合金のH18やH
38材が使われるようになってきた。 2. Description of the Related Art In recent years, the use of high-strength materials having a proof stress of 300 N / mm 2 or more after baking has been required for lids of cans having a high internal pressure for beer and carbonated beverages in accordance with the trend of thinning in recent years.
H18 and H of the 5182 alloy among the series aluminum alloys
Thirty-eight materials have come to be used.
【0003】[0003]
【発明が解決しようとする課題】しかし、5182合金
は強度と成形性は優れるもののMg量を4.0〜5.0
%と多く含み、経時変化によりMgが粒界に析出し易い
合金であることから、内圧の高い状態で夏場の高温・高
湿度の倉庫のような腐食の発生しやすい環境に曝される
と、缶蓋スコアー部から応力腐食割れが発生して破壊す
るケースがしばしばあった。However, although the strength and formability of the 5182 alloy are excellent, the Mg content is increased to 4.0 to 5.0.
%, And is an alloy in which Mg easily precipitates at the grain boundary due to aging, so when exposed to an environment where corrosion is likely to occur, such as a high-temperature, high-humidity warehouse in summer under high internal pressure, In many cases, stress corrosion cracking was generated from the can lid score part and caused to break.
【0004】この発明は以上の事情を背景としてなされ
たもので、強度・成形性を損なうことなく耐SCC性を
改善した、特に缶蓋用に好適に用いることのできるアル
ミニウム合金硬質板およびその製造方法を提供すること
を目的とするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an aluminum alloy hard plate which has improved SCC resistance without impairing strength and formability, and which can be suitably used particularly for can lids, and a method of manufacturing the same. It is intended to provide a method.
【0005】[0005]
【課題を解決するための手段】前述のような課題を解決
するため、本発明者等が種々実験検討を重ねた結果、耐
SCC性に悪影響を与えるMgを減らす代りに、Mn量
を5182合金よりも増量させ、しかも鋳塊の均質化処
理においてAl6 Mn析出物を適度に析出させて、熱間
圧延上がり又は中間焼鈍後の中間材料の再結晶粒径を微
細化することによって、最終硬質板の強度・成形性を損
なうことなく耐SCC性を改善できることを見出し、こ
の発明をなすに至った。In order to solve the above-mentioned problems, the present inventors have conducted various experiments and studies. As a result, instead of reducing Mg which adversely affects the SCC resistance, the Mn content was reduced to 5182 alloy. In addition, the amount of Al 6 Mn precipitates is appropriately precipitated in the ingot homogenization treatment, and the recrystallization grain size of the intermediate material after hot rolling or after intermediate annealing is refined, so that the final hardened The present inventors have found that the SCC resistance can be improved without impairing the strength and formability of the sheet, and have accomplished the present invention.
【0006】具体的には、請求項1の Mg2.0〜
3.5%(重量%、以下同じ)、Mn1.0%〜1.8
%を含有し、不純物としてのFeを0.20%以下に規
制し、Mn+Feが1.8%以下であり、残部がAlお
よび不可避的不純物よりなり、かつ粒径1μm以上のA
l6 Mn析出物粒子の数が0.1mm2 あたり1000個
以上で、しかも270℃×20秒の塗装焼き付け処理後
の耐力が280N/mm2以上であることを特徴とする、
耐応力腐食割れ性に優れた高強度アルミニウム合金硬質
板。[0006] More specifically, Mg 2.0 or more
3.5% (weight%, the same applies hereinafter), Mn 1.0% to 1.8
%, The content of Fe as an impurity is restricted to 0.20% or less, Mn + Fe is 1.8% or less, the balance is Al and unavoidable impurities, and the particle size of A is 1 μm or more.
The number of l 6 Mn precipitate particles is not less than 1000 per 0.1 mm 2 , and the yield strength after painting baking at 270 ° C. × 20 seconds is not less than 280 N / mm 2 ,
High strength aluminum alloy hard plate with excellent stress corrosion cracking resistance.
【0007】また請求項2の Mg2.0〜3.5%、
Mn1.0%〜1.8%を含有し、不純物としてのFe
を0.20%以下に規制し、Mn+Feが1.8%以下
であり、残部がAlおよび不可避的不純物よりなる合金
を、鋳造温度680℃以上で鋳造速度40mm/分以上
で鋳造し、得られた鋳塊に500〜600℃の範囲内の
温度で1〜48時間の均質化処理を施して、粒径1μm
以上のAl6 Mn粒子を0.1mm2 あたり1000個以
上析出させ、その後圧延を施して所要の最終板厚とする
にあたり、熱間圧延を施し、必要に応じ適宜冷間圧延と
中間焼鈍を施し、最後に60%以上の冷間圧延を施すこ
とを特徴とする、耐応力腐食割れ性に優れた高強度アル
ミニウム合金硬質板の製造方法 である。[0007] Further, Mg of 2.0 to 3.5% according to claim 2,
Fe containing 1.0% to 1.8% of Mn and Fe as an impurity
Is controlled to 0.20% or less, and an alloy containing Mn + Fe of 1.8% or less and the balance of Al and unavoidable impurities is cast at a casting temperature of 680 ° C. or more at a casting speed of 40 mm / min or more. The ingot was subjected to a homogenization treatment at a temperature in the range of 500 to 600 ° C. for 1 to 48 hours, and a particle size of 1 μm
The above Al 6 Mn particles are precipitated at a rate of 1,000 or more per 0.1 mm 2 , and then subjected to hot rolling, and then subjected to cold rolling and intermediate annealing as necessary, in order to obtain a required final sheet thickness. Finally, a method for producing a high-strength aluminum alloy hard plate excellent in stress corrosion cracking resistance, characterized by finally performing cold rolling of 60% or more.
【0008】[0008]
【作用】先ずこの発明における成分組成の限定理由につ
いて説明する。First, the reasons for limiting the component composition in the present invention will be described.
【0009】Mg:Mgは強度向上に有効な元素である
が、耐SCC性を低下させる元素でもある。Mg量が
2.0%未満ではこの発明の用途である缶蓋材として強
度不足となり、一方3.5%を越えれば耐SCC性が悪
くなる。したがってMg量は2.0〜3.5%の範囲内
とした。Mg: Mg is an element that is effective for improving strength, but is also an element that lowers SCC resistance. If the Mg content is less than 2.0%, the strength of the can lid material used in the present invention is insufficient, while if it exceeds 3.5%, the SCC resistance deteriorates. Therefore, the amount of Mg was set in the range of 2.0 to 3.5%.
【0010】Mn:Mnは鋳造時に強制固溶されて、固
溶強化により強度向上に有効となるばかりでなく、鋳塊
に対する高温の均熱処理(均質化処理)によって析出す
るAl6 Mnが熱間圧延上がり又は中間焼鈍後の中間材
料における再結晶粒を微細化して、最終板の強度を向上
させるに有効に作用するとともに、強度異方性や耳率の
低減、エリクセン値の向上等、成形性の向上にも寄与す
る。但し、Mn量が1.0%未満ではMnの固溶量が不
充分で、高温の均熱処理により析出するAl6 Mn粒子
の数、大きさが充分ではなく、そのため熱間圧延上がり
又は中間焼鈍軟質化後の中間材料における再結晶粒を微
細化する効果が充分に得られず、最終板の強度・成形性
の向上が充分に図れなくなる。一方Mn量が1.8%を
越えればAl−Fe−Mn系の晶出物が粗大となって成
形性を阻害するおそれがある。したがってMn量は1.
0%〜1.8%とした。Mn: Mn is forcibly formed into a solid solution at the time of casting, and not only is effective for improving strength by solid solution strengthening, but also Al 6 Mn precipitated by high-temperature soaking (homogenizing treatment) on the ingot is hot-melt. Refines the recrystallized grains in the intermediate material after rolling or after intermediate annealing, effectively acting to improve the strength of the final plate, and reducing the anisotropy and ear ratio, improving the Erichsen value, etc. It also contributes to the improvement of However, when the Mn content is less than 1.0%, the solid solution amount of Mn is insufficient, and the number and size of Al 6 Mn particles precipitated by high-temperature soaking are not sufficient, so that hot rolling is completed or intermediate annealing is performed. The effect of refining the recrystallized grains in the softened intermediate material cannot be sufficiently obtained, and the strength and formability of the final sheet cannot be sufficiently improved. On the other hand, if the Mn content exceeds 1.8%, the Al-Fe-Mn-based crystallized product may become coarse and inhibit the formability. Therefore, the amount of Mn is 1.
0% to 1.8%.
【0011】Fe:Feは通常のアルミニウム合金にお
いて不純物として不可避的に含有される元素である。F
eが0.20%を越えれば、Al−Fe−Mn系の化合
物晶出物の数が増えてMn固溶量が減少し、強度向上を
図れなくなるとともに成形性を阻害するから、Feは
0.20%以下に規制することとした。また、Mn+F
eが1.8%を超えるとAl−Mn系の巨大金属間化合
物が生成して成形性を著しく阻害するのでMn+Feを
1.8%以下とした。Fe: Fe is an element inevitably contained as an impurity in a normal aluminum alloy. F
If e exceeds 0.20%, the number of crystallized Al-Fe-Mn-based compounds increases, the amount of Mn solid solution decreases, the strength cannot be improved, and the formability is impaired. % Or less. Also, Mn + F
If e exceeds 1.8%, an Al-Mn-based giant intermetallic compound is formed, which significantly impairs the formability. Therefore, Mn + Fe was made 1.8% or less.
【0012】以上の各元素のほかは、基本的にはAlお
よびFe以外の不可避的不純物とすれば良い。[0012] In addition to the above elements, it is basically sufficient to use unavoidable impurities other than Al and Fe.
【0013】そのほか、強度向上のためにCr0.15
%以下、V0.15%以下、Zr0.15%以下のいず
れか1種または2種以上を含有させることも許容され
る。In addition, Cr 0.15 for improving strength
% Or less, V0.15% or less, and Zr 0.15% or less.
【0014】なおFe以外の不可避的不純物としては、
Si,Zn,Cu等が含有されることがあるが、Siは
0.4%以下、Znは0.5%以下、Cuは0.3%以
下であれば、この発明の効果を損なうことはない。The inevitable impurities other than Fe include:
Si, Zn, Cu and the like may be contained, but if the content of Si is 0.4% or less, the content of Zn is 0.5% or less, and the content of Cu is 0.3% or less, the effect of the present invention is not impaired. Absent.
【0015】また一般のアルミニウム合金においては、
鋳塊結晶組織の微細化のために、少量のTiを単独で、
あるいは少量のTiを微量のBもしくはCと組合せて添
加することがあるが、この発明の場合も必要に応じてこ
れらを添加しても良い。但し、Tiを単独で添加する場
合のTi量は0.20%以下、TiとBとを複合添加す
る場合のTi量は0.10%以下、Bは0.05%以
下、TiとCとを複合添加する場合のTi量は0.10
%以下、C量は0.05%以下とすることが望ましく、
これらの範囲内であれば特にこの発明の効果を損なうこ
とはない。また、鋳造時の溶湯酸化の防止のため、Be
を0.01%以下添加することも許容される。In a general aluminum alloy,
In order to refine the ingot crystal structure, a small amount of Ti
Alternatively, a small amount of Ti may be added in combination with a small amount of B or C. In the case of the present invention, these may be added as needed. However, the amount of Ti when adding Ti alone is 0.20% or less, the amount of Ti when adding Ti and B in combination is 0.10% or less, B is 0.05% or less, and Ti and C Is added in a combined amount of 0.10
% Or less, and the C content is preferably 0.05% or less,
If it is within these ranges, the effect of the present invention is not particularly impaired. In order to prevent oxidation of the molten metal during casting, Be
May be added in an amount of 0.01% or less.
【0016】請求項1の発明のアルミニウム合金硬質板
においては、前述のように成分組成を規定するのみなら
ず、Al6 Mn析出物の析出状態が重要である。すなわ
ちこの発明では耐SCC性に優れ塗装焼き付け後にも高
強度を有し、成形性の向上をも図ることを目的としてい
るが、そのためには、最終硬質板の状態で、粒径1μm
以上のAl6 Mn析出物が0.1mm2 あたり1000個
以上分散している状態とすることが必要である。この析
出状態を満たすAl6 Mn析出物は熱間圧延上がり又は
中間焼鈍軟質化後の中間材料における再結晶粒を微細化
する事によって、最終硬質板の塗装焼付処理(270℃
×20秒)後の耐力は280N/mm2 以上で高強度とな
りかつ絞り性、張出性等の成形性にも優れる。In the aluminum alloy hard plate according to the first aspect of the present invention, not only the component composition is regulated as described above, but also the precipitation state of the Al 6 Mn precipitate is important. That is, the object of the present invention is to improve the SCC resistance, to have a high strength even after baking, and to improve the formability. For that purpose, in the state of the final hard plate, the particle size is 1 μm.
It is necessary that 1000 or more Al 6 Mn precipitates are dispersed per 0.1 mm 2 . The Al 6 Mn precipitate that satisfies this state of precipitation is refined by refining the recrystallized grains in the intermediate material after hot rolling or softening during the intermediate annealing, so that the final hard plate is subjected to a paint baking treatment (270 ° C.).
(× 20 seconds), yield strength is 280N / mm 2 With the above, high strength is obtained, and the moldability such as drawability and overhang is excellent.
【0017】Al6 Mn析出物の分布がこの析出状態を
満たさない場合には、熱間圧延上がり又は中間焼鈍軟質
化後の中間材料における再結晶組織が粒状と層状の混粒
となって、最終硬質板を塗装焼付処理した後の強度に異
方性が生じたり成形性が劣化してしまう。If the distribution of Al 6 Mn precipitates does not satisfy this state of precipitation, the recrystallized structure of the intermediate material after hot rolling or softening after intermediate annealing becomes a mixed grain of grains and layers, and the final Anisotropy occurs in the strength of the hard plate after the paint baking treatment, and the formability deteriorates.
【0018】なおここで、熱間圧延上がり又は中間焼鈍
後の中間材料において再結晶組織を微細化するために
は、その熱間圧延後の自己再結晶又は中間焼鈍での再結
晶処理直前の状態で前述のように1μm以上のAl6 M
n析出物が0.1mm2 あたり1000個以上存在するこ
とが必要であるが、最終硬質板の状態でAl6 Mn析出
物が上記の条件を満たしていれば、必然的に熱間圧延後
の自己再結晶又は中間焼鈍での再結晶処理直前の状態で
もその条件を満たすところから、請求項1の発明では最
終硬質板として、上記条件を規定した。Here, in order to make the recrystallized structure finer in the intermediate material after hot rolling or after intermediate annealing, the recrystallization after hot rolling or the state immediately before the recrystallization treatment in intermediate annealing is performed. As described above, Al 6 M of 1 μm or more
It is necessary that at least 1000 n precipitates exist per 0.1 mm 2 , but if the Al 6 Mn precipitates satisfy the above conditions in the state of the final hard plate, the Since the condition is satisfied even in the state immediately before the recrystallization treatment by self-recrystallization or intermediate annealing, in the invention of claim 1, the above condition is defined as the final hard plate.
【0019】次に上述のようなアルミニウム合金板の製
造方法、すなわち請求項2の発明の製造方法について説
明する。Next, a method of manufacturing the above-described aluminum alloy plate, that is, a manufacturing method of the second aspect of the present invention will be described.
【0020】先ず前述のような成分組成の合金を鋳造す
る。鋳造方法自体は特に限定されるものではないが、A
l−Mn系の巨大金属間化合物の生成を防止するため
に、鋳造温度(スパウト直上の温度)を680℃以上、
定常状態における鋳造速度を40mm/分以上としたD
C鋳造法(半連続鋳造法)などによって鋳造する。First, an alloy having the composition described above is cast. The casting method itself is not particularly limited.
The casting temperature (the temperature immediately above the spout) is set to 680 ° C.
D when the casting speed in the steady state was 40 mm / min or more
It is cast by a C casting method (semi-continuous casting method) or the like.
【0021】得られた鋳塊に対しては、均質化処理(均
熱処理)を施す。この均熱処理は、単に鋳塊組織を均一
化するのみならず、Al6 Mnを析出させるために重要
な工程である。すなわちこの発明では高温長時間の均熱
処理を施すことによって、1μm以上のAl6 Mn析出
物を0.1mm2 あたり1000個以上析出させ、これに
よって後の熱間圧延上がりまたは中間焼鈍軟質化処理後
の中間材料における再結晶粒を微細化させることによっ
て最終硬質板の塗装焼付処理後における所要の強度と良
好な成形性を得ることができる。ここで、均熱処理温度
が500℃未満または均熱処理時間が1時間未満ではA
l6 Mn析出物の析出が不充分となり、一方均熱処理温
度が600℃を越えれば局部融解を生じてしまい、また
均熱処理時間が48時間を越えれば、Al6 Mn析出の
効果が飽和して経済性の点で問題が生じ、しかも表面の
酸化が進行して表面品質が悪くなる。したがって均熱処
理条件は、500〜600℃×1〜48時間の範囲内と
する必要がある。なおこのような均熱処理によって析出
したAl6Mn析出物は、その後のプロセスでマトリッ
クスに固溶してしまうことはなく、またそもそも微細で
あるため加工によって破砕されてそれ以上小径となって
しまうこともほとんどなく、したがって均熱処理段階で
1μm以上のAl6 Mn析出物を0.1mm2 あたり10
00個以上析出させておけば、熱間圧延上がり又は中間
焼鈍での中間材料の再結晶処理時においてもAl6 Mn
析出物は同じ条件を満たすことができる。The obtained ingot is subjected to a homogenization treatment (soaking heat treatment). This soaking is an important step not only to make the ingot structure uniform, but also to precipitate Al 6 Mn. That is, in the present invention, a high-temperature and long-time soaking treatment is performed to precipitate 1000 μm or more of Al 6 Mn precipitates having a size of 1 μm or more per 0.1 mm 2. By refining the recrystallized grains in the intermediate material, the required strength and good formability after painting and baking of the final hard plate can be obtained. Here, if the soaking temperature is less than 500 ° C. or the soaking time is less than 1 hour, A
l 6 Mn precipitates of precipitation is insufficient, whereas the soaking temperature will occur local melting if exceeds the 600 ° C., also if soaking time exceeds 48 hours, the effect of Al 6 Mn deposition is saturated A problem arises in terms of economic efficiency, and furthermore, the oxidation of the surface proceeds to deteriorate the surface quality. Therefore, the soaking conditions must be in the range of 500 to 600 ° C. × 1 to 48 hours. The Al 6 Mn precipitate deposited by such a soaking process does not dissolve in the matrix in the subsequent process, and since it is originally fine, it is crushed by processing and becomes smaller in diameter. little, therefore per 0.1 mm 2 of 1μm or more Al 6 Mn precipitates in the soaking step also 10
If more than 00 are precipitated, Al 6 Mn can be obtained even during recrystallization treatment of the intermediate material after hot rolling or intermediate annealing.
The precipitate can satisfy the same conditions.
【0022】均質化処理後には熱間圧延を行なう。この
熱間圧延開始温度は、従来のAl−Mg系合金と同様で
あれば良く、通常は400〜550℃とする。なおこの
熱間圧延を行なうにあたっては、均熱処理後、一旦冷却
してから400〜550℃に再加熱しても良く、あるい
は均熱処理後再加熱することなく、400〜550℃の
状態から熱間圧延を施しても良い。After the homogenization treatment, hot rolling is performed. The hot rolling start temperature may be the same as that of a conventional Al-Mg alloy, and is usually 400 to 550 ° C. In performing the hot rolling, after soaking, the steel sheet may be cooled once and then reheated to 400 to 550 ° C, or may be heated from 400 to 550 ° C without reheating after soaking. Rolling may be performed.
【0023】熱間圧延終了後の板は、1.その熱延板の
ままで、2.あるいは熱間圧延後に中間焼鈍を施し、
3.あるいは熱間圧延後適度な冷間圧延を施してから中
間焼鈍を施す、のいずれかの状態で、最後に60%以上
の冷間圧延を施して硬質板とする。After the completion of hot rolling, 1. With the hot rolled sheet as it is Alternatively, perform intermediate annealing after hot rolling,
3. Alternatively, in one of the states of performing moderate cold rolling after hot rolling and then performing intermediate annealing, cold rolling of 60% or more is finally performed to obtain a hard plate.
【0024】ここで、最終の冷間圧延前が熱延板のまま
の場合には、高温でコイルとして巻き付けることによる
自己再結晶した状態が好ましく、熱間圧延後に中間焼鈍
を施し完全再結晶させた状態がさらに好ましく、熱間圧
延後適度な冷間圧延を施してから中間焼鈍を施し完全微
細再結晶させた状態が最も好ましい。中間焼鈍を施す場
合、通常の連続焼鈍方式、バッチ焼鈍方式のいずれでも
構わないが、再結晶粒微細化や生産性の点で連続焼鈍方
式の方が好ましい。連続焼鈍方式の場合は、昇温速度1
℃/秒以上、450〜600℃の温度範囲内に120秒
以下の保持、降温速度1℃/秒以上とし、バッチ焼鈍方
式の場合は昇温速度20℃/時間、300〜450℃の
温度範囲内に1〜10時間の保持、降温速度20℃/時
間の条件が一般的である。In the case where the hot-rolled sheet is left as it is before the final cold rolling, it is preferable that the sheet is self-recrystallized by winding it as a coil at a high temperature. It is more preferable that after hot rolling, moderate cold rolling is performed, then intermediate annealing is performed, and complete fine recrystallization is performed. When performing the intermediate annealing, any of a normal continuous annealing method and a batch annealing method may be used, but the continuous annealing method is preferable in terms of recrystallization grain refinement and productivity. In the case of the continuous annealing method, the heating rate is 1
C./sec., Maintained within a temperature range of 450 to 600.degree. C. for 120 seconds or less, a temperature lowering rate of 1.degree. C./sec., And in the case of a batch annealing method, a temperature increasing rate of 20.degree. C./hour, a temperature range of 300 to 450.degree. In general, the temperature is maintained for 1 to 10 hours and the temperature is lowered at a rate of 20 ° C./hour.
【0025】なお最終の冷間圧延は塗装焼付後に所要の
強度を得るために60%以上が必要である。この冷間圧
延によって得られた硬質板は、このまま缶蓋等の用途に
供してもよいが、塗装焼付後の強度低下をより少なく押
さえるためさらに100〜200℃で30分〜10時間
程度の最終熱処理を施しても構わない。缶蓋の塗装焼付
処理は180〜400℃で5〜1800秒程度の条件で
行われるのが一般的である。以上、缶蓋の例で説明して
きたが、本発明の硬質板は、塗装焼付等の熱処理後にも
耐SCC性と強度と成形性が必要とされる、ブラインド
等他の用途にも好適に適用される。In the final cold rolling, 60% or more is required to obtain a required strength after baking. The hard plate obtained by this cold rolling may be used as it is for applications such as can lids, but in order to further suppress the decrease in strength after baking, the final thickness of about 30 minutes to 10 hours at 100 to 200 ° C. Heat treatment may be performed. The baking treatment of the can lid is generally performed at 180 to 400 ° C. for about 5 to 1800 seconds. As described above, the example of the can lid has been described. However, the hard plate of the present invention is suitably applied to other uses such as blinds, which require SCC resistance, strength, and formability even after heat treatment such as paint baking. Is done.
【0026】[0026]
【実施例】表1の合金符号A〜Cに示される合金につい
て、常法に従ってDC鋳造法(半連続鋳造法)により鋳
造温度(スパウト直上の温度)705℃、鋳造速度60
mm/分で鋳造し、厚さ460mm、幅1200mm、長さ3
000mmの鋳塊を得た。得られた鋳塊に対し、表2の製
造条件No.1〜No.6に示すような種々の条件で均
熱処理(均質化処理)、熱間圧延前予備加熱、熱間圧延
を施して、厚さ2.0〜4.0mmの圧延板とした。その
後適宜、冷間圧延と中間焼鈍を施して板厚0.3mmの最
終硬質板とした。なお、表中には示さなかったが、製造
条件No.3は熱間圧延上がりのコイル巻取り直前の温
度が320℃になっており、最終冷間圧延前に調べたと
ころ自己焼鈍により再結晶していた。EXAMPLE For the alloys indicated by the alloy symbols A to C in Table 1, the casting temperature (the temperature immediately above the spout) was 705 ° C. and the casting speed was 60 by the DC casting method (semi-continuous casting method) according to a conventional method.
Cast at a rate of mm / min, thickness 460mm, width 1200mm, length 3
A 000 mm ingot was obtained. With respect to the obtained ingot, manufacturing conditions No. 1 to No. Under various conditions as shown in FIG. 6, a soaking treatment (homogenization treatment), preheating before hot rolling, and hot rolling were performed to obtain a rolled plate having a thickness of 2.0 to 4.0 mm. Thereafter, cold rolling and intermediate annealing were appropriately performed to obtain a final hard plate having a thickness of 0.3 mm. Although not shown in the table, the manufacturing conditions No. Sample No. 3 had a temperature of 320 ° C. immediately before coil winding after hot rolling, and it was recrystallized by self annealing when examined before final cold rolling.
【0027】均熱処理直後、1μm以上のAl6 Mn析
出物の0.1mm2 あたりの数を調べ、その結果を表2中
に併せて示す。Immediately after the soaking treatment, the number of Al 6 Mn precipitates of 1 μm or more per 0.1 mm 2 was examined, and the results are also shown in Table 2.
【0028】また、最終硬質板に対し、塗装焼付に相当
する熱処理として、オイルバスによる270℃×20秒
の熱処理を施し、この熱処理後の板について1μm以上
のAl6 Mn析出物の0.1mm2 あたりの数や、引張試
験によるL方向耐力およびL方向耐力と45°方向耐力
の差である強度異方性について調べ、その結果を表3に
示す。強度異方性が大きいと蓋の外形を打ち抜く際に充
分な真円度が得られなかったり、蓋にタブを取り付けて
リベット部を形成する際にリベット部に充分な真円度が
得られなかったり、蓋を缶胴に取り付けた後に圧力を加
えた場合45°方向からバックリングが生じる恐れがあ
る。また、上記の塗装焼付に相当する熱処理を施した板
に対し、ダイス直径32.84mm、ポンチ直径32.0
mm、ブランク直径58.0mmの条件で耳率を、またJI
S Z 2247 エリクセン試験A法によりエリクセ
ン値を調べた。結果を表3に併せて示す。さらに耐SC
C性については、上記の塗装焼付に相当する熱処理を施
した板に対し、約10年間のMg2 Al3 の変化に相当
する120℃×7日間の熱処理を施すことによってSC
C感受性を高めた厳しい状態で調べた。このSCC試験
は、NaCl水溶液中での単軸引張による応力付加を行
なうとともに、耐SCC性を比較的短時間で評価するた
めに試験片に直流5mA/cm2 の電流を流すことで粒界腐
食を促進させる方法、すなわち電流付加単軸引張方式で
行なった。なお付加応力はSCC感受性を高める処理を
行った後の各材料の耐力の80%とし、試験片の破断寿
命を調べると共に、走査型電子顕微鏡により破断部の破
壊様式を観察して総合的に耐SCC性を評価した。これ
らの結果も表3に併せて示す。Further, the final hard plate is subjected to a heat treatment at 270 ° C. for 20 seconds using an oil bath as a heat treatment corresponding to the coating baking, and the plate after the heat treatment contains 0.1 mm of Al 6 Mn precipitate of 1 μm or more. The number per unit 2 and the strength anisotropy, which is the difference between the L-direction proof stress and the 45-degree proof stress in the L-direction proof stress by the tensile test, were examined. If the strength anisotropy is large, sufficient roundness cannot be obtained when punching the outer shape of the lid, or sufficient roundness cannot be obtained in the rivet part when forming a rivet part by attaching a tab to the lid. Or, if pressure is applied after attaching the lid to the can body, buckling may occur from the 45 ° direction. Further, a plate having a die diameter of 32.84 mm and a punch diameter of 32.0 mm was subjected to a heat-treated plate corresponding to the above-mentioned paint baking.
mm and blank diameter of 58.0 mm,
The Erichsen value was determined by the SZ 2247 Erichsen test A method. The results are shown in Table 3. Further SC resistance
Regarding the C property, the sheet subjected to the heat treatment corresponding to the above-mentioned paint baking was subjected to a heat treatment at 120 ° C. × 7 days corresponding to the change of Mg 2 Al 3 for about 10 years.
Examination was carried out under severe conditions with increased C sensitivity. In this SCC test, stress is applied by uniaxial tension in an NaCl aqueous solution, and a DC current of 5 mA / cm 2 is applied to the test piece in order to evaluate SCC resistance in a relatively short time. , That is, by a uniaxial tension method with an electric current. The added stress was set to 80% of the proof stress of each material after performing the process of increasing the SCC sensitivity, and the rupture life of the test piece was examined. The SCC property was evaluated. These results are also shown in Table 3.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【表3】 [Table 3]
【0032】以上の実施例において製造条件No.5
は、従来多用されている高強度缶蓋材である5182合
金に相当する合金符号Bの合金を用いて、従来の一般的
な製造プロセスを適用して製造した例である。また製造
条件No.6は、厳しい条件下においてもSCCを生じ
ないことで知られている5454合金に相当する合金符
号Cの合金を用いて、従来の5182合金の一般的な製
造プロセスを適用して製造した例である。そこで実施例
においてもこの製造条件No.5によって得られた51
82合金相当材を強度および成形性の基準とし、製造条
件No.6によって得られた5454相当合金の材料を
耐SCC性の基準として評価した。In the above embodiment, the manufacturing conditions No. 5
Is an example manufactured by applying a conventional general manufacturing process using an alloy with an alloy code B corresponding to 5182 alloy, which is a high-strength can lid material that has been widely used in the past. Further, the manufacturing conditions No. No. 6 is an example manufactured by applying a conventional general manufacturing process of 5182 alloy using an alloy having an alloy code C corresponding to 5454 alloy which is known not to cause SCC even under severe conditions. is there. Therefore, the manufacturing conditions No. 51 obtained by 5
No. 82 alloy equivalent material was used as a standard for strength and formability. 6 was evaluated as a standard for SCC resistance.
【0033】製造条件No.1〜No.3の材料は、い
ずれも成分組成および製造プロセスの両者がこの発明で
規定する条件を満たすものであり、これらはNo.5の
5182相当合金の従来例と比較して、L方向耐力、強
度異方性、耳率、エリクセン値等の強度、機械的性質は
同等かそれ以上に優れたものであった。一方、耐SCC
性は製造条件No.6の5454相当合金の比較例と比
べSCC破断寿命は同等で、破断面の観察においても比
較例と同等なディンプル破面の延性破壊を呈し、SCC
は起こらないことを示していた。Manufacturing conditions No. 1 to No. Material No. 3 is one in which both the component composition and the production process satisfy the conditions specified in the present invention. As compared with the conventional example of the 5182-equivalent alloy of No. 5, the L-direction proof stress, strength anisotropy, ear ratio, strength such as Erichsen value, and mechanical properties were equal or better. On the other hand, anti-SCC
The properties are shown in Production Condition No. SCC rupture life is the same as that of the comparative example of the alloy 5454 equivalent to No. 6, and the ductile fracture of the dimple fracture surface is equivalent to that of the comparative example even in the observation of the fracture surface.
Was not going to happen.
【0034】一方製造条件No.4の材料は、この発明
で規定する成分組成範囲内の合金Aを用いてはいるが、
均質化処理温度がこの発明で規定する下限よりも低い場
合の比較例であり、この場合は均質化処理温度が低いた
め1μm以上の大きさのAl6 Mn析出物が得られず、
中間焼鈍で再結晶遅れが生じて、層状と粒状の混粒組織
となったため、強度異方性、耳率、エリクセン値等が劣
化してしまった。一方、耐SCC性は、この発明で規定
する成分組成範囲内であるので、製造条件No.1〜3
および6の5454相当合金と同等に優れていた。On the other hand, the manufacturing condition No. As for the material No. 4, although the alloy A within the component composition range specified in the present invention is used,
This is a comparative example in which the homogenization treatment temperature is lower than the lower limit specified in the present invention. In this case, since the homogenization treatment temperature is low, an Al 6 Mn precipitate having a size of 1 μm or more cannot be obtained,
Intermediate annealing caused a delay in recrystallization, resulting in a layered and granular mixed grain structure, resulting in deterioration in strength anisotropy, ear ratio, Erichsen value, and the like. On the other hand, since the SCC resistance is within the component composition range defined in the present invention, the production conditions No. 1-3
And 6 were equivalent to the 5454 equivalent alloy.
【0035】[0035]
【発明の効果】前述の実施例からも明らかなように、こ
の発明によれば、耐応力腐食割れ性については、従来か
ら耐応力腐食割れ性が良好であることが知られている5
454合金並みに優れていて厳しい使用環境下でも応力
腐食割れのおそれがなく、しかも強度については518
2合金並の高強度を有するとともに強度異方性が小さ
く、かつ成形性の良好なアルミニウム合金硬質板を得る
ことができる。As is evident from the above-described embodiments, according to the present invention, it has been known that the stress corrosion cracking resistance is good.
It is superior to that of 454 alloy and has no risk of stress corrosion cracking even under severe use environment.
It is possible to obtain an aluminum alloy hard plate having high strength comparable to that of the two alloys, small strength anisotropy, and good formability.
【0036】従って、この発明によるアルミニウム合金
硬質板を内圧の高いビール用や炭酸飲料用で耐応力腐食
割れ性が要求される缶蓋材に使用することによって、従
来よりも薄肉化を図って、缶重量の軽量化および材料コ
ストの低減を図ることができる。なおこの発明のアルミ
ニウム合金硬質板は、缶蓋以外のブラインド材などにも
使用できることは勿論である。さらに、中間焼鈍のまま
の中間材料は、自動車の車体(インナーおよびアウタ
ー)や足廻り部材等に使用できる。Therefore, by using the aluminum alloy hard plate according to the present invention for a can lid material which is required to have stress corrosion cracking resistance for beer or carbonated beverage having a high internal pressure, the thickness can be reduced as compared with the conventional one. It is possible to reduce the weight of the can and the material cost. The aluminum alloy hard plate of the present invention can of course be used for blind materials other than the can lid. Further, the intermediate material that has been subjected to the intermediate annealing can be used for a vehicle body (inner and outer), a suspension member, and the like.
Claims (2)
じ)、Mn1.0%〜1.8%を含有し、不純物として
のFeを0.20%以下に規制し、Mn+Feが1.8
%以下であり、残部がAlおよび不可避的不純物よりな
り、かつ粒径1μm以上のAl6 Mn析出物粒子の数が
0.1mm2 あたり1000個以上で、しかも270℃×
20秒の塗装焼き付け処理後の耐力が280N/mm2 以
上であることを特徴とする、耐応力腐食割れ性に優れた
高強度アルミニウム合金硬質板。1. It contains 2.0 to 3.5% of Mg (% by weight, the same applies hereinafter) and 1.0% to 1.8% of Mn, and regulates Fe as an impurity to 0.20% or less. 1.8
% Or less, the balance being Al and inevitable impurities, and the number of Al 6 Mn precipitate particles having a particle size of 1 μm or more is 1000 or more per 0.1 mm 2 , and 270 ° C. ×
Strength of 280 N / mm 2 after baking treatment for 20 seconds A high-strength aluminum alloy hard plate excellent in stress corrosion cracking resistance, characterized in that:
1.8%を含有し、不純物としてのFeを0.20%以
下に規制し、Mn+Feが1.8%以下であり、残部が
Alおよび不可避的不純物よりなる合金を、鋳造温度6
80℃以上で鋳造速度40mm/分以上で鋳造し、得ら
れた鋳塊に500〜600℃の範囲内の温度で1〜48
時間の均質化処理を施して、粒径1μm以上のAl6 M
n粒子を0.1mm2 あたり1000個以上析出させ、そ
の後圧延を施して所要の最終板厚とするにあたり、熱間
圧延を施し、必要に応じ適宜冷間圧延と中間焼鈍を施
し、最後に60%以上の冷間圧延を施すことを特徴とす
る、耐応力腐食割れ性に優れた高強度アルミニウム合金
硬質板の製造方法。2. Mg 2.0-3.5%, Mn 1.0%-
An alloy containing 1.8%, Fe as an impurity is controlled to 0.20% or less, Mn + Fe is 1.8% or less, and the balance consists of Al and unavoidable impurities.
It is cast at a casting speed of 40 mm / min or more at a temperature of 80 ° C. or more, and the obtained ingot is cast at a temperature in the range of 500 to 600 ° C. for 1 to 48 hours.
Al 6 M with a particle size of 1 μm or more
More than 1000 n-particles are precipitated per 0.1 mm 2 , and then hot-rolled, and then cold-rolled and intermediate-annealed as necessary to obtain the required final sheet thickness. %. A method for producing a high-strength aluminum alloy hard plate excellent in stress corrosion cracking resistance, characterized by performing cold rolling of at least 30%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30240493A JP2891620B2 (en) | 1993-11-08 | 1993-11-08 | High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30240493A JP2891620B2 (en) | 1993-11-08 | 1993-11-08 | High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07126789A JPH07126789A (en) | 1995-05-16 |
JP2891620B2 true JP2891620B2 (en) | 1999-05-17 |
Family
ID=17908513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30240493A Expired - Fee Related JP2891620B2 (en) | 1993-11-08 | 1993-11-08 | High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2891620B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104736271B (en) * | 2012-10-26 | 2016-09-21 | 株式会社Uacj | Al alloy-steel casting compressor impeller and manufacture method thereof |
CN106521261A (en) * | 2016-11-17 | 2017-03-22 | 东莞宜安科技股份有限公司 | A method for preparing high-strength corrosion-resistant aluminum-magnesium alloy sheet, its product and application |
CN111560547A (en) * | 2020-05-08 | 2020-08-21 | 天津忠旺铝业有限公司 | Preparation method of 5182-O-state aluminum alloy plate for automobile |
-
1993
- 1993-11-08 JP JP30240493A patent/JP2891620B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07126789A (en) | 1995-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4645544A (en) | Process for producing cold rolled aluminum alloy sheet | |
US4614552A (en) | Aluminum alloy sheet product | |
JPH0127146B2 (en) | ||
JP3845312B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP3849095B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JPH08325664A (en) | High-strength heat treatment type aluminum alloy sheet for drawing and its production | |
JP3726893B2 (en) | Method for producing an aluminum alloy plate used for a lid for a positive pressure can excellent in rivet formability, score workability and blow-up resistance | |
JP2891620B2 (en) | High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same | |
JPH09268341A (en) | Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production | |
JP2745340B2 (en) | Method for manufacturing aluminum two-piece can | |
JP2000234158A (en) | Production of aluminum alloy sheet for can barrel | |
JPH05125505A (en) | Manufacture of baking hardenability aluminum alloy plate for forming | |
JP2626859B2 (en) | Method for producing aluminum alloy sheet for high strength forming with low anisotropy | |
JP2858069B2 (en) | Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same | |
JPH055149A (en) | Hard aluminum alloy sheet for forming and its production | |
JP2745254B2 (en) | Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same | |
JPH11256291A (en) | Manufacture of aluminum alloy sheet for can body | |
JPH05125504A (en) | Manufacture of baking hardenability aluminum alloy plate for forming | |
JPH04276047A (en) | Production of hard aluminum alloy sheet for forming | |
JPH0565587A (en) | Aluminum alloy rolled sheet for forming and its production | |
JPH0565586A (en) | Aluminum alloy rooled sheet for forming and its production | |
JPH09279281A (en) | Aluminum alloy baking finished sheet for can top material excellent in corrosion resistance and its production | |
JPH09256097A (en) | Baking-finished aluminium alloy sheet for can end and its production | |
JPH05230605A (en) | Manufacture of aluminum alloy for baking and hardening formation | |
JPH05125506A (en) | Manufacture of baking hardenability aluminum alloy plate for forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |