JP2000234158A - Production of aluminum alloy sheet for can barrel - Google Patents
Production of aluminum alloy sheet for can barrelInfo
- Publication number
- JP2000234158A JP2000234158A JP3090699A JP3090699A JP2000234158A JP 2000234158 A JP2000234158 A JP 2000234158A JP 3090699 A JP3090699 A JP 3090699A JP 3090699 A JP3090699 A JP 3090699A JP 2000234158 A JP2000234158 A JP 2000234158A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- range
- hot rolling
- rate
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明はDI加工(絞り−
しごき加工)による2ピースアルミニウム缶用の缶胴、
すなわちDI缶胴に用いられるAl−Mg−Mn系アル
ミニウム合金板の製造方法に関し、特に深絞り耳が低く
かつ塗装焼付後の強度が高く、しかもDI加工時の成形
性および塗装焼付後の成形性に優れたDI缶胴用アルミ
ニウム合金板の製造方法に関するものである。The present invention relates to DI processing (drawing).
Canning for 2-piece aluminum cans by ironing)
More specifically, the present invention relates to a method for producing an Al-Mg-Mn-based aluminum alloy plate used for a DI can body, particularly having a low deep drawing ear, a high strength after baking, and a formability during DI processing and a formability after baking. The present invention relates to a method for producing an aluminum alloy plate for a DI can body excellent in quality.
【0002】[0002]
【従来の技術】一般に2ピースアルミニウム缶の製造工
程としては、缶胴素材に対して深絞り加工およびしごき
加工によるDI成形を施して缶胴形状とした後、所定の
サイズにトリミングを施して脱脂・洗浄処理を行ない、
さらに塗装および印刷を行なって焼付け(ベーキング)
を行ない、その後、缶胴縁部に対してネッキング加工、
フランジング加工を行ない、その後、別に成形した缶蓋
(缶エンド)と合せてシーミング加工を行なって缶とす
るのが通常である。2. Description of the Related Art In general, as a manufacturing process of a two-piece aluminum can, a can body material is subjected to DI forming by deep drawing and ironing to form a can body, and then trimmed to a predetermined size to be degreased.・ Washing process,
Further painting and printing and baking (baking)
And then necking the can body edge,
Usually, flanging is performed, and thereafter, a can is formed by performing seaming together with a separately formed can lid (can end).
【0003】このようにして製造されるDI缶の素材
(缶胴材)としては、従来からAl−Mg−Mn系合金
であるJIS 3004合金の硬質板が広く用いられて
いる。この3004合金は、しごき加工性に優れてい
て、強度を高めるために高圧延率で冷間圧延を施した場
合でも比較的良好な成形性を示すところから、DI缶胴
材として好適であるとされている。[0003] As a raw material (can body material) of the DI can thus manufactured, a hard plate of JIS 3004 alloy, which is an Al-Mg-Mn alloy, has been widely used. This 3004 alloy is excellent in ironing workability, and shows relatively good formability even when cold-rolled at a high rolling ratio in order to increase strength, so that it is suitable as a DI can body. Have been.
【0004】このようなDI缶胴用の3004合金硬質
板の製造方法としては、DC鋳造法などによって鋳造
後、鋳塊に対し均質化処理を施し、さらに熱間圧延およ
び冷間圧延を施して所定の板厚とし、かつその過程にお
ける冷間圧延前あるいは冷間圧延中途において中間焼鈍
を施す方法が一般的である。[0004] As a method for producing such a 3004 alloy hard plate for a DI can body, after casting by a DC casting method or the like, the ingot is subjected to a homogenization treatment, and further subjected to hot rolling and cold rolling. Generally, a method is used in which a predetermined thickness is set and intermediate annealing is performed before or during cold rolling in the process.
【0005】ところでDI缶胴については、主として材
料コスト低減、軽量化の目的から、より薄肉化を図るこ
とが強く望まれている。そしてこのように薄肉化を図る
ためには、薄肉化に伴なって生じる缶の座屈強度低下の
問題を回避するため、材料の高強度化を図ることが不可
欠である。[0005] By the way, it is strongly desired that the DI can body be made thinner mainly for the purpose of material cost reduction and weight reduction. In order to reduce the wall thickness, it is indispensable to increase the strength of the material in order to avoid the problem of a decrease in the buckling strength of the can caused by the reduction in the wall thickness.
【0006】またDI缶胴用材料については、上述のよ
うな薄肉化を図るための高強度化の要請ばかりではな
く、DI成形時における耳率が低いことが強く望まれ
る。すなわち、DI成形時の耳率が低いことは、DI成
形時の歩留りの向上と、缶胴の耳切れに起因する缶胴破
断の防止の点から必要とされている。さらに、DI缶製
造時におけるフランジ成形性(口拡げ性)、しごき性
(缶切れ性)も重要であり、これらの耳率、フランジ成
形性、しごき性、および強度を缶胴材に要求される主要
4要素と称することができ、これらの4要素をバランス
良く向上させることが強く望まれている。特に耳率は、
これらの4要素のうちでもその制御が難しく、したがっ
てこれらの4要素のバランスの改善には、耳率の適切な
制御が極めて重要な課題となっている。Further, as for the material for the DI can body, not only the above-mentioned demand for high strength for the purpose of reducing the thickness, but also a low ear ratio at the time of DI molding is strongly desired. That is, a low ear ratio at the time of DI molding is required from the viewpoints of improving the yield at the time of DI molding and preventing the can body from being broken due to the cut end of the can body. Further, flange formability (mouth openability) and ironing property (can-cutting property) during the production of DI cans are also important, and these ear ratios, flange formability, ironing property, and strength are required for can body materials. It can be referred to as main four elements, and it is strongly desired to improve these four elements in a well-balanced manner. Especially ear rate,
Of these four factors, it is difficult to control them. Therefore, in order to improve the balance of these four factors, appropriate control of the ear ratio is a very important issue.
【0007】ここで、従来一般の熱間圧延方式として
は、粗圧延機、仕上圧延機としてそれぞれリバーシング
・ミル、リバーシング・ウォームミルを適用するか、あ
るいは粗圧延および仕上圧延兼用の圧延機としてリバー
シング・ミルを用いることが多いが、これらの熱間圧延
方式では、一般に耳率を改善しようとすれば、特にフラ
ンジ成形性の低下を招く問題が生じ、また逆にフランジ
成形性を向上させようとすれば耳率を抑えることが困難
となり、例えば絞り比1.9において耳率を3%以下に
抑えることは困難となる。Here, as a conventional general hot rolling method, a reversing mill and a reversing worm mill are used as a rough rolling mill and a finishing rolling mill, respectively, or a rolling mill for both rough rolling and finish rolling is used. In many cases, reversing mills are used for these hot rolling methods. However, in general, if the ear ratio is to be improved, there is a problem that the flange formability is lowered, and conversely, the flange formability is improved. If it is attempted to do so, it is difficult to reduce the ear ratio, for example, it is difficult to suppress the ear ratio to 3% or less at an aperture ratio of 1.9.
【0008】一方、耳率を改善するための缶胴材製造方
法として、既に特開平5−317914号では、冷間圧
延中途において2回焼鈍を行なう方法が提案されている
が、このように冷間圧延中途において2回焼鈍を行なっ
た場合、最終冷間圧延の圧延率を大きくとれないため、
強度不足が生じやすいという問題があるほか、焼鈍を2
回行なうために製造コストの上昇を招き、さらには製缶
時の材料の加工硬化量が大きくなってフランジ成形性が
悪化する問題もある。On the other hand, as a method for manufacturing a can body material for improving ear ratio, Japanese Patent Application Laid-Open No. Hei 5-317914 has already proposed a method of performing annealing twice during cold rolling. If annealing is performed twice during hot rolling, the rolling rate of final cold rolling cannot be increased,
In addition to the problem that insufficient strength is likely to occur,
This increases the production cost due to the repetition, and also causes a problem that the work hardening amount of the material at the time of can making becomes large and the flange formability deteriorates.
【0009】この発明は以上の事情を背景としてなされ
たものであって、缶胴材として望まれる諸要求を充分に
満足し得る材料、すなわち薄肉化を図った場合でも強度
とフランジ成形性、しごき性に優れ、しかも深絞りにお
ける材料の耳率が確実かつ安定して低い缶胴用アルミニ
ウム合金板を製造し得る方法を提供することを基本的な
目的とするものである。The present invention has been made in view of the above circumstances, and is a material capable of fully satisfying various demands for a can body, that is, strength, flange formability, ironing even when the thickness is reduced. It is a basic object of the present invention to provide a method for producing an aluminum alloy plate for a can body, which is excellent in easiness and has a low and stable ear ratio of a material in deep drawing.
【0010】[0010]
【課題を解決するための手段】前述のような課題を解決
するべく、本願発明者等が種々実験・検討を重ねた結
果、熱間圧延における材料の再結晶、特に熱間圧延中途
以降における各圧延パスでの再結晶状態を厳密に制御
し、かつ得られた熱間圧延板に対し1次冷間圧延を施し
てから中間焼鈍を行なうことによって、前述の課題を解
決し得ることを見出し、この発明をなすに至ったのであ
る。The inventors of the present invention have conducted various experiments and studies to solve the above-mentioned problems. As a result, recrystallization of the material in hot rolling, particularly, By strictly controlling the recrystallization state in the rolling pass, and performing the primary cold rolling on the obtained hot-rolled sheet and then performing the intermediate annealing, the inventors have found that the above-described problems can be solved. The present invention has been accomplished.
【0011】具体的には、請求項1の発明の缶胴用アル
ミニウム合金板の製造方法は、Mg0.5〜2.0%
(重量%、以下同じ)、Mn0.5〜2.0%、Fe
0.1〜0.7%、Si0.05〜0.5%を含有し、
さらに必要に応じて0.005〜0.20%のTiを単
独でもしくは0.0001〜0.05%のBと組合せて
含有し、残部がAlおよび不可避的不純物よりなるアル
ミニウム合金を鋳造した後、520〜630℃の範囲内
の温度で1時間以上の均質化処理を施し、さらに熱間圧
延を行なうにあたり、(1) 350〜580℃の範囲
内の温度で熱間圧延を開始し、(2) 熱間圧延中途の
板厚が20〜200mmの範囲内の段階で、表面から5
0μmの深さまでの領域に再結晶率30%以上の再結晶
を少なくとも1回生じさせ、(3) 熱間圧延中途の板
厚が20mm以上の段階から熱間圧延終了までの間の総
熱間圧延率を98%以下とし、かつその間における各圧
延パスでの圧延温度を220〜450℃の範囲内とする
とともに各圧延パスでの歪み速度を2〜350/sec
の範囲内とし、しかも各圧延パス間の材料滞留時間を1
0分以内として、熱間圧延中途の板厚が20mm以上の
段階から熱延終了までの間の各圧延パス(但し最終パス
を除く)における次パス開始直前までの再結晶率を1〜
80%の範囲内に制御し、(4) 熱間圧延の終了温度
を200〜330℃の範囲内、終了板厚を1.0〜7.
0mmの範囲内とし、(5) 熱間圧延終了直後の20
0〜330℃の範囲内の温度から室温までの平均冷却速
度を100℃/hr以下とし、(6) 以上の(1)〜
(5)により、熱間圧延終了後の室温に冷却された状態
での再結晶率を95%以下、耐力を70MPa以上に制
御し、その後、熱間圧延板に対して、2〜60%の範囲
内の圧延率で1次冷間圧延を行ない、さらに1〜100
℃/秒の範囲内の平均昇温速度で330〜620℃の範
囲内の温度に加熱して保持なしもしくは10分以下の保
持を行なって、1〜100℃/秒の範囲内の平均冷却速
度で冷却する連続焼鈍を施し、その後さらに50%以上
の圧延率で最終冷間圧延を行なうことを特徴とするもの
である。More specifically, the method for producing an aluminum alloy sheet for a can body according to the first aspect of the present invention is a method for producing an aluminum alloy sheet having a Mg content of 0.5 to 2.0%.
(% By weight, hereinafter the same), Mn 0.5-2.0%, Fe
0.1-0.7%, containing 0.05-0.5% of Si,
If necessary, after casting an aluminum alloy containing 0.005 to 0.20% Ti alone or in combination with 0.0001 to 0.05% B, with the balance being Al and unavoidable impurities , A homogenization treatment at a temperature in the range of 520 to 630 ° C. for 1 hour or more, and further hot rolling, (1) start hot rolling at a temperature in the range of 350 to 580 ° C .; 2) In the stage where the thickness during hot rolling is in the range of 20 to 200 mm, 5 mm from the surface
At least one recrystallization with a recrystallization rate of 30% or more is caused in a region up to a depth of 0 μm. (3) The total hot working from the stage where the thickness of the hot rolling is 20 mm or more to the end of hot rolling. The rolling reduction is 98% or less, and the rolling temperature in each rolling pass is in the range of 220 to 450 ° C., and the strain rate in each rolling pass is 2 to 350 / sec.
And the material residence time between each rolling pass is 1
Within 0 minutes, the recrystallization rate in each rolling pass (excluding the final pass) from the stage where the thickness of the hot rolling is 20 mm or more to the end of hot rolling (but excluding the final pass) is just before the start of the next pass.
(4) The hot rolling end temperature is in the range of 200 to 330 ° C., and the end plate thickness is 1.0 to 7.
(5) 20 immediately after the end of hot rolling.
The average cooling rate from a temperature in the range of 0 to 330 ° C. to room temperature is 100 ° C./hr or less, and (1) to (6) or more
According to (5), the recrystallization rate in a state of being cooled to room temperature after the completion of the hot rolling is controlled to 95% or less, and the proof stress is controlled to 70 MPa or more. Primary cold rolling is performed at a rolling rate within the range, and further 1 to 100
Heating to a temperature in the range of 330 to 620 ° C. at an average heating rate in the range of ° C./sec without holding or holding for 10 minutes or less, and an average cooling rate in the range of 1 to 100 ° C./sec. , Followed by further performing final cold rolling at a rolling rate of 50% or more.
【0012】また請求項2の発明の缶胴用アルミニウム
合金板の製造方法は、素材アルミニウム合金として、M
g0.5〜2.0%、Mn0.5〜2.0%、Fe0.
1〜0.7%、Si0.05〜0.5%を含有し、かつ
Cu0.05〜0.5%、Cr0.05〜0.3%、Z
n0.05〜0.5%のうちの1種または2種以上を含
有し、さらに必要に応じて0.005〜0.20%のT
iを単独でもしくは0.0001〜0.05%のBと組
合せて含有し、残部がAlおよび不可避的不純物よりな
るアルミニウム合金を用い、請求項1で規定するプロセ
ス条件と同様の条件の均質化処理−熱間圧延−1次冷間
圧延−連続焼鈍−最終冷間圧延のプロセスで製造するも
のである。The method of manufacturing an aluminum alloy plate for a can body according to the second aspect of the present invention is characterized in that
g 0.5-2.0%, Mn 0.5-2.0%, Fe0.
1-0.7%, Si 0.05-0.5%, Cu 0.05-0.5%, Cr 0.05-0.3%, Z
n contains one or more of 0.05 to 0.5%, and if necessary, 0.005 to 0.20% of T
An aluminum alloy containing i alone or in combination with 0.0001 to 0.05% of B and the balance being Al and unavoidable impurities, and homogenized under the same conditions as the process conditions defined in claim 1. It is manufactured by a process of treatment-hot rolling-first cold rolling-continuous annealing-final cold rolling.
【0013】さらに請求項3の発明の缶胴用アルミニウ
ム合金板の製造方法は、素材合金として請求項1で規定
する合金と同じアルミニウム合金を用い、かつ均質化処
理−熱間圧延−1次冷間圧延を請求項1で規定する条件
で行ない、その後の焼鈍として、0.1℃/秒以下の平
均昇温速度で加熱して250〜500℃の範囲内の温度
に0.5時間以上保持して、0.1℃/秒以下の平均冷
却速度で冷却するバッチ焼鈍を施し、その後請求項1の
方法と同様に50%以上の圧延率で最終冷間圧延を行な
うものである。Further, in the method for manufacturing an aluminum alloy sheet for a can body according to the third aspect of the present invention, the same aluminum alloy as the alloy defined in the first aspect is used as a material alloy, and the homogenization treatment-hot rolling-primary cooling is performed. The cold rolling is performed under the conditions defined in claim 1, and as the subsequent annealing, it is heated at an average heating rate of 0.1 ° C./sec or less and kept at a temperature in the range of 250 to 500 ° C. for 0.5 hour or more. Then, batch annealing for cooling at an average cooling rate of 0.1 ° C./second or less is performed, and then final cold rolling is performed at a rolling rate of 50% or more in the same manner as the method of claim 1.
【0014】そしてまた請求項4の発明の缶胴用アルミ
ニウム合金板の製造方法は、素材アルミニウム合金とし
て請求項2で規定する成分組成と同じ成分組成の合金を
用い、請求項3で規定するプロセスで製造するものであ
る。According to a fourth aspect of the present invention, there is provided a method of manufacturing an aluminum alloy sheet for a can body, wherein an alloy having the same composition as the composition defined in the second aspect is used as the raw aluminum alloy. It is manufactured by.
【0015】なお、以上の請求項1〜4の方法におい
て、50%以上の圧延率で最終冷間圧延を行なった後に
は、さらに80〜200℃の範囲内の温度で0.1〜2
4時間保持する最終焼鈍を施しても良く、これを規定し
たのが請求項5の発明である。In the above method, after the final cold rolling is performed at a rolling reduction of 50% or more, the temperature is further reduced to 0.1 to 2 at a temperature in the range of 80 to 200 ° C.
A final annealing for 4 hours may be performed, and this is defined by the invention of claim 5.
【0016】[0016]
【発明の実施の形態】先ずこの発明の方法において用い
られるアルミニウム合金の成分組成の限定理由について
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the composition of the aluminum alloy used in the method of the present invention will be described.
【0017】Mg:Mgの添加は、Mgそれ自体の固溶
による強度向上に効果があり、またMgの固溶に伴なっ
て加工硬化量の増大による強度向上が期待でき、さらに
はSiとの共存によるMg2Siの時効析出による強度
向上も期待でき、したがってMgは缶胴材として必要な
強度を得るためには不可欠の元素である。またMgは、
加工時の転位の増殖作用があるため、再結晶粒を微細化
させるためにも有効である。但しMg量が0.5%未満
では上述の効果が少なく、一方2.0%を越えれば、高
強度は容易に得られるものの、DI加工時の変形抵抗が
大きくなって絞り性やしごき性を悪くする。したがって
Mg量は0.5〜2.0%の範囲内とした。Mg: The addition of Mg is effective in improving the strength due to the solid solution of Mg itself, and can be expected to improve the strength by increasing the amount of work hardening accompanying the solid solution of Mg. An increase in strength due to aging precipitation of Mg 2 Si due to coexistence can also be expected, and thus Mg is an indispensable element for obtaining the strength required for a can body. Mg is
Since it has the effect of increasing dislocations during processing, it is also effective for making recrystallized grains finer. However, when the Mg content is less than 0.5%, the above-mentioned effect is small. On the other hand, when the Mg content is more than 2.0%, although high strength is easily obtained, deformation resistance at the time of DI processing is increased and drawability and ironing property are reduced. Make it worse. Therefore, the Mg content is set in the range of 0.5 to 2.0%.
【0018】Mn:Mnは強度および成形性の向上に寄
与する有効な元素である。特にこの発明で目的としてい
る用途である缶胴材ではDI成形時にしごき加工が加え
られるため、とりわけMnは重要となる。アルミニウム
板のしごき加工においては通常エマルジョンタイプの潤
滑剤が用いられているが、Mn系晶出物が少ない場合に
は同程度の強度を有していてもエマルジョンタイプ潤滑
剤だけでは潤滑能が不足し、ゴーリングと称される擦り
疵や焼付きなどの外観不良が発生するおそれがある。ゴ
ーリングは晶出物の大きさ、量、種類に影響されること
が知られており、その晶出物を形成するためにMnは不
可欠な元素である。Mn量が0.5%未満ではMn系化
合物による固体潤滑的な効果が得られず、一方Mn量が
2.0%を越えればAl6Mnの初晶巨大金属間化合物
が発生し、著しく成形性を損なう。そこでMn量は0.
5〜2.0%の範囲内とした。Mn: Mn is an effective element that contributes to improvement in strength and formability. In particular, in the can body material, which is the target application of the present invention, ironing is added during DI molding, and therefore Mn is particularly important. Emulsion type lubricants are usually used for ironing aluminum plates, but when the amount of Mn-based crystals is small, lubricating ability is insufficient with only emulsion type lubricants even if they have the same strength. However, appearance defects such as abrasion and seizure called "goling" may occur. It is known that galling is affected by the size, amount, and type of a crystallized substance, and Mn is an essential element for forming the crystallized substance. If the Mn content is less than 0.5%, the solid lubricating effect of the Mn-based compound cannot be obtained, while if the Mn content exceeds 2.0%, a primary intermetallic giant compound of Al 6 Mn is generated, resulting in remarkable molding. Impair the nature. Therefore, the amount of Mn is 0.1.
The range was 5 to 2.0%.
【0019】Fe:Feは、Mnの晶出や析出を促進し
て、アルミニウム基地中のMn固溶量やMn系金属間化
合物の分散状態を制御するために必要な元素である。適
切な化合物分散状態を得るためには、Mn添加量に応じ
てFeを添加することが必要である。Fe量が0.1%
未満では適切な化合物分散状態を得ることが困難であ
り、一方Fe量が0.7%を越えれば、Mn添加に伴な
って初晶巨大金属間化合物が発生しやすくなり、成形性
を著しく損なう。そこでFe量の範囲は0.1〜0.7
%とした。Fe: Fe is an element required to promote the crystallization and precipitation of Mn and to control the amount of Mn solid solution in the aluminum matrix and the dispersion state of the Mn-based intermetallic compound. In order to obtain an appropriate compound dispersion state, it is necessary to add Fe according to the amount of Mn added. Fe content is 0.1%
If it is less than 10%, it is difficult to obtain an appropriate compound dispersion state. On the other hand, if the amount of Fe exceeds 0.7%, a primary crystal giant intermetallic compound is easily generated with the addition of Mn, and the formability is significantly impaired. . Therefore, the range of the amount of Fe is 0.1 to 0.7.
%.
【0020】Si:Siの添加は、Mg2Si系化合物
の析出による時効硬化を通じて缶胴材の強度向上に寄与
する。またSiは、Al−Mn−Fe−Si系金属間化
合物を生成して、Mn系金属間化合物の分散状態を制御
するために必要な元素である。Si量が0.05%未満
では上記の効果が得られず、一方0.5%を越えれば時
効硬化により材料が硬くなりすぎて成形性を阻害する。
そこでSi量の範囲は0.05〜0.5%とした。Si: The addition of Si contributes to the improvement of the strength of the can body material through age hardening due to precipitation of the Mg 2 Si-based compound. Si is an element necessary for generating an Al-Mn-Fe-Si-based intermetallic compound and controlling the dispersion state of the Mn-based intermetallic compound. If the Si content is less than 0.05%, the above effects cannot be obtained, while if it exceeds 0.5%, the material becomes too hard due to age hardening, and the formability is impaired.
Therefore, the range of the amount of Si is set to 0.05 to 0.5%.
【0021】Ti,B:通常のアルミニウム合金におい
ては、鋳塊結晶粒微細化のためにTi、あるいはTiお
よびBを微量添加することが行なわれており、この発明
においても、必要に応じて微量のTiを単独で、あるい
はBと組合せて添加しても良い。但しTi量が0.00
5%未満ではその効果が得られず、0.20%を越えれ
ば巨大なAl−Ti系金属間化合物が晶出して成形性を
阻害するため、Tiを添加する場合のTi量は0.00
5〜0.20%の範囲内とした。またTiとともにBを
添加すれば鋳塊結晶粒微細化の効果が向上するが、Ti
と併せてBを添加する場合、B量が0.0001%未満
ではその効果がなく、0.05%を越えればTi−B系
の粗大粒子が混入して成形性を害することから、Tiと
ともにBを添加する場合のB量は0.0001〜0.0
5%の範囲内とした。Ti, B: In ordinary aluminum alloys, a small amount of Ti or Ti and B is added to refine the ingot crystal grains. May be added alone or in combination with B. However, if the amount of Ti is 0.00
If it is less than 5%, the effect cannot be obtained, and if it exceeds 0.20%, a huge Al-Ti intermetallic compound is crystallized and the formability is impaired.
It was in the range of 5 to 0.20%. If B is added together with Ti, the effect of refining the ingot crystal grains is improved.
When B is added together with B, the effect is not obtained if the amount of B is less than 0.0001%, and if it exceeds 0.05%, coarse particles of Ti-B series are mixed and formability is impaired. When B is added, the amount of B is 0.0001 to 0.0.
It was within the range of 5%.
【0022】Cu,Cr,Zn:これらはいずれも強度
向上に寄与する元素であり、必要に応じてこれらのうち
から選ばれた1種または2種以上が添加される。これら
の各元素についてさらに説明する。Cu, Cr, Zn: These are all elements that contribute to improving the strength, and one or more selected from these are added as necessary. Each of these elements will be further described.
【0023】Cu:Cuは、焼鈍時にアルミニウム基地
中に溶体化させておき、塗装焼付処理時にAl−Cu−
Mg系析出物として析出することによる析出硬化を利用
した強度向上に寄与する。Cu量が0.05%未満では
その効果が得られず、一方Cuを0.5%を越えて添加
した場合には、時効硬化は容易に得られるものの、硬く
なりすぎて成形性を阻害し、また耐食性も劣化する。そ
こでCu量の範囲は0.05〜0.5%とした。Cu: Cu is dissolved in an aluminum matrix at the time of annealing, and Al-Cu-
It contributes to strength improvement utilizing precipitation hardening by precipitation as Mg-based precipitates. When the Cu content is less than 0.05%, the effect cannot be obtained. On the other hand, when Cu is added in excess of 0.5%, age hardening can be easily obtained, but it becomes too hard and impairs moldability. In addition, the corrosion resistance also deteriorates. Therefore, the range of the amount of Cu is set to 0.05 to 0.5%.
【0024】Cr;Crも強度向上に効果的な元素であ
るが、0.05%未満ではその効果が少なく、0.3%
を越えれば巨大晶出物生成によって成形性の低下を招く
ため、好ましくない。そこでCr量の範囲は0.05〜
0.3%とした。Cr: Cr is also an effective element for improving the strength, but if less than 0.05%, its effect is small, and 0.3%
Exceeding the range is not preferred because the formation of giant crystals causes a reduction in moldability. Therefore, the range of the amount of Cr is 0.05 to
0.3%.
【0025】Zn:Znの添加はAl−Mg−Zn系粒
子の時効析出による強度向上に寄与するが、0.05%
未満ではその効果が得られず、0.5%を越えれば、強
度への寄与については問題がないが、耐食性を劣化させ
る。そこでZn量の範囲は0.05〜0.5%とした。Zn: The addition of Zn contributes to the improvement in strength due to aging precipitation of Al-Mg-Zn-based particles,
If it is less than 0.5%, the effect cannot be obtained. If it exceeds 0.5%, there is no problem in the contribution to the strength, but the corrosion resistance is deteriorated. Therefore, the range of the amount of Zn is set to 0.05 to 0.5%.
【0026】以上の各元素の残部はAlと不可避不純物
とすれば良い。The balance of each of the above elements may be Al and inevitable impurities.
【0027】次にこの発明における製造プロセスを、そ
の作用とともに説明する。Next, the manufacturing process of the present invention will be described together with its operation.
【0028】先ず前述のような合金組成を有するアルミ
ニウム合金鋳塊を常法に従ってDC鋳造法(半連続鋳造
法)などにより鋳造する。次いでその鋳塊に対して均質
化処理を施して、鋳塊の偏析を均質化するとともにMn
系の第2相粒子サイズと分布を最適化する。均質化処理
温度が520℃未満では均質化の効果が不充分であり、
一方630℃を越えれば共晶融解のおそれがある。均質
化処理は1時間未満では均質化が不充分となる。したが
って均質化処理は520〜630℃の範囲内の温度で1
時間以上行なう必要がある。なお均質化処理時間の上限
は特に規制しないが、経済性を考慮して通常は48時間
以下にすることが好ましい。First, an aluminum alloy ingot having the above-described alloy composition is cast by a DC casting method (semi-continuous casting method) or the like according to a conventional method. Next, the ingot is subjected to a homogenization treatment to homogenize segregation of the ingot and to reduce Mn.
Optimize the second phase particle size and distribution of the system. If the homogenization treatment temperature is less than 520 ° C, the effect of homogenization is insufficient,
On the other hand, if the temperature exceeds 630 ° C., eutectic melting may occur. If the homogenization treatment is performed for less than one hour, the homogenization will be insufficient. Therefore, the homogenization treatment is performed at a temperature in the range of 520 to 630 ° C.
It must be done for more than an hour. The upper limit of the homogenization treatment time is not particularly limited, but is usually preferably 48 hours or less in consideration of economy.
【0029】均質化処理を施したスラブに対しては、熱
間圧延を行なう。缶胴材の製造工程中において、熱間圧
延は、再結晶挙動の制御を通じて耳率の制御に重要な影
響を及ぼす。そこでこの発明では、熱間圧延開始温度や
熱間圧延終了温度のみならず、少なくとも板厚が20m
m以降の段階での各圧延パスの条件などを厳密に細かく
規定することによって、再結晶挙動を厳密に制御してい
る。以下に熱間圧延工程における各条件についてさらに
詳細に説明する。The slab subjected to the homogenization treatment is subjected to hot rolling. During the manufacturing process of can body material, hot rolling has an important influence on the control of ear ratio through the control of recrystallization behavior. Therefore, in the present invention, not only the hot rolling start temperature and the hot rolling end temperature, but also at least the sheet thickness of 20 m
The recrystallization behavior is strictly controlled by strictly defining the conditions of each rolling pass at the stage after m. Hereinafter, each condition in the hot rolling step will be described in more detail.
【0030】(1) 熱間圧延開始温度を350〜58
0℃の範囲内とする。(1) The hot rolling start temperature is set to 350 to 58
Within the range of 0 ° C.
【0031】熱間圧延の開始温度は、熱間圧延中の材料
の回復および再結晶の挙動に強い影響を及ぼし、特に最
終板の深絞り耳を低くするために必要なキューブ方位の
結晶組織(キューブ方位の結晶粒の集合体を以下キュー
ブバンドと称する)の形成に重要な役割を果たしてい
る。熱間圧延開始温度が350℃未満では圧延集合組織
を発達させ易いが、熱間圧延中に板のエッジ割れが生じ
やすくなり、一方580℃を越えた高温で熱間圧延を開
始すれば、キューブバンドの形成は容易となるものの、
板の表面品質が低下する。したがって熱間圧延開始温度
は350〜580℃の範囲内とする必要がある。The starting temperature of hot rolling has a strong influence on the recovery and recrystallization behavior of the material during hot rolling, and in particular, the crystal orientation of the cube orientation (required for lowering the deep drawing edge of the final sheet). An aggregate of crystal grains having a cube orientation plays an important role in forming a cube band). If the hot rolling start temperature is lower than 350 ° C., the rolling texture tends to develop, but the edge cracking of the sheet tends to occur during the hot rolling. On the other hand, if the hot rolling is started at a high temperature exceeding 580 ° C., the cube Although the formation of the band is easy,
The surface quality of the plate is reduced. Therefore, the hot rolling start temperature must be in the range of 350 to 580 ° C.
【0032】(2) 熱間圧延中途の板厚が20〜20
0mmの範囲内の段階で、表面から50μmの深さまで
の領域(表層領域)に30%以上の再結晶率で少なくと
も1回の再結晶を生じさせる。(2) The thickness during hot rolling is 20 to 20
At a stage within the range of 0 mm, at least one recrystallization is performed at a recrystallization rate of 30% or more in a region (surface layer region) from the surface to a depth of 50 μm.
【0033】熱間圧延中途における板厚が20〜200
mmの範囲内の段階での表層領域の回復や再結晶は、最
終板の耳率にはそれほど大きな影響を与えないが、表面
品質、エッジ割れの改善に影響があり、この表層領域で
30%以上の再結晶を少なくとも1回以上生じさせてお
くことにより、最終板の表面品質の向上とエッジ割れの
防止に有効となり、ひいてはフランジ成形性、しごき性
の向上に寄与する。ここで、30%以上の再結晶が生じ
た領域が表面から50μm未満の浅い領域に過ぎない場
合や、表面から50μmの深さの領域の再結晶率が30
%未満の場合には、上記の効果を充分に得ることができ
ない。The sheet thickness during hot rolling is 20 to 200.
The recovery or recrystallization of the surface layer at a stage within the range of mm does not significantly affect the ear ratio of the final sheet, but has an effect on the improvement of surface quality and edge cracking. By causing the above-mentioned recrystallization at least once or more, it is effective in improving the surface quality of the final sheet and preventing edge cracking, and further contributes to the improvement of the flange formability and ironing property. Here, a region where recrystallization of 30% or more has occurred is only a shallow region of less than 50 μm from the surface, or a region at a depth of 50 μm from the surface has a recrystallization rate of 30%.
%, The above effects cannot be sufficiently obtained.
【0034】(3) 熱間圧延中途の板厚が少なくとも
20mm以上の段階から熱間圧延終了までの間におい
て、圧延パス(但し最終パスを除く)における次パス開
始直前までの再結晶率を1〜80%の範囲内に制御す
る。そしてこのように板厚が20mm以上の段階以降の
各圧延パスにおいて1〜80%の再結晶率を確保するた
めに、熱間圧延中途の板厚が20mm以上の段階から熱
間圧延終了までの間の総熱間圧延率を98%以下とし、
かつその間における各圧延パスでの圧延温度を220〜
450℃の範囲内とするとともに、その間における各圧
延パスでの歪み速度を2〜350/secの範囲内と
し、しかも各圧延パス間での材料滞留時間を10分以内
とする。(3) From the stage where the thickness of the hot-rolled steel sheet is at least 20 mm or more to the end of hot-rolling, the recrystallization rate in the rolling pass (excluding the final pass) immediately before the start of the next pass is set to 1 Control within the range of 〜80%. Then, in order to secure a recrystallization rate of 1 to 80% in each rolling pass after the stage in which the plate thickness is 20 mm or more, from the stage in which the plate thickness in the middle of hot rolling is 20 mm or more to the end of hot rolling. The total hot rolling rate between the two is 98% or less,
And the rolling temperature in each rolling pass in the meantime is 220-
Within the range of 450 ° C., the strain rate in each rolling pass during that time is in the range of 2 to 350 / sec, and the material residence time between each rolling pass is 10 minutes or less.
【0035】少なくとも板厚が20mm以上の段階以降
の各圧延パスにおける圧延中の再結晶率は、集合組織の
制御に重要な影響を及ぼし、その間の各圧延パスにおけ
る再結晶率を1〜80%の範囲内、望ましくは5〜40
%の範囲内に制御することによって、熱間圧延終了後の
材料のキューブ方位密度を高め、最終板の45°耳を低
くして低耳率を達成することが可能となる。なおここで
規定している各圧延パスにおける再結晶率は、その圧延
パスの開始から次パスでの圧延が開始される直前までに
生じる再結晶を体積率で表したものである。ここで、板
厚が20mmの段階以降の各圧延パスのうち、1パスで
も再結晶率が80%を越えたりあるいは1%未満となれ
ば、熱間圧延終了後のキューブ方位結晶粒の密度が低下
し、最終板の45°耳が高くなってしまう。また板厚が
20mmより厚い段階における各圧延パスにおける再結
晶率は、最終板の耳率には大きな影響を与えない。但
し、板厚が20mmよりも大きい段階から各圧延パスの
再結晶率を前述のように制御しても特に不都合を招くこ
とはなく、そこでこの発明では、熱間圧延中途の板厚が
20mm以上の段階から後の各圧延パスにおける再結晶
率を規定している。The recrystallization rate during rolling in each rolling pass after at least the stage where the plate thickness is 20 mm or more has an important effect on the control of texture, and the recrystallization rate in each rolling pass during that time is 1 to 80%. Within the range, preferably 5 to 40
%, The cube orientation density of the material after the completion of hot rolling can be increased, and the 45 ° ear of the final plate can be lowered to achieve a low ear ratio. Note that the recrystallization rate in each rolling pass defined here is a volume fraction of recrystallization that occurs from the start of the rolling pass to immediately before the start of rolling in the next pass. Here, if the recrystallization rate exceeds 80% or is less than 1% even in one rolling pass among the rolling passes after the stage where the plate thickness is 20 mm, the density of the cube-oriented crystal grains after the completion of hot rolling is reduced. And the 45 ° ear of the final plate is raised. Further, the recrystallization rate in each rolling pass at a stage where the plate thickness is larger than 20 mm does not significantly affect the ear ratio of the final plate. However, even if the recrystallization rate of each rolling pass is controlled as described above from the stage where the sheet thickness is larger than 20 mm, no particular inconvenience is caused. Therefore, in the present invention, the sheet thickness during hot rolling is 20 mm or more. The recrystallization rate in each rolling pass after the step is defined.
【0036】上述のように板厚が20mm以上の段階以
降の各圧延パスにおける再結晶率を1〜80%、好まし
くは5〜40%の範囲内に制御するためには、圧延温度
と、各圧延パスの歪み速度と、各圧延パス間の材料滞留
時間を適切に制御する必要がある。すなわち、板厚が2
0mm以上の段階以降において、先ず圧延温度を220
〜450℃の範囲内とし、また各圧延パスの歪み速度を
2〜350/sの範囲内とし、さらに各圧延パス間にお
ける滞留時間(前の圧延パスにおける圧延終了から次の
圧延パスにおける圧延開始までの時間)を10分以内と
する必要がある。ここで、板厚が20mm以上の段階以
降での圧延温度が220℃未満では、前述の再結晶率の
下限を確保することが困難となるばかりでなく、圧延中
に板のエッジ割れが生じるおそれがあり、一方450℃
を越えれば再結晶率が上限を越えるおそれがある。また
各圧延パスにおける歪み速度が2/sec未満となれ
ば、前述の再結晶率の下限を確保することが困難となる
ばかりでなく、生産性も著しく低下してしまい、一方各
圧延パスにおける歪み速度が350/secを越えれ
ば、表面品質が低下してしまうおそれがある。さらに各
圧延パスの間における材料の滞留時間が10分を越えれ
ば、その滞留時間中に再結晶が進行して、各圧延パスで
の再結晶率が上限を越えてしまうおそれがあり、また生
産性も著しく低下してしまう。As described above, in order to control the recrystallization rate in each rolling pass after the stage where the sheet thickness is 20 mm or more, within the range of 1 to 80%, preferably 5 to 40%, the rolling temperature and the It is necessary to appropriately control the strain rate of the rolling passes and the material residence time between the rolling passes. That is, when the plate thickness is 2
After the stage of 0 mm or more, first set the rolling temperature to 220 mm.
To 450 ° C., the strain rate of each rolling pass is in the range of 2 to 350 / s, and the residence time between each rolling pass (from the end of rolling in the preceding rolling pass to the start of rolling in the next rolling pass) ) Must be within 10 minutes. Here, if the rolling temperature after the stage where the plate thickness is 20 mm or more is lower than 220 ° C., it becomes difficult not only to secure the lower limit of the recrystallization rate described above, but also there is a possibility that edge cracking of the plate occurs during rolling. 450 ° C
If it exceeds, the recrystallization rate may exceed the upper limit. Further, if the strain rate in each rolling pass is less than 2 / sec, not only is it difficult to secure the lower limit of the recrystallization rate described above, but also the productivity is significantly reduced. If the speed exceeds 350 / sec, the surface quality may be degraded. Furthermore, if the residence time of the material between the rolling passes exceeds 10 minutes, recrystallization proceeds during the residence time, and the recrystallization rate in each rolling pass may exceed the upper limit. The properties are also significantly reduced.
【0037】(4) 熱間圧延終了温度を200〜33
0℃の範囲内とし、かつ熱間圧延終了時の板厚を1.0
〜7.0mmの範囲内とする。(4) The hot rolling end temperature is 200 to 33
0 ° C and the thickness at the end of hot rolling is 1.0
It is within the range of 7.0 mm.
【0038】熱間圧延の終了温度(上がり温度)が20
0℃未満では、表面品質が低下するばかりでなく、第2
相粒子周辺での再結晶核生成密度が増加して、その後の
再結晶でキューブ方位以外の再結晶粒が多くなり、低耳
率制御に不利となる。一方熱間圧延終了温度が330℃
を越えれば、熱間圧延終了後室温まで冷却した状態での
再結晶率を95%以下、耐力を70MPa以上とするこ
とが困難となってしまう。また熱間圧延終了時の板厚
(上がり板厚)が1.0mm未満では、熱間圧延機にお
ける板厚精度の制御が困難となり、一方熱間圧延終了板
厚が7.0mmを越えれば、焼鈍後の最終的な冷間圧延
において圧延率が高くなり過ぎ、高強度は容易に得られ
るものの、45°耳が高くなって、耳率が大きくなって
しまう。The end temperature (rising temperature) of the hot rolling is 20
If the temperature is lower than 0 ° C., not only the surface quality is deteriorated, but also the second
The recrystallization nucleation density around the phase particles increases, and the subsequent recrystallization increases the number of recrystallized grains other than the cube orientation, which is disadvantageous for low ear ratio control. On the other hand, hot rolling end temperature is 330 ° C
If it exceeds 300, it will be difficult to reduce the recrystallization rate to 95% or less and the yield strength to 70 MPa or more when cooled to room temperature after completion of hot rolling. If the sheet thickness (rising sheet thickness) at the end of hot rolling is less than 1.0 mm, it is difficult to control the sheet thickness accuracy in the hot rolling mill. On the other hand, if the sheet thickness after hot rolling exceeds 7.0 mm, In the final cold rolling after annealing, the rolling ratio becomes too high, and high strength is easily obtained, but the 45 ° ear becomes high and the ear ratio becomes large.
【0039】(5) 熱間圧延終了直後の200〜33
0℃の範囲内の温度から室温までの平均冷却速度を10
0℃/時間以下とする。(5) 200 to 33 immediately after completion of hot rolling
The average cooling rate from a temperature in the range of 0 ° C. to room temperature is 10
0 ° C./hour or less.
【0040】熱間圧延終了直後の上り材(コイル)の2
00〜330℃の範囲内の温度から室温までの冷却過
程、特に100℃までの冷却過程は、キューブ方位再結
晶粒の核生成が生じる過程であり、この間の冷却速度が
100℃/時間を越える場合には、キューブ方位再結晶
粒の核生成が不充分となり、最終板の低耳率制御に不利
となる。なお熱間圧延終了直後の220〜330℃の範
囲内の温度から室温までの平均冷却速度の下限は特に限
定しないが、1℃/時間以上とすることが好ましい。そ
の間の冷却速度が1℃/時間未満の場合は、ほぼ完全に
再結晶してしまい、室温まで冷却した状態での再結晶率
を95%以下、耐力値を70MPa以上とすることが困
難となるおそれがある。[0040] Immediately after the end of hot rolling, 2
A cooling process from a temperature in the range of 00 to 330 ° C. to room temperature, particularly a cooling process to 100 ° C., is a process in which nucleation of cube-oriented recrystallized grains occurs, during which the cooling rate exceeds 100 ° C./hour. In such a case, nucleation of the recrystallized grains in the cube orientation becomes insufficient, which is disadvantageous for controlling the low ear ratio of the final sheet. The lower limit of the average cooling rate from a temperature in the range of 220 to 330 ° C. immediately after the end of hot rolling to room temperature is not particularly limited, but is preferably 1 ° C./hour or more. If the cooling rate during that time is less than 1 ° C./hour, recrystallization will occur almost completely, making it difficult to reduce the recrystallization rate in a state cooled to room temperature to 95% or less and the proof stress to 70 MPa or more. There is a risk.
【0041】(6) 室温まで冷却した状態での熱間圧
延上がり板(熱延板)の再結晶率を95%以下、耐力値
を70MPa以上とする。このことは、熱延板を完全再
結晶状態とはさせずに、部分再結晶状態とすることを意
味する。(6) The recrystallization rate of the hot-rolled sheet (hot-rolled sheet) cooled to room temperature is 95% or less, and the proof stress is 70 MPa or more. This means that the hot-rolled sheet is not in the completely recrystallized state but in the partially recrystallized state.
【0042】熱間圧延上り板の室温まで冷却した状態で
の再結晶率と耐力値の規制は、この発明の方法において
重要なポイントであり、これらの値は最終板の低耳率制
御と外観欠陥に大きな影響を及ぼす。すなわち、熱間圧
延上りの200〜330℃の範囲内の温度から室温まで
冷却する間に自己焼鈍が進んで、再結晶率が95%を越
えてしまった場合(すなわち完全再結晶状態もしくはそ
れに近い再結晶状態)、あるいは耐力値が70MPaを
下廻ってしまった場合には、その後の1次冷間圧延と焼
鈍によりキューブ方位の再結晶組織を拡大させる効果が
得られなくなり、そのため最終板を低耳率に制御するこ
とが困難となり、また同時に最終板の結晶粒の粗大化を
招いて製缶時の肌荒れやフローライン等の外観欠陥が発
生しやすくなる。したがって室温まで冷却した状態での
再結晶率を95%以下、耐力値を70MPa以上に規制
する必要がある。そしてこの範囲内でも特に再結晶率は
75%以下、耐力値は90MPa以上が好ましい。なお
このように室温まで冷却した状態での再結晶率には、主
として熱間圧延終了温度と、熱間圧延終了温度からの室
温までの冷却速度、さらには合金の成分組成が影響を与
えるから、これらを相互の関係のもとに適切に調整する
ことによって室温での再結晶率を95%以下に制御する
ことができ、また室温まで冷却した状態での耐力値に
は、上述ような再結晶率と合金成分組成が影響を与える
から、前記同様に熱間圧延終了温度、室温までの冷却速
度、合金の成分組成を相互の関係のもとに適切に調整す
ることによって70MPa以上に制御することができ
る。The regulation of the recrystallization rate and proof stress value of the hot-rolled as-cooled sheet cooled to room temperature is an important point in the method of the present invention, and these values are used to control the low ear ratio of the final sheet and the appearance. Significantly affects defects. That is, when the self-annealing proceeds during cooling from the temperature in the range of 200 to 330 ° C. after hot rolling to room temperature and the recrystallization ratio exceeds 95% (that is, a completely recrystallized state or close to it) (Recrystallized state), or when the proof stress value falls below 70 MPa, the effect of expanding the recrystallized structure in the cube orientation cannot be obtained by the subsequent primary cold rolling and annealing. In addition, it is difficult to control the ratio at the same time, and at the same time, the crystal grains of the final sheet are coarsened, and the appearance defects such as rough skin and flow lines at the time of can making are liable to occur. Therefore, it is necessary to regulate the recrystallization ratio in a state cooled to room temperature to 95% or less and the proof stress value to 70 MPa or more. Also within this range, it is particularly preferable that the recrystallization ratio is 75% or less and the proof stress value is 90 MPa or more. The recrystallization rate in the state of being cooled to room temperature in this way mainly affects the hot rolling end temperature, the cooling rate from the hot rolling end temperature to room temperature, and furthermore, the composition of the alloy, By appropriately adjusting these in relation to each other, the recrystallization rate at room temperature can be controlled to 95% or less, and the proof stress when cooled to room temperature includes the above-mentioned recrystallization rate. As described above, the hot rolling end temperature, the cooling rate to room temperature, and the alloy composition should be controlled to 70 MPa or more by appropriately adjusting the alloy composition based on the mutual relationship. Can be.
【0043】以上の(1)〜(6)の条件を満たすよう
にして得られた部分再結晶状態の熱延板に対しては、圧
延率が2〜60%の範囲内の1次冷間圧延を施す。この
ように部分再結晶状態の熱延板に対し1次冷間圧延を施
して熱延板に歪みを与えることにより、その後の焼鈍で
キューブ方位の再結晶粒の生成、成長を促進させるとと
もにキューブ方位以外の再結晶粒の生成、成長を抑制す
る効果が得られる。With respect to the hot rolled sheet in a partially recrystallized state obtained by satisfying the above conditions (1) to (6), the primary cold reduction within the range of a rolling reduction of 2 to 60% is performed. Rolling is performed. By subjecting the hot-rolled sheet in the partially recrystallized state to primary cold-rolling to give a strain to the hot-rolled sheet, the subsequent annealing promotes the generation and growth of recrystallized grains in the cube orientation and the cube. The effect of suppressing the generation and growth of recrystallized grains other than the orientation can be obtained.
【0044】ここで、熱延板に対する1次冷間圧延の圧
延率が2%未満では、歪み量不足によりキューブ方位の
再結晶粒の生成、成長を加速する効果およびキューブ方
位以外の再結晶粒の生成、成長を抑制する効果が不充分
となり、一方圧延率が60%を越えれば、導入された多
量の歪によりキューブ方位の再結晶粒も壊されてしまう
ため、キユーブ方位再結晶粒組織を充分に得ることが困
難となり、最終板の耳率低減効果が得られなくなる。し
たがって熱延板に対する1次冷間圧延における圧延率は
2〜60%の範囲内とした。ここで、特にこの発明にお
いては、1次冷間圧延の圧延率が2〜60%という広い
範囲で許容されることが重要であり、このような広い範
囲内で1次冷間圧延率を最適に調整することによって、
最終板における低耳率のみならず、前述の缶胴材に要求
される4要素のバランスを向上させることが可能となっ
た。なおこのように1次冷間圧延率に広い範囲が許容さ
れるようになったのは、既に述べたように熱間圧延条件
を厳密に規制して、耳率制御に有利となるように熱間圧
延工程での再結晶状態を適切に制御したことによるので
ある。If the rolling reduction of the primary cold rolling on the hot rolled sheet is less than 2%, the effect of accelerating the formation and growth of recrystallized grains in the cube orientation due to insufficient strain and the recrystallized grains other than the cube orientation When the rolling reduction exceeds 60%, the recrystallized grains in the cube orientation are also destroyed by a large amount of introduced strain. It becomes difficult to obtain a sufficient thickness, and the effect of reducing the ear ratio of the final plate cannot be obtained. Therefore, the rolling reduction in the primary cold rolling of the hot rolled sheet was set in the range of 2 to 60%. Here, in the present invention, in particular, it is important that the rolling reduction of the primary cold rolling is allowed in a wide range of 2 to 60%, and the primary cold rolling reduction is optimized within such a wide range. By adjusting to
It has become possible to improve not only the low ear ratio of the final plate but also the balance of the four factors required for the above-mentioned can body. The reason why the wide range of the primary cold rolling reduction is allowed is that the hot rolling conditions are strictly regulated as described above, and the heat rolling is controlled so as to be advantageous for ear ratio control. This is because the recrystallization state in the cold rolling process was appropriately controlled.
【0045】前述のように熱延板に対して圧延率2〜6
0%の1次冷間圧延を施した後には、連続焼鈍(CA
L)もしくはバッチ焼鈍によって中間焼鈍を施す。この
中間焼鈍は、材料を完全に再結晶させ、最終冷間圧延後
の最終板の耳率を低くするために必要な工程である。As described above, the rolling ratio of the hot-rolled sheet is 2 to 6
After the first cold rolling of 0%, continuous annealing (CA
L) Alternatively, intermediate annealing is performed by batch annealing. This intermediate annealing is a necessary step for completely recrystallizing the material and reducing the ear ratio of the final sheet after final cold rolling.
【0046】1次冷間圧延後の中間焼鈍に連続焼鈍を適
用する場合、その連続焼鈍は、1〜100℃/秒の範囲
内の平均昇温速度で330〜620℃の範囲内の温度に
加熱し、保持なしもしくは10分以下の保持の後、1〜
100℃/秒の範囲内の平均冷却速度で冷却する条件と
する。ここで、平均昇温速度、平均冷却速度が1℃/秒
未満では、連続焼鈍(CAL)方式においては生産性の
著しい低下を招き、また100℃/秒を越える平均昇温
速度、平均冷却速度はキューブ方位の再結晶粒の形成に
不利となる。また加熱到達温度が330℃未満では再結
晶が生じにくく、一方620℃を越える高温では共晶融
解が生じるおそれがある。さらに330〜620℃に1
0分を越えて保持することは、連続焼鈍の生産性を阻害
する。When the continuous annealing is applied to the intermediate annealing after the primary cold rolling, the continuous annealing is performed at an average heating rate in the range of 1 to 100 ° C./sec to a temperature in the range of 330 to 620 ° C. After heating and holding for no more than 10 minutes,
The cooling is performed at an average cooling rate within a range of 100 ° C./sec. Here, when the average heating rate and the average cooling rate are less than 1 ° C./sec, the productivity is significantly reduced in the continuous annealing (CAL) method, and the average heating rate and the average cooling rate exceeding 100 ° C./sec. Is disadvantageous for the formation of recrystallized grains having a cube orientation. If the ultimate temperature of heating is lower than 330 ° C., recrystallization hardly occurs. On the other hand, if the temperature exceeds 620 ° C., eutectic melting may occur. In addition, 1 to 330-620 ° C
Holding for more than 0 minutes impairs the productivity of continuous annealing.
【0047】一方、一次冷間圧延後の中間焼鈍としてバ
ッチ焼鈍を適用する場合、平均昇温速度0.1℃/秒以
下で250〜500℃の範囲内の温度に加熱し、その範
囲内の温度で0.5時間以上保持し、平均冷却速度0.
1℃/秒以下で冷却する。ここで、平均昇温速度および
平均冷却速度が0.1℃/秒を越えれば、バッチ焼鈍方
式では熱延板コイル全体を均一に加熱もしくは冷却でき
なくなる問題が生じる。また加熱保持温度が250℃未
満では完全に再結晶させることが困難となり、一方50
0℃を越える高温では再結晶核が粗大となって、製缶時
に肌荒れやフローラインなどの表面欠陥が発生しやすく
なる。また加熱保持の時間が0.5時間未満では完全に
再結晶させることが困難であり、また熱延板のコイルの
全体を均一に加熱することが困難となる。なおバッチ焼
鈍の場合の加熱保持時間の上限は特に定めないが、通常
は経済性の観点から、24時間以内とする。On the other hand, when batch annealing is applied as the intermediate annealing after the primary cold rolling, the material is heated to a temperature in the range of 250 to 500 ° C. at an average heating rate of 0.1 ° C./sec or less. The temperature is maintained for 0.5 hours or more, and the average cooling rate is set at 0.
Cool at 1 ° C / sec or less. Here, if the average heating rate and the average cooling rate exceed 0.1 ° C./sec, there is a problem that the batch annealing method cannot uniformly heat or cool the entire hot rolled sheet coil. On the other hand, if the heating and holding temperature is lower than 250 ° C., it is difficult to completely recrystallize.
At a high temperature exceeding 0 ° C., the recrystallization nuclei become coarse, and surface defects such as rough skin and flow lines tend to occur during can making. If the heating and holding time is less than 0.5 hour, it is difficult to completely recrystallize and it is difficult to uniformly heat the entire coil of the hot-rolled sheet. Although the upper limit of the heating holding time in the case of batch annealing is not particularly defined, it is usually within 24 hours from the viewpoint of economy.
【0048】以上のように、連続焼鈍もしくはバッチ焼
鈍による中間焼鈍を施した後には、最終板厚としかつ必
要な強度を得るために、50%以上の圧延率で、最終冷
間圧延を施す。ここで、最終冷間圧延の圧延率が50%
未満では、加工硬化による強度上昇が少なく、缶胴材用
の最終板に必要な強度を得ることが困難である。As described above, after intermediate annealing by continuous annealing or batch annealing, final cold rolling is performed at a rolling ratio of 50% or more in order to obtain a final sheet thickness and required strength. Here, the rolling rate of the final cold rolling is 50%.
If it is less than 10, the increase in strength due to work hardening is small, and it is difficult to obtain the strength required for the final plate for can body.
【0049】最終冷間圧延後の板は、これを最終板とし
てそのままDI成形に供しても良いが、最終冷間圧延後
の板に必要に応じて80〜200℃の範囲内の温度で
0.5〜24時間の最終焼鈍を行なっても良い。この最
終焼鈍は、延性の回復による成形性の向上を目的とした
ものであるが、その温度が80℃未満では成形性の向上
効果が充分に得られず、一方200℃を越えれば軟化に
よる強度低下が大きくなり、また焼鈍時間が0.5時間
未満では成形性向上効果を充分に得ることができず、さ
らに焼鈍時間が24時間を越えれば、成形性向上効果が
飽和し、生産性、経済性を損なうだけである。なお積極
的に最終焼鈍を行なわない場合でも、最終冷間圧延を高
速で行なうことにより発生する加工熱を利用して、前記
同様な焼鈍効果を得ることができる。The sheet after the final cold rolling may be subjected to DI forming as it is as the final sheet, but if necessary, the sheet after the final cold rolling may be subjected to a temperature of 80 to 200 ° C. A final anneal of 0.5 to 24 hours may be performed. This final annealing is intended to improve the formability by recovering the ductility. However, if the temperature is lower than 80 ° C., the effect of improving the formability cannot be sufficiently obtained. If the annealing time is less than 0.5 hours, the effect of improving the formability cannot be sufficiently obtained. If the annealing time exceeds 24 hours, the effect of improving the formability is saturated, and the productivity and the economy are reduced. It only impairs sex. Even if the final annealing is not actively performed, the same annealing effect as described above can be obtained by utilizing the processing heat generated by performing the final cold rolling at a high speed.
【0050】[0050]
【実施例】表1に示す合金記号A〜Fの各合金につい
て、常法に従ってDC鋳造法によりスラブに鋳塊した。
その後、均質化処理を施した後、熱間圧延を施した。熱
間圧延の詳細な条件を表2〜表4の製造番号1〜7に示
す。さらに室温まで冷却した後の熱延板に対し、1次冷
間圧延を施した後、中間焼鈍として連続焼鈍もしくはバ
ッチ焼鈍を施し、その後最終冷間圧延を行なった。なお
最終冷間圧延後には、製造番号1,3,5の場合を除い
て最終焼鈍を施した。1次冷間圧延後の詳細な条件を表
5の製造番号1〜7に示す。EXAMPLES Ingots of alloy symbols A to F shown in Table 1 were cast into slabs by DC casting according to a conventional method.
Then, after performing a homogenization process, hot rolling was performed. Detailed conditions of the hot rolling are shown in Tables 2 to 4 in serial numbers 1 to 7. Further, the hot rolled sheet cooled to room temperature was subjected to primary cold rolling, followed by continuous annealing or batch annealing as intermediate annealing, and then to final cold rolling. After the final cold rolling, final annealing was performed except for the cases of production numbers 1, 3, and 5. The detailed conditions after the first cold rolling are shown in production numbers 1 to 7 in Table 5.
【0051】以上のようにして得られた缶胴用のアルミ
ニウム合金板について、元板の機械的性質(引張強さT
S、耐力YS、伸びEL)および塗装焼付(ベーキン
グ)を想定した200℃×20分の熱処理を行なった後
の機械的性質を調べた。また元板については、ポンチ径
48mm、ブランク径93mm、クリアランス30%の
条件にてカップ深絞り試験を行なって耳率を調べた。こ
こで、強度については、塗装焼付(ベーキング)後の耐
力として、250MPa以上の値が必要であり、また耳
率については、3%を越えれば製缶中のトラブルが発生
しやすくなることが知られている。With respect to the aluminum alloy sheet for a can body obtained as described above, the mechanical properties (tensile strength T
S, proof stress YS, elongation EL) and mechanical properties after heat treatment at 200 ° C. for 20 minutes assuming baking of paint (baking) were examined. The base plate was subjected to a cup deep drawing test under the conditions of a punch diameter of 48 mm, a blank diameter of 93 mm, and a clearance of 30%, and the ear ratio was examined. Here, as for the strength, a value of 250 MPa or more is necessary as the proof stress after baking of the paint, and as for the ear ratio, if it exceeds 3%, it is known that troubles in the can-making are likely to occur. Have been.
【0052】さらにDI缶成形性評価として、缶切れ性
(しごき性)、口拡げ性(フランジ成形性)、シーミン
グ性、および外観欠陥について調べた。ここで、缶切れ
性については苛酷なしごき加工を連続10,000缶行
なったときの缶破断の発生状況を調べ、また口拡げ性に
ついては4段ネッキング加工後のフランジ成形性を調
べ、さらにシーミング性については4段ネッキング加工
後のシーミング加工性を調べ、そしてまた外観欠陥につ
いては、DI缶の缶胴壁の圧延方向に沿ったフローライ
ン状の外観欠陥およびDI方向の縦筋の発生状況を調
べ、それぞれ1〜5の5段階で相対評価した。これらの
結果を表6に示す。なお表6においてDI缶成形性につ
いての5段階評価においては、数字が大きいほど良好で
あり、“3”のランク以上で合格と評価した。Further, as the evaluation of the moldability of DI cans, the cutting ability (ironing property), the opening property (flange moldability), the seaming property, and the appearance defect were examined. Here, regarding the can-breaking property, the situation of occurrence of can breaking when 10,000 severe canning processes were performed continuously was examined, and for the mouth-opening property, the flange formability after 4-step necking was investigated, and further seaming was performed. The seamability after four-step necking was examined for the ductility, and the appearance defect of the flow line-like appearance defect along the rolling direction of the can body wall of the DI can and the occurrence of vertical streaks in the DI direction were examined for the appearance defect. Investigation and relative evaluation were carried out in five steps of 1 to 5 respectively. Table 6 shows the results. In Table 6, in the five-stage evaluation of the moldability of DI cans, the larger the number, the better, and a pass of "3" or higher was evaluated.
【0053】[0053]
【表1】 [Table 1]
【0054】[0054]
【表2】 [Table 2]
【0055】[0055]
【表3】 [Table 3]
【0056】[0056]
【表4】 [Table 4]
【0057】[0057]
【表5】 [Table 5]
【0058】[0058]
【表6】 [Table 6]
【0059】表1〜表6において、製造番号1〜5はい
ずれもこの発明で規定する成分組成範囲内の合金につい
て、この発明で規定する製造プロセス条件を満足して製
造したものであり、この場合は表5に示すように、いず
れも耳率が3%を確実に下廻って充分な低耳率を達成で
き、かつベーキング後の耐力が250MPa以上で充分
な強度を有しており、しかもDI缶成形性、特にしごき
性、フランジ成形性も優れていることが明らかである。In Tables 1 to 6, Production Nos. 1 to 5 are alloys having a composition within the range specified by the present invention and satisfying the manufacturing process conditions specified by the present invention. In each case, as shown in Table 5, the ear ratio was reliably lower than 3% to achieve a sufficiently low ear ratio, the proof strength after baking was 250 MPa or more, and the sample had sufficient strength. It is clear that the moldability of the can, especially the ironing property and the flange moldability are also excellent.
【0060】一方製造番号6は、合金の成分組成はこの
発明で規定する範囲内であるが、製造プロセス条件がこ
の発明で規定する範囲から外れたものである。すなわち
製造番号6のプロセスでは、熱間圧延中途の板厚25m
mの段階から2パス目の再結晶率が91%と大きくなっ
てこの発明で規定する1〜80%の範囲を越え、かつ熱
間圧延上り温度が340℃であって、この発明で規定す
る200〜330℃の範囲を越え、さらに熱間圧延終了
後の室温まで冷却した状態での再結晶率が100%であ
って、この発明の再結晶率上限95%を越えるととも
に、耐力値が66MPaとこの発明で規定する下限70
MPaを下廻っており、この場合は最終板の耳率が5.
7%と高く、さらには缶切れ性(しごき性)にも劣って
いた。On the other hand, in production number 6, the composition of the alloy is within the range specified by the present invention, but the manufacturing process conditions are out of the range specified by the present invention. That is, in the process of production number 6, the thickness of the plate is 25 m during hot rolling.
The recrystallization rate in the second pass from the stage m increases to 91%, which exceeds the range of 1 to 80% specified in the present invention, and the hot rolling finish temperature is 340 ° C, which is specified in the present invention. The recrystallization rate in the state of exceeding 200-330 ° C. and further cooling to room temperature after completion of hot rolling is 100%, and exceeds the upper limit of recrystallization rate of 95% of the present invention, and the proof stress value is 66 MPa. And the lower limit 70 defined in the present invention.
MPa, and in this case, the ear ratio of the final plate is 5.
It was as high as 7%, and was also inferior in can-cutting properties (ironing properties).
【0061】また製造番号7は、Mgが0.45%とこ
の発明で規定する範囲を外れた合金Fを用いた例であ
り、この場合はベーキング後の強度が低く、また耳率も
高く、DI成形性に劣っていた。Production No. 7 is an example using an alloy F containing 0.45% of Mg, which is out of the range specified in the present invention. In this case, the strength after baking is low, and the ear ratio is high. The DI moldability was poor.
【0062】[0062]
【発明の効果】前述の実施例からも明らかなように、こ
の発明の方法によれば、DI缶胴用材料として要求され
る4要素、すなわち耳率とフランジ成形性、しごき性、
強度のバランスが優れたアルミニウム合金板を確実かつ
安定して得ることができる。特にこの発明の方法の場
合、熱間圧延条件を細かく制御することにより、低耳率
を確保しながらも中間焼鈍を挟んでの2回の冷間圧延の
うちの1次の冷間圧延の圧延率を広い範囲で調整するこ
とが可能となり、そのため低耳率と高い強度とを同時か
つ容易に得ることが可能となった。As is clear from the above-mentioned embodiment, according to the method of the present invention, the four elements required as the material for the DI can body, namely, the ear ratio, the flange formability, the ironing property,
An aluminum alloy plate having an excellent balance of strength can be obtained reliably and stably. In particular, in the case of the method of the present invention, by controlling the hot rolling conditions finely, the primary cold rolling of the two cold rollings with the intermediate annealing interposed therebetween while securing a low ear ratio. The rate can be adjusted in a wide range, so that a low ear rate and high strength can be simultaneously and easily obtained.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 682 C22F 1/00 682 683 683 684 684C 685 685Z 686 686B 691 691B 691C 691A 692 692A 694 694B 694A ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference)
Claims (5)
じ)、Mn0.5〜2.0%、Fe0.1〜0.7%、
Si0.05〜0.5%を含有し、さらに必要に応じて
0.005〜0.20%のTiを単独でもしくは0.0
001〜0.05%のBと組合せて含有し、残部がAl
および不可避的不純物よりなるアルミニウム合金を鋳造
した後、520〜630℃の範囲内の温度で1時間以上
の均質化処理を施し、さらに熱間圧延を行なうにあた
り、(1) 350〜580℃の範囲内の温度で熱間圧
延を開始し、(2) 熱間圧延中途の板厚が20〜20
0mmの範囲内の段階で、表面から50μmの深さまで
の領域に再結晶率30%以上の再結晶を少なくとも1回
生じさせ、(3) 熱間圧延中途の板厚が20mm以上
の段階から熱間圧延終了までの間の総熱間圧延率を98
%以下とし、かつその間における各圧延パスでの圧延温
度を220〜450℃の範囲内とするとともに各圧延パ
スでの歪み速度を2〜350/secの範囲内とし、し
かも各圧延パス間の材料滞留時間を10分以内として、
熱間圧延中途の板厚が20mm以上の段階から熱延終了
までの間の各圧延パス(但し最終パスを除く)における
次パス開始直前までの再結晶率を1〜80%の範囲内に
制御し、(4) 熱間圧延の終了温度を200〜330
℃の範囲内、終了板厚を1.0〜7.0mmの範囲内と
し、(5) 熱間圧延終了直後の200〜330℃の範
囲内の温度から室温までの平均冷却速度を100℃/h
r以下とし、(6) 以上の(1)〜(5)により、熱
間圧延終了後の室温に冷却された状態での再結晶率を9
5%以下、耐力を70MPa以上に制御し、 その後、熱間圧延板に対して、2〜60%の範囲内の圧
延率で1次冷間圧延を行ない、さらに1〜100℃/秒
の範囲内の平均昇温速度で330〜620℃の範囲内の
温度に加熱して保持なしもしくは10分以下の保持を行
なって、1〜100℃/秒の範囲内の平均冷却速度で冷
却する連続焼鈍を施し、その後さらに50%以上の圧延
率で最終冷間圧延を行なうことを特徴とする、缶胴用ア
ルミニウム合金板の製造方法。1. Mg 0.5-2.0% (weight%, the same applies hereinafter), Mn 0.5-2.0%, Fe 0.1-0.7%,
0.05 to 0.5% of Si, and if necessary, 0.005 to 0.20% of Ti alone or 0.0
001-0.05% B in combination with the balance being Al
After casting an aluminum alloy consisting of unavoidable impurities, it is subjected to a homogenization treatment at a temperature in the range of 520 to 630 ° C. for 1 hour or more, and further hot-rolled, (1) in a range of 350 to 580 ° C. Hot rolling is started at a temperature within the range, and (2) the thickness during hot rolling is 20 to 20
At a stage within a range of 0 mm, recrystallization with a recrystallization rate of 30% or more is caused at least once in a region from the surface to a depth of 50 μm. The total hot rolling reduction until the end of hot rolling is 98
% Or less, and the rolling temperature in each rolling pass in the meantime is in the range of 220 to 450 ° C., and the strain rate in each rolling pass is in the range of 2 to 350 / sec. With the residence time within 10 minutes,
The recrystallization rate in each rolling pass (excluding the final pass) from the stage where the thickness of the hot rolling is 20 mm or more to the end of hot rolling (excluding the final pass) is controlled within the range of 1 to 80% until immediately before the start of the next pass. And (4) the end temperature of the hot rolling is 200 to 330
(5) The average cooling rate from the temperature in the range of 200 to 330 ° C. immediately after the end of the hot rolling to the room temperature is set to 100 ° C. / h
r and (6) By the above (1) to (5), the recrystallization rate in a state of cooling to room temperature after completion of hot rolling is 9
5% or less, the proof stress is controlled to 70MPa or more. Then, the primary cold rolling is performed on the hot-rolled sheet at a rolling rate in the range of 2 to 60%, and further in the range of 1 to 100 ° C / sec. Continuous annealing in which heating is performed at a temperature within the range of 330 to 620 ° C. at an average rate of temperature rise within the range of no more than 10 minutes, and cooling is performed at an average cooling rate within the range of 1 to 100 ° C./sec. And then performing final cold rolling at a rolling rate of 50% or more, followed by a method for producing an aluminum alloy sheet for a can body.
2.0%、Fe0.1〜0.7%、Si0.05〜0.
5%を含有し、かつCu0.05〜0.5%、Cr0.
05〜0.3%、Zn0.05〜0.5%のうちの1種
または2種以上を含有し、さらに必要に応じて0.00
5〜0.20%のTiを単独でもしくは0.0001〜
0.05%のBと組合せて含有し、残部がAlおよび不
可避的不純物よりなるアルミニウム合金を鋳造した後、
520〜630℃の範囲内の温度で1時間以上の均質化
処理を施し、さらに熱間圧延を行なうにあたり、(1)
350〜580℃の範囲内の温度で熱間圧延を開始
し、(2) 熱間圧延中途の板厚が20〜200mmの
範囲内の段階で、表面から50μmの深さまでの領域に
再結晶率30%以上の再結晶を少なくとも1回生じさ
せ、(3) 熱間圧延中途の板厚が20mm以上の段階
から熱間圧延終了までの間の総熱間圧延率を98%以下
とし、かつその間における各圧延パスでの圧延温度を2
20〜450℃の範囲内とするとともに各圧延パスでの
歪み速度を2〜350/secの範囲内とし、しかも各
圧延パス間の材料滞留時間を10分以内として、熱間圧
延中途の板厚が20mm以上の段階から熱延終了までの
間の各圧延パス(但し最終パスを除く)における次パス
開始直前までの再結晶率を1〜80%の範囲内に制御
し、(4) 熱間圧延の終了温度を200〜330℃の
範囲内、終了板厚を1.0〜7.0mmの範囲内とし、
(5) 熱間圧延終了直後の200〜330℃の範囲内
の温度から室温までの平均冷却速度を100℃/hr以
下とし、(6) 以上の(1)〜(5)により、熱間圧
延終了後の室温に冷却された状態での再結晶率を95%
以下、耐力を70MPa以上に制御し、 その後、熱間圧延板に対して、2〜60%の範囲内の圧
延率で1次冷間圧延を行ない、さらに1〜100℃/秒
の範囲内の平均昇温速度で330〜620℃の範囲内の
温度に加熱して保持なしもしくは10分以下の保持を行
なって、1〜100℃/秒の範囲内の平均冷却速度で冷
却する連続焼鈍を施し、その後さらに50%以上の圧延
率で最終冷間圧延を行なうことを特徴とする、缶胴用ア
ルミニウム合金板の製造方法。2. Mg 0.5-2.0%, Mn 0.5-
2.0%, Fe 0.1-0.7%, Si 0.05-0.
5%, Cu 0.05-0.5%, Cr0.
0.05-0.3%, Zn 0.05-0.5%, one or more of them, and further 0.00
5 to 0.20% Ti alone or 0.0001 to
After casting an aluminum alloy containing 0.05% B in combination with the balance being Al and unavoidable impurities,
In performing the homogenization treatment for 1 hour or more at a temperature in the range of 520 to 630 ° C. and further performing hot rolling, (1)
Hot rolling is started at a temperature in the range of 350 to 580 ° C., and (2) the recrystallization rate in a region from the surface to a depth of 50 μm from the surface at a stage in which the thickness of the hot rolling is in the range of 20 to 200 mm. 30% or more of recrystallization is caused at least once, and (3) the total hot rolling reduction from the stage where the thickness of the hot rolling is 20 mm or more to the end of hot rolling is 98% or less, and The rolling temperature in each rolling pass in
In the range of 20 to 450 ° C., the strain rate in each rolling pass is in the range of 2 to 350 / sec, and the material residence time between each rolling pass is 10 minutes or less, and Is controlled within a range of 1 to 80% until just before the start of the next pass in each rolling pass (excluding the final pass) from the stage of 20 mm or more to the end of hot rolling. The rolling end temperature is in the range of 200 to 330 ° C., the finished plate thickness is in the range of 1.0 to 7.0 mm,
(5) The average cooling rate from a temperature in the range of 200 to 330 ° C. immediately after the end of hot rolling to room temperature is set to 100 ° C./hr or less, and (6) hot rolling is performed by the above (1) to (5). 95% recrystallization rate after cooling to room temperature
Hereinafter, the proof stress is controlled to 70 MPa or more. Thereafter, the primary cold rolling is performed on the hot-rolled sheet at a rolling rate in the range of 2 to 60%, and further in the range of 1 to 100 ° C./sec. Continuous annealing is performed by heating to a temperature in the range of 330 to 620 ° C. at an average heating rate and holding without holding for 10 minutes or less, and cooling at an average cooling rate in the range of 1 to 100 ° C./sec. And finally performing a final cold rolling at a rolling rate of 50% or more.
2.0%、Fe0.1〜0.7%、Si0.05〜0.
5%を含有し、さらに必要に応じて0.005〜0.2
0%のTiを単独でもしくは0.0001〜0.05%
のBと組合せて含有し、残部がAlおよび不可避的不純
物よりなるアルミニウム合金を鋳造した後、520〜6
30℃の範囲内の温度で1時間以上の均質化処理を施
し、さらに熱間圧延を行なうにあたり、(1) 350
〜580℃の範囲内の温度で熱間圧延を開始し、(2)
熱間圧延中途の板厚が20〜200mmの範囲内の段
階で、表面から50μmの深さまでの領域に再結晶率3
0%以上の再結晶を少なくとも1回生じさせ、(3)
熱間圧延中途の板厚が20mm以上の段階から熱間圧延
終了までの間の総熱間圧延率を98%以下とし、かつそ
の間における各圧延パスでの圧延温度を220〜450
℃の範囲内とするとともに各圧延パスでの歪み速度を2
〜350/secの範囲内とし、しかも各圧延パス間の
材料滞留時間を10分以内として、熱間圧延中途の板厚
が20mm以上の段階から熱延終了までの間の各圧延パ
ス(但し最終パスを除く)における次パス開始直前まで
の再結晶率を1〜80%の範囲内に制御し、(4) 熱
間圧延の終了温度を200〜330℃の範囲内、終了板
厚を1.0〜7.0mmの範囲内とし、(5) 熱間圧
延終了直後の200〜330℃の範囲内の温度から室温
までの平均冷却速度を100℃/hr以下とし、(6)
以上の(1)〜(5)により、熱間圧延終了後の室温
に冷却された状態での再結晶率を95%以下、耐力を7
0MPa以上に制御し、 その後、熱間圧延板に対して、2〜60%の範囲内の圧
延率で1次冷間圧延を行ない、さらに0.1℃/秒以下
の平均昇温速度で加熱して250〜500℃の範囲内の
温度に0.5時間以上保持して、0.1℃/秒以下の平
均冷却速度で冷却するバッチ焼鈍を施し、その後さらに
50%以上の圧延率で最終冷間圧延を行なうことを特徴
とする、缶胴用アルミニウム合金板の製造方法。3. Mg 0.5-2.0%, Mn 0.5-
2.0%, Fe 0.1-0.7%, Si 0.05-0.
5%, and if necessary, 0.005 to 0.2
0% Ti alone or 0.0001-0.05%
After casting an aluminum alloy containing Al and inevitable impurities in the balance,
In performing the homogenization treatment at a temperature within the range of 30 ° C. for one hour or more and further performing the hot rolling, (1) 350
Starting hot rolling at a temperature within the range of 5580 ° C., (2)
At a stage where the thickness during hot rolling is within the range of 20 to 200 mm, the recrystallization rate is 3 in the region from the surface to a depth of 50 μm.
Causing at least one recrystallization of 0% or more; (3)
During the hot rolling, the total hot rolling rate from the stage where the thickness is 20 mm or more to the end of hot rolling is 98% or less, and the rolling temperature in each rolling pass during that time is 220 to 450.
° C range and the strain rate in each rolling pass is 2
350350 / sec, and the material residence time between each rolling pass is set to 10 minutes or less, and each rolling pass from the stage where the thickness of the hot rolling is 20 mm or more to the end of hot rolling (however, (Excluding the pass), the recrystallization rate until immediately before the start of the next pass is controlled within the range of 1 to 80%, (4) the end temperature of hot rolling is within the range of 200 to 330 ° C., and the end plate thickness is 1. (5) The average cooling rate from the temperature in the range of 200 to 330 ° C. immediately after the end of hot rolling to room temperature is 100 ° C./hr or less, and (6)
According to the above (1) to (5), the recrystallization rate in a state of cooling to room temperature after completion of hot rolling is 95% or less, and the proof stress is 7%.
0 MPa or more, and then perform primary cold rolling on the hot-rolled sheet at a rolling rate in the range of 2 to 60%, and further heat at an average heating rate of 0.1 ° C./sec or less. Then, it is kept at a temperature in the range of 250 to 500 ° C. for 0.5 hour or more, and subjected to batch annealing for cooling at an average cooling rate of 0.1 ° C./second or less, and then further finished at a rolling reduction of 50% or more. A method for producing an aluminum alloy plate for a can body, comprising performing cold rolling.
2.0%、Fe0.1〜0.7%、Si0.05〜0.
5%を含有し、かつCu0.05〜0.5%、Cr0.
05〜0.3%、Zn0.05〜0.5%のうちの1種
または2種以上を含有し、さらに必要に応じて0.00
5〜0.20%のTiを単独でもしくは0.0001〜
0.05%のBと組合せて含有し、残部がAlおよび不
可避的不純物よりなるアルミニウム合金を鋳造した後、
520〜630℃の範囲内の温度で1時間以上の均質化
処理を施し、さらに熱間圧延を行なうにあたり、(1)
350〜580℃の範囲内の温度で熱間圧延を開始
し、(2) 熱間圧延中途の板厚が20〜200mmの
範囲内の段階で、表面から50μmの深さまでの領域に
再結晶率30%以上の再結晶を少なくとも1回生じさ
せ、(3) 熱間圧延中途の板厚が20mm以上の段階
から熱間圧延終了までの間の総熱間圧延率を98%以下
とし、かつその間における各圧延パスでの圧延温度を2
20〜450℃の範囲内とするとともに各圧延パスでの
歪み速度を2〜350/secの範囲内とし、しかも各
圧延パス間の材料滞留時間を10分以内として、熱間圧
延中途の板厚が20mm以上の段階から熱延終了までの
間の各圧延パス(但し最終パスを除く)における次パス
開始直前までの再結晶率を1〜80%の範囲内に制御
し、(4) 熱間圧延の終了温度を200〜330℃の
範囲内、終了板厚を1.0〜7.0mmの範囲内とし、
(5) 熱間圧延終了直後の200〜330℃の範囲内
の温度から室温までの平均冷却速度を100℃/hr以
下とし、(6) 以上の(1)〜(5)により、熱間圧
延終了後の室温に冷却された状態での再結晶率を95%
以下、耐力を70MPa以上に制御し、 その後、熱間圧延板に対して、2〜60%の範囲内の圧
延率で1次冷間圧延を行ない、さらに0.1℃/秒以下
の平均昇温速度で加熱して250〜500℃の範囲内の
温度に0.5時間以上保持して、0.1℃/秒以下の平
均冷却速度で冷却するバッチ焼鈍を施し、その後さらに
50%以上の圧延率で最終冷間圧延を行なうことを特徴
とする、缶胴用アルミニウム合金板の製造方法。4. Mg 0.5-2.0%, Mn 0.5-
2.0%, Fe 0.1-0.7%, Si 0.05-0.
5%, Cu 0.05-0.5%, Cr0.
0.05-0.3%, Zn 0.05-0.5%, one or more of them, and further 0.00
5 to 0.20% Ti alone or 0.0001 to
After casting an aluminum alloy containing 0.05% B in combination with the balance being Al and unavoidable impurities,
In performing the homogenization treatment for 1 hour or more at a temperature in the range of 520 to 630 ° C. and further performing hot rolling, (1)
Hot rolling is started at a temperature in the range of 350 to 580 ° C., and (2) the recrystallization rate in a region from the surface to a depth of 50 μm from the surface at a stage in which the thickness of the hot rolling is in the range of 20 to 200 mm. 30% or more of recrystallization is caused at least once, and (3) the total hot rolling reduction from the stage where the thickness of the hot rolling is 20 mm or more to the end of hot rolling is 98% or less, and The rolling temperature in each rolling pass in
In the range of 20 to 450 ° C., the strain rate in each rolling pass is in the range of 2 to 350 / sec, and the material residence time between each rolling pass is 10 minutes or less, and Is controlled within a range of 1 to 80% until immediately before the start of the next pass in each rolling pass (excluding the final pass) from the stage of 20 mm or more to the end of hot rolling. The rolling end temperature is in the range of 200 to 330 ° C., the finished plate thickness is in the range of 1.0 to 7.0 mm,
(5) The average cooling rate from a temperature in the range of 200 to 330 ° C. immediately after the end of hot rolling to room temperature is set to 100 ° C./hr or less, and (6) hot rolling is performed by the above (1) to (5). 95% recrystallization rate after cooling to room temperature
Hereinafter, the proof stress is controlled to 70 MPa or more. Thereafter, the primary cold rolling is performed on the hot-rolled sheet at a rolling rate in the range of 2 to 60%, and the average rise rate is 0.1 ° C./sec or less. Heating at a temperature rate, holding at a temperature in the range of 250 to 500 ° C. for 0.5 hour or more, performing batch annealing for cooling at an average cooling rate of 0.1 ° C./sec or less, and then further adding 50% or more A method for producing an aluminum alloy sheet for a can body, comprising performing final cold rolling at a rolling rate.
の缶胴用アルミニウム合金板の製造方法において、 前記最終冷間圧延を行なった後、さらに80〜200℃
の範囲内の温度で0.1〜24時間保持する最終焼鈍を
施すことを特徴とする、缶胴用アルミニウム合金板の製
造方法。5. The method for manufacturing an aluminum alloy sheet for a can body according to claim 1, wherein the final cold rolling is performed, and then the temperature is further increased to 80 to 200 ° C.
A method for producing an aluminum alloy plate for a can body, comprising performing final annealing at a temperature within the range of 0.1 to 24 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03090699A JP3871462B2 (en) | 1999-02-09 | 1999-02-09 | Method for producing aluminum alloy plate for can body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03090699A JP3871462B2 (en) | 1999-02-09 | 1999-02-09 | Method for producing aluminum alloy plate for can body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000234158A true JP2000234158A (en) | 2000-08-29 |
JP3871462B2 JP3871462B2 (en) | 2007-01-24 |
Family
ID=12316771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03090699A Expired - Fee Related JP3871462B2 (en) | 1999-02-09 | 1999-02-09 | Method for producing aluminum alloy plate for can body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3871462B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006152371A (en) * | 2004-11-29 | 2006-06-15 | Furukawa Sky Kk | Aluminum alloy for food can having excellent casting-crack resistance |
JP2011084775A (en) * | 2009-10-15 | 2011-04-28 | Mitsubishi Alum Co Ltd | Aluminum alloy sheet for can barrel having excellent redraw formability, and method for producing the same |
JP2012172192A (en) * | 2011-02-21 | 2012-09-10 | Mitsubishi Alum Co Ltd | Method for producing aluminum alloy sheet for can body having low ear ratio and method for producing aluminum alloy sheet for bottle type beverage can having low ear ratio |
JP2015045076A (en) * | 2013-08-29 | 2015-03-12 | 三菱アルミニウム株式会社 | Aluminum alloy sheet for beverage can body excellent in surface property |
JP2017160521A (en) * | 2016-03-11 | 2017-09-14 | 三菱アルミニウム株式会社 | Manufacturing method of aluminum alloy sheet for beverage can body excellent in anisotropy and neck moldability and bottle can body excellent in anisotropy and bottle neck moldability |
JP2017161541A (en) * | 2017-04-21 | 2017-09-14 | 三菱アルミニウム株式会社 | Method of inspecting aluminum alloy sheet having superior surface characteristic for beverage can |
CN114990397A (en) * | 2022-06-13 | 2022-09-02 | 昆明理工大学 | Method for strengthening ZL201 aluminum alloy based on cold deformation and solid solution aging |
-
1999
- 1999-02-09 JP JP03090699A patent/JP3871462B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006152371A (en) * | 2004-11-29 | 2006-06-15 | Furukawa Sky Kk | Aluminum alloy for food can having excellent casting-crack resistance |
JP2011084775A (en) * | 2009-10-15 | 2011-04-28 | Mitsubishi Alum Co Ltd | Aluminum alloy sheet for can barrel having excellent redraw formability, and method for producing the same |
JP2012172192A (en) * | 2011-02-21 | 2012-09-10 | Mitsubishi Alum Co Ltd | Method for producing aluminum alloy sheet for can body having low ear ratio and method for producing aluminum alloy sheet for bottle type beverage can having low ear ratio |
JP2015045076A (en) * | 2013-08-29 | 2015-03-12 | 三菱アルミニウム株式会社 | Aluminum alloy sheet for beverage can body excellent in surface property |
JP2017160521A (en) * | 2016-03-11 | 2017-09-14 | 三菱アルミニウム株式会社 | Manufacturing method of aluminum alloy sheet for beverage can body excellent in anisotropy and neck moldability and bottle can body excellent in anisotropy and bottle neck moldability |
JP2017161541A (en) * | 2017-04-21 | 2017-09-14 | 三菱アルミニウム株式会社 | Method of inspecting aluminum alloy sheet having superior surface characteristic for beverage can |
CN114990397A (en) * | 2022-06-13 | 2022-09-02 | 昆明理工大学 | Method for strengthening ZL201 aluminum alloy based on cold deformation and solid solution aging |
CN114990397B (en) * | 2022-06-13 | 2023-09-26 | 昆明理工大学 | Method for strengthening ZL201 aluminum alloy based on cold deformation and solid solution aging |
Also Published As
Publication number | Publication date |
---|---|
JP3871462B2 (en) | 2007-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4901757B2 (en) | Aluminum alloy plate and manufacturing method thereof | |
JP2011202273A (en) | Aluminum alloy cold-rolled sheet for bottle can | |
JPH10152762A (en) | Production of hard aluminum alloy sheet excellent in di workability | |
JP3600022B2 (en) | Manufacturing method of aluminum base alloy sheet for deep drawing | |
JP3871462B2 (en) | Method for producing aluminum alloy plate for can body | |
JP3644818B2 (en) | Method for producing aluminum alloy plate for can body | |
JP4257135B2 (en) | Aluminum alloy hard plate for can body | |
JPS626740B2 (en) | ||
JP2921820B2 (en) | Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same | |
JP3644819B2 (en) | Method for producing aluminum alloy plate for can body | |
JP3871473B2 (en) | Method for producing aluminum alloy plate for can body | |
JP2933501B2 (en) | Method for producing aluminum alloy sheet excellent in formability of DI can bottom | |
JP2004238657A (en) | Method of manufacturing aluminum alloy plate for outer panel | |
JP2005076041A (en) | Method for manufacturing hard aluminum alloy sheet for can body | |
JPH05331588A (en) | Aluminum alloy sheet for forming excellent in flange formability and its production | |
JP3713614B2 (en) | Method for producing aluminum alloy plate for can body | |
JPH0860283A (en) | Aluminum alloy sheet for di can body and its production | |
JPH05345963A (en) | Manufacture of high formability aluminum alloy sheet | |
JPS63125645A (en) | Production of aluminum alloy material having fine crystal grain | |
JPH06228696A (en) | Aluminum alloy sheet for di can body | |
JPH10330897A (en) | Production of aluminum base alloy sheet for deep drawing | |
JPH09268355A (en) | Production of aluminum alloy sheet for can body, reduced in earing rate | |
JP4034904B2 (en) | Hot rolled plate for aluminum can body and can body plate using the same | |
JP2956038B2 (en) | Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same | |
EP4306668B1 (en) | Method of producing aluminum can sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061017 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151027 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |