[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2860960B2 - Epoxy resin composition and semiconductor device encapsulated with the composition - Google Patents

Epoxy resin composition and semiconductor device encapsulated with the composition

Info

Publication number
JP2860960B2
JP2860960B2 JP27479089A JP27479089A JP2860960B2 JP 2860960 B2 JP2860960 B2 JP 2860960B2 JP 27479089 A JP27479089 A JP 27479089A JP 27479089 A JP27479089 A JP 27479089A JP 2860960 B2 JP2860960 B2 JP 2860960B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
resin
semiconductor
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27479089A
Other languages
Japanese (ja)
Other versions
JPH03137119A (en
Inventor
州志 江口
正次 尾形
泰英 菅原
裕之 宝蔵寺
徳幸 金城
孝 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP27479089A priority Critical patent/JP2860960B2/en
Publication of JPH03137119A publication Critical patent/JPH03137119A/en
Application granted granted Critical
Publication of JP2860960B2 publication Critical patent/JP2860960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、成形性、接着性、電気特性、耐熱性、高温
の機械強度および難燃性に優れたエポキシ樹脂組成物、
および該樹脂組成物で封止した樹脂封止型半導体装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an epoxy resin composition excellent in moldability, adhesiveness, electrical properties, heat resistance, high-temperature mechanical strength and flame retardancy,
And a resin-sealed semiconductor device sealed with the resin composition.

〔従来の技術〕[Conventional technology]

半導体封止材料としては、エポキシ樹脂と硬化剤とし
てノボラック型フェノール系樹脂に硬化促進剤を配合し
た組成物が知られている。ノボラック型フェノール系樹
脂は酸無水物硬化に比べて吸湿特性が良好で、成形性が
優れているためである。
As a semiconductor encapsulating material, a composition in which a curing accelerator is mixed with a novolak-type phenol-based resin as an epoxy resin and a curing agent is known. This is because novolak-type phenolic resins have better moisture absorption properties and are excellent in moldability as compared with acid anhydride curing.

しかしながら、近年の半導体の集積度の上昇、パッケ
ージサイズやパッケージ形状、実装方式等の変遷に伴
い、耐熱性、耐湿性、低応力などを含めた信頼性の向上
が望まれている。例えば、パッケージの実装方式がピン
挿入型から表面実装型の移動に伴い、実装時にパッケー
ジが200℃以上の高温にさらされるようになって来たた
め、封止品が熱的ストレスを受けた場合、封止樹脂、チ
ップ、フレーム等の熱膨張係数の違いによって大きな熱
応力が発生する。そのため、パッケージあるいはチップ
やチップ表面に形成されているパッシベーション膜にク
ラックを生じたり、チップ表面の配線の切断、短絡、位
置ずれ等をおこし、素子特性の変動や信頼性の低下が起
こり易くなっている。また、従来のエポキシ樹脂では難
燃性を付与させるため、臭素化エポキシ樹脂などの臭素
化合物を添加している。しかし、樹脂封止半導体を200
℃以上の高温に長時間放置しておくと、エポキシ樹脂組
成物に含まれる臭素が一部分解脱離し、金とアルミニウ
ム接合部の腐食を促進させ接続不良の原因となってい
る。そのため、この臭素化合物の配合量はなるべく少な
くすることが望まれているが、封止品の難燃性が低下し
規格を満足できなくなる。
However, with the recent increase in the degree of integration of semiconductors, changes in package sizes, package shapes, mounting methods, and the like, improvements in reliability including heat resistance, moisture resistance, and low stress have been desired. For example, when the package mounting method has shifted from the pin insertion type to the surface mount type, the package has been exposed to a high temperature of 200 ° C or more during mounting, so if the sealed product was subjected to thermal stress, A large thermal stress is generated due to a difference in thermal expansion coefficient between the sealing resin, the chip, the frame, and the like. For this reason, cracks occur in the package or the chip or the passivation film formed on the chip surface, or the wiring on the chip surface is cut, short-circuited, misaligned, etc., and the fluctuation of the device characteristics and the decrease in the reliability tend to occur. I have. Further, a bromine compound such as a brominated epoxy resin is added to the conventional epoxy resin in order to impart flame retardancy. However, resin-encapsulated semiconductor
When left at a high temperature of not less than ℃ for a long time, bromine contained in the epoxy resin composition is partially decomposed and desorbed, promoting corrosion of the gold-aluminum joint and causing poor connection. Therefore, it is desired to reduce the amount of the bromine compound as much as possible. However, the flame retardancy of the sealed product is reduced and the standard cannot be satisfied.

従来から、エポキシ樹脂の耐熱性を上げる方法として
は、エポキシ樹脂の多官能化、ノボラック型フェノール
樹脂の高分子量化、酸無水物の多官能化などの手段が行
われている。また、エポキシ樹脂の難燃性向上に関して
は、エポキシ樹脂に含まれる難燃剤の一部である3酸化
アンチモンの粒径を限定することにより、分散性を良く
することが特開昭63−269555号公報に提案されている。
さらに、エポキシ樹脂封止剤の信頼性を向方させるため
の別の方法として、特開昭59−200443号や特開昭59−20
0444号各公報に記載されているようにエポキシ樹脂硬化
剤としてレゾール型フェノール樹脂を用いる方法が行わ
れている。
Conventionally, as a method for increasing the heat resistance of an epoxy resin, means such as polyfunctionalization of an epoxy resin, increasing the molecular weight of a novolak type phenol resin, and polyfunctionalizing an acid anhydride have been used. Regarding the improvement of the flame retardancy of the epoxy resin, it is known to improve the dispersibility by limiting the particle size of antimony trioxide, which is a part of the flame retardant contained in the epoxy resin, as disclosed in JP-A-63-269555. It is proposed in the gazette.
Further, as another method for improving the reliability of the epoxy resin sealing agent, JP-A-59-200443 and JP-A-59-20
As described in each of the publications, a method using a resol type phenol resin as an epoxy resin curing agent has been performed.

また、レゾール型フェノール樹脂とノボラック型フェ
ノール樹脂をエポキシ樹脂と併用して用いる方法が、特
開昭56−79170号、特開昭56−129263号公報等に記載さ
れているが、これらは接着剤とか塗料としての用途であ
るため、可とう性とか樹脂の純度とかを問題とする必要
はなかった。
Further, a method of using a resol type phenol resin and a novolak type phenol resin in combination with an epoxy resin is described in JP-A-56-79170, JP-A-56-129263, etc. Since it was used as a coating material, there was no need to consider flexibility or resin purity.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、エポキシ樹脂の多官能化や硬化剤として用い
るフェノール樹脂の高分子量化では、樹脂組成物の硬化
物のガラス転移温度は上昇するが、接着性、耐湿性が逆
に従来よりも若干劣るため、電子部品用材料として実用
化することができなかった。また、エポキシ樹脂組成物
に含まれる3酸化アンチモンの粒径を規定しただけで
は、金・アルミニウム接合部腐食の原因となる臭素化合
物の配合量を大幅に低減することは非常に困難であっ
た。一方、エポキシ樹脂の硬化剤としてレゾール型フェ
ノール樹脂を用いる場合は、レゾール型フェノール樹脂
が硬化時、水やホルムアルデヒドのような縮合副生物を
生成することや、接着性や耐湿性が若干劣るため、エポ
キシ樹脂の硬化を完全に進めるだけの量(当量)を配合
した場合、電気特性や耐熱性が著しく低下する。
However, with the polyfunctionalization of the epoxy resin and the increase in the molecular weight of the phenol resin used as a curing agent, the glass transition temperature of the cured product of the resin composition increases, but the adhesiveness and moisture resistance are slightly worse than before. However, it could not be put to practical use as a material for electronic parts. Further, it was very difficult to significantly reduce the amount of a bromine compound that causes corrosion of a gold-aluminum joint only by specifying the particle size of antimony trioxide contained in the epoxy resin composition. On the other hand, when a resol-type phenol resin is used as a curing agent for the epoxy resin, when the resol-type phenol resin is cured, it may produce condensation by-products such as water and formaldehyde, and may have a slightly inferior adhesive property or moisture resistance. When an amount (equivalent) sufficient to completely advance the curing of the epoxy resin is added, the electrical characteristics and heat resistance are significantly reduced.

本発明はこのような状況にかんがみてなされたもので
あり、その目的とするところは、成形性、接着性、電気
特性、耐熱性が良好で、臭素化合物の配合量を従来より
も少なくして難燃性を付与できるエポキシ樹脂組成物及
びこれを用いた樹脂封止型半導体装置を提供することに
ある。
The present invention has been made in view of such a situation, and the object thereof is to provide a moldability, an adhesive property, an electrical property, a good heat resistance, and a smaller amount of a bromine compound than before. An object of the present invention is to provide an epoxy resin composition capable of imparting flame retardancy and a resin-sealed semiconductor device using the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明では、 (a) 2官能以上のエポキシ樹脂組成物、 (b) ノボラック型フェノール系樹脂とレゾール型フ
ェノール系樹脂を併用したエポキシ樹脂硬化剤、 (c) シリコーン化合物からなる可とう化剤、 (d) 無機質微粒子からなる充てん剤、 からなることを特徴とする半導体封止用エポキシ樹脂組
成物としたものであり、上記シリコーン化合物からなる
可とう化剤は全樹脂組成物に対して2〜20重量%配合す
るのがよい。また、上記エポキシ樹脂組成物は、10倍量
の120℃の熱水で100時間以上加熱した場合に、該抽出液
の電気伝導度が100μs/cm以下、pHが3〜7、ハロゲン
イオン量が20ppm以下であるのがよい。
In order to achieve the above object, the present invention provides (a) an epoxy resin composition having two or more functionalities, (b) an epoxy resin curing agent using a novolak-type phenol-based resin and a resole-type phenol-based resin in combination, and (c) silicone. (D) a filler composed of inorganic fine particles; and (c) an epoxy resin composition for semiconductor encapsulation. It is preferable to mix 2 to 20% by weight with respect to the resin composition. When the epoxy resin composition is heated for 100 hours or more with 10 times the amount of hot water at 120 ° C., the extract has an electric conductivity of 100 μs / cm or less, a pH of 3 to 7, and a halogen ion amount of It is good to be below 20ppm.

また、本願発明では、樹脂成分が2官能以上のエポキ
シ樹脂50〜90%、ノボラック型フェノール系樹脂とレゾ
ール型フェノール系樹脂を併用したエポキシ樹脂硬化剤
10〜50重量%であるのがよく、上記樹脂組成物は、無機
質微粒子からなる充てん剤を全組成物に対し55〜80容量
%含むのがよく、充てん剤としては、平均粒径1〜30μ
mの溶融シリカ、結晶性シリカ及びアルミナから選ばれ
る少なくとも1種の無機質粒子を用いる。
Further, in the present invention, a resin component is a bifunctional or more functional epoxy resin in an amount of 50 to 90%, and an epoxy resin curing agent using a novolak phenol resin and a resol phenol resin in combination.
The content is preferably 10 to 50% by weight, and the resin composition preferably contains a filler composed of inorganic fine particles in an amount of 55 to 80% by volume with respect to the total composition, and the filler has an average particle diameter of 1 to 30 μm.
m, at least one kind of inorganic particles selected from fused silica, crystalline silica and alumina.

さらに、上記他の目的を達成するために、本発明で
は、前記エポキシ樹脂組成物によって封止されている樹
脂封止型電子装置又は樹脂封止型半導体装置としたもの
である。
Further, in order to achieve the other object, the present invention provides a resin-sealed electronic device or a resin-sealed semiconductor device sealed with the epoxy resin composition.

本発明者等は、エポキシ樹脂の硬化性を完全にすると
ともに、樹脂硬化物の耐熱性、電気特性、接着性、耐湿
性を向上させるエポキシ樹脂硬化剤について種々検討し
た。その結果、エポキシ樹脂硬化剤として、エポキシ基
と反応するフェノール系水酸基を有し、かつ硬化剤自身
でも硬化するレゾール型フェノール系樹脂を用いるだけ
ではなく、さらにエポキシ基をすべて反応させるだけに
必要な水酸基を有するノボラック型フェノール系樹脂も
合わせて併用すれば、接着性や耐湿性を損わずに、しか
もエポキシ樹脂硬化物の耐熱性や高温機械的特性を向上
できることを見出した。
The present inventors have conducted various studies on an epoxy resin curing agent that improves the heat resistance, electrical properties, adhesiveness, and moisture resistance of a cured resin while making the curability of the epoxy resin perfect. As a result, not only is a resole-type phenolic resin that has a phenolic hydroxyl group that reacts with an epoxy group and also cures with the curing agent itself as an epoxy resin curing agent, but it is necessary to further react all epoxy groups. It has been found that when a novolak-type phenolic resin having a hydroxyl group is also used in combination, the heat resistance and high-temperature mechanical properties of the cured epoxy resin can be improved without impairing the adhesiveness and moisture resistance.

また、レゾール型フェノール系樹脂を硬化剤の一部と
して配合すると難燃剤、特に臭素化合物の量を低減して
も難燃性のUL規格V−0を達成できることが分かった。
Also, it was found that when the resol type phenolic resin was blended as a part of the curing agent, even if the amount of the flame retardant, particularly the bromine compound, was reduced, the flame retardant UL standard V-0 could be achieved.

さらに、レゾール型フェノール系樹脂と併用するノボ
ラック型フェノール系樹脂はエポキシ樹脂組成物の成形
性と電気特性を従来のエポキシ樹脂と同等かまたはそれ
以上にするために用いるものである。
Further, the novolak-type phenolic resin used in combination with the resol-type phenolic resin is used to make the moldability and electrical properties of the epoxy resin composition equal to or higher than those of the conventional epoxy resin.

本発明に用いるレゾール型フェノール系樹脂として
は、フェノール、クレゾール、キシレノール、ビスフェ
ノールA等のフェノール類とホルムアルデヒドを触媒の
存在下で反応することにより得られる縮合生成物が用い
られる。これらの合成に使用できる触媒としては、アン
モニア、ヘキサミン、アミン類、アルカリ金属の酸化物
または水酸化物、有機金属塩もしくはこれら2種以上を
併用することができる。
As the resol-type phenolic resin used in the present invention, a condensation product obtained by reacting phenols such as phenol, cresol, xylenol, and bisphenol A with formaldehyde in the presence of a catalyst is used. As a catalyst that can be used for these synthesis, ammonia, hexamine, amines, oxides or hydroxides of alkali metals, organic metal salts, or a combination of two or more of these can be used.

上記の樹脂の中で、半導体封止用としては特に、イオ
ン不純物が少なく、しかも120℃熱水で容易に樹脂硬化
物が加水分解してイオン性不純物を出さないものが有用
である。基本的には下記一般式(I)または(II)で示
される化学構造を有するものが好ましいが、レゾール型
フェノール系樹脂製造に際しては未反応の原料を少なく
するために反応時間を長くし、樹脂の硬化性や流動性と
の関係から分子量は400以上〜3,000以下と適度に大きく
することが望ましい。
Among the above-mentioned resins, those which have a small amount of ionic impurities and do not readily hydrolyze the resin cured product with hot water at 120 ° C. to produce no ionic impurities are particularly useful for semiconductor encapsulation. Basically, those having a chemical structure represented by the following general formula (I) or (II) are preferable. However, in producing a resol type phenolic resin, the reaction time is increased to reduce unreacted raw materials, It is desirable that the molecular weight be appropriately large, from 400 to 3,000, from the relationship with the curability and fluidity of the polymer.

のいずれかの基を意味し、それぞれ同じであっても異な
っても良い、mとnは1以上の整数を意味する。) また、未反応の原料やイオン性不純物を除去するた
め、反応生成物は酸で中和後、水洗、或いは水蒸気蒸留
し減圧乾燥等を充分に行ったり、必要に応じてイオン交
換樹脂、イオン交換体等を用いて精製する。
Wherein m and n each represent an integer of 1 or more. Also, in order to remove unreacted raw materials and ionic impurities, the reaction product is neutralized with an acid, and then sufficiently washed with water or steam distilled and dried under reduced pressure. Purify using an exchanger or the like.

本発明に用いるノボラック型フェノール系樹脂はフェ
ノール、クレゾール、キシレノール等のフェノール類と
ホルムアルデヒドとをパラトルエンスルホン酸、塩酸、
硫酸、過塩素酸、しゅう酸等の酸性触媒下で反応するこ
とにより得られる縮合生成物が用いられ、基本的には一
般式(III)で示される化学構造を有するものである。
Novolak type phenolic resin used in the present invention is phenol, cresol, phenol such as xylenol and formaldehyde with paratoluenesulfonic acid, hydrochloric acid,
A condensation product obtained by reacting under an acidic catalyst such as sulfuric acid, perchloric acid, oxalic acid or the like is used and basically has a chemical structure represented by the general formula (III).

(ここでR3はH、−CH3のいずれかの基を意味し、また
nは1以上の整数を意味する。) 得られるノボラック型フェノール系樹脂の分子量を調
整する方法は、前記フェノール類とホルムアルデヒドの
モル比及び使用する触媒種と量により、コントロールが
可能であるが、樹脂の硬化性や流動性の点から分子量は
400〜3,000が望ましい。また、半導体封止用として用い
るためにはイオン性不純物または未反応の原料が極力少
ないものが好ましく、そのために反応生成物を水洗、或
いは水蒸気蒸留し減圧乾燥等を充分に行ったり、必要に
応じてイオン交換樹脂、イオン交換体等を用いて精製す
ることも可能である。
(Here, R 3 represents any one of H and —CH 3 , and n represents an integer of 1 or more.) The method for adjusting the molecular weight of the resulting novolak-type phenolic resin is as follows. It can be controlled by the molar ratio of aldehyde and formaldehyde and the type and amount of catalyst used, but the molecular weight is
400-3,000 is desirable. Further, it is preferable that ionic impurities or unreacted raw materials are as small as possible to be used for semiconductor encapsulation. For this reason, the reaction product is washed with water or steam distilled and sufficiently dried under reduced pressure. It is also possible to purify using an ion exchange resin, an ion exchanger or the like.

本発明において、エポキシ樹脂硬化剤の配合割合とし
ては、硬化剤全量に対するノボラック型フェノール系樹
脂が5〜95重量%、レゾール型フェノール系樹脂が5〜
95重量%であることが好ましい。ノボラック型フェノー
ル系樹脂が5重量%以下となると、硬化剤としてのレゾ
ール型フェノール系樹脂が95重量%以上となり、樹脂組
成物の硬化反応時に生成する縮合副生物である水やホル
ムアルデヒドが硬化物物性に大きな影響を与えることに
なる。例えば、硬化物内部や界面に微小ボイドが形成さ
れ易くなったり、硬化物が脆くなり、また接着性や耐湿
性に低下が生じる。
In the present invention, the mixing ratio of the epoxy resin curing agent is 5 to 95% by weight of the novolak type phenolic resin and 5 to 5% by weight of the resol type phenolic resin based on the total amount of the curing agent.
Preferably it is 95% by weight. When the novolak-type phenolic resin is 5% by weight or less, the resol-type phenolic resin as a curing agent becomes 95% by weight or more, and water and formaldehyde, which are condensation by-products generated during the curing reaction of the resin composition, are cured. Will have a significant effect on For example, minute voids are easily formed inside or at the interface of the cured product, the cured product becomes brittle, and the adhesiveness and moisture resistance decrease.

一方、ノボラック型フェノール系樹脂が95重量%以
上、レゾール型フェノール系樹脂が5重量%以下では、
樹脂硬化物の耐熱性や高温の機械強度の向上にはほとん
ど効果がなく、また難燃性向上に対するレゾール型フェ
ノール系樹脂の寄与も期待できない。
On the other hand, when the novolak type phenolic resin is 95% by weight or more and the resol type phenolic resin is 5% by weight or less,
It has little effect on improving the heat resistance and high-temperature mechanical strength of the cured resin, and the resol-type phenolic resin cannot be expected to contribute to the improvement of flame retardancy.

本発明に用いるエポキシ樹脂としては1分子内に2ケ
以上のエポキシ基を含むエポキシ樹脂全般を意味するも
のであり、例えばビスフェノールAやフェノールノボラ
ック樹脂とエピクロロヒドリンを反応させて得られるビ
スフェノール系エポキシ樹脂やノボラック型エポキシ樹
脂、またはそれらの臭素化エポキシ樹脂、シクロヘキセ
ン、シクロペンタジェン、ジシクロペンタジェンのよう
な脂環式化合物から得られるエポキシ樹脂、ビニルポリ
マーから得られるエポキシ樹脂、グリセリンのような多
価アルコールから得られるエポキシ樹脂またはそれらの
臭素化エポキシ樹脂などがあり、これらの少なくとも1
種が用いられる。ここで、臭素化エポキシ樹脂は難燃性
を付与するために用いられるが、その量はUV規定V−0
を満足していれば、少ない程、良い。また、これらのエ
ポキシ樹脂についても未反応の原料やイオン性不純物が
充分除去されたものでなければならない。これらエポキ
シ樹脂に対するノボラック型、レゾール型フェノール系
樹脂からなる硬化剤は0.5〜1.5当量配合するのが好まし
く、配合量としてはそれぞれエポキシ樹脂50〜90重量
%、硬化剤10〜50重量%であることが望ましい。エポキ
シ樹脂が50重量%以下になると、樹脂硬化後もフェノー
ル樹脂が有する水酸基が多量に残るために電気特性並び
に耐湿性が劣る。一方、エポキシ樹脂の配合量が90重量
%以上になると、逆にエポキシ樹脂の硬化が完全に行わ
れないため、硬化物の耐熱性および電気特性が劣る結果
となる。さらに、これらエポキシ樹脂及びその硬化剤か
らなる組成物は半導体用として用いるために、イオン不
純物が充分除去されたものでなければならず、樹脂成分
を10倍量の120℃熱水で100時間以上抽出した場合に、抽
出液の電気伝導度が100μs/cm2以下、pHが3〜7、ハロ
ゲンイオン量が20ppm以下であれば本発明の目的は充分
達成できる。
The epoxy resin used in the present invention means any epoxy resin containing two or more epoxy groups in one molecule. For example, bisphenol-based resins obtained by reacting bisphenol A or phenol novolak resin with epichlorohydrin Epoxy resins and novolak type epoxy resins, or their brominated epoxy resins, epoxy resins obtained from alicyclic compounds such as cyclohexene, cyclopentadiene, dicyclopentadiene, epoxy resins obtained from vinyl polymers, glycerin Epoxy resins obtained from various polyhydric alcohols or brominated epoxy resins thereof.
Seeds are used. Here, the brominated epoxy resin is used for imparting flame retardancy, and the amount thereof is specified in UV regulation V-0.
The less, the better the less. Also, these epoxy resins must be those from which unreacted raw materials and ionic impurities have been sufficiently removed. It is preferable to mix 0.5 to 1.5 equivalents of a curing agent composed of a novolak type or resol type phenolic resin with respect to the epoxy resin, and the mixing amounts are 50 to 90% by weight of the epoxy resin and 10 to 50% by weight of the curing agent, respectively. Is desirable. When the epoxy resin content is 50% by weight or less, a large amount of hydroxyl groups of the phenol resin remain even after the resin is cured, so that the electrical properties and the moisture resistance are poor. On the other hand, when the blending amount of the epoxy resin is 90% by weight or more, the curing of the epoxy resin is not completely performed, and the heat resistance and the electrical characteristics of the cured product are deteriorated. Furthermore, the composition comprising these epoxy resins and their curing agents must be sufficiently free of ionic impurities in order to be used for semiconductors. In the case of extraction, the object of the present invention can be sufficiently achieved if the electric conductivity of the extract is 100 μs / cm 2 or less, the pH is 3 to 7, and the amount of halogen ions is 20 ppm or less.

本発明のエポキシ樹脂組成物には、必要に応じて、組
成物全体に対して55〜80容量%の無機充填剤を配合す
る。無機充填剤は硬化物の熱膨張係数や熱伝導率、弾性
率等の改良を目的に添加するものであり、この配合量が
55容量%未満ではこれらの特性の改良を充分に行えず、
また、80容量%を超えて配合した場合には材料の粘度が
著しく上昇し流動性が低下してしまうためである。無機
充填剤としては種々の化合物が挙げられるが、電子部品
材料には熱化学的に安定な充填剤を用いることが重要で
あり、具体的には溶融シリカ、結晶性シリカ、アルミナ
から選ばれる少なくとも1種の無機粒子が望ましい。な
お、これらの充填剤の平均粒径は1〜30μmの範囲が望
ましい。これは平均粒径が1μm未満であると樹脂組成
物の粘度が上昇し流動性が著しく低下するためであり、
また、30μmを超えると成形時に樹脂成分と充填剤の分
離が起きやすく硬化物が不均一になり硬化物物性にばら
つきが生じたり、狭い隙間への充填性が悪くなるためで
ある。
The epoxy resin composition of the present invention may optionally contain 55 to 80% by volume of an inorganic filler based on the whole composition. The inorganic filler is added for the purpose of improving the thermal expansion coefficient, thermal conductivity, elastic modulus, etc. of the cured product.
If the content is less than 55% by volume, these characteristics cannot be sufficiently improved.
On the other hand, if the content exceeds 80% by volume, the viscosity of the material is significantly increased and the fluidity is reduced. Various compounds can be used as the inorganic filler. It is important to use a thermochemically stable filler for the electronic component material. Specifically, at least one selected from fused silica, crystalline silica, and alumina One type of inorganic particles is desirable. The average particle size of these fillers is preferably in the range of 1 to 30 μm. This is because if the average particle size is less than 1 μm, the viscosity of the resin composition increases and the fluidity significantly decreases,
On the other hand, if it exceeds 30 μm, the resin component and the filler tend to separate from each other at the time of molding, and the cured product becomes non-uniform, causing variations in the physical properties of the cured product and poor filling properties into narrow gaps.

さらに、本発明の組成物には、硬化物の強じん化や低
弾性率化のためのシリコーン化合物からなる可とう化剤
を用いることができる。該可とう化剤を用いることがで
きる。可とう化剤の配合量は全樹脂組成物に対し2〜20
重量%であることが好ましい。これは可とう化剤の配合
量が2重量%以下では硬化物の強じん化や低弾性率化に
対してほとんど効果が無く、20重量%以上では、スパイ
ラルフローが極端に短かくなったり、可とう化剤が樹脂
硬化物表面に浮き出てくることによって、成形用金型の
汚れが顕著になってしまうためである。可とう化剤とし
てはエポキシ樹脂組成物と非相溶型のものがガラス転移
温度を下げずに硬化物の低弾性率化をできることから、
末端または側鎖アミノ基、水酸基、エポキシ基、カルボ
キシル基、変性シリコーン樹脂系可とう化剤を用いるの
が、耐水性や高純度の点から有用である。
Further, in the composition of the present invention, a flexibilizing agent composed of a silicone compound for toughening or lowering the elastic modulus of the cured product can be used. The flexible agent can be used. The amount of the plasticizer is 2 to 20 with respect to the total resin composition.
% By weight. This is because when the amount of the plasticizer is less than 2% by weight, there is almost no effect on toughening or low elasticity of the cured product, and when it is more than 20% by weight, the spiral flow becomes extremely short, This is because the floating agent emerges on the surface of the cured resin, and consequently the stain on the molding die becomes remarkable. As the solubilizer, the epoxy resin composition and the incompatible type can reduce the elastic modulus of the cured product without lowering the glass transition temperature.
It is useful to use a terminal or side chain amino group, hydroxyl group, epoxy group, carboxyl group, modified silicone resin-based flexible agent from the viewpoint of water resistance and high purity.

本発明の組成物にはこの他必要に応じて、樹脂の硬化
反応を促進するための硬化触媒、樹脂成分と充填剤の接
着性を高めるためのカップリング剤、着色のために染料
や顔料、硬化物の金型からの離形性を改良するための離
形剤等の各種添加剤を発明の目的を損なわない範囲にお
いて用いることができる。硬化触媒としてはトリフェニ
ルホスフィン、テトラフェニルホスニウムテトラフェニ
ルボレート等の含りん有機塩基性化合物またはこれらの
テトラ置換ボロン塩、ベンジルジメチルアミン等の3級
アミン、1,8−ジアザビシクロ(5,4,0)−ウンデセン、
イミダゾール等の少なくとも1種を、さらにカップリン
グ剤としてはエポキシシラン、アミノシラン等の少なく
とも1種類を用いるのが好ましい。
In addition to the composition of the present invention, if necessary, a curing catalyst for accelerating the curing reaction of the resin, a coupling agent for increasing the adhesion between the resin component and the filler, a dye or pigment for coloring, Various additives such as a release agent for improving the releasability of the cured product from the mold can be used as long as the object of the invention is not impaired. Examples of the curing catalyst include phosphorus-containing organic basic compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate, tertiary amines such as tetrasubstituted boron salts thereof, benzyldimethylamine, and 1,8-diazabicyclo (5,4, 0) -undecene,
It is preferable to use at least one kind such as imidazole and the like, and as the coupling agent, at least one kind such as epoxysilane and aminosilane.

充填剤や可とう化剤やこれらの各添加剤は樹脂成分と
同様にイオン性不純物を多量に含むと製品の各種信頼性
を著しく低下させる。そのため、これらの各添加剤につ
いても10倍量の120℃熱水で100時間以上の抽出を行った
場合、抽出液の電気伝導度が100μs/cm以下、pHが3〜
7、ハロゲンイオン抽出量が20ppm以下であることが必
要である。
Fillers, plasticizers and their respective additives, as well as the resin component, contain a large amount of ionic impurities, which significantly lowers the reliability of various products. Therefore, when each of these additives is extracted for 100 hours or more with 10 times the volume of 120 ° C. hot water, the electric conductivity of the extract is 100 μs / cm or less, and the pH is 3 to
7. It is necessary that the extraction amount of halogen ions is 20 ppm or less.

〔作 用〕(Operation)

本発明のエポキシ樹脂組成物の耐熱性や高温の機械強
度が、これまでの成形用樹脂に比べて優れているのは、
エポキシ樹脂硬化剤の一部に、自らも硬化するレゾール
型フェノール系樹脂を用いているためであり、さらにこ
の樹脂は難熱性向上に対しても大きな役割を果してい
る。また、硬化剤として併用するノボラック型フェノー
ル系樹脂は、エポキシ樹脂の硬化を完全に行わせるため
に用いられるものであり、ノボラック型フェノール系樹
脂による樹脂硬化物の接着性、耐湿性の低下を防ぐよう
に作用する。
The heat resistance and the high-temperature mechanical strength of the epoxy resin composition of the present invention are superior to conventional molding resins,
This is because, as a part of the epoxy resin curing agent, a resol-type phenol-based resin that cures itself is used, and this resin also plays a significant role in improving heat resistance. The novolak-type phenolic resin used in combination as a curing agent is used to completely cure the epoxy resin, and prevents the adhesiveness of the cured resin from the novolak-type phenolic resin from deteriorating in moisture resistance. Act like so.

〔実施例〕〔Example〕

以下、本発明を実施例に従がい具体的に説明するが、
本発明はこれらに限定されない。
Hereinafter, the present invention will be specifically described according to Examples,
The present invention is not limited to these.

製造例1 〔レゾール型フェノール樹脂の合成1〕 5のフラスコにフェノール500g、30%のホルマリン
550g並びに酢酸亜鉛5gを加え、撹拌しながら徐々に加熱
し、還流しながら90℃で2時間加熱した。その後、フラ
スコ内を20mmHgに減圧し、縮合水並びに未反応成分を除
去した。つぎに、この反応生成物に300gのアセトンを加
えて反応生成物を溶解し、さらにイオン交換水3を加
え50℃で30分間激しく撹拌した。冷却後上部の水層を除
去し、再び反応生成物を300gのアセトンに溶解しこの溶
液にイオン交換水3を加え50℃で30分間激しく撹拌
し、冷却後上部の水層を除去した。この操作を5回繰り
返した後、反応生成物を減圧しながら40℃で48h乾燥し
目的とするレゾール型フェノール樹脂(A)を得た。
Production Example 1 [Resole-type phenol resin synthesis 1] 500 g of phenol, 30% formalin in 5 flasks
550 g and zinc acetate 5 g were added, and the mixture was gradually heated with stirring and heated at 90 ° C. for 2 hours with reflux. Thereafter, the pressure in the flask was reduced to 20 mmHg to remove condensed water and unreacted components. Next, 300 g of acetone was added to the reaction product to dissolve the reaction product, and ion-exchanged water 3 was further added, followed by vigorous stirring at 50 ° C. for 30 minutes. After cooling, the upper aqueous layer was removed. The reaction product was dissolved again in 300 g of acetone, ion-exchanged water 3 was added to the solution, and the mixture was vigorously stirred at 50 ° C. for 30 minutes. After cooling, the upper aqueous layer was removed. After repeating this operation five times, the reaction product was dried at 40 ° C. for 48 hours while depressurizing to obtain a desired resol-type phenol resin (A).

こうして得られたレゾール型フェノール樹脂(A)の
数平均分子量は710、軟化温度は75℃、フリーフェノー
ル含有量は0.3重量%、180℃のゲル化時間(JIS−K−5
909,熱板法による)は45秒であった。また、レゾール型
フェノール樹脂5gにイオン交換水50gを加え120℃で120
時間加熱し抽出液の特性を調べた結果、抽出液のpHは3.
8、電気伝導度は55μs/cm、イオン性不純物Clイオンが
2.5ppm、Brイオン、NH4イオンが1ppm以下であった。
The resol type phenol resin (A) thus obtained has a number average molecular weight of 710, a softening temperature of 75 ° C, a free phenol content of 0.3% by weight, and a gel time of 180 ° C (JIS-K-5
909, by the hot plate method) was 45 seconds. In addition, 50 g of ion-exchanged water was added to 5 g of resol type phenol resin, and
After heating for a time and examining the characteristics of the extract, the pH of the extract was 3.
8.Electric conductivity 55μs / cm, ionic impurity Cl ion
2.5 ppm, Br ion and NH 4 ion were 1 ppm or less.

製造例2 〔レゾール型フェノール樹脂の合成2〕 5のフラスコにフェノールA570g、ホルムアルデヒ
ド75g、パラホルムアルデヒド800g並びに水酸化ナトリ
ウム水溶液10gを加え、撹拌しながら徐々に加熱し、還
流しながら90℃で4時間加熱した。イオン交換水3を
加えて反応を停止し、酢酸で中和した後、有機物分と水
を分離させた。この有機物をアセトン150gに溶解しこの
溶液にイオン交換水0.7を加え50℃で30分間激しく撹
拌し、冷却後上部の水層を除去した。この操作を5回繰
り返した後、反応生成物を減圧しながら40℃で24h乾燥
し目的とするレゾール型フェノール樹脂(B)を得た。
Production Example 2 [Synthesis 2 of resol type phenol resin] In a flask of No. 5, 570 g of phenol A, 75 g of formaldehyde, 800 g of paraformaldehyde and 10 g of an aqueous sodium hydroxide solution were added, and the mixture was gradually heated with stirring and refluxed at 90 ° C. for 4 hours. Heated. The reaction was stopped by adding ion-exchanged water 3 and neutralized with acetic acid, after which the organic matter and water were separated. The organic matter was dissolved in 150 g of acetone, ion-exchanged water 0.7 was added to the solution, and the mixture was vigorously stirred at 50 ° C. for 30 minutes. After cooling, the upper aqueous layer was removed. After repeating this operation five times, the reaction product was dried at 40 ° C. for 24 hours while reducing the pressure to obtain the desired resol-type phenol resin (B).

こうして得られたレゾール型フェノール樹脂(B)の
数平均分子量は680、軟化温度は78℃、フリービスフェ
ノールA含有量は約7重量%、180℃のゲル化時間は25
秒であった。また、このレゾール型フェノール樹脂の抽
出液特性を製造例1と同様の方法で行った結果、抽出液
のpHは4.5、電気伝導度は25μs/cm、イオン性不純物Cl
イオンが2.8ppm、Brイオン、NH4イオンが1ppm以下であ
った。
The resol type phenol resin (B) thus obtained has a number average molecular weight of 680, a softening temperature of 78 ° C., a free bisphenol A content of about 7% by weight, and a gelation time of 180 ° C. of 25%.
Seconds. The resole-type phenolic resin was subjected to extraction liquid properties in the same manner as in Production Example 1. As a result, the pH of the extraction liquid was 4.5, the electric conductivity was 25 μs / cm, and the ionic impurities Cl.
The content of ions was 2.8 ppm, and the content of Br ions and NH 4 ions was 1 ppm or less.

〔実施例1〜12〕 樹脂成分としてo−クレゾールノボラック型エポキシ
樹脂(エポキシ当量195、軟化温度75〜80℃)、臭素化
ビスフェノールA型エポキシ樹脂(エポキシ当量394、
軟化温度65℃)、硬化剤としてノボラック型フェノール
樹脂(水酸基当量106、軟化温度65℃)および製造例1
または製造例2で得られた精製後のレゾール型フェノー
ル樹脂、可とう化剤として側鎖エポキシ変性シリコーン
樹脂(分子量73,600、エポキシ当量3,900)、硬化触媒
として第1表に示す各種化合物、充填剤として平均粒径
6μmの角形の溶融シリカと平均粒径30μmの球形の溶
融シリカの30/70混合品、難燃化助剤として三酸化アン
チモン粉末、カップリング剤としてエポキシシラン、離
型剤としてモンタン酸エステルロウ、着色剤としてカー
ボンブラックを用い、第1表に示す配合割合で成形材料
を作製した。各素材の混練には、直径20インチの二軸ロ
ールを用い、ロール表面温度約65〜80℃で約10分間の混
練を行った。
[Examples 1 to 12] As resin components, o-cresol novolak type epoxy resin (epoxy equivalent 195, softening temperature 75 to 80 ° C), brominated bisphenol A type epoxy resin (epoxy equivalent 394,
Softening temperature 65 ° C), novolak type phenol resin as curing agent (hydroxyl equivalent 106, softening temperature 65 ° C) and Production Example 1
Alternatively, the purified resole phenolic resin obtained in Production Example 2, a side chain epoxy-modified silicone resin (molecular weight 73,600, epoxy equivalent 3,900) as a solubilizing agent, various compounds shown in Table 1 as a curing catalyst, and a filler as a filler 30/70 mixture of square fused silica having an average particle diameter of 6 μm and spherical fused silica having an average particle diameter of 30 μm, antimony trioxide powder as a flame retardant aid, epoxysilane as a coupling agent, montanic acid as a release agent Using an ester wax and carbon black as a coloring agent, molding materials were prepared in the mixing ratios shown in Table 1. Each material was kneaded using a 20-inch diameter biaxial roll and kneaded at a roll surface temperature of about 65 to 80 ° C. for about 10 minutes.

〔比較例1〜9〕 比較例1では、エポキシ樹脂として多量のイオン不純
物を含むo−クレゾールノボラック型エポキシ樹脂(エ
ポキシ当量210、軟化温度73℃、120℃/20時間の抽出液
特性においてpHが4.0、電気伝導度が105μs/cm、イオン
性不純物Clイオンが42ppm、Brイオンが25ppm)を用い、
他の成分は前記実施例と同じ素材によって第1表に示す
配合割合で前記と同様にして成形材料を作製した。比較
例2から9までは、前記実施例と同じ素材を用い、同様
の条件で成形材料を作製した。
[Comparative Examples 1 to 9] In Comparative Example 1, an o-cresol novolak type epoxy resin containing a large amount of ionic impurities as an epoxy resin (epoxy equivalent 210, softening temperature 73 ° C, pH in the extract characteristics at 120 ° C / 20 hours, pH 4.0, electric conductivity 105μs / cm, ionic impurity Cl ion 42ppm, Br ion 25ppm)
With respect to the other components, molding materials were prepared in the same manner as described above, using the same raw materials as in the above-mentioned Examples, at the compounding ratios shown in Table 1. In Comparative Examples 2 to 9, molding materials were produced under the same conditions using the same raw materials as in the above-mentioned Example.

こうして得られた各成形材料の180℃における成形性
と、金型温度180℃、成形圧力7kg/cm2、成形時間90秒で
成形した後、180℃で6時間の後硬化を行った成形品の
諸物性並びに成形品を、100Mesh以下に粉砕し、各粉末5
gに50gのイオン交換水をを加え、120℃で120時間加熱
し、その後の水のpH、電気伝導度並びに抽出されたイオ
ン不純物を比較した。これらの結果を、第1表にまとめ
て示す。なお、第1表における配合割合はすべて重量部
で表わしてある。また、表中に記号で示した硬化触媒は
DBU:1,8−ジアザビシクロ(5,4,0)−ウンデセン、TPP
−K:テトラフェニルホスホニウムテトラフェニルボレー
ト、2P4MHZ:2−フェニル−4−メチル−5−ヒドロキシ
メチルイミダゾール、2P4BHZ:2−フェニル−4−ベンジ
ル−5−ヒドロキシメチルイミダゾールである。
The moldability of each molding material obtained in this way at 180 ° C, and a molded product that was molded at a mold temperature of 180 ° C, a molding pressure of 7 kg / cm 2 , a molding time of 90 seconds, and post-cured at 180 ° C for 6 hours Of various physical properties and molded products of 100
50 g of ion-exchanged water was added to the g, and the mixture was heated at 120 ° C. for 120 hours. Thereafter, the pH, electric conductivity and extracted ionic impurities of the water were compared. These results are summarized in Table 1. In addition, all the compounding ratios in Table 1 are represented by parts by weight. In addition, the curing catalyst indicated by the symbol in the table is
DBU: 1,8-diazabicyclo (5,4,0) -undecene, TPP
-K: tetraphenylphosphonium tetraphenylborate, 2P4MHZ: 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2P4BHZ: 2-phenyl-4-benzyl-5-hydroxymethylimidazole.

第1表から明らかなように本発明の樹脂組成物は硬化
剤としてノボラック型フェノール樹脂とレゾール型フェ
ノール樹脂を併用することによって、樹脂硬化物の電気
特性、接着性を従来のエポキシ樹脂成形材料とほぼ同等
に保ちつつ、しかも耐熱性並びに高温の機械強度の向上
を図っていることが分かる。さらに、実施例2と比較例
4を比較した場合、レゾール型フェノール樹脂の配合に
より臭素化エポキシ樹脂の同じ配合量で難燃性が向上し
ている。また、成形性についても、一般に用いられてい
るエポキシ樹脂系の成形材料と同様な条件で成形が可能
である。本発明の可とう化剤を含む樹脂組成物におい
て、可とう化剤の配合量が2重量%以下では樹脂の低弾
性率化に対してほとんど効果が無く、20重量%以上では
金型汚れとスパイラルフローの低下が著しくなる。
As is clear from Table 1, the resin composition of the present invention uses a novolak-type phenol resin and a resol-type phenol resin as a curing agent in combination, so that the electrical properties and adhesiveness of the cured resin are the same as those of a conventional epoxy resin molding material. It can be seen that the heat resistance and the mechanical strength at high temperatures are improved while maintaining substantially the same. Furthermore, when Example 2 and Comparative Example 4 are compared, the flame retardancy is improved with the same blending amount of the brominated epoxy resin due to the blending of the resol type phenol resin. As for the moldability, molding can be performed under the same conditions as those of commonly used epoxy resin-based molding materials. In the resin composition containing the flexibilizer of the present invention, if the blending amount of the flexibilizer is 2% by weight or less, there is almost no effect on lowering the elastic modulus of the resin. The spiral flow is significantly reduced.

次に、上記成形材料の一部を用いて、表面にアルミニ
ウムのジグザグ配線を形成したシリコーンチップを銅系
のリードフレームに搭載し、更にチップ表面にアルミニ
ウム電極とリードフレーム間を金線(φ30μm)でワイ
ヤボンディングした半導体装置を封止し各種信頼性試験
を行った。その結果を第3表と第4表に示した。
Next, using a part of the above molding material, a silicone chip having zigzag wiring of aluminum formed on the surface is mounted on a copper-based lead frame, and a gold wire (φ30 μm) is formed on the chip surface between the aluminum electrode and the lead frame. The semiconductor device that was wire-bonded was sealed and subjected to various reliability tests. The results are shown in Tables 3 and 4.

第3表と第4表から明らかなように、本発明の封止品
は比較例と比べると、耐湿信頼性、高温放置特性、リフ
ロー時のパッケージの耐クラック性が優れていることが
分かる。また、比較例1の結果から明らかなように、成
形材料の純度が悪い場合にはパッケージの各種信頼性が
大幅に低下することが分かる。そのため、成形材料の純
度がパッケージの信頼性に対して非常に重要な因子とな
る。
As is clear from Tables 3 and 4, the sealed product of the present invention is superior to the comparative example in moisture resistance reliability, high-temperature storage characteristics, and crack resistance of the package during reflow. Further, as is apparent from the results of Comparative Example 1, when the purity of the molding material is poor, various reliability of the package is significantly reduced. Therefore, the purity of the molding material is a very important factor for the reliability of the package.

〔発明の効果〕 本発明のノボラック型フェノール樹脂とレゾール型フ
ェノール樹脂を併用した硬化剤を用いたエポキシ樹脂組
成物による成形材料は成形性が従来のエポキシ樹脂と同
様に良好であり、また、この成形材料で封止した半導体
装置は耐湿信頼性、高温放置特性、耐リフロー性などの
各種信頼性が優れている。従って、本発明によって電子
電気機器用の封止材料ばかりでなく、高耐熱性や良好な
接着性を要求する電子電気機器用の接着剤あるいは絶縁
材料等としても有用なエポキシ樹脂組成物を提供できる
ことが明らかである。
[Effect of the Invention] A molding material using an epoxy resin composition using a curing agent in which a novolak-type phenol resin and a resol-type phenol resin of the present invention are used together has good moldability similar to that of a conventional epoxy resin. A semiconductor device sealed with a molding material is excellent in various reliability such as humidity resistance, high-temperature storage characteristics, and reflow resistance. Therefore, the present invention can provide an epoxy resin composition useful not only as a sealing material for electronic and electrical equipment, but also as an adhesive or insulating material for electronic and electrical equipment that requires high heat resistance and good adhesiveness. Is evident.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI //(C08L 63/00 83:04) (72)発明者 菅原 泰英 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 宝蔵寺 裕之 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 金城 徳幸 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 浦野 孝 茨城県結城市大字鹿窪1772―1 日立化 成工業株式会社南結城工場内 (56)参考文献 特開 昭63−183917(JP,A) 特開 昭63−230731(JP,A) 特開 昭59−79170(JP,A) (58)調査した分野(Int.Cl.6,DB名) C08L 63/00 - 63/10 C08G 59/62 H01L 23/29──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // (C08L 63/00 83:04) (72) Inventor Yasuhide Sugawara 4026 Kuji-cho, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Hitachi Research, Ltd. In-house (72) Inventor Hiroyuki Horazoji 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory, Ltd. Takashi Urano 1772-1, Okukabo, Yuki-shi, Ibaraki Pref. Hitachi Chemical Co., Ltd. Minami-Yuki Plant (56) References JP-A-63-183917 (JP, A) JP-A-63-230731 (JP, A) 59-79170 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C08L 63/00-63/10 C08G 59/62 H01L 23/29

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a) 2官能以上のエポキシ樹脂組成
物、 (b) ノボラック型フェノール系樹脂とレゾール型フ
ェノール系樹脂を併用したエポキシ樹脂硬化剤、 (c) シリコーン化合物からなる可とう化剤、 (d) 無機質微粒子からなる充てん剤、 からなることを特徴とする半導体封止用エポキシ樹脂組
成物。
1. An epoxy resin composition having (a) a bifunctional or higher functional epoxy resin, (b) an epoxy resin curing agent using a novolak type phenolic resin and a resol type phenolic resin in combination, and (c) a solubilizing agent comprising a silicone compound. And (d) a filler comprising inorganic fine particles. An epoxy resin composition for semiconductor encapsulation, comprising:
【請求項2】前記シリコーン化合物からなる可とう化剤
の配合量が、全樹脂組成物に対し2〜20重量%であるこ
とを特徴とする請求項1記載の半導体封止用エポキシ樹
脂組成物。
2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the compounding amount of the plasticizer comprising the silicone compound is 2 to 20% by weight based on the total resin composition. .
【請求項3】前記無機質微粒子からなる充てん剤の配合
量が、全組成物に対し55〜80容量%含有することを特徴
とする請求項1又は2記載の半導体封止用エポキシ樹脂
組成物。
3. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the amount of the filler composed of the inorganic fine particles is 55 to 80% by volume based on the whole composition.
【請求項4】前記無機質微粒子からなる充てん剤が、平
均粒径1〜30μmの溶融シリカ、結晶性シリカ及びアル
ミナから選ばれる少なくとも1種の無機質粒子であるこ
とを特徴とする請求項3記載の半導体封止用エポキシ樹
脂組成物。
4. The filler according to claim 3, wherein the filler comprising the inorganic fine particles is at least one kind of inorganic particles selected from fused silica, crystalline silica and alumina having an average particle diameter of 1 to 30 μm. Epoxy resin composition for semiconductor encapsulation.
【請求項5】前記エポキシ樹脂組成物が、10倍量の120
℃の熱水で100時間以上加熱した場合に、該抽出液の電
気伝導度が100μs/cm以下、pHが3〜7、ハロゲンイオ
ン量が20ppm以下であることを特徴とする請求項1記載
の半導体封止用エポキシ樹脂組成物。
5. The method according to claim 1, wherein the epoxy resin composition has a 10-fold amount of 120.
2. The extract according to claim 1, wherein the extract has an electric conductivity of 100 μs / cm or less, a pH of 3 to 7, and a halogen ion content of 20 ppm or less when heated with hot water at 100 ° C. for 100 hours or more. Epoxy resin composition for semiconductor encapsulation.
【請求項6】請求項1〜5のいずれか1項記載の半導体
封止用エポキシ樹脂組成物によって封止されていること
を特徴とする樹脂封止型電子装置。
6. A resin-sealed electronic device which is sealed with the epoxy resin composition for semiconductor sealing according to claim 1.
【請求項7】請求項6記載において、半導体封止用エポ
キシ樹脂組成物によってトランスファモールドされてい
ることを特徴とする樹脂封止型電子装置。
7. The resin-encapsulated electronic device according to claim 6, wherein the electronic device is transfer-molded with an epoxy resin composition for encapsulating a semiconductor.
【請求項8】請求項1〜5のいずれか1項記載の半導体
封止用エポキシ樹脂組成物によって封止されていること
を特徴とする樹脂封止型半導体装置。
8. A resin-encapsulated semiconductor device, which is encapsulated by the epoxy resin composition for encapsulating a semiconductor according to claim 1.
JP27479089A 1989-10-24 1989-10-24 Epoxy resin composition and semiconductor device encapsulated with the composition Expired - Fee Related JP2860960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27479089A JP2860960B2 (en) 1989-10-24 1989-10-24 Epoxy resin composition and semiconductor device encapsulated with the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27479089A JP2860960B2 (en) 1989-10-24 1989-10-24 Epoxy resin composition and semiconductor device encapsulated with the composition

Publications (2)

Publication Number Publication Date
JPH03137119A JPH03137119A (en) 1991-06-11
JP2860960B2 true JP2860960B2 (en) 1999-02-24

Family

ID=17546599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27479089A Expired - Fee Related JP2860960B2 (en) 1989-10-24 1989-10-24 Epoxy resin composition and semiconductor device encapsulated with the composition

Country Status (1)

Country Link
JP (1) JP2860960B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5487533B2 (en) * 2007-03-13 2014-05-07 住友ベークライト株式会社 Phenol resin composition for friction material, method for producing the same, and friction material
JP2017132914A (en) * 2016-01-28 2017-08-03 住友ベークライト株式会社 Sealing resin composition and semiconductor device
CN114044866B (en) * 2021-11-01 2023-06-27 山西省应用化学研究所(有限公司) Novolac resin curing agent for semiconductor packaging material and preparation method thereof
CN114230973B (en) * 2021-11-29 2023-05-12 航天特种材料及工艺技术研究所 Epoxy resin composition for OOA process and preparation method of composite material of epoxy resin composition

Also Published As

Publication number Publication date
JPH03137119A (en) 1991-06-11

Similar Documents

Publication Publication Date Title
JP2860960B2 (en) Epoxy resin composition and semiconductor device encapsulated with the composition
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP4772305B2 (en) Sheet-shaped resin composition for compression molding, resin-encapsulated semiconductor device, and method for manufacturing the same
JP4765151B2 (en) Epoxy resin composition and semiconductor device
JP4696372B2 (en) Epoxy resin composition and semiconductor device
JP2009242719A (en) Phenolic novolac resin, epoxy resin composition and cured product therefrom, and semiconductor device
JPH11286594A (en) Resin composition for sealing and semiconductor-sealed device
JP3310447B2 (en) Epoxy resin composition
JPH11181238A (en) Epoxy resin composition and semiconductor device
JPH1112442A (en) Sealing resin composition and sealed semiconductor device
JP2001064362A (en) Epoxy resin composition and semiconductor device
JP3310446B2 (en) Epoxy resin composition
JPH05132543A (en) Epoxy resin composition
JP4788034B2 (en) Epoxy resin composition and semiconductor device
JP2744500B2 (en) Resin composition
JP2638191B2 (en) Method for producing high-purity phenolic resin, method for producing the resin composition, and method for producing a semiconductor device using the resin composition
JP3305098B2 (en) Epoxy resin composition
JP3305097B2 (en) Epoxy resin composition
JPH04320358A (en) Plastic sealed semiconductor device
JPH1112446A (en) Sealing resin composition and semiconductor device sealed therewith
JPH1171442A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JP3298084B2 (en) Sealing resin composition and semiconductor sealing device
JPH1171443A (en) Epoxy resin composition for sealing semiconductor and semiconductor device sealed therewith
JP2986900B2 (en) Resin composition
JP3649893B2 (en) Resin composition for sealing and semiconductor sealing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees