JP2737120B2 - Indentation hardness tester - Google Patents
Indentation hardness testerInfo
- Publication number
- JP2737120B2 JP2737120B2 JP62078156A JP7815687A JP2737120B2 JP 2737120 B2 JP2737120 B2 JP 2737120B2 JP 62078156 A JP62078156 A JP 62078156A JP 7815687 A JP7815687 A JP 7815687A JP 2737120 B2 JP2737120 B2 JP 2737120B2
- Authority
- JP
- Japan
- Prior art keywords
- indenter
- load
- sample
- displacement
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、圧子に試験荷重を負荷し、その時の圧子の
試料表面への押込深さから試料の硬さを求める押込硬さ
試験装置に関する。
[従来の技術]
四角錐等の鋭利な先端部をもつ圧子を試験片の表面に
押し込み、その時の圧子の押込み深さと荷重から表面硬
度を求める押込硬さ試験が硬度測定法の一つとして採用
されている。この押込硬さ試験を行なう装置では、試料
を試料台上に載置し、定位置にある試料に対し圧力を下
降させ、圧子が試料表面に接触した点を検出し、この点
の荷重を試料荷重のO点とするとともに、その後の圧子
の変位を押込深さとして検出している。
[発明が解決しようとする問題点]
上記従来の押込硬さ試験装置では、圧子が試料表面に
接触すると試料の抵抗で圧子の速度が低下することか
ら、圧子の速度が一定速度以下に減速した時点を接触点
として検出していたので、実際の接触時点との間に誤差
を生じていた。また、圧子の負荷手段としては、電子天
秤等が使用されており、負荷伝達部のバネ常数が付加さ
れるため、天秤等の負荷出力と実際に圧子に加えられる
荷重との間にも差が生じていた。例えば第2図の荷重と
変位の関係を示す特性図において、A曲線が従来法によ
る場合を示す。同図において、実際に圧子が試料に接触
した時点の変位および荷重はD0,P0であるが、測定され
る点としては、圧子接触の検知誤差が加わったD1,天秤
の変位に要する荷重(図中の破線が示す)が加わったP1
となり、押込終了時の変位および荷重の測定点はD2,P4
となる。これら測定値による測定硬度値H1はH1=(K/
(D2−D1)2)・(P4−P1)となるが、理論値H0は、変
位点D2に対し天秤の変位に要する荷重P2を考慮してH0=
(K/(D2−D0)2)・(P4−P2)となる。したがって従
来装置による測定では、接触点検出に誤差を含み荷重測
定については補正が必要であり、正確な硬度測定を行な
うことができないという問題点があった。また、一定荷
重増加速度での硬度測定を行なうことはできるが、変位
の定速負荷を行なうことができないという問題点もあっ
た。
[問題点を解決するための手段]
上記問題点を解決するために、本発明は次のような構
成を採用した。
すなわち、本発明にかかる押込硬さ試験装置は、試料
が当椄することによって加えられる力に抗して圧子を所
定位置に保持するように圧子に荷負を負荷する負荷手段
と、この負荷手段により圧子に加えられる荷重を検出す
る荷重検出手段と、載置された試料を前記所定位置に保
持されている圧子側に直線的に移動させ、該圧子に当接
させる可動テーブルと、該可動テーブルを駆動する駆動
手段と、前記可動テーブルの変位を検出する変位検出手
段と、前記可動テーブルの移動により試料が圧子に接触
したときに該圧子が受ける反力から圧子と試料との接触
を検知する手段とを備えてなることを特徴としている。
[作 用]
駆動手段によって直線的に移動する可動テーブルに載
置された試料が所定位置に保持された圧子と接触する
と、該圧子が受ける反力による荷重検出手段が荷重を検
出するので、この荷重検出時を接触点とすることができ
る。また、圧子と試料が接触したのち可動テーブルをさ
らに圧子側へ移動させれば圧子が試料表面に押し込まれ
るが、この時の可動テーブルの変位を変位検出手段によ
って検出し、試料の押込深さを求めることができる。ま
た、荷重検出器によって、試料に加えられる荷重を検出
することができる。
[実施例]
第1図は本発明の1実施例をあらわす概略図である。
この押込硬さ試験装置1は、支点Aによって支持された
レバー3と基点Bによって支持され荷重発生部6の荷重
を圧子2に伝える荷重レバー4とで構成されるロバーバ
ル機構9を有し、これら両レバー3,4の先端部は、試料
8の直上部に圧子2を保持する垂直方向の圧子保持棒5
に枢着されている。この荷重レバー4、負荷発生部6等
は電子天秤式の負荷機構10を構成する。また、圧子保持
棒5には圧子2の変位を検出する差動トランス式の変位
検出器7が設けられている。
試料8はテーブル12上に載置されるが、テーブル12
は、載置された試料8を圧子2に対し上下動させる移動
装置13上に取り付けられている。移動装置13は、枠体15
内の中央部に電磁コイル部16が設けられ、この電磁コイ
ル部16に生じる電磁力によってテーブル12を移動させる
ように構成されている。すなわち、電磁コイル部16に嵌
挿されたコア部18が、電磁コイル部16に生じる電磁力に
よってテーブル側へ押し上げられる力を利用するもので
ある。
この伝達部について説明する。コア部18の上端部に形
成した突出部18aは、枠体15の上端部にボルト22によっ
て取り付けた円板ばね19の中央孔に挿入され、さらに上
部の保持板24の凹部24aに部分的に嵌合している。これ
らコア部18、円板ばね19、保持板24はこれらに挿通され
た締結螺子21によって一体的に固定される。コア部18
は、板ばね19の反力に抗しながら電磁力によって上方へ
移動する。保持板24上には、スペーサ25,…を介してテ
ーブル設置台26が設けられ、これにテーブル12が設置さ
れている。テーブル設置台26の裏面にはテーブルの変位
を検出する差動トランス式の変位検出器28が設けられて
いる。
上記のように構成された実施例装置における硬度測定
について説明する。まず、変位検出器7の出力信号に基
づいて電子天秤10を定位置に設定する。次いで電磁コイ
ル部16に通電すると、コア部18は円板ばね19の弾性力に
抗しながら上昇し、テーブル12に載置された試料8が圧
子2へ接近していく。この時、電磁コイル部16に生じる
電磁力と円板ばね19の反力は等しい。さらに、試料8が
上昇し圧子2と接触すると、変位検出器7が接触を検知
する。荷重発生部6のコイルが通電され、圧子2に負荷
機構10によって荷重が加えられる。この荷重量は荷重発
生部6に通電される電流量によって制御される。
試料8が圧子2に接触後、試料8はさらに圧子2へ押
しつけられるが、この時の試料8を押し上げる電磁コイ
ル16の電磁力は、円板ばね19の反力に圧子2の反力(負
荷機構10による荷重)を加えたものと等しくなる。この
時、円板ばね19の反力Wと円板ばね19の変位δの関係
は、δ=α・(Wa2/Et)(E:円板ばねの縦弾性係数、t:
円板ばねの厚さ、a:円板ばねの外側半径、b:円板ばねの
内側半径、α:支持方式による定数(b/a=0.4の時、α
=0.044)となる。したがって、円板ばね19の反力Wに
対して圧子に加わる荷重を非常に小さくすれば、電磁力
と円板ばねの変位はほぼ比例することになる。そこで、
電磁コイル16の電流を制御することによって円板ばね19
の変位速度、すなわち試料8の圧子2による押込変位速
度を制御することができる。また荷重発生部6への通電
は変位検出器7からの検出信号に応じて行なうことがで
きるので、ループ式の負荷制御が容易となる。
試料8が圧子2へ押しつけられ、圧子2が試料8の表
面に押込まれる際の荷重は、負荷機構10の荷重発生部6
のコイルに通電される電流値によって測定され、圧子2
が試料に押込まれる深さは、変位検出器28によって検出
されるテーブル12の変位と、変位検出器7によって検出
される圧子2の変位との差から測定される。
荷重−変位の特性は第2図における特性曲線Bによっ
て示される。すなわち、試料が圧子に接触した時点D1か
ら荷重が圧子に加えられ、しかも、圧子に加えられる荷
重は、負荷機構10の出力となり、従来のように電子天秤
によって圧子を試料表面へ移動させる際の天秤自体の初
期の変位に要する荷重が加わらないので、荷重測定にお
いて天秤のばね定数の補正を必要とせず、荷重が正確に
測定されることになる。また、天秤側で荷重を検出し時
点を接触点とすることから、従来のように接触検知前の
押込深さ誤差(第2図におけるD1−D0)を含まないこと
になる。したがって測定変位、荷重をD3,P3とすれば、
本装置による測定硬度値HはH=(K/(D3−P1))・P3
となり、正確な硬度測定を行なうことができる。
圧子の負荷機構とテーブルの移動機構はそれぞれ独立
して構成されるので、試料を載置するテーブルと圧子を
試料に押込む機構とがコ字形の機枠に組込まれた従来装
置のよう、圧子を試料表面に押込む際、試料機の機枠に
反力が働いて機枠が歪むために生じる変位の測定誤差を
なくすことができ、測定精度を高めることができる。
上記実施例では、テーブルを押し上げる手段を電磁力
を利用したもので構成したが、油圧、スクリュー等を用
いて構成することもできる。
[発明の効果]
上記説明から明らかなように、本発明にかかる押込硬
さ試験装置によれば、圧子と試料の接触時点が正確に検
出でき、しかも電子天秤等の負荷手段によっても圧子に
加えられる荷重を高精度に検出できる。したがって天秤
のばね定数を考慮した補正を行なうことなく正確に荷重
を検出できるので、試料の硬度測定を正確に行うことが
できるようになった。また、試料側を円弧状ではなく直
線的に移動させて圧子に接触させるので、変位速度をほ
ぼ一定として、高精度の検出を行うことが可能となっ
た。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indentation hardness tester for applying a test load to an indenter and obtaining the hardness of the sample from the indentation depth of the indenter into the sample surface at that time. . [Prior art] An indenter with a sharp tip such as a quadrangular pyramid is pressed into the surface of a test piece, and the indentation hardness test, which determines the surface hardness from the indentation depth and load at that time, is used as one of the hardness measurement methods. Have been. In this indentation hardness tester, a sample is placed on a sample table, the pressure is lowered with respect to the sample at a fixed position, the point at which the indenter contacts the sample surface is detected, and the load at this point is measured. In addition to the point O of the load, the displacement of the indenter thereafter is detected as the indentation depth. [Problems to be Solved by the Invention] In the conventional indentation hardness tester, when the indenter contacts the sample surface, the speed of the indenter decreases due to the resistance of the sample, so that the speed of the indenter is reduced to a certain speed or less. Since the time point was detected as the contact point, an error occurred between the time point and the actual contact time point. As a means for loading the indenter, an electronic balance or the like is used, and a spring constant of the load transmitting unit is added. Therefore, there is a difference between the load output of the balance and the load actually applied to the indenter. Had occurred. For example, in the characteristic diagram showing the relationship between the load and the displacement shown in FIG. 2, the case where the curve A is based on the conventional method is shown. In the figure, the displacement and load at the time when the indenter actually contacts the sample are D 0 and P 0 , but the points to be measured are D 1 to which the detection error of the indenter contact is added, and the displacement of the balance is required. P 1 with load (indicated by the dashed line in the figure)
The displacement and load measurement points at the end of pushing are D 2 , P 4
Becomes The measured hardness value H 1 based on these measured values is H 1 = (K /
(D 2 −D 1 ) 2 ) · (P 4 −P 1 ), and the theoretical value H 0 is calculated by considering the load P 2 required for displacement of the balance with respect to the displacement point D 2 , H 0 =
(K / (D 2 −D 0 ) 2 ) · (P 4 −P 2 ). Therefore, in the measurement by the conventional device, there is a problem that the load measurement includes an error in the detection of the contact point and needs to be corrected, so that an accurate hardness measurement cannot be performed. Further, although the hardness can be measured at a constant load increasing speed, there is a problem that a constant displacement load cannot be performed. [Means for Solving the Problems] In order to solve the above problems, the present invention employs the following configuration. That is, the indentation hardness test apparatus according to the present invention comprises a load means for applying a load to the indenter so as to hold the indenter at a predetermined position against a force applied when the sample is engaged, and A load detecting means for detecting a load applied to the indenter, a movable table for linearly moving the placed sample toward the indenter held at the predetermined position, and contacting the indenter; and a movable table. Driving means for driving the movable table, displacement detecting means for detecting the displacement of the movable table, and detecting contact between the indenter and the sample from a reaction force received by the indenter when the sample contacts the indenter by movement of the movable table. Means. [Operation] When the sample placed on the movable table which moves linearly by the driving means comes into contact with the indenter held at a predetermined position, the load detecting means by the reaction force received by the indenter detects the load. The time of load detection can be used as the contact point. When the movable table is further moved to the indenter side after the contact between the indenter and the sample, the indenter is pushed into the surface of the sample, but the displacement of the movable table at this time is detected by the displacement detecting means, and the depth of pushing of the sample is determined. You can ask. Further, the load applied to the sample can be detected by the load detector. Embodiment FIG. 1 is a schematic diagram showing one embodiment of the present invention.
The indentation hardness tester 1 has a roberval mechanism 9 composed of a lever 3 supported by a fulcrum A and a load lever 4 supported by a base point B and transmitting the load of a load generating unit 6 to the indenter 2. The distal ends of the levers 3 and 4 are provided with a vertical indenter holding rod 5 for holding the indenter 2 directly above the sample 8.
Is pivoted to. The load lever 4, the load generator 6, and the like constitute an electronic balance type load mechanism 10. The indenter holding rod 5 is provided with a differential transformer type displacement detector 7 for detecting the displacement of the indenter 2. The sample 8 is placed on the table 12,
Is mounted on a moving device 13 for moving the placed sample 8 up and down with respect to the indenter 2. The moving device 13 includes a frame 15
An electromagnetic coil section 16 is provided at a central portion of the inside, and the table 12 is configured to be moved by an electromagnetic force generated in the electromagnetic coil section 16. In other words, the core portion 18 inserted into the electromagnetic coil portion 16 utilizes a force pushed up to the table side by the electromagnetic force generated in the electromagnetic coil portion 16. This transmission unit will be described. The protruding portion 18a formed at the upper end of the core 18 is inserted into the center hole of the disc spring 19 attached to the upper end of the frame 15 with a bolt 22, and is partially inserted into the recess 24a of the upper holding plate 24. Mated. The core 18, the disc spring 19, and the holding plate 24 are integrally fixed by a fastening screw 21 inserted therein. Core part 18
Move upward by electromagnetic force while resisting the reaction force of the leaf spring 19. On the holding plate 24, a table mounting table 26 is provided via spacers 25,..., And the table 12 is mounted on the table mounting table 26. A differential transformer type displacement detector 28 for detecting the displacement of the table is provided on the back surface of the table mounting table 26. A description will be given of the hardness measurement in the embodiment apparatus configured as described above. First, the electronic balance 10 is set to a fixed position based on the output signal of the displacement detector 7. Next, when the electromagnetic coil section 16 is energized, the core section 18 rises while resisting the elastic force of the disc spring 19, and the sample 8 placed on the table 12 approaches the indenter 2. At this time, the electromagnetic force generated in the electromagnetic coil section 16 and the reaction force of the disc spring 19 are equal. Further, when the sample 8 rises and comes into contact with the indenter 2, the displacement detector 7 detects the contact. The coil of the load generator 6 is energized, and a load is applied to the indenter 2 by the load mechanism 10. The amount of this load is controlled by the amount of current supplied to the load generator 6. After the sample 8 comes into contact with the indenter 2, the sample 8 is further pressed against the indenter 2. At this time, the electromagnetic force of the electromagnetic coil 16 that pushes up the sample 8 depends on the reaction force of the indenter 2 (load (The load by the mechanism 10). At this time, the relationship between the reaction force W of the disc spring 19 and the displacement δ of the disc spring 19 is δ = α · (Wa 2 / Et) (E: longitudinal elastic coefficient of the disc spring, t:
Thickness of disc spring, a: outside radius of disc spring, b: inside radius of disc spring, α: constant by supporting method (when b / a = 0.4, α
= 0.044). Therefore, if the load applied to the indenter with respect to the reaction force W of the disc spring 19 is made very small, the electromagnetic force and the displacement of the disc spring become almost proportional. Therefore,
The disc spring 19 is controlled by controlling the current of the electromagnetic coil 16.
, That is, the displacement speed of the sample 8 pushed by the indenter 2 can be controlled. In addition, since the load generator 6 can be energized in response to a detection signal from the displacement detector 7, loop-type load control is facilitated. The load when the sample 8 is pressed against the indenter 2 and the indenter 2 is pressed into the surface of the sample 8 is applied to the load generating unit 6 of the load mechanism 10.
Of the indenter 2
The depth to which the sample is pushed into the sample is measured from the difference between the displacement of the table 12 detected by the displacement detector 28 and the displacement of the indenter 2 detected by the displacement detector 7. The load-displacement characteristic is shown by a characteristic curve B in FIG. That is, the sample load from the point D 1 in contact with the indenter is applied to the indenter, moreover, the load applied to the indenter, as the output of the loading mechanism 10, when moving the indenter into the specimen surface by conventional electronic balances as Since the load required for the initial displacement of the balance itself is not applied, it is not necessary to correct the spring constant of the balance in the load measurement, and the load is accurately measured. In addition, since the load is detected on the balance side and the point in time is set as the contact point, it does not include the indentation depth error (D 1 -D 0 in FIG. 2) before the contact detection as in the related art. Therefore, if the measured displacement and load are D 3 and P 3 ,
The hardness H measured by this device is H = (K / (D 3 −P 1 )) · P 3
And accurate hardness measurement can be performed. Since the indenter loading mechanism and the table moving mechanism are configured independently of each other, the indenter is used as in the conventional device in which the table on which the sample is placed and the mechanism for pushing the indenter into the sample are assembled in a U-shaped machine frame. When the sample is pushed into the sample surface, a reaction force acts on the machine frame of the sample machine, and the measurement error of the displacement caused by the machine frame being distorted can be eliminated, and the measurement accuracy can be improved. In the above embodiment, the means for pushing up the table is constituted by using electromagnetic force. However, the means for pushing up the table may be constituted by using a hydraulic pressure, a screw or the like. [Effects of the Invention] As is clear from the above description, according to the indentation hardness tester according to the present invention, the point of contact between the indenter and the sample can be accurately detected, and the indenter can be applied to the indenter by a load means such as an electronic balance. The applied load can be detected with high accuracy. Therefore, since the load can be detected accurately without performing correction in consideration of the spring constant of the balance, the hardness measurement of the sample can be performed accurately. In addition, since the sample side is moved in a straight line, not in an arc, and is brought into contact with the indenter, it is possible to perform the detection with high accuracy while keeping the displacement speed almost constant.
【図面の簡単な説明】
第1図は本発明にかかる押込硬さ試験装置の1実施例を
あらわす概略図、第2図は従来装置と実施例装置とによ
り、測定される荷重−変位の特性を示す図である。
1……押込硬さ試験装置、2……圧子
8……試料、10……負荷機構
12……テーブル、13……テーブル移動機構
16……電磁コイル、19……円板ばね
28……変位検出器BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing one embodiment of an indentation hardness test apparatus according to the present invention, and FIG. 2 is a load-displacement characteristic measured by a conventional apparatus and an embodiment apparatus. FIG. 1 ... indentation hardness tester, 2 ... indenter 8 ... sample, 10 ... load mechanism 12 ... table, 13 ... table moving mechanism 16 ... electromagnetic coil, 19 ... disk spring 28 ... displacement Detector
Claims (1)
圧子を所定位置に保持するように圧子に荷重を負荷する
負荷手段と、この負荷手段により圧子に加えられる荷重
を検出する荷重検出手段と、載置された試料を前記所定
位置に保持されている圧子側に直線的に移動させ、該圧
子に当接させる可動テーブルと、該可動テーブルを駆動
する駆動手段と、前記可動テーブルの変位を検出する変
位検出手段と、前記可動テーブルの移動により試料が圧
子に接触したときに該圧子が受ける反力から圧子と試料
との接触を検知する手段とを備えてなる押込硬さ試験装
置。(57) [Claims] Load means for applying a load to the indenter so as to hold the indenter at a predetermined position against the force applied by the sample being engaged, load detecting means for detecting the load applied to the indenter by the load means, A movable table that linearly moves the placed sample toward the indenter held at the predetermined position and makes contact with the indenter; a driving unit that drives the movable table; and a displacement of the movable table is detected. And a means for detecting contact between the indenter and the sample from a reaction force received by the indenter when the sample comes into contact with the indenter by movement of the movable table.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62078156A JP2737120B2 (en) | 1987-03-30 | 1987-03-30 | Indentation hardness tester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62078156A JP2737120B2 (en) | 1987-03-30 | 1987-03-30 | Indentation hardness tester |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63241445A JPS63241445A (en) | 1988-10-06 |
JP2737120B2 true JP2737120B2 (en) | 1998-04-08 |
Family
ID=13654055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62078156A Expired - Fee Related JP2737120B2 (en) | 1987-03-30 | 1987-03-30 | Indentation hardness tester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2737120B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5879249U (en) * | 1981-11-24 | 1983-05-28 | セイコーエプソン株式会社 | Variable load hardness tester |
JPS60115830A (en) * | 1983-11-29 | 1985-06-22 | Shimadzu Corp | Hardness meter |
JPS6199039U (en) * | 1984-12-05 | 1986-06-25 | ||
JPS6256840A (en) * | 1985-09-05 | 1987-03-12 | Shinei Seisakusho:Kk | Hardness meter |
-
1987
- 1987-03-30 JP JP62078156A patent/JP2737120B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63241445A (en) | 1988-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5616857A (en) | Penetration hardness tester | |
US6484570B2 (en) | Impression forming mechanism and hardness testing apparatus | |
JP2737120B2 (en) | Indentation hardness tester | |
US4116048A (en) | Hardness tester | |
JP3617156B2 (en) | Indenter load device in micro indentation type hardness tester | |
JP3624607B2 (en) | Surface hardness measuring device | |
US4182192A (en) | Beam type hardness tester for elastomeric material and method of testing | |
JP2681913B2 (en) | Indentation hardness test method and device | |
JP2001133376A (en) | Force calibrating mechanism for hardness testing machine and force calibrating method for hardness testing machine | |
JPH11230875A (en) | Micro spring constant measuring device and measuring method therefor | |
JP2599148Y2 (en) | Thickness gauge | |
JP2829984B2 (en) | Ultra micro hardness tester | |
JPH0663956B2 (en) | Micro area strength tester | |
JPS5832342B2 (en) | rubber hardness meter | |
US1531111A (en) | Extensometer | |
JPH0714859Y2 (en) | Micro indentation type material physical property tester | |
US2972250A (en) | Surface testing apparatus | |
JP2002055035A (en) | Equipment and method for examining durometer hardness meter | |
SU949390A1 (en) | Device for testing samples for creeping in bending | |
JPH05332917A (en) | Friction/abrasion tester | |
JPH0648236B2 (en) | Micro hardness tester | |
JPH10142130A (en) | Flexure measuring apparatus using floating measuring frame in bending test by material testing machine | |
JPS56106140A (en) | Friction testing machine for light load | |
JPH0720563Y2 (en) | Bending test device | |
JP2505084Y2 (en) | Bending tester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |