[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2727887B2 - Horizontal continuous casting method - Google Patents

Horizontal continuous casting method

Info

Publication number
JP2727887B2
JP2727887B2 JP23044792A JP23044792A JP2727887B2 JP 2727887 B2 JP2727887 B2 JP 2727887B2 JP 23044792 A JP23044792 A JP 23044792A JP 23044792 A JP23044792 A JP 23044792A JP 2727887 B2 JP2727887 B2 JP 2727887B2
Authority
JP
Japan
Prior art keywords
slab
center
cooling
casting
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23044792A
Other languages
Japanese (ja)
Other versions
JPH0671389A (en
Inventor
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23044792A priority Critical patent/JP2727887B2/en
Publication of JPH0671389A publication Critical patent/JPH0671389A/en
Application granted granted Critical
Publication of JP2727887B2 publication Critical patent/JP2727887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ブルームまたはビレ
ットの水平連続鋳造法、特に、炭素鋼、低合金鋼、ステ
ンレス鋼、高合金鋼、超合金等の例えば熱間押出し用ブ
ルームまたはビレットを水平連続鋳造する際に、鋳片の
中心部に発生するキャビティやポロシティの存在範囲お
よび大きさを小さく抑えることが可能な水平連続鋳造法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal continuous casting method for blooms or billets, and more particularly, to a method for horizontally casting blooms or billets for hot extrusion of carbon steel, low alloy steel, stainless steel, high alloy steel, superalloy and the like. The present invention relates to a horizontal continuous casting method capable of suppressing the existence range and size of cavities and porosity generated at the center of a slab during continuous casting.

【0002】[0002]

【従来の技術】一般にユジーン・セジュルネ法等の熱間
押出し製管法においては、製管の際に中央部が穿孔され
るので穿孔径よりキャビティの存在径が小さい場合に
は、キャビティは穿孔によって除去され品質上の問題は
生じない。しかし、キャビティの存在径が穿孔径より大
きい場合、そのまま製管すると管内面疵の原因となり、
管の品質低下を招く。一方、管内面疵の発生を防止する
ために、穿孔時に穿孔径を大きくしてポロシティを除去
すると穿孔分だけ歩留りロスを生じ、経済性が悪くな
る。
2. Description of the Related Art Generally, in a hot extrusion pipe making method such as the Ugine-Sejournet method, the center portion is drilled at the time of pipe making. Removed, no quality problem. However, if the existing diameter of the cavity is larger than the diameter of the perforation, if the pipe is made as it is, it will cause flaws on the inner surface of the pipe,
This leads to poor quality of the tube. On the other hand, if the porosity is removed by increasing the diameter of the hole at the time of drilling in order to prevent the occurrence of a flaw on the inner surface of the pipe, the yield loss is caused by the amount of the hole and the economic efficiency is deteriorated.

【0003】水平連続鋳造設備は、垂直型や湾曲型の連
続鋳造設備と比較して設備の高さが低く、大がかりな鋳
片支持機構が不要であるため、設備費が少なくてすみ、
かつ保守点検が容易である等の利点がある。このため連
続鋳造化が遅れていた小ロット、多品種のステンレス鋼
などを対象として実用化が図られてきた。さらに、水平
連続鋳造では特に高温での曲げや矯正を必要としないた
めに、この方法による連続鋳造化は、熱間での割れ感受
性の強い高合金鋼やNi基超合金等について近年さらに推
進されようとしている。
[0003] Horizontal continuous casting equipment is lower in height than vertical and curved continuous casting equipment, and does not require a large slab support mechanism.
There are also advantages such as easy maintenance and inspection. For this reason, practical use has been attempted for small lots, various kinds of stainless steel, etc., for which continuous casting has been delayed. Furthermore, since continuous continuous casting does not require bending or straightening at high temperatures, continuous casting by this method has been further promoted in recent years for high alloy steels and Ni-base superalloys that are highly sensitive to hot cracking. I am trying to do.

【0004】しかし、水平連続鋳造においては、前記の
ように設備の高さが低いので鋳片の最終凝固位置近傍の
溶鋼静圧が小さくなるため、鋳片の中心部に凝固収縮に
よるひけ巣が発生し易く、中心部にキャビティが残存し
がちである。この中心部のキャビティは、鋳片の断面積
または厚さ、あるいは鋳造速度が大きくなるほど発生し
易くなり、キャビティの存在径も大きくなる傾向にあ
る。またステンレス鋼、高合金鋼、Ni基超合金等のよう
に、一般鋼と比較して低融点でかつ固液共存相の温度域
が広いものは、キャビティがさらに発生し易くなる。
However, in horizontal continuous casting, since the height of the equipment is low as described above, the static pressure of molten steel near the final solidification position of the slab becomes small, so that a sink cavity due to solidification shrinkage is formed at the center of the slab. It is easy to occur and the cavity tends to remain in the center. The cavity at the center tends to be generated as the sectional area or thickness of the slab or the casting speed increases, and the existing diameter of the cavity tends to increase. In addition, such as stainless steel, high alloy steel, and Ni-based superalloy, which have a lower melting point and a wider solid-liquid coexisting phase temperature range than general steel, are more likely to generate cavities.

【0005】上記の問題点を解決するために、特開昭
57−75258 号公報には、リニア型電磁攪拌装置を少なく
とも二段設置し、クレータエンド側に等軸晶片を移動さ
せることによってセンターポロシティを防止する方法が
提案されている。
In order to solve the above problems, Japanese Patent Application Laid-Open
Japanese Patent Application Laid-Open No. 57-75258 proposes a method in which at least two stages of a linear electromagnetic stirrer are installed and a center porosity is prevented by moving equiaxed crystal pieces to a crater end side.

【0006】また、特開昭59−133957号公報には、少
なくとも二つの回転磁界型電磁攪拌装置を鋳片引抜速度
と第1段電磁攪拌装置の後端部における液芯値とから定
まる一定間隔内に直列に配置して、未凝固溶湯を攪拌す
ることにより等軸晶片の沈降を防止し、鋳片中心部のミ
クロキャビティを改善する方法が提案されている。これ
らの方法はいずれも未凝固溶湯中の等軸晶の核または等
軸晶片を電磁攪拌により分散させようとするものであ
る。しかしながら、これらの従来技術ではセンターポロ
シティおよびキャビティの防止は十分とは言えなかっ
た。
Japanese Patent Application Laid-Open No. Sho 59-133957 discloses that at least two rotating magnetic field type electromagnetic stirrers are provided at a fixed interval determined from a slab drawing speed and a liquid core value at the rear end of the first stage electromagnetic stirrer. A method has been proposed in which the unsolidified molten metal is agitated to prevent sedimentation of equiaxed crystal pieces and improve the microcavity at the center of the slab. All of these methods are intended to disperse equiaxed crystal nuclei or equiaxed crystal pieces in an unsolidified molten metal by electromagnetic stirring. However, with these prior arts, prevention of center porosity and cavity was not sufficient.

【0007】[0007]

【発明が解決しようとする課題】このような従来技術の
問題点を解決すベく、本発明者は、先に特願平3−23
2660号として3段の電磁攪拌を行い、鋳片中心部のポロ
シティ、キャビティの形成を抑制する方法を提案した。
しかし、生産性向上のために鋳造速度を増加した場合に
は効果が不十分であることが判明した。したがって、本
発明の一般的目的は、センターポロシティ、キャビティ
を解消した高速連続鋳造を可能とする方法を開発するこ
とである。
In order to solve the problems of the prior art, the present inventor has previously filed Japanese Patent Application No. Hei 3-23.
No. 2660 proposed a method of performing three-stage electromagnetic stirring to suppress porosity and cavity formation at the center of the slab.
However, it was found that the effect was insufficient when the casting speed was increased to improve productivity. Accordingly, a general object of the present invention is to develop a method that enables high-speed continuous casting without center porosity and cavities.

【0008】そこで、別途出願によって本発明者は、1
段目の電磁攪拌を鋳型内の凝固開始位置に相当する位置
で行い、2段目の電磁攪拌は鋳型出口と鋳片中心の固相
率が0を超えない位置との間で行い、かつ、鋳片の中心
部の固相率が0を超えない時点から鋳片の中心部の固相
率が1.0 となるまでの間で鋳片表面を強冷却する水平連
続鋳造法を提案した。
[0008] Accordingly, the present inventor has filed a separate application to
The second-stage electromagnetic stirring is performed at a position corresponding to the solidification start position in the mold, and the second-stage electromagnetic stirring is performed between the mold outlet and a position at which the solid fraction at the center of the slab does not exceed 0, and A horizontal continuous casting method was proposed in which the slab surface was strongly cooled from the time when the solid fraction at the center of the slab did not exceed 0 until the solid fraction at the center of the slab reached 1.0.

【0009】しかしながら、この方法にも次のような問
題点があるのが判明した。 (1) 水平連続鋳造においては、鋳片サイズ、鋳造速度、
二次冷却条件によって鋳片中心部の凝固開始位置が大き
く変わる。 (2) 鋳片中心部の凝固開始位置に影響を与える因子の
内、鋳造速度は鋳造中においても変動するのが常であ
る。特に鋳造初期の段階は、最初、低鋳造速度から徐々
に速度を上げながら、定常速度とするのが一般的であ
る。 (3) 鋳片中心部が丁度凝固を開始した点より、冷却を開
始するのが最も効果的である。
However, it has been found that this method has the following problems. (1) In horizontal continuous casting, slab size, casting speed,
The solidification start position at the center of the slab changes greatly depending on the secondary cooling conditions. (2) Among the factors affecting the solidification start position at the center of the slab, the casting speed usually fluctuates even during casting. In particular, in the early stage of casting, it is general to set a steady speed while gradually increasing the speed from a low casting speed. (3) It is most effective to start cooling from the point where the slab center just started to solidify.

【0010】すなわち、この発明の具体的目的は、鋳造
初期から定常速度に至るまで常に鋳片中心部が凝固を開
始した位置より強冷却を開始するように構成すること
で、センターポロシティ、キャビティを解消した連続鋳
造を可能とする方法を開発することである。
[0010] That is, a specific object of the present invention is to form the center porosity and the cavity so that the center of the slab always starts to cool strongly from the position where solidification has started from the initial casting to the steady speed. The aim is to develop a method that enables continuous casting that has been eliminated.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記課題を
解決するために種々、検討、実験を行った結果、以下の
手段によれば解決可能であることを見い出した。 (1) 鋳片中心部が凝固を開始する位置を求める間接的方
法として、鋳造中の鋳片の表面温度を常に検知する。 (2) 鋳片中心部が丁度、凝固を開始した時点で冷却を開
始できるように、鋳片の長手方向に移動可能な冷却装置
を設け、鋳片中心部の凝固開始位置の変動に応じて移動
させる。
The present inventor has conducted various studies and experiments in order to solve the above-mentioned problems, and as a result, has found that the following means can solve the problems. (1) As an indirect method for determining the position where the slab center starts to solidify, the surface temperature of the slab during casting is always detected. (2) Provide a cooling device that can move in the longitudinal direction of the slab, so that cooling can be started at the point when the slab center just started to solidify, according to the change in the solidification start position of the slab center. Move.

【0012】ここに、この発明の要旨とするところは、
水平連続鋳造によってビレットまたはブルームを製造す
る方法であって、少なくとも2段の回転磁界型電磁攪拌
装置を直列に配置し、1段目の電磁攪拌は鋳型内の凝固
開始位置に相当する位置で行い、2段目の電磁攪拌は鋳
型出口と鋳片中心の固相率が0を超えない位置との間で
行い、かつ、これらの電磁攪拌装置の下流側で鋳片の中
心部固相率が0を超える時点から鋳片の中心部の固相率
が1.0となるまでの間に、鋳片表面に凝固収縮量を補
償する圧縮力を加えることのできる強冷却を鋳片表面に
行うとともに、その強冷却を行う際に、鋳片の表面温度
と鋳造速度を検知しつつ、鋳片の長手方向に移動可能な
冷却装置により、鋳片中心部の固相率が0を超える位置
から冷却を開始することを特徴とする水平連続鋳造法で
ある。
Here, the gist of the present invention is as follows.
A method for producing a billet or bloom by horizontal continuous casting, wherein at least two stages of a rotating magnetic field type electromagnetic stirrer are arranged in series, and the first stage of electromagnetic stirring is performed at a position corresponding to a solidification start position in a mold. The second-stage electromagnetic stirring is performed between the exit of the mold and the position where the solid fraction at the center of the slab does not exceed 0, and the solid fraction at the center of the slab is downstream of these electromagnetic stirring devices. During the period from the point when the temperature exceeds 0 to the time when the solid phase ratio at the center of the slab becomes 1.0 , the solidification shrinkage is compensated for on the slab surface.
Strong cooling that can apply compensating compressive force to the slab surface
When performing the strong cooling, the cooling device capable of moving in the longitudinal direction of the slab while detecting the surface temperature and the casting speed of the slab, the position where the solid fraction of the slab center exceeds 0 This is a horizontal continuous casting method characterized by starting cooling from the beginning.

【0013】この発明において、「固相率」というの
は、固液共存相である溶湯のある領域中の全容積に占め
る固相の体積比率をいう。固相率と温度とは1対1の対
応関係があり、液相温度以上では固相率は0、固相温度
以下では固相率は1である。この固相率の分布は、鋳片
内の温度分布を実測することで、または伝熱計算で求め
ることによって算出できる。
In the present invention, the term "solid phase ratio" refers to the volume ratio of the solid phase to the total volume in a certain region of the melt which is a solid-liquid coexisting phase. There is a one-to-one correspondence between the solid phase ratio and the temperature. The solid phase ratio is 0 above the liquidus temperature, and 1 below the solidus temperature. The distribution of the solid fraction can be calculated by actually measuring the temperature distribution in the slab or by calculating the heat transfer.

【0014】[0014]

【作用】次に、添付図面を参照しながら、この発明の作
用をさらに具体的に説明する。図1にこの発明を実施す
るための装置例を、図2に冷却装置移動システムの構成
を示す。図中、一旦タンディッシュ4に蓄えられた溶湯
10は、鋳型5、二次冷却帯6を経て冷却され、凝固殻9
を成長させ、鋳片8となって末期冷却装置である移動式
冷却装置3、例えば移動式スプレー冷却装置を経て、ピ
ンチロール( 図示せず)で水平方向(図面向かって右手
方向) に引抜かれる。冷却装置3はレールの上に載置さ
れ、移動自在に構成される。
Next, the operation of the present invention will be described more specifically with reference to the accompanying drawings. FIG. 1 shows an example of an apparatus for carrying out the present invention, and FIG. 2 shows a configuration of a cooling device moving system. In the figure, the molten metal once stored in the tundish 4
10 is cooled through the mold 5 and the secondary cooling zone 6,
Is grown and turned into a slab 8, which is drawn in a horizontal direction (right-hand direction in the drawing) by a pinch roll (not shown) through a mobile cooling device 3, which is a terminal cooling device, for example, a mobile spray cooling device. . The cooling device 3 is mounted on a rail and is configured to be movable.

【0015】この発明にしたがって、直径265 mm×長さ
300mm の鋳型を用いて、鋳造速度1.2 m/min でステンレ
ス鋼を鋳造した例を以下に説明する。この発明によれ
ば、第1段目の鋳型内の電磁攪拌装置1と、第2段目の
電磁攪拌装置2と、移動式冷却装置3とが所定に位置に
設けられている。なお、これらに電磁攪拌装置の仕様は
特願平3−232660号に示したものとほぼ同様であって、
例えば後述の表1にまとめて示す通りである。
According to the invention, a diameter of 265 mm × length
An example of casting stainless steel at a casting speed of 1.2 m / min using a 300 mm mold will be described below. According to the present invention, the electromagnetic stirrer 1 in the first stage mold, the electromagnetic stirrer 2 in the second stage, and the mobile cooling device 3 are provided at predetermined positions. The specifications of the electromagnetic stirrer are almost the same as those shown in Japanese Patent Application No. 3-232660,
For example, as shown in Table 1 below.

【0016】移動式冷却装置であるスプレー冷却装置3
は、スプレー全体が架台に乗っており、この架台は鋳片
の長手方向に、鋳片の軸と平行に敷設したレール上を移
動するようになっている。放射温度計11で鋳片の表面温
度を測定する。表面温度の測定は少なくとも1ヶ所あれ
ば良く、さらにシステムの精度を向上する意味で2ヶ所
以上設けても良い。12はローラ接触式の鋳造速度検知装
置である。
Spray cooling device 3 which is a mobile cooling device
The entire spray is mounted on a gantry, and the gantry moves on a rail laid in parallel with the axis of the slab in the longitudinal direction of the slab. The surface temperature of the slab is measured by the radiation thermometer 11. The surface temperature may be measured at at least one location, and may be provided at two or more locations to improve the accuracy of the system. Reference numeral 12 is a roller contact type casting speed detecting device.

【0017】1段目、2段目の電磁攪拌について、それ
を行う位置をこの発明にあって上述のように規定する理
由は次の通りである。まず、第1段の電磁攪拌装置1は
その電磁攪拌有効長さが例えば200mm であり、鋳型5内
にあって初期の凝固殻9が生成し始める位置の溶湯10を
十分に攪拌できるように鋳型5の外周近傍に配置され
る。
The reason why the positions of the first and second stages of electromagnetic stirring are defined in the present invention as described above is as follows. First, the first-stage electromagnetic stirrer 1 has an effective electromagnetic stirring length of, for example, 200 mm, and a mold so that the molten metal 10 in the mold 5 at the position where the initial solidified shell 9 starts to be formed can be sufficiently stirred. 5 is arranged near the outer periphery.

【0018】このように、鋳型5内の凝固開始位置に相
当する位置で電磁攪拌を行う理由は、冷却速度が最も早
い時期に凝固する初期の凝固殻9の前面に溶湯10の攪拌
作用を及ぼすことにより、微細な等軸晶の核を多数溶湯
10内に分散遊離させることができるからである。なお、
第1段の電磁攪拌の強度は、この例では例えば中心磁束
密度が1200ガウス、磁場回転数が3Hzの回転磁界を印加
して得られるものであるが、これより大きい磁束密度で
回転数をあまり大きくすると負偏析が凝固界面に生じ、
鋳片の均一性を阻害するので望ましくない。
As described above, the reason why the electromagnetic stirring is performed at the position corresponding to the solidification start position in the mold 5 is that the molten metal 10 is agitated on the front surface of the solidified shell 9 which solidifies at the time when the cooling rate is the fastest. By this, many nuclei of fine equiaxed crystals are melted
This is because they can be dispersed and released within the same. In addition,
In this example, the intensity of the first-stage electromagnetic stirring is obtained by applying a rotating magnetic field having a center magnetic flux density of 1200 gauss and a magnetic field rotation speed of 3 Hz. Negative segregation occurs at the solidification interface if
This is undesirable because it impairs the uniformity of the slab.

【0019】次に、第2段の電磁攪拌装置2は、その電
磁攪拌有効長さが例えば300mm であり、電磁攪拌装置2
の位置では鋳片の中心の固相率(fs)が0 であり、鋳片中
心には液相だけの溶湯が存在する。このように第2段の
電磁攪拌位置を鋳型出口と鋳片中心の固相率が0 を越え
ない位置との間に設定する理由は、この間で攪拌を行う
ことにより未凝固溶湯のスーパーヒートを均一化させ
て、溶湯10内に分散遊離した等軸晶が成長して粒径が増
大するのを防止するとともに凝固殻9の前面で新たに等
軸晶の核を発生させて微細な等軸晶の増加を図り、さら
に等軸晶の沈降を防止することができるからである。
Next, the electromagnetic stirring device 2 of the second stage has an effective electromagnetic stirring length of, for example, 300 mm.
In the position of, the solid phase fraction (fs) at the center of the slab is 0, and there is a molten metal in the center of the slab only in the liquid phase. The reason why the electromagnetic stirring position of the second stage is set between the exit of the mold and the position where the solid phase ratio at the center of the slab does not exceed 0 is that the superheat of the unsolidified molten metal is reduced by stirring during this period. Uniform to prevent the growth of the equiaxed crystals dispersed and released in the melt 10 to increase the grain size, and to generate new equiaxed nuclei on the front surface of the solidified shell 9 to produce fine equiaxed crystals. This is because the number of crystals can be increased and sedimentation of equiaxed crystals can be prevented.

【0020】一方、鋳片8の中心の固相率が0 を越えた
状態では、溶湯10のスーパーヒートが利用できなくな
り、流動抵抗が急激に大きくなるので、上述のような効
果は期待できなくなる。この発明によれば鋳片8の中心
部固相率が0〜1の間において強冷却を行うのであっ
て、その際、鋳片8の表面温度と鋳造速度を検知するこ
とで、鋳片中心部の固相率が0の位置を求める。
On the other hand, when the solid fraction at the center of the slab 8 exceeds 0, the superheat of the molten metal 10 cannot be used and the flow resistance rapidly increases, so that the above effects cannot be expected. . According to the present invention, strong cooling is performed when the solid phase ratio at the center of the slab 8 is between 0 and 1. At this time, the surface temperature and the casting speed of the slab 8 are detected, so that the center of the slab 8 is detected. The position where the solid fraction of the part is 0 is determined.

【0021】図2は、鋳片中心部の凝固開始位置を決定
するシステムの概要を示すもので、図2に示すように、
オンラインで鋳片の表面温度と鋳造速度のデータがシス
テムの電算機にインプットされ、伝熱計算により鋳片の
温度分布が各時間毎に計算される。この電算機には、鋳
片サイズ、二次冷却条件、鋳造鋼種の物性等、伝熱計算
に必要なデータが事前にインプットされている。この伝
熱計算の精度を上げるために、常に鋳片の表面温度を計
測し、計算結果と合致するようシステム上のパラメータ
を決定している。
FIG. 2 shows an outline of a system for determining a solidification start position at the center of a slab. As shown in FIG.
The slab surface temperature and casting speed data are input online to the computer of the system, and the slab temperature distribution is calculated hourly by heat transfer calculation. Data necessary for heat transfer calculation, such as slab size, secondary cooling conditions, and physical properties of the cast steel type, are input to this computer in advance. In order to improve the accuracy of the heat transfer calculation, the surface temperature of the slab is constantly measured, and parameters on the system are determined so as to match the calculation result.

【0022】伝熱計算結果より鋳片の温度分布が分か
り、それに基づいて鋳片中心部の温度を推定し、これを
単位時間毎に行い、その都度中心部の凝固位置を推定す
る。そして、このような鋳片の凝固開始位置の情報がス
プレー移動制御装置にアウトプットされ、移動を行う。
鋳造開始から定常状態にまで鋳造速度が増加する過程で
は凝固位置の変動は見られるが、定常状態に達成後は、
ほぼ一定の位置で鋳片中心部の凝固が開始する。
From the heat transfer calculation result, the temperature distribution of the slab is found, and the temperature of the center of the slab is estimated based on the temperature distribution. This is performed for each unit time, and the solidification position of the center is estimated each time. Then, information on such a solidification start position of the slab is output to the spray movement control device, and the slab is moved.
In the process of increasing the casting speed from the start of casting to the steady state, the solidification position fluctuates, but after achieving the steady state,
Solidification of the center of the slab starts at a substantially constant position.

【0023】以上のように、鋳造中の鋳造速度の変動、
鋳片サイズ、二次冷却条件、鋼種の変更に応じて、鋳片
中心部が凝固を開始する位置を検知し、丁度鋳片中心部
が凝固を開始した時点から鋳片表面の末期強冷却を開始
するのである。
As described above, the fluctuation of the casting speed during casting,
In accordance with changes in slab size, secondary cooling conditions, and steel type, the position where the slab center starts to solidify is detected, and the terminal intensive cooling of the slab surface is started just after the slab center starts to solidify. It starts.

【0024】このように凝固末期において鋳片の表面を
冷却する理由は、表面を冷却することにより、表面が収
縮し、その結果鋳片の内部に圧縮力が加わり、キャビテ
イまたはポロシティの原因となる凝固収縮量を補償する
ことができ、これらの発生を抑制することができる。末
期の電磁攪拌が等軸晶の合体によるブリッジングを防止
するのに効果があるのに対し、この発明による方法で
は、さらに積極的に圧縮力を加えることにより、キャビ
ティまたはポロシティの生成そのものを抑制しようとす
るものである。したがって、このときに冷却能、つまり
この発明に云う「強冷却」はそのような圧縮力を加える
ことができる冷却能ということができ、具体的には例え
ば 0.5〜2℃/sec程度が望ましい。
The reason for cooling the surface of the slab in the final stage of solidification is that the surface is contracted by cooling the surface, and as a result, a compressive force is applied to the inside of the slab, causing cavities or porosity. The amount of coagulation shrinkage can be compensated, and the occurrence thereof can be suppressed. While the last stage of electromagnetic stirring is effective in preventing bridging due to the merging of equiaxed crystals, the method according to the present invention suppresses the formation of cavities or porosity itself by more positively applying compressive force. What you want to do. Therefore, at this time, the cooling capacity, that is, "strong cooling" in the present invention can be said to be a cooling capacity capable of applying such a compressive force, and specifically, for example, about 0.5 to 2 ° C./sec is desirable.

【0025】鋳片中心部が丁度、凝固を開始した点よ
り、冷却を開始する理由は、(1) 冷却が遅れた場合は、
上述のような作用効果が期待できない。(2) 冷却開始が
早くなった時は、鋳片中心部が凝固を開始する以前から
鋳片表面に熱収縮を加えてしまうことになり、鋳片中心
部が凝固を開始してからの収縮しろを先に消費してしま
うことになるからである。
From the point where the center of the slab just started to solidify, the reasons for starting cooling are as follows: (1) If cooling is delayed,
The effects described above cannot be expected. (2) If the cooling starts earlier, the slab surface will undergo thermal contraction before the slab center starts to solidify, and the slab shrinks after the slab center starts to solidify. This is because the margin is consumed first.

【0026】[0026]

【実施例】次に、この発明にしたがって、図1および図
2に示す装置、システムを使って鋳造テストを行い、そ
の結果を比較例のそれと対比して示す。鋳造条件として
は、直径265 mm、長さ300 mmの鋳型を用いて、平均鋳造
速度を0.8 〜1.6m/minの間で変更した。第1段目、第2
段目の電磁攪拌装置は表1の通りの配置、仕様とした。
EXAMPLE Next, according to the present invention, a casting test was performed using the apparatus and system shown in FIGS. 1 and 2, and the results are shown in comparison with those of a comparative example. The casting conditions were such that a mold having a diameter of 265 mm and a length of 300 mm was used, and the average casting speed was varied between 0.8 and 1.6 m / min. 1st stage, 2nd stage
The arrangement and specifications of the electromagnetic stirring device at the stage were as shown in Table 1.

【0027】図2の要領で、計算機による伝熱計算によ
り鋳片の温度分布が連続的に計算され、それによって鋳
片中心部の凝固開始点が決定される。本例では鋳片中心
部の凝固開始直後から冷却を開始し、凝固完了まで強冷
却を継続した。鋳造開始初期には鋳造速度を所定速度に
まで引き上げる期間中は凝固開始位置が変動しているた
めその都度移動式冷却装置を移動させていたが、定常状
態になるとほぼ凝固開始点は同一となり、ほぼ固定状態
で強冷却を行うことができた。
As shown in FIG. 2, the temperature distribution of the slab is continuously calculated by a heat transfer calculation by a computer, and thereby the solidification starting point at the center of the slab is determined. In this example, cooling was started immediately after the start of solidification at the center of the slab, and strong cooling was continued until solidification was completed. In the early stage of casting, during the period of raising the casting speed to the predetermined speed, the solidification start position was fluctuating, so the mobile cooling device was moved each time, but in the steady state, the solidification start point was almost the same, Strong cooling could be performed in a substantially fixed state.

【0028】このときの冷却水量は平均鋳造速度、鋳片
径によって変更し、比水量で0.25 l/kg-steel とした。
本例におけるスプレー冷却装置の移動量は、鋳造開示か
ら定常状態に移行するまでの間においては、直径265 mm
鋳片を鋳造速度0.8m/minで鋳造した場合では8m、1.6m
/minの場合では18m、また、直径300 mm鋳片を0.8m/min
にて鋳造した場合では12m、1.6m/minの場合では23mで
あった。
The amount of cooling water at this time was changed depending on the average casting speed and the slab diameter, and the specific water amount was 0.25 l / kg-steel.
The movement amount of the spray cooling device in this example is 265 mm in diameter during the period from the start of casting to the transition to the steady state.
8m, 1.6m when casting a slab at a casting speed of 0.8m / min
18m in case of / min, and 0.8m / min for 300mm diameter slab
It was 12 m when cast at, and 23 m when 1.6 m / min.

【0029】一方、定常状態における鋳造速度の変動に
伴う冷却装置の移動量は、直径265mm鋳片を0.8m/minで
鋳造した場合では0.5 m、1.6m/minの場合では1m、ま
た、直径300 mm鋳片を0.8m/minで鋳造した場合では0.8
m、1.6m/minの場合では1.5mであった。
On the other hand, the amount of movement of the cooling device accompanying the fluctuation of the casting speed in the steady state is 0.5 m when casting a 265 mm diameter slab at 0.8 m / min, 1 m at 1.6 m / min, and 0.8 when casting 300 mm slab at 0.8 m / min
m, 1.5 m in the case of 1.6 m / min.

【0030】比較例としては、鋳造条件は上記と全く同
じで、鋳片径、平均鋳造速度による冷却開始位置を事前
設定した固定式のスプレー冷却装置を用いた。
As a comparative example, a fixed spray cooling device was used in which the casting conditions were exactly the same as above and the cooling start position was set in advance by the slab diameter and the average casting speed.

【0031】図3および図4に、それぞれ直径265mm 、
300mm の場合における各鋳造速度に対するセンターポロ
シティまたはキャビティの存在径を鋳片長手方向の平均
値と変動量によって示す。
FIGS. 3 and 4 show a diameter of 265 mm,
The center porosity or the existing diameter of the cavity for each casting speed in the case of 300 mm is shown by the average value and the variation in the slab longitudinal direction.

【0032】図3および図4に示すように、この発明に
よれば、センターポロシティまたはキャビティの存在径
の平均値が小さくなるとともに、その変動量も小さくな
り、その効果が明らかである。
As shown in FIGS. 3 and 4, according to the present invention, the average value of the center porosity or the existing diameter of the cavity is reduced, and the variation is also reduced, and the effect is clear.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】以上詳述したように、この発明によれ
ば、水平連続鋳造の鋳片で大きな問題となるセンターポ
ロシティまたはキャビティの形成を、鋳造条件の変更ま
たは変動に影響されることなく、安定して抑制すること
が可能である。
As described in detail above, according to the present invention, the formation of center porosity or cavity, which is a major problem in horizontal continuous casting slabs, can be performed without being affected by changes or fluctuations in casting conditions. It is possible to stably suppress.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を実施するための装置例を示す概略説
明図である。
FIG. 1 is a schematic explanatory view showing an example of an apparatus for carrying out the present invention.

【図2】この発明において使用する冷却装置移動システ
ム例を示す構成図である。
FIG. 2 is a configuration diagram showing an example of a cooling device moving system used in the present invention.

【図3】実施例におけるこの発明の効果を示すグラフで
ある。
FIG. 3 is a graph showing the effect of the present invention in an example.

【図4】実施例におけるこの発明の効果を示すグラフで
ある。
FIG. 4 is a graph showing the effect of the present invention in the embodiment.

【符号の説明】[Explanation of symbols]

1: 第1段電磁攪拌装置 2: 第2段電磁攪拌
装置 3: 移動式冷却装置 4: タンディッシュ 5: 鋳型 6: 二次冷却帯 8: 鋳片 9: 凝固殻 10: 溶湯
1: First-stage electromagnetic stirrer 2: Second-stage electromagnetic stirrer 3: Mobile cooling device 4: Tundish 5: Mold 6: Secondary cooling zone 8: Cast piece 9: Solidified shell 10: Molten metal

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水平連続鋳造によってビレットまたはブ
ルームを製造する方法であって、少なくとも2段の回転
磁界型電磁攪拌装置を直列に配置し、1段目の電磁攪拌
は鋳型内の凝固開始位置に相当する位置で行い、2段目
の電磁攪拌は鋳型出口と鋳片中心の固相率が0を超えな
い位置との間で行い、かつ、これらの電磁攪拌装置の下
流側で鋳片の中心部固相率が0を超える時点から鋳片の
中心部の固相率が1.0となるまでの間に、鋳片表面
凝固収縮量を補償する圧縮力を加えることのできる強冷
却を鋳片表面に行うとともに、その強冷却を行う際に、
鋳片の表面温度と鋳造速度を検知しつつ、鋳片の長手方
向に移動可能な冷却装置により、鋳片中心部の固相率が
0を超える位置から冷却を開始することを特徴とする水
平連続鋳造法。
1. A method for producing a billet or bloom by horizontal continuous casting, wherein at least two stages of a rotating magnetic field type electromagnetic stirrer are arranged in series, and the first stage of electromagnetic stirring is performed at a solidification start position in a mold. The electromagnetic stirring of the second stage is performed between the exit of the mold and a position where the solid phase ratio at the center of the slab does not exceed 0, and the center of the slab is downstream of these electromagnetic stirring devices. From the time when the solid phase ratio exceeds 0 to the time when the solid phase ratio at the center of the slab becomes 1.0 ,
Strong cooling that can apply compressive force to compensate for solidification shrinkage
When performing cooling on the slab surface and performing strong cooling,
A cooling device capable of moving in the longitudinal direction of the slab while detecting the surface temperature and casting speed of the slab, and starting cooling from a position where the solid fraction of the slab central portion exceeds 0. Continuous casting method.
JP23044792A 1992-08-28 1992-08-28 Horizontal continuous casting method Expired - Lifetime JP2727887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23044792A JP2727887B2 (en) 1992-08-28 1992-08-28 Horizontal continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23044792A JP2727887B2 (en) 1992-08-28 1992-08-28 Horizontal continuous casting method

Publications (2)

Publication Number Publication Date
JPH0671389A JPH0671389A (en) 1994-03-15
JP2727887B2 true JP2727887B2 (en) 1998-03-18

Family

ID=16908032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23044792A Expired - Lifetime JP2727887B2 (en) 1992-08-28 1992-08-28 Horizontal continuous casting method

Country Status (1)

Country Link
JP (1) JP2727887B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10496437B2 (en) 2017-11-14 2019-12-03 International Business Machines Corporation Context switch by changing memory pointers
US10552070B2 (en) 2017-11-14 2020-02-04 International Business Machines Corporation Separation of memory-based configuration state registers based on groups
US10664181B2 (en) 2017-11-14 2020-05-26 International Business Machines Corporation Protecting in-memory configuration state registers
US10761751B2 (en) 2017-11-14 2020-09-01 International Business Machines Corporation Configuration state registers grouped based on functional affinity
US10761983B2 (en) 2017-11-14 2020-09-01 International Business Machines Corporation Memory based configuration state registers
US10901738B2 (en) 2017-11-14 2021-01-26 International Business Machines Corporation Bulk store and load operations of configuration state registers
US10976931B2 (en) 2017-11-14 2021-04-13 International Business Machines Corporation Automatic pinning of units of memory
US11099782B2 (en) 2017-11-14 2021-08-24 International Business Machines Corporation Portions of configuration state registers in-memory

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104353797B (en) * 2014-07-04 2016-09-28 河南中孚实业股份有限公司 Telescopic ingot solidification end electromagnetic stirring device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10496437B2 (en) 2017-11-14 2019-12-03 International Business Machines Corporation Context switch by changing memory pointers
US10552070B2 (en) 2017-11-14 2020-02-04 International Business Machines Corporation Separation of memory-based configuration state registers based on groups
US10664181B2 (en) 2017-11-14 2020-05-26 International Business Machines Corporation Protecting in-memory configuration state registers
US10761751B2 (en) 2017-11-14 2020-09-01 International Business Machines Corporation Configuration state registers grouped based on functional affinity
US10761983B2 (en) 2017-11-14 2020-09-01 International Business Machines Corporation Memory based configuration state registers
US10901738B2 (en) 2017-11-14 2021-01-26 International Business Machines Corporation Bulk store and load operations of configuration state registers
US10976931B2 (en) 2017-11-14 2021-04-13 International Business Machines Corporation Automatic pinning of units of memory
US11093145B2 (en) 2017-11-14 2021-08-17 International Business Machines Corporation Protecting in-memory configuration state registers
US11099782B2 (en) 2017-11-14 2021-08-24 International Business Machines Corporation Portions of configuration state registers in-memory
US11106490B2 (en) 2017-11-14 2021-08-31 International Business Machines Corporation Context switch by changing memory pointers
US11287981B2 (en) 2017-11-14 2022-03-29 International Business Machines Corporation Automatic pinning of units of memory
US11579806B2 (en) 2017-11-14 2023-02-14 International Business Machines Corporation Portions of configuration state registers in-memory

Also Published As

Publication number Publication date
JPH0671389A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
JP2727887B2 (en) Horizontal continuous casting method
US20050098298A1 (en) Treating molten metals by moving electric arc
US3771584A (en) Method for continuously casting steel billet strands to minimize the porosity and chemical segregation along the center line of the strand
JP2683157B2 (en) Method for continuously casting metal, especially steel, on bloom and billet slabs
JPH0957410A (en) Continuous casting method
JP2727886B2 (en) Horizontal continuous casting method
JP2856068B2 (en) Cooling method of slab in continuous casting
JP7273307B2 (en) Steel continuous casting method
JP3464331B2 (en) Continuous casting method and continuous casting apparatus for non-ferrous metals
JP3633573B2 (en) Continuous casting method
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JPH0515956A (en) Continuous casting method
JPH11285788A (en) Method for continuously casting large cross sectional cast bloom for thick steel plate
KR101400040B1 (en) Control method for molten steel in tundish
Dutta et al. Continuous casting (concast)
JPH04313453A (en) Continuous casting method
Esaka Continuous casting of steels
JP2770691B2 (en) Steel continuous casting method
JP2006175468A (en) Light rolling reduction control system and method for continuously cast slab
JPH0819843A (en) Method for cooling cast slab in continuous casting
JPH0569091A (en) Horizontal continuous casting method
JPH03264143A (en) Continuous casting method and mold thereof
Kumar et al. Continuous Casting of Steel and Simulation for Cost Reduction
JPH04279264A (en) Continuous casting method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971111