JP2696416B2 - Car rollover prevention device - Google Patents
Car rollover prevention deviceInfo
- Publication number
- JP2696416B2 JP2696416B2 JP2110954A JP11095490A JP2696416B2 JP 2696416 B2 JP2696416 B2 JP 2696416B2 JP 2110954 A JP2110954 A JP 2110954A JP 11095490 A JP11095490 A JP 11095490A JP 2696416 B2 JP2696416 B2 JP 2696416B2
- Authority
- JP
- Japan
- Prior art keywords
- load
- gravity
- center
- vehicle
- sprung
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
- B60R2021/01306—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring vehicle inclination
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
- B60R2021/01308—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring distance between vehicle body and road
Landscapes
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Vehicle Body Suspensions (AREA)
Description
【発明の詳細な説明】 イ.発明の目的と在来技術 曲線状の道路を走る車には遠心力が働き、屡横転事故
を起こす。遠心力は車の速度・重量・旋回半径等によっ
て変動するが、その作用の程度は従来は運転者の経験か
ら感覚的に判断する外なく、科学的に適切な対処は出来
なかった。DETAILED DESCRIPTION OF THE INVENTION Purpose of the Invention and Conventional Techniques A centrifugal force acts on a car running on a curved road, and often causes a rollover accident. The centrifugal force fluctuates depending on the speed, weight, turning radius, etc. of the vehicle. However, the degree of its action has conventionally been intuitively judged from the experience of the driver, and scientifically appropriate measures could not be taken.
本発明は横転事故を未然に防ぐ装置に関するものであ
る。The present invention relates to a device for preventing a rollover accident.
ロ.発明の構成・作用 遠心力がすべて車の横転の為に費やされるものとすれ
ば(即ち、車を旋回半径方向外方にスリップさせる効果
等を無視すれば)、第1図,第2図で、右旋回の場合、
外側設置点P.Pを結ぶ線を軸として、車を横転させよう
とするモーメントmαcH(mは全車質量、αcは旋回曲
線に対応する法線加速度、Hは重心Gの高さ)が働く。
これに対し、mgDL(DLはP.Pを含んで路面に垂直な面と
重心との距離、gは重力加速度)のモーメントが車を安
定させる方向に働く。従って mαcH>mgDL ∴αc>gDL/H (1) になれば車は横転する事になる。B. Structure and operation of the invention If all the centrifugal force is spent for rollover of the vehicle (that is, ignoring the effect of causing the vehicle to slip outward in the turning radius direction, etc.), FIGS. , Turn right,
A moment mα c H (m is the entire vehicle mass, α c is the normal acceleration corresponding to the turning curve, and H is the height of the center of gravity G) acts about the line connecting the outside installation point PP as an axis. .
In contrast, mgD L (D L is the distance between the vertical surface and the center of gravity to the road contains PP, g is the gravitational acceleration) acting in the direction of moment of stabilizing the vehicle. Therefore, if mα c H> mgD L ∴α c > gD L / H (1), the car will roll over.
こゝで、Hは、乗用車の場合は最低荷重(車両重量+
運転者重量)時と最大荷重時との間の変動が小さいの
で、例えば安全側の極値(Hの最大値、即ち最低荷重時
の値)をとるなどして一定値として扱う事が出来るの
で、同じく一定値であるgと一括してg/Hを一定値とし
て扱い、更に、これに全体の安全率を考慮に入れてk1と
置換えれば(1)式は αc>k1DL (2) と簡略化される。Here, H is the minimum load (vehicle weight +
Since the fluctuation between the driver's weight) and the maximum load is small, it can be treated as a constant value, for example, by taking the extreme value on the safe side (the maximum value of H, that is, the value at the minimum load). likewise treats g and collectively g / H is a constant value as the predetermined value, further, is replaced with k 1 taking into account the overall safety factor to the expression (1) alpha c> k 1 D L (2).
従って、適宜な検出装置によって得た諸元を演算し
て、上式が成立つ状態に至った時には安全装置が働く様
にすれば横転を防げる訳である。Therefore, the rollover can be prevented by calculating the data obtained by an appropriate detection device and operating the safety device when the above equation is satisfied.
第4図はこの様な装置の構成の1例を示すブロックダ
イヤグラムである。FIG. 4 is a block diagram showing an example of the configuration of such an apparatus.
第1図に示す各車輪にかゝるバネ上荷重w1u,w2u,w
3u,w4uは、それぞれのバネ部に設置された適宜な荷重
検出機構(例えば歪ゲージ、ロードセル等)31,32,33,3
4によって検出され、演算機1はそれ等を入力として各
荷重の特定時の値w10,w20,w30,w40(説明後記)を選
出、またそれ等の合力Wuを算出する。演算機2はこれ等
と、バネ設置点の前後方向間隔L及び左右方向間隔d
(これ等は車種毎に一定で、設計上或は実測から既知で
あり、適宜な設定機構41,42で入力される)とからWuの
位置、即ち重心Guの水平方向の位置(前後方向l1u)、
(左右方向d1u)を算出する。The sprung loads w 1u , w 2u and w applied to the wheels shown in FIG.
3u , w 4u are appropriate load detecting mechanisms (for example, strain gauges, load cells, etc.) 31, 32, 33, 3
4, the computing unit 1 selects the values w 10 , w 20 , w 30 , w 40 (described later) at the time of specifying each load by using them as inputs, and calculates the resultant force W u thereof. The arithmetic unit 2 calculates the distance L and the distance d between the spring installation points in the front-rear direction and the left-right direction.
(These are constant for each vehicle type, are known from design or actual measurement, and are input by appropriate setting mechanisms 41 and 42.) From the position of W u , that is, the position of the center of gravity Gu in the horizontal direction (front and rear) Direction l 1u ),
(Left-right direction d 1u ) is calculated.
但し、これ等はバネ上荷重関係の諸元から得た結果で
あるから車全体の重量・重心のデータではない。車全体
の重心等を求めるにはバネ下荷重を考慮せねばならな
い。However, since these are the results obtained from the specifications of the sprung load relation, they are not data of the weight and the center of gravity of the entire vehicle. In order to determine the center of gravity of the entire vehicle, the unsprung load must be considered.
なほ、上記の重心位置算出は、車に加速度が加わって
いる状態では各車輪にかゝる荷重が変って来るし、走行
中は路面の凹凸や障害物によるピッチングやローリング
の影響を受けるので、静止時の検出値・演算値を記憶、
保持させる。In addition, the above calculation of the center of gravity position, the load applied to each wheel changes while the vehicle is under acceleration, and is affected by pitching and rolling due to road surface irregularities and obstacles during running, Stores the detected and calculated values at rest,
Hold.
また、路面の傾斜も算出結果に影響するので、水平状
態での検出値を用いる。Since the inclination of the road surface also affects the calculation result, the detection value in the horizontal state is used.
この為演算機1には、前記の荷重検出値の外に適宜な
速度検出機構35(勿論スピードメーターから取ってもよ
い)から得た速度Vを、また適宜な傾斜検出機構36から
得た条件を入力する。そしてV=0、即ち速度検出機構
からの入力が無く、且水平、即ち傾斜検出機構からの入
力が無い時(若干の許容限度を設けて、水平からある角
度以内は信号を発しないという様にしてよい)にのみw
10〜w40を選出して演算機2に入力する。前記の特定時
の値とはこの条件下での出力の意である(条件外の時の
値は第5図の演算機11に送られる)。Therefore, in addition to the load detection value, the arithmetic unit 1 receives a speed V obtained from an appropriate speed detection mechanism 35 (of course, it may be obtained from a speedometer), and a condition obtained from an appropriate inclination detection mechanism 36. Enter V = 0, that is, when there is no input from the speed detection mechanism and when there is no input from the horizontal, that is, when there is no input from the inclination detection mechanism (a slight allowable limit is set so that no signal is emitted within a certain angle from horizontal. Only) w
10 to w 40 are selected and input to the arithmetic unit 2. The value at the specific time means the output under this condition (the value at the time other than the condition is sent to the arithmetic unit 11 in FIG. 5).
バネ下荷重は車種毎に一定で、設計上の計算或は実測
によってその重量W1とその重心G1の位置(前後方向l
1,左右方向d1)が得られるからこれ等を設定機
構43,44,45で演算機3に入力する。演算機3では他の入
力wu,l1u,d1uとから全車重量Wの重心Gの位置(前後
方向lF,左右方向dL)がWu,Wlの合力計算で容易に求め
られる。Unsprung load is constant for each vehicle model, the position of the calculation or actual measurement in design and the weight W 1 its center of gravity G 1 (the longitudinal direction l
1 and the left and right direction d 1 ) are obtained, and these are input to the arithmetic unit 3 by the setting mechanisms 43, 44 and 45. Computing machine 3, the other input w u, l 1u, the position of the center of gravity G of the whole car weight W and a d 1u (longitudinal direction l F, the left-right direction d L) is readily determined by the resultant force calculation of W u, W l .
旋回方向が右か左かはハンドルの回転方向に対応し、
またハンドルの回転は適宜な回転角検出機構(例えばロ
ータリーエンコーダー等。本演算では、回転方向だけ
で、角度の精度は要らないから、より簡単な検出機構で
間に合う)で容易に検出出来る。演算機4は、回転角検
出機構37で検出されたハンドル回転角θの回転が右か左
か(+か−か)でdL又はdR(=d−dL)を出力する(例
えばθ>0の時は回転角検出機構から演算機4に信号が
発せられず、その間は演算機4は入力dLを出力として演
算機5に送り、他の場合には一定の信号が入力、その際
は演算機4はdとdLとからdRを出力するなどして)。DL
は演算機5で、dLに、車種毎に一定で設計上あるいは実
測から容易に知られる間隔Dw(設定機構46で入力)を加
えて得られる。演算機6はこれと、設定機構47による入
力である常数k1とでk1DLを算出する。演算機7は両入力
を比較演算して αc>K1DL の時は安全装置51を発動する(アクセルを緩める、警報
を発する等)。Whether the turning direction is right or left corresponds to the turning direction of the steering wheel,
Further, the rotation of the handle can be easily detected by an appropriate rotation angle detection mechanism (for example, a rotary encoder or the like. In this operation, only the rotation direction is required, and the accuracy of the angle is not required, so that a simpler detection mechanism can be used). The arithmetic unit 4 outputs d L or d R (= d−d L ) depending on whether the rotation of the handlebar rotation angle θ detected by the rotation angle detection mechanism 37 is right or left (+ or −) (for example, θ). > no signal is emitted from the rotation angle detection mechanism in operation machine 4 is 0, while the operation unit 4 sends the operation unit 5 as an output an input d L, constant signal is input in other cases, the when the calculation device 4, such as by outputting a d R from the d and d L). D L
In operation machine 5, the d L, obtained by the addition (input setting mechanism 46) spacing D w readily known from design or measured at a constant for each vehicle model. The computing unit 6 calculates k 1 D L using this and the constant k 1 which is an input from the setting mechanism 47. The computing unit 7 compares the two inputs and, when α c > K 1 D L , activates the safety device 51 (releasing the accelerator, issuing an alarm, etc.).
なほ、演算機1でw10〜w40が選出されるのは静止、水
平時だけであるのに対し、演算機4にθの条件が入力さ
れる瞬間、そしてk1DLが算出されて演算機7で比較演算
される瞬間等は走行中であって、その間に必ず時間的な
ずれがある(演算機4へのθの入力から演算機7の出力
までは瞬間的)。従ってWu,w10〜w40、或いは演算機2
・演算機3等の出力はその間ずっと、次の静止、水平の
時まで記憶・保持されねばならない。Naho, the w 10 to w 40 by the operation unit 1 is elected stationary, whereas it is only during the horizontal, instant conditions of θ is input to the arithmetic unit 4, and k 1 D L is calculated The moment at which the arithmetic operation is performed by the arithmetic unit 7 is traveling, and there is always a time lag during the traveling (the moment from the input of θ to the arithmetic unit 4 to the output of the arithmetic unit 7 is instantaneous). Therefore, W u , w 10 to w 40 , or arithmetic unit 2
The output of the arithmetic unit 3 and the like must be stored and held until the next stationary or horizontal state.
勿論、以上の間に於いて、各入力の単位は同一歩調を
取る様整合されねばならない。また、演算機は対応機能
を適宜分割或は集約してよいし、各式を等価で変換(例
えば移項するなど)して、これに合わせて演算機の内容
や組合わせを変えてもよい。また例えば、演算機2でd
1uの代りにd2uを出力し(演算式の組立思想は同じ)、
演算機3の入力d1の代りにd2lを入力してdRを算出
するなどしても同じ最終効果を得る事が出来る。これ等
は以下の例に於いても同様である。Of course, during the above, the units of each input must be coordinated to take the same step. Further, the computing unit may divide or consolidate the corresponding functions as appropriate, or may convert each expression equivalently (for example, by transposing), and change the contents and combinations of the computing units accordingly. Also, for example, d
Output d 2u instead of 1u (the same assembling philosophy of arithmetic expression)
The same final effect can be obtained by calculating d R by inputting d 2l instead of the input d 1 of the arithmetic unit 3. These are the same in the following examples.
以上は重心高Hを既知の一定値として扱った場合だ
が、トラックの様に荷重が大きく、且つその変動の激し
い場合にはそれでは通らない。そこで、次の様にHを自
動的に検出する。The above is the case where the height H of the center of gravity is treated as a known constant value. However, if the load is large like a truck and the fluctuation thereof is severe, it cannot be passed. Therefore, H is automatically detected as follows.
まずバネ上荷重の重心Guのバネ設置平面からの高さHu
を求める。First, the height H u of the center of gravity G u of the sprung load from the spring installation plane
Ask for.
4輪それぞれで検出される荷重w1u〜w4uはバネ上荷重
Wuの分力であって、それぞれその点での反力と釣合って
居り、これから合力計算で、Guの水平方向の位置l1u,d
1u等が演算機2によって算出されて居る。Loads w 1u to w 4u detected at each of the four wheels are sprung loads
A component force of the W u, respectively sediment balanced with the reaction force at that point, over the next force calculation, horizontal position l 1u of G u, d
1u is calculated by the arithmetic unit 2.
今、第3図に示す様に、車が傾斜角Θの斜面にある状
態を考えると、重力線GuDが水平時の重力線GuCとなす角
は傾斜角に等しくΘだから、 Hu=CD/tanΘ 然るに、 CD=AD−AC=AD−l1u で、またモーメントの釣合条件から AD=(w3u+w4u)L/Wu だから Hu={(w3u+w4u)L/Wu−l1u}/tanΘ (3) これは前輪側バネ設置点を結ぶ線に関するモーメント
をとった結果だが、勿論、後輪側に関するモーメントを
とっても同じ結果となる。(Wu=w1u+w2u+w3u+w4u,L
=l1u+l2uの関係を用いれば皆同じ結果に帰一する)。Now, as shown in FIG. 3, considering that the vehicle is on a slope having an inclination angle of Θ, the angle formed by the gravity line Gu D with the gravity line Gu C when horizontal is equal to the inclination angle. u = CD / tanΘ However, CD = AD-AC = AD -l in 1u, also AD = from the equilibrium conditions of the moment (w 3u + w 4u) L / W u So H u = {(w 3u + w 4u) L / W u −l 1u } / tanΘ (3) This is the result of taking the moment about the line connecting the front-wheel-side spring installation points. Of course, the same result can be obtained by taking the moment about the rear-wheel side. (W u = w 1u + w 2u + w 3u + w 4u , L
= L 1u + l 2u , they all return the same result).
第5図に、上記算定値を得る演算の1例をブロックダ
イヤグラムで示してあるが、上式のw3u+w4uは演算機1
で算出されるし、Wuも演算機1で、l1uは演算機2でそ
れぞれ算出される。またΘは傾斜検出機構36から、既知
の値Lは設定機構41からの入力として得られるからHuは
一連の演算機によって算出される(図から自明なので説
明は省略する)。FIG. 5 is a block diagram showing an example of an operation for obtaining the above calculated value. In the above expression, w 3u + w 4u is
W u is also calculated by the arithmetic unit 1, and l 1u is calculated by the arithmetic unit 2. Since Θ is obtained from the inclination detecting mechanism 36 and the known value L is obtained as an input from the setting mechanism 41, Hu is calculated by a series of calculators (the explanation is omitted because it is obvious from the figure).
但し、前記の様にHuはバネ上だけの重心高であり、全
車の重心高Hはバネ上荷重Wuとバネ下荷重W1の合力であ
るWの重心高でなくてはならないが、その求め方は既に
本出願人の平成2年4月16日出願の“横転防止装置”に
示してあるので省略する。However, H u as the is a height of the center of gravity of only the spring, but all cars of the center of gravity height H must be a height of the center of gravity of W is a resultant force of the spring on the load W u and the unsprung load W 1, The method of obtaining the information is already described in the applicant's “anti-rollover device” filed on April 16, 1990, and will not be described.
なほ、このHuを使用する場合の横転防止装置の構成
は、例えば第4図に於ける演算機6に入力、同演算機の
出力をkDL/Hと、演算機7の判定基準をαc>k1DL/Hとす
る事で間に合う(勿論、演算機6の演算内容は変る)。Naho, construction of anti-rollover device when using this H u, for example the fourth input to the in arithmetic unit 6 in the figure, and kD L / H output of the arithmetic unit, the criteria for calculating machine 7 alpha By setting c > k 1 D L / H, it is sufficient (of course, the calculation content of the calculator 6 changes).
ハ.発明の効果 以上に例示した様に、本発明によれば、従来は運転者
の勘のみが頼りであった横転事故防止が自動的になされ
る訳で、事故による損失を未然に防げるばかりでなく、
運転者の疲労を軽減出来、それがまた事故防止効果を高
めるなど、社会生活上極めて有用である。C. Advantageous Effects of the Invention As exemplified above, according to the present invention, the rollover accident prevention, which has conventionally depended only on the driver's intuition, is automatically performed. ,
This is extremely useful in social life, such as reducing driver fatigue, which also enhances the effect of preventing accidents.
第1図は車輪と荷重・重心等の位置関係を示す車の平面
図。第2図は同じく後面図。第3図は同じく斜面に於け
る左側面図。第4図は本発明の装置による演算の1例を
示すブロックダイヤグラム。第5図はHu算出の1例を示
すブロックダイヤグラム。 1,2,3,4,5,6,7はそれぞれ演算機。11,12,13,14,15はそ
れぞれ演算機。31,32,33,34はそれぞれ荷重検出機構。3
5は速度検出機構、36は傾斜検出機構、37は角度検出機
構、39は法線加速度検出機構。41,42,43,44,45,46,47は
それぞれ設定機構。51は安全機構。FIG. 1 is a plan view of a vehicle showing a positional relationship between wheels, a load, a center of gravity, and the like. FIG. 2 is the same rear view. FIG. 3 is a left side view of the same slope. FIG. 4 is a block diagram showing an example of a calculation by the apparatus of the present invention. FIG. 5 is a block diagram showing an example of Hu calculation. 1,2,3,4,5,6,7 are computing units respectively. 11,12,13,14,15 are computing machines respectively. 31,32,33,34 are load detection mechanisms respectively. Three
5 is a speed detection mechanism, 36 is an inclination detection mechanism, 37 is an angle detection mechanism, and 39 is a normal acceleration detection mechanism. 41, 42, 43, 44, 45, 46, 47 are setting mechanisms, respectively. 51 is a safety mechanism.
Claims (1)
の車の4輪に掛かる静止荷重と、バネ位置(各バネの配
設位置)とから、バネ上荷重とその重心の水平方向位置
を算出し、これ等と、バネ下荷重とその重心位置とから
車全体の荷重とその重心の水平方向位置を算出、これに
より、旋回走行中の車の外側の車輪の外側接地点P.Pを
含み路面に垂直な平面と重心との距離D(右回転の場合
D1、左回転の場合DR)を算出、またバネ上荷重の重心Gu
のバネ設置平面からの高さHuを、車を前後方向に傾斜す
る傾斜角Θの斜面に置いた状態での、バネ上荷重Wuの前
輪軸(後軸輪でもよい)に関するモーメントと、後輪
(前記モーメントを後輪軸に関してとった場合は前輪)
に掛かる荷重の前輪軸に関するモーメントとの釣合条件
から求め、これと、既知であるバネ下荷重の重心位置と
から全車荷重の重心高Hを得る。そして安全率を考慮し
て定めた定数k、適宜な加速度検出装置で検出した法線
加速度αc等との間に αc>kgD/H (gは重力加速度) 又はこれ等と等価な式が成立する場合には自動的にアク
セルを緩めるか、警報を発するなどの安全措置が講ぜら
れる様にした事を特徴とする車の横転防止装置。1. A sprung load and a horizontal position of a center of gravity of the sprung load are determined from a static load applied to four wheels of a vehicle under a load detected by a suitable load detecting device and a spring position (location of each spring). From these, the unsprung load and the position of the center of gravity, the load of the entire vehicle and the horizontal position of the center of gravity are calculated, whereby the road surface including the outer contact point PP of the outer wheel of the vehicle during turning is calculated. The distance D between the plane perpendicular to the center of gravity and the center of gravity
D 1, calculates D R) For counterclockwise rotation, also sprung load center of gravity G u
Of the height H u from the spring installation plane, in a state placed on the slopes of the inclination angle Θ of inclination of the vehicle in the longitudinal direction, and a moment about the front axle of the sprung weight W u (or at the rear axle wheels), Rear wheel (front wheel if the moment is taken for the rear wheel axle)
Is obtained from the condition of equilibrium with the moment of the load applied to the front wheel axle, and the height H of the center of gravity of the entire vehicle load is obtained from this and the known center of gravity of the unsprung load. Then, between the constant k determined in consideration of the safety factor and the normal acceleration α c detected by an appropriate acceleration detecting device, α c > kgD / H (g is the gravitational acceleration) or an equation equivalent thereto. An anti-rollover device for a vehicle, characterized in that safety measures such as automatically releasing the accelerator or issuing an alarm when taken hold are taken.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2110954A JP2696416B2 (en) | 1990-04-26 | 1990-04-26 | Car rollover prevention device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2110954A JP2696416B2 (en) | 1990-04-26 | 1990-04-26 | Car rollover prevention device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH048837A JPH048837A (en) | 1992-01-13 |
JP2696416B2 true JP2696416B2 (en) | 1998-01-14 |
Family
ID=14548748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2110954A Expired - Lifetime JP2696416B2 (en) | 1990-04-26 | 1990-04-26 | Car rollover prevention device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2696416B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6324446B1 (en) | 1999-12-21 | 2001-11-27 | Ford Global Technologies, Inc. | Roll over stability control for an automotive vehicle |
US6332104B1 (en) | 1999-12-21 | 2001-12-18 | Ford Global Technologies, Inc. | Roll over detection for an automotive vehicle |
US6263261B1 (en) | 1999-12-21 | 2001-07-17 | Ford Global Technologies, Inc. | Roll over stability control for an automotive vehicle |
US6397127B1 (en) | 2000-09-25 | 2002-05-28 | Ford Global Technologies, Inc. | Steering actuated wheel lift identification for an automotive vehicle |
US6799092B2 (en) | 2001-02-21 | 2004-09-28 | Ford Global Technologies, Llc | Rollover stability control for an automotive vehicle using rear wheel steering and brake control |
US6654674B2 (en) | 2001-11-21 | 2003-11-25 | Ford Global Technologies, Llc | Enhanced system for yaw stability control system to include roll stability control function |
JP5083357B2 (en) | 2010-03-30 | 2012-11-28 | 株式会社アドヴィックス | Vehicle motion control device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS576064A (en) * | 1980-06-14 | 1982-01-12 | Kajima Corp | Vibration resistant building |
JPS6229409A (en) * | 1985-07-30 | 1987-02-07 | Tokai T R W Kk | Vehicle condition detecting device |
JPS63163209A (en) * | 1986-12-26 | 1988-07-06 | Shindengen Electric Mfg Co Ltd | Acceleration sensor |
JP2618250B2 (en) * | 1987-12-22 | 1997-06-11 | 富士重工業株式会社 | Traction control device |
-
1990
- 1990-04-26 JP JP2110954A patent/JP2696416B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH048837A (en) | 1992-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108909705B (en) | Vehicle control method and device | |
US7063334B2 (en) | Vehicle stability system using active tilting mechanism | |
US7783392B2 (en) | Traveling apparatus and method of controlling the same | |
WO2018145500A1 (en) | Self-balancing vehicle device and corresponding control method therefor | |
EP0803386A1 (en) | A method and apparatus for dynamically determining an operating state of a motor vehicle | |
JP3369467B2 (en) | Estimation arithmetic unit for height of center of gravity of vehicle | |
KR20000070352A (en) | Method and Device for detecting motor vehicle tilt | |
KR20000070353A (en) | Method and device for detecting motor vehicle tilt | |
TWI678304B (en) | Method and device for measuring tilt angle of two-wheeled vehicle, and two-wheeled vehicle having the same | |
CN104386065B (en) | A kind of automobile roll center position measurement device and computational methods thereof | |
SE506882C2 (en) | Device for a vehicle | |
US20060076741A1 (en) | Vehicle stability system: using active tilting mechanism as a counter measure to natural tilt | |
JP2696416B2 (en) | Car rollover prevention device | |
JPH06147963A (en) | Ground contact load estimating device, longitudinal acceleration calculating device, and transverse acceleration calculating device | |
JP3345346B2 (en) | Estimation arithmetic unit for height of center of gravity of vehicle | |
Lundahl et al. | Analyzing rollover indices for critical truck maneuvers | |
JP2745239B2 (en) | Rollover prevention device | |
US20080167777A1 (en) | Method for Controlling the Steering Orientation of a Vehicle | |
JPH08184426A (en) | Misalignment detector for rail based on oscillatory acceleration of axle box | |
JP3368713B2 (en) | Body slip angle detector | |
JP6510728B2 (en) | Dump truck pitching control system | |
JP2022064316A (en) | Wheel load estimation device and program | |
EP0165924A1 (en) | A roll-over warning system | |
JP2010076703A (en) | Method and device for estimating wheel load of tire, and program for estimating wheel load of tire | |
JP3624929B2 (en) | Stability factor derivation method and target yaw rate setting method for rear two-axle vehicle |