JP2010076703A - Method and device for estimating wheel load of tire, and program for estimating wheel load of tire - Google Patents
Method and device for estimating wheel load of tire, and program for estimating wheel load of tire Download PDFInfo
- Publication number
- JP2010076703A JP2010076703A JP2008249725A JP2008249725A JP2010076703A JP 2010076703 A JP2010076703 A JP 2010076703A JP 2008249725 A JP2008249725 A JP 2008249725A JP 2008249725 A JP2008249725 A JP 2008249725A JP 2010076703 A JP2010076703 A JP 2010076703A
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- tire
- vehicle
- load
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
本発明は、タイヤの動荷重半径の変化に基づいて当該タイヤの輪荷重を推定するタイヤの輪荷重推定方法及び装置、並びにタイヤの輪荷重推定プログラムに関する。 The present invention relates to a tire wheel load estimation method and apparatus for estimating a wheel load of a tire based on a change in a dynamic load radius of the tire, and a tire wheel load estimation program.
近年、車両の安全性を向上させるために、スタビリティコントロールシステムが多用されている。このシステムでは、例えば、特開2000−203300号公報のように旋回中のヨーレート、横加速度等のセンサ情報を得るとともに、車両の質量や荷重の配分を用い、当該車両に搭載されている車両ECUにて旋回限界を計算し、各輪のブレーキ圧やトラクションを電子制御することにより限界を超えないようにしている。
そして、このような従来のシステムでは、前記車両の質量や荷重の配分がデフォルト設定されている。
In recent years, stability control systems are frequently used to improve vehicle safety. In this system, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-203300, vehicle information mounted on the vehicle is obtained using sensor information such as yaw rate and lateral acceleration during turning, and distribution of vehicle mass and load. The turning limit is calculated by, and the limit is not exceeded by electronically controlling the brake pressure and traction of each wheel.
In such a conventional system, the distribution of the mass and load of the vehicle is set by default.
しかしながら、通常は走行中に車両の質量や荷重配分を推定することはできないため、車両に人員や荷物が積み込まれた状態では、デフォルト設定された質量・荷重配分と乖離が生じ、きめ細かな制御ができない惧れがある。
これに対し、走行中の車両の質量や荷重配分を知る方法として、各種のサスストロークを測定するセンサを用いることも考えられるが、多大なコストが掛かるため、現実的ではない。
However, it is usually not possible to estimate the vehicle's mass and load distribution while driving, so when personnel or luggage are loaded on the vehicle, there is a deviation from the default mass / load distribution, resulting in fine control. There is a possibility that it cannot be done.
On the other hand, as a method of knowing the mass and load distribution of the running vehicle, it is conceivable to use sensors for measuring various suspension strokes, but this is not practical because it costs a lot of money.
本発明は、このような事情に鑑みてなされたものであり、車両の各輪の輪荷重を正確に且つ低コストで算出することができるタイヤの輪荷重推定方法及び装置、並びにタイヤの輪荷重推定プログラムを提供することを目的としている。 The present invention has been made in view of such circumstances, and a wheel load estimation method and apparatus for a tire that can accurately calculate the wheel load of each wheel of a vehicle at low cost, and the wheel load of a tire. The purpose is to provide an estimation program.
本発明の第1の観点に係るタイヤの輪荷重推定方法は、車両に装着された車輪の回転速度に基づいて当該車両に装着されたタイヤの輪荷重を推定する方法であって、
前記車両の各タイヤの車輪回転情報を検出する工程と、
検出した車輪回転情報から車輪速度を算出する工程と、
車両速度を求める工程と、
前記車輪速度及び車両速度から各タイヤの動荷重半径を求める工程と、
この動荷重半径を用いて各タイヤのスリップ率を求める工程と、
前記車両の質量を求める工程と、
初期化時に、各輪の駆動力及びスリップ率から求められるドライビングスティフネス、車両速度並びに車輪速度を用いて、前後力がゼロであるときの各輪の動荷重半径を求め、この動荷重半径と、タイヤの輪荷重と、タイヤの初期内圧との関係に基づいて、各タイヤの内圧感度及び/又は荷重感度を算出する工程と、
各輪の駆動力、スリップ率及びドライビングスティフネスの関係式、及び前記車両質量を求める工程で得られた車両質量から各タイヤの輪荷重を算出する工程と
を含むことを特徴としている。
A wheel load estimation method for a tire according to a first aspect of the present invention is a method for estimating a wheel load of a tire mounted on a vehicle based on a rotational speed of a wheel mounted on the vehicle,
Detecting wheel rotation information of each tire of the vehicle;
Calculating the wheel speed from the detected wheel rotation information;
Determining vehicle speed;
Obtaining a dynamic load radius of each tire from the wheel speed and vehicle speed;
The step of obtaining the slip ratio of each tire using this dynamic load radius,
Determining the mass of the vehicle;
At the time of initialization, using the driving stiffness and the vehicle speed and the wheel speed obtained from the driving force and slip ratio of each wheel, the dynamic load radius of each wheel when the longitudinal force is zero is obtained, and this dynamic load radius, Calculating the internal pressure sensitivity and / or load sensitivity of each tire based on the relationship between the wheel load of the tire and the initial internal pressure of the tire;
And a step of calculating a wheel load of each tire from a relational expression of a driving force of each wheel, a slip ratio and a driving stiffness, and a vehicle mass obtained in the step of obtaining the vehicle mass.
本発明の第1の観点に係るタイヤの輪荷重推定方法では、タイヤのドライビングスティフネスが(輪荷重/内圧)に比例すること、及び、タイヤの前後力がゼロのときのタイヤ動荷重半径と、輪荷重及び内圧との関係を利用しており、各輪の内圧がそれぞれ異なるような場合であっても、車両質量の各タイヤへの荷重配分比を正確に算出することができ、各輪の輪荷重を正確に算出することができる。 In the tire wheel load estimation method according to the first aspect of the present invention, the tire driving stiffness is proportional to (wheel load / internal pressure), and the tire dynamic load radius when the tire longitudinal force is zero, The relationship between wheel load and internal pressure is used, and even if the internal pressure of each wheel is different, the load distribution ratio of vehicle mass to each tire can be accurately calculated. The wheel load can be accurately calculated.
前記初期化時における内圧感度及び/又は荷重感度を算出する工程において、前後力がゼロであるときのタイヤの動荷重半径をDLR、輪荷重をFZ、内圧をIP、荷重感度をb、内圧感度をc、定数をdとしたときに、
DLR=bFZ+cIP+d
で表される式に基づいて、前記内圧感度及び/又は荷重感度を算出することができる。
In the step of calculating the internal pressure sensitivity and / or load sensitivity at the time of initialization, the dynamic load radius of the tire when the longitudinal force is zero is DLR, the wheel load is FZ, the internal pressure is IP, the load sensitivity is b, and the internal pressure sensitivity Is c and the constant is d,
DLR = bFZ + cIP + d
The internal pressure sensitivity and / or load sensitivity can be calculated based on the formula represented by
前記車両質量を求める工程において、車両が傾斜角θの路面を走行しているものとし、当該車両の質量をm、車両速度をV、車両加速度をα、車両の全アクスルシャフトトルクをT、タイヤ負荷半径をR、路面の傾斜角をθ、空力抵抗をA、重力加速度をgとしたときに
m(α+gsin(θ))+AV2=T/R
により車両質量を求めることができる。
In the step of determining the vehicle mass, it is assumed that the vehicle is traveling on a road surface having an inclination angle θ, the vehicle mass is m, the vehicle speed is V, the vehicle acceleration is α, the total axle shaft torque of the vehicle is T, and a tire. M (α + gsin (θ)) + AV 2 = T / R where R is the load radius, θ is the slope of the road surface, A is the aerodynamic resistance, and g is the acceleration of gravity.
Thus, the vehicle mass can be obtained.
前後力がゼロであるときの各輪の動荷重半径を求める工程において、当該動荷重半径をDLR、駆動力をFX、スリップ率から求められるドライビングスティフネスをD、車両速度をV、車輪速度をωとしたときに、
FX=D×{1−V/(ωDLR)}
により動荷重半径を求めることができる。
In the step of obtaining the dynamic load radius of each wheel when the longitudinal force is zero, the dynamic load radius is DLR, the driving force is FX, the driving stiffness obtained from the slip ratio is D, the vehicle speed is V, and the wheel speed is ω. And when
FX = D × {1-V / (ωDLR)}
Thus, the dynamic load radius can be obtained.
また、本発明のタイヤの輪荷重推定装置は、車両に装着された車輪の回転速度に基づいて当該車両に装着されたタイヤの輪荷重を推定する装置であって、
前記車両の各タイヤの車輪回転情報を検出する車輪回転情報検出手段と、
検出した車輪回転情報から車輪速度を算出する車輪速度算出手段と、
車両速度を求める車両速度算出手段と、
前記車輪速度及び車両速度から各タイヤの動荷重半径を求める動荷重半径算出手段と、
この動荷重半径を用いて各タイヤのスリップ率を求めるスリップ率算出手段と、
前記車両の質量を求める車両質量算出手段と、
初期化時に、各輪の駆動力及びスリップ率から求められるドライビングスティフネス、車両速度並びに車輪速度を用いて、前後力がゼロであるときの各輪の動荷重半径を求め、この動荷重半径と、タイヤの輪荷重と、タイヤの初期内圧との関係に基づいて、各タイヤの内圧感度及び/又は荷重感度を算出するタイヤ感度算出手段と、
各輪の駆動力、スリップ率及びドライビングスティフネスの関係式、及び前記車両質量を求める工程で得られた車両質量から各タイヤの輪荷重を算出するタイヤ輪荷重算出手段と
を含むことを特徴としている。
The tire wheel load estimation device of the present invention is a device for estimating the wheel load of a tire mounted on the vehicle based on the rotational speed of the wheel mounted on the vehicle,
Wheel rotation information detecting means for detecting wheel rotation information of each tire of the vehicle;
Wheel speed calculation means for calculating wheel speed from the detected wheel rotation information;
Vehicle speed calculation means for determining the vehicle speed;
A dynamic load radius calculating means for determining a dynamic load radius of each tire from the wheel speed and the vehicle speed;
Slip rate calculating means for determining the slip rate of each tire using the dynamic load radius;
Vehicle mass calculating means for determining the mass of the vehicle;
At the time of initialization, using the driving stiffness and the vehicle speed and the wheel speed obtained from the driving force and slip ratio of each wheel, the dynamic load radius of each wheel when the longitudinal force is zero is obtained, and this dynamic load radius, Tire sensitivity calculation means for calculating the internal pressure sensitivity and / or load sensitivity of each tire based on the relationship between the wheel load of the tire and the initial internal pressure of the tire;
Tire wheel load calculating means for calculating the wheel load of each tire from the relational expression of the driving force, slip ratio and driving stiffness of each wheel and the vehicle mass obtained in the step of obtaining the vehicle mass. .
さらに、本発明のタイヤの輪荷重推定プログラムは、車両に装着された車輪の回転速度に基づいて当該車両に装着されたタイヤの輪荷重を推定するためにコンピュータを、車両の各タイヤの車輪回転情報から車輪速度を算出する車輪速度算出手段、前記車輪速度及び車両速度から各タイヤの動荷重半径を求める動荷重半径算出手段、この動荷重半径を用いて各タイヤのスリップ率を求めるスリップ率算出手段、前記車両の質量を求める車両質量算出手段、初期化時に、各輪の駆動力及びスリップ率から求められるドライビングスティフネス、車両速度並びに車輪速度を用いて、前後力がゼロであるときの各輪の動荷重半径を求め、この動荷重半径と、タイヤの輪荷重と、タイヤの初期内圧との関係に基づいて、各タイヤの内圧感度及び/又は荷重感度を算出するタイヤ感度算出手段、各輪の駆動力、スリップ率及びドライビングスティフネスの関係式、及び前記車両質量を求める工程で得られた車両質量から各タイヤの輪荷重を算出するタイヤ輪荷重算出手段として機能させることを特徴としている。 Further, the tire wheel load estimation program according to the present invention provides a computer for estimating the wheel load of the tire mounted on the vehicle based on the rotational speed of the wheel mounted on the vehicle, and the wheel rotation of each tire of the vehicle. Wheel speed calculating means for calculating wheel speed from information, dynamic load radius calculating means for calculating a dynamic load radius of each tire from the wheel speed and vehicle speed, and a slip ratio calculation for determining a slip ratio of each tire using the dynamic load radius Means, vehicle mass calculation means for determining the mass of the vehicle, and each wheel when the longitudinal force is zero using the driving stiffness, vehicle speed and wheel speed determined from the driving force and slip ratio of each wheel at the time of initialization. , And based on the relationship between the dynamic load radius, the wheel load of the tire, and the initial internal pressure of the tire, the internal pressure sensitivity of each tire and / or Tire sensitivity calculating means for calculating heavy sensitivity, a relational expression of driving force, slip ratio and driving stiffness of each wheel, and a tire wheel load for calculating a wheel load of each tire from a vehicle mass obtained in the vehicle mass obtaining step It is characterized by functioning as a calculation means.
本発明のタイヤの輪荷重推定装置及びタイヤの輪荷重推定プログラムにおいても、前記タイヤの輪荷重推定方法と同じく、タイヤのドライビングスティフネスが(輪荷重/内圧)に比例すること、及び、タイヤの前後力がゼロのときのタイヤ動荷重半径と、輪荷重及び内圧との関係を利用しており、各輪の内圧がそれぞれ異なるような場合であっても、車両質量の各タイヤへの荷重配分比を正確に算出することができ、各輪の輪荷重を正確に算出することができる。 In the tire wheel load estimation device and the tire wheel load estimation program of the present invention, the tire driving stiffness is proportional to (wheel load / internal pressure), and the front and rear of the tire, as in the tire wheel load estimation method. Using the relationship between the tire dynamic load radius when the force is zero, the wheel load and the internal pressure, even if the internal pressure of each wheel is different, the load distribution ratio of the vehicle mass to each tire Can be calculated accurately, and the wheel load of each wheel can be calculated accurately.
また、本発明の第2の観点に係るタイヤの輪荷重推定方法は、車両に装着された車輪の回転速度に基づいて当該車両に装着されたタイヤの輪荷重を推定する方法であって、
前記車両の各タイヤの車輪回転情報を検出する工程と、
検出した車輪回転情報から車輪速度を算出する工程と、
車両速度を求める工程と、
前記車輪速度及び車両速度から各タイヤの動荷重半径を求める工程と、
この動荷重半径を用いて各タイヤのスリップ率を求める工程と、
前記車両の質量を求める工程と、
初期化時に、各輪の制動力及びスリップ率から求められるドライビングスティフネス、車両速度並びに車輪速度を用いて、前後力がゼロであるときの各輪の動荷重半径を求め、この動荷重半径と、タイヤの輪荷重と、タイヤの初期内圧との関係に基づいて、各タイヤの内圧感度及び/又は荷重感度を算出する工程と、
各輪の制動力、スリップ率及びドライビングスティフネスの関係式、及び前記車両質量を求める工程で得られた車両質量から各タイヤの輪荷重を算出する工程と
を含むことを特徴としている。
Further, the tire wheel load estimation method according to the second aspect of the present invention is a method for estimating the wheel load of the tire mounted on the vehicle based on the rotational speed of the wheel mounted on the vehicle,
Detecting wheel rotation information of each tire of the vehicle;
Calculating the wheel speed from the detected wheel rotation information;
Determining vehicle speed;
Obtaining a dynamic load radius of each tire from the wheel speed and vehicle speed;
The step of obtaining the slip ratio of each tire using this dynamic load radius,
Determining the mass of the vehicle;
At the time of initialization, using the driving stiffness, vehicle speed and wheel speed obtained from the braking force and slip ratio of each wheel, the dynamic load radius of each wheel when the longitudinal force is zero is obtained, and this dynamic load radius, Calculating the internal pressure sensitivity and / or load sensitivity of each tire based on the relationship between the wheel load of the tire and the initial internal pressure of the tire;
And a step of calculating a wheel load of each tire from a relational expression of a braking force, a slip ratio and a driving stiffness of each wheel and a vehicle mass obtained in the step of obtaining the vehicle mass.
本発明の第2の観点に係るタイヤの輪荷重推定方法においても、タイヤのドライビングスティフネスが(輪荷重/内圧)に比例すること、及び、タイヤの前後力がゼロのときのタイヤ動荷重半径と、輪荷重及び内圧との関係を利用しており、各輪の内圧がそれぞれ異なるような場合であっても、車両質量の各タイヤへの荷重配分比を正確に算出することができ、各輪の輪荷重を正確に算出することができる。 Also in the tire wheel load estimation method according to the second aspect of the present invention, the tire driving stiffness is proportional to (wheel load / internal pressure), and the tire dynamic load radius when the tire longitudinal force is zero The load distribution ratio of the vehicle mass to each tire can be accurately calculated even when the internal pressure of each wheel is different, using the relationship between the wheel load and the internal pressure. The wheel load can be accurately calculated.
本発明のタイヤの輪荷重推定方法及び装置、並びにタイヤの輪荷重推定プログラムによれば、各タイヤの内圧が異なる場合であっても、車両の各輪の輪荷重を正確に且つ低コストで算出することができる。 According to the tire wheel load estimation method and apparatus and the tire wheel load estimation program of the present invention, the wheel load of each wheel of the vehicle can be calculated accurately and at low cost even when the internal pressure of each tire is different. can do.
以下、添付図面を参照しつつ、本発明のタイヤの輪荷重推定方法(以下、単に「推定方法」ともいう)及び装置(以下、単に「推定装置」ともいう)、並びにタイヤの輪荷重推定プログラムの実施の形態を詳細に説明する。
図1に示されるように、本発明の一実施の形態に係る推定装置は、車両のエンジンの駆動トルクが前軸と後軸とにそれぞれ配分される比率を制御する駆動制御装置を搭載する4輪車両(4輪駆動車)に備えられた4つのタイヤFL(左前輪)、FR(右前輪)、RL(左後輪)及びRR(右後輪)の各輪荷重を推定するものであり、タイヤの車輪回転情報を検出するため、各タイヤに関連して設けられた通常の車輪速度検出手段(車輪回転情報検出手段)1を備えている。前記駆動制御装置は、車両の走行性(運動特性)を向上させるものであり、前後のトルク配分率は、電子制御式のものであればCAN(Control Area Network)などの通信により知ることができる。また、機械式のものであっても、その特性を理解すれば、車両の走行状態からある程度予測することができる。例えば、エンジンのトルクによって前後のトルク配分がほぼ決定されるものであれば、エンジンのトルクを入手することでトルク配分を推測することができる。
Hereinafter, a tire wheel load estimation method (hereinafter also simply referred to as “estimation method”) and apparatus (hereinafter also simply referred to as “estimation device”), and a tire wheel load estimation program according to the present invention, with reference to the accompanying drawings The embodiment will be described in detail.
As shown in FIG. 1, the estimation apparatus according to an embodiment of the present invention is equipped with a
前記車輪速度検出手段1としては、電磁ピックアップなどを用いて回転パルスを発生させてパルスの数から回転角速度及び車輪速度を測定するための車輪速センサ又はダイナモのように回転を利用して発電を行い、この電圧から回転角速度及び車輪速度を測定するためのものを含む角速度センサなどを用いることができる。前記車輪速度検出手段1の出力は、ABSなどのコンピュータである制御ユニット2に与えられる。この制御ユニット2には、ドライバーによって操作することができる初期化ボタン3、及び車両速度算出手段を構成するGPS装置4が接続されている。
The wheel speed detection means 1 generates power using rotation like a wheel speed sensor or dynamo for generating rotation pulses using an electromagnetic pickup or the like and measuring the rotation angular speed and wheel speed from the number of pulses. It is possible to use an angular velocity sensor including that for measuring the rotational angular velocity and the wheel speed from this voltage. The output of the wheel
制御ユニット2は、図2に示されるように、外部装置との信号の受け渡しに必要なI/Oインターフェース2aと、演算処理の中枢として機能するCPU2bと、このCPU2bの制御動作プログラムが格納されたROM2cと、前記CPU2bが制御動作を行う際にデータなどが一時的に書き込まれたり、その書き込まれたデータが読み出されたりするRAM2dとから構成されている。なお、図2において、4aはGPSアンテナである。
前記車輪速度検出手段1では、タイヤの回転数に対応したパルス信号(以下、「車輪速パルス」ともいう)が出力される。また、CPU2bでは、車輪速度検出手段1から出力された車輪速パルスに基づいて、所定のサンプリング周期ΔT(sec)、例えばΔT=0.05秒毎に各タイヤの回転角速度が算出される。
As shown in FIG. 2, the
The wheel speed detection means 1 outputs a pulse signal corresponding to the number of rotations of the tire (hereinafter also referred to as “wheel speed pulse”). Further, the
前記車両速度は、例えばGPS速度計を利用して得ることができる。カーナビゲーションの普及によりGPS装置が多くの車両に取り付けられるようになっている。このことでGPS装置による測位技術も向上し、現在では速度を算出することに特化した装置(英国Race Logic社製のGPS式速度計VBOX(商品名))も販売されている。かかるGPS情報を用いた速度計による算出速度を車両速度として利用することができる。なお、GPS装置により得られる車両の絶対速度以外に、例えば対地速度などの異なる方法で得られる車両の絶対速度を用いることができる。 The vehicle speed can be obtained using, for example, a GPS speedometer. With the widespread use of car navigation systems, GPS devices are attached to many vehicles. As a result, positioning technology using a GPS device has also been improved, and a device specialized in calculating speed (GPS speedometer VBOX (trade name) manufactured by Race Logic, UK) is now on the market. The speed calculated by the speedometer using such GPS information can be used as the vehicle speed. In addition, the absolute speed of the vehicle obtained by different methods, such as ground speed, can be used other than the absolute speed of the vehicle obtained by the GPS device.
本実施の形態に係る推定装置は、車輪速度検出手段(車輪回転情報検出手段)1と、検出された車両の各タイヤの車輪回転情報から車輪速度を算出する車輪速度算出手段と、車両速度を求めるGPS速度計と、車輪速度及び車両速度から各タイヤの動荷重半径を求める動荷重半径算出手段と、この動荷重半径を用いて各タイヤのスリップ率を求めるスリップ率算出手段と、前記車両のアクスルシャフトから得られる全駆動力及び駆動力前後配分、並びに前記スリップ率を用いて基準タイヤに対する他のタイヤの荷重比を算出するタイヤ荷重比算出手段と、前記車両の質量を求める車両質量算出手段と、初期化時に、各輪の駆動力及びスリップ率から求められるドライビングスティフネス、車両速度並びに車輪速度を用いて、前後力がゼロであるときの各輪の動荷重半径を求め、この動荷重半径と、タイヤの輪荷重と、タイヤの初期内圧との関係に基づいて、各タイヤの内圧感度及び/又は荷重感度を算出するタイヤ感度算出手段と、各輪の駆動力、スリップ率及びドライビングスティフネスの関係式、並びに前記車両質量を求める工程で得られた車両質量から各タイヤの輪荷重を算出するタイヤ輪荷重算出手段とから構成されている。そして、タイヤの輪荷重推定プログラムは、前記制御ユニット2を、車輪速度算出手段、動荷重半径算出手段、スリップ率算出手段、車両質量算出手段、タイヤ感度算出手段、及びタイヤ輪荷重算出手段として機能させる。
The estimation apparatus according to the present embodiment includes wheel speed detection means (wheel rotation information detection means) 1, wheel speed calculation means for calculating wheel speed from the detected wheel rotation information of each tire of the vehicle, and vehicle speed. A GPS speedometer to be obtained; a dynamic load radius calculating means for obtaining a dynamic load radius of each tire from the wheel speed and the vehicle speed; a slip ratio calculating means for obtaining a slip ratio of each tire using the dynamic load radius; Tire load ratio calculating means for calculating the total driving force obtained from the axle shaft, the distribution before and after the driving force, and the load ratio of other tires with respect to a reference tire using the slip ratio, and vehicle mass calculating means for determining the mass of the vehicle And at the time of initialization, the longitudinal force is zero using the driving stiffness, vehicle speed and wheel speed obtained from the driving force and slip ratio of each wheel. Tire sensitivity calculation that calculates the dynamic load radius of each wheel and calculates the internal pressure sensitivity and / or load sensitivity of each tire based on the relationship between the dynamic load radius, the wheel load of the tire, and the initial internal pressure of the tire And tire wheel load calculation means for calculating the wheel load of each tire from the relational expression of the driving force, slip ratio and driving stiffness of each wheel and the vehicle mass obtained in the step of obtaining the vehicle mass. Yes. The tire wheel load estimation program functions the
走行中の車両のタイヤ動荷重半径(DLR)は、車両の絶対速度(V)とタイヤの回転角速度(ω)との関係から、V=DLR×ωにより算出することができる。 The tire dynamic load radius (DLR) of the traveling vehicle can be calculated by V = DLR × ω from the relationship between the absolute speed (V) of the vehicle and the rotational angular velocity (ω) of the tire.
本実施の形態では、GPSから算出される車両速度(V)とタイヤの回転速度(ω)から得られる各輪のタイヤ動荷重半径(DLR)からスリップ率(slp)を算出し、さらに、このスリップ率(slp)と各輪の駆動力(FX)からドライビングスティフネス(単位スリップ率時の駆動力)(D)を算出し、これらから、各輪の輪荷重を算出している。 In the present embodiment, the slip ratio (slp) is calculated from the tire dynamic load radius (DLR) of each wheel obtained from the vehicle speed (V) calculated from the GPS and the rotation speed (ω) of the tire. Driving stiffness (driving force at the unit slip ratio) (D) is calculated from the slip ratio (slp) and the driving force (FX) of each wheel, and the wheel load of each wheel is calculated from these.
より詳細には、(1)まず、車輪速度検出手段1の出力信号(パルス信号)に基づいて、次の式(1)により各タイヤの回転角速度(ω)を算出する。
回転角速度(ω)=2π×Freq(Hz)/N(個)・・・・・(1)
ここに、Nは車輪速度検出手段1の車軸1回転あたりの歯数であり、Freq(Hz)は、その車輪速度検出手段1の歯が1秒あたりにカウントされた数値である。
More specifically, (1) First, based on the output signal (pulse signal) of the wheel
Rotational angular velocity (ω) = 2π × Freq (Hz) / N (pieces) (1)
Here, N is the number of teeth per one rotation of the axle of the wheel
(2)一方、GPS速度計より車両速度(V)を求める。この車両速度(V)はシリアルデータとして直接制御ユニット2に出力される。なお、前記回転角速度(ω)の算出時刻と車両速度(V)の算出時刻のいずれか一方について、他方と同時刻での数値を内挿計算し、互いに同時刻での数値を算出して同期化を行い、例えば50msec毎のデジタルデータとして制御ユニット2に取り込むことができる。この50msec毎のデジタルデータから動荷重半径を50msec毎に算出し、例えば1秒毎の平均値として算出することができる。
(2) On the other hand, the vehicle speed (V) is obtained from the GPS speedometer. The vehicle speed (V) is directly output to the
(3)得られた回転角速度(ω)及び車両速度(V)から、DLR=V/ωによりタイヤ動荷重半径(DLR)を算出する。
なお、タイヤ動荷重半径は、加減速、旋回、坂道走行など、タイヤの内圧低下以外の要因によっても変化することから、車両の走行状態を限定(平坦路を一定速度で直進している走行状態に限定)し、かかる状態のときに得られたデータを有効データとして採用するのが好ましく、こうして他の要因によるタイヤ動荷重半径の変化をタイヤ輪荷重推定用のデータから排除することで、正確なタイヤ輪荷重を推定することができる。
(3) From the obtained rotational angular velocity (ω) and vehicle speed (V), the tire dynamic load radius (DLR) is calculated by DLR = V / ω.
The tire dynamic load radius also changes due to factors other than a decrease in tire internal pressure, such as acceleration / deceleration, turning, and running on a slope, so the vehicle's running condition is limited (running on a flat road at a constant speed) It is preferable to adopt the data obtained in such a state as effective data, and thus, by excluding changes in the tire dynamic load radius due to other factors from the tire wheel load estimation data, Can be estimated.
具体的には、走行条件が、定速度走行、平坦路走行、直線走行などの条件を満たすかどうかをそれぞれの判定条件と比較し、実際の走行中に得られたデータが基準値設定用のデータに適したデータであるかどうかの判定を行い、不適切なデータである場合は基準値設定用のデータとして使用せずに排除する。判定条件としては、例えば車両の前後方向|G|<0.05G、方位変化1度以下、路面勾配5%以下、ブレーキを踏んでいないこと、とすることができる。 Specifically, whether or not the driving condition satisfies conditions such as constant speed driving, flat road driving, and straight driving is compared with each judgment condition, and the data obtained during actual driving is used for setting the reference value. It is determined whether the data is suitable for the data. If the data is inappropriate, the data is excluded without being used as the reference value setting data. As the determination conditions, for example, the vehicle front-rear direction | G | <0.05G, the direction change is 1 degree or less, the road surface gradient is 5% or less, and the brake is not stepped on.
(4)ついで、得られた各タイヤの動荷重半径(DLR)と、車両の全駆動力(FX ALL)がゼロのときの動荷重半径(DLR0)から、以下の式(2)に従い、スリップ率(slp)を算出する。
slp=(DLR0−DLR)/DLR0・・・・・・(2)
(4) Next, from the obtained dynamic load radius (DLR) of each tire and the dynamic load radius (DLR 0 ) when the total driving force (FX ALL) of the vehicle is zero, according to the following equation (2): The slip ratio (slp) is calculated.
slp = (DLR 0 −DLR) / DLR 0 (2)
(5)また、全駆動力は、車両の全アクスルシャフトトルク(T)を得ることができれば、タイヤの負荷半径(R)から、以下の式(3)により算出することができる。
FX ALL=T/R・・・・・・(3)
(5) Moreover, if the total axle shaft torque (T) of the vehicle can be obtained, the total driving force can be calculated from the tire load radius (R) by the following equation (3).
FX ALL = T / R (3)
(6)一方、ドライビングスティフネス(D)は、スリップ率に対する駆動力の比例定数であり、FX=D×slpで表すことができる。
ここで、ドライビングスティフネスは、タイヤの接地形状と関係しており、タイヤの接地面積をS、単位面積当たりの前後剛性をGとすると、D=G×Sで近似させることができる。
さらに、接地面積Sは、タイヤの荷重(FZ)、タイヤ内圧(IP)に比例するので、比例定数をpとすると、S=p×FZ/IPと表すことができる。
(6) On the other hand, the driving stiffness (D) is a proportional constant of the driving force with respect to the slip ratio, and can be expressed as FX = D × slp.
Here, the driving stiffness is related to the ground contact shape of the tire. If the ground contact area of the tire is S and the longitudinal rigidity per unit area is G, it can be approximated by D = G × S.
Furthermore, since the contact area S is proportional to the tire load (FZ) and the tire internal pressure (IP), if the proportionality constant is p, it can be expressed as S = p × FZ / IP.
以上より、各輪の駆動力は、添え字1、2、3、4をそれぞれFL(左前輪)、FR(右前輪)、RL(左後輪)及びRR(右後輪)とすると、4輪駆動車の場合、駆動力前後配分(AWDP)=前軸駆動力/全駆動力が分かっておれば、
FX1=AWDP×FX ALL/2=pG(FZ1/IP1)slp1・・・・・・(4)
FX2=AWDP×FX ALL/2=pG(FZ2/IP2)slp2・・・・・・(5)
FX3=(1−AWDP)×FX ALL/2=pG(FZ3/IP3)slp3・・・(6)
FX4=(1−AWDP)×FX ALL/2=pG(FZ4/IP4)slp4・・・(7)
と表すことができる。
なお、駆動力前後配分(AWDP)は、前述したように、電子制御式の駆動制御装置を備えておれば、CANなどの通信により知ることができる。
From the above, the driving force of each wheel is 4 when
FX1 = AWDP × FX ALL / 2 = pG (FZ1 / IP1) slp1 (4)
FX2 = AWDP × FX ALL / 2 = pG (FZ2 / IP2) slp2 (5)
FX3 = (1-AWDP) × FX ALL / 2 = pG (FZ3 / IP3) slp3 (6)
FX4 = (1-AWDP) × FX ALL / 2 = pG (FZ4 / IP4) slp4 (7)
It can be expressed as.
As described above, the driving force front-rear distribution (AWDP) can be known by communication such as CAN if an electronically controlled drive control device is provided.
FL(左前輪)を基準輪とすると、式(4)〜(7)より、当該FL(左前輪)に対するFR(右前輪)、RL(左後輪)及びRR(右後輪)の荷重比は、次の式(8)〜(10)により表すことができる。
FZ2/FZ1=(IP2/IP1)(slp1/slp2)・・・・・・(8)
FZ3/FZ1={(1−AWDP)/AWDP}(IP3/IP1)(slp1/slp
3)・・・・・・(9)
FZ4/FZ1={(1−AWDP)/AWDP}(IP4/IP1)(slp1/slp
4)・・・・・・(10)
したがって、タイヤ内圧が分かっている正規内圧時に初期化を行うことにより、初期化時における各輪荷重比を式(8)〜(10)により求めることができる。
When FL (left front wheel) is a reference wheel, the load ratio of FR (right front wheel), RL (left rear wheel) and RR (right rear wheel) with respect to the FL (left front wheel) is calculated based on equations (4) to (7). Can be expressed by the following formulas (8) to (10).
FZ2 / FZ1 = (IP2 / IP1) (slp1 / slp2) (8)
FZ3 / FZ1 = {(1-AWDP) / AWDP} (IP3 / IP1) (slp1 / slp
3) ... (9)
FZ4 / FZ1 = {(1-AWDP) / AWDP} (IP4 / IP1) (slp1 / slp
4) ... (10)
Therefore, by performing initialization at the normal internal pressure where the tire internal pressure is known, each wheel load ratio at the time of initialization can be obtained by the equations (8) to (10).
(7)また、車両の全質量(推定質量)を、車両の加速度、速度及び傾斜角を用いて算出する。すなわち、CAN情報である車両のアクスルシャフトトルクと、GPSから算出される速度、そこから算出される加速度、及び坂道の傾斜角を用いて、以下の式(11)から車両質量mを算出することができる。
m(α+gsin(θ))+AV2=T/R・・・・・・(11)
ここに、Tは全アクスルシャフトトルク、Rはタイヤ負荷半径、gは重力加速度、Vは車両速度、Aは空力抵抗、αは車両加速度である。
θは車両が走行している坂道の傾斜角であり、このθは、車両の平面速度をVxy(=V)、鉛直方向速度をVzとすると、θ=arctan(Vz/Vxy)で表され、また、車両加速度αはα=dVxy/dt/sinθで表される。
以上より、車両質量m及び空力抵抗Aを回帰にて算出することができる。
(7) Further, the total mass (estimated mass) of the vehicle is calculated using the acceleration, speed, and tilt angle of the vehicle. That is, the vehicle mass m is calculated from the following equation (11) using the vehicle axle shaft torque that is CAN information, the speed calculated from the GPS, the acceleration calculated therefrom, and the inclination angle of the slope. Can do.
m (α + gsin (θ)) + AV 2 = T / R (11)
Here, T is the total axle shaft torque, R is the tire load radius, g is the gravitational acceleration, V is the vehicle speed, A is the aerodynamic resistance, and α is the vehicle acceleration.
θ is the inclination angle of the slope on which the vehicle is traveling, and θ is expressed by θ = arctan (Vz / Vxy), where Vxy (= V) is the plane speed of the vehicle and Vz is the vertical speed. The vehicle acceleration α is expressed by α = dVxy / dt / sin θ.
From the above, the vehicle mass m and the aerodynamic resistance A can be calculated by regression.
(8)一方、各輪の動荷重半径(DLR)は、タイヤの荷重感度をb、内圧感度をc、定数をdとすると、
DLR1=bFZ1+cIP1+d
DLR2=bFZ2+cIP2+d
DLR3=bFZ3+cIP3+d
DLR4=bFZ4+cIP4+d
と表すことができる。なお、「荷重感度」とは、荷重に対する動荷重半径の変化量のことであり、「内圧感度」とは、内圧に対する動荷重半径の変化量のことである。
(8) On the other hand, the dynamic load radius (DLR) of each wheel is such that the tire load sensitivity is b, the internal pressure sensitivity is c, and the constant is d.
DLR1 = bFZ1 + cIP1 + d
DLR2 = bFZ2 + cIP2 + d
DLR3 = bFZ3 + cIP3 + d
DLR4 = bFZ4 + cIP4 + d
It can be expressed as. “Load sensitivity” refers to the amount of change in the dynamic load radius relative to the load, and “internal pressure sensitivity” refers to the amount of change in the dynamic load radius relative to the internal pressure.
(9)なお、内圧感度cと荷重感度bとは比例関係(c=eb)にあるので、最低1本、望ましくは3本程度の代表的なサイズ違いのタイヤを測定し、比例定数(e)を求めておけば、各輪の動荷重半径は、以下の式(12)〜(15)で表すことができる。
DLR1=b(FZ1+eIP1)+d・・・・・・(12)
DLR2=b(FZ2+eIP2)+d・・・・・・(13)
DLR3=b(FZ3+eIP3)+d・・・・・・(14)
DLR4=b(FZ4+eIP4)+d・・・・・・(15)
(9) Since the internal pressure sensitivity c and the load sensitivity b are in a proportional relationship (c = eb), at least one tire, preferably about three tires with different sizes are measured, and the proportionality constant (e ), The dynamic load radius of each wheel can be expressed by the following equations (12) to (15).
DLR1 = b (FZ1 + eIP1) + d (12)
DLR2 = b (FZ2 + eIP2) + d (13)
DLR3 = b (FZ3 + eIP3) + d (14)
DLR4 = b (FZ4 + eIP4) + d (15)
(10)ここで、式(12)〜(15)において荷重感度及び内圧感度を用いて表現された動荷重半径(DLR)は、タイヤに前後力が発生していないとき(路面とタイヤ間に滑りが発生していないとき)の動荷重半径値であり、かかる動荷重半径値は、スリップ率(slp)、車両速度(V)及び車輪速度(ω)との間で次の式(16)を満足する。
slp=1−V/(ωDLR)・・・・・・(16)
また、FX=D×slpであることから、
FX=D×{1−V/(ωDLR)}・・・・・・(17)
が成立する。そして、FXをV/ωで回帰することで、前後力がゼロのときのDLRを算出することができる。
(10) Here, the dynamic load radius (DLR) expressed using the load sensitivity and the internal pressure sensitivity in the formulas (12) to (15) is when the longitudinal force is not generated in the tire (between the road surface and the tire). The dynamic load radius value when no slip occurs), and the dynamic load radius value is expressed by the following equation (16) among the slip ratio (slp), the vehicle speed (V), and the wheel speed (ω). Satisfied.
slp = 1-V / (ωDLR) (16)
Also, since FX = D × slp,
FX = D × {1-V / (ωDLR)} (17)
Is established. The DLR when the longitudinal force is zero can be calculated by regressing FX with V / ω.
検出装置の初期化時において、動荷重半径(DLR)と、輪荷重(FZ)及び内圧(IP)との関係式(12)〜(15)に、式(8)〜(11)により求めた各輪荷重、及び各輪内圧(初期化時=正規内圧)を代入することで、荷重感度(b)、定数(d)及び比例定数(e)を算出することができ、さらにc=ebから内圧感度(c)を算出することができる。 At the time of initialization of the detection device, the relational expressions (12) to (15) of the dynamic load radius (DLR), the wheel load (FZ) and the internal pressure (IP) were obtained by the expressions (8) to (11). By substituting each wheel load and each wheel internal pressure (initial time = normal internal pressure), load sensitivity (b), constant (d), and proportionality constant (e) can be calculated. Further, from c = eb The internal pressure sensitivity (c) can be calculated.
(11)通常の走行時(非初期化時)には、各輪の内圧は分からないので、式(12)〜(15)からIP=(DLR−d−bFZ)/cと表し、これを式(8)〜(10)に代入して、それぞれ式(18)〜(20)を得る。
FZ2/FZ1={(DLR2−d−bFZ2)/(DLR1−d−bFZ1)}×(sl
p1/slp2)・・・・・・(18)
FZ3/FZ1={(1−AWDP)/AWDP}×{(DLR3−d−bFZ3)/(D
LR1−d−bFZ1)}×(slp1/slp3)・・・・・・(19)
FZ4/FZ1={(1−AWDP)/AWDP}×{(DLR4−d−bFZ4)/(D
LR1−d−bFZ1)}×(slp1/slp4)・・・・・・(20)
(12)また、式(11)から車両質量(m)を求める。この車両質量(m)は、
mg=FZ1+FZ2+FZ3+FZ4・・・・・・(21)
を満足することから、式(18)〜(20)について、それぞれFZ2、FZ3、FZ4をFZ1で表し、それらを式(21)に代入してFZ1で解くことによって、当該FZ1を求めることができる。ついで、式(18)〜(20)よりそれぞれFZ2、FZ3、FZ4を求めることができる。こうして、各タイヤの輪荷重を算出(推定)することができる。
(11) During normal driving (non-initialization), since the internal pressure of each wheel is not known, it is expressed as IP = (DLR-d-bFZ) / c from equations (12) to (15), Substituting into equations (8) to (10), equations (18) to (20) are obtained, respectively.
FZ2 / FZ1 = {(DLR2-d-bFZ2) / (DLR1-d-bFZ1)} × (sl
p1 / slp2) (18)
FZ3 / FZ1 = {(1-AWDP) / AWDP} × {(DLR3-d-bFZ3) / (D
LR1-d-bFZ1)} × (slp1 / slp3) (19)
FZ4 / FZ1 = {(1-AWDP) / AWDP} × {(DLR4-d-bFZ4) / (D
LR1-d-bFZ1)} × (slp1 / slp4) (20)
(12) Moreover, vehicle mass (m) is calculated | required from Formula (11). This vehicle mass (m) is
mg = FZ1 + FZ2 + FZ3 + FZ4 (21)
Therefore, FZ1, FZ3, and FZ4 are expressed by FZ1 in equations (18) to (20), respectively, and are substituted into equation (21) and solved by FZ1 to obtain FZ1. . Next, FZ2, FZ3, and FZ4 can be obtained from the equations (18) to (20), respectively. Thus, the wheel load of each tire can be calculated (estimated).
つぎに本発明の推定方法の実施例を説明するが、本発明はもとよりかかる実施例のみに限定されるものではない。
[実施例]
車両に装着された各タイヤの回転角速度を得るために、ABS制御に利用する回転速度情報を用いて、回転角速度に換算した。また、車両の絶対速度を得るためにVBOX(商品名。英国Race Logic社製GPS速度計)を車両に取り付けた。車両の速度は、シリアルデータとして直接PC(パーソナルコンピュータ)に出力され、この車両速度情報、前記回転速度情報、前後駆動力配分情報及び車両のアクスルシャフトトルク情報を50msec毎にデジタルデータとして同期してPCに取り込めるようにした。そして、車両速度情報及び回転速度情報からタイヤ動荷重半径を50msec毎に計算し、1秒毎の平均値として算出した。
Next, examples of the estimation method of the present invention will be described. However, the present invention is not limited to such examples.
[Example]
In order to obtain the rotational angular velocity of each tire mounted on the vehicle, the rotational angular velocity used for ABS control was converted into the rotational angular velocity. Further, in order to obtain the absolute speed of the vehicle, a VBOX (trade name, a GPS speedometer manufactured by Race Logic, UK) was attached to the vehicle. The vehicle speed is directly output to a personal computer (PC) as serial data. The vehicle speed information, the rotational speed information, the front / rear driving force distribution information, and the vehicle axle shaft torque information are synchronized as digital data every 50 msec. I was able to import to PC. And the tire dynamic load radius was calculated every 50 msec from vehicle speed information and rotational speed information, and it calculated as an average value for every second.
[事前テスト]
フラットベルトによる台上動荷重半径測定を行い、該当タイヤの荷重及び減圧による動荷重半径の減少量を測定し、タイヤの荷重感度と内圧感度の関係を調べた。
[Pre-test]
We measured the dynamic load radius on the table using a flat belt, measured the load on the tire and the decrease in the dynamic load radius due to reduced pressure, and investigated the relationship between the load sensitivity of the tire and the internal pressure sensitivity.
表1に示される3種類のタイヤについて、荷重感度(荷重1kN変化当たりの動荷重半径の変化量(mm))、及び内圧感度(内圧1kPa変化当たりの動荷重半径の変化量(mm))を調べた。タイヤに負荷する荷重は、2.5kN、3.5kN及び4.5kNの3つの水準とし、タイヤ内圧は4つの水準(150kPa、180kPa、210kPa、240kPa)で変化させて動荷重半径を測定した。 For the three types of tires shown in Table 1, load sensitivity (change in dynamic load radius per 1 kN change in load (mm)) and internal pressure sensitivity (change in dynamic load radius per 1 kPa change in internal pressure (mm)) Examined. The load applied to the tire was set at three levels of 2.5 kN, 3.5 kN, and 4.5 kN, and the tire load was changed at four levels (150 kPa, 180 kPa, 210 kPa, and 240 kPa), and the dynamic load radius was measured.
3種類のタイヤの荷重感度及び内圧感度は、表1及び図3に示される通りであり、これより両感度の関係は、内圧感度=−0.0369×荷重感度となることが分かった。したがって、内圧感度と荷重感度の比例定数(e)として、e=−0.0369を推定装置にプリセットしておいた。 The load sensitivity and the internal pressure sensitivity of the three types of tires are as shown in Table 1 and FIG. 3. From this, it was found that the relationship between the two sensitivities is internal pressure sensitivity = −0.0369 × load sensitivity. Therefore, e = −0.0369 is preset in the estimation device as the proportionality constant (e) between the internal pressure sensitivity and the load sensitivity.
[実車テスト]
4WD車にタイヤ(215/45R17 SP9000)を装着して、以下の4つのケースについて住友ゴム工業株式会社の岡山テストコースにおいて実車テストを行った。
初期化時及び評価時の条件は、それぞれ以下の通りあった。なお、駆動力の前後配分=45(前):55(後)であった。
初期化時
基準内圧(前輪:230kPa、後輪:210kPa)で1名乗車した。
評価時
1名乗車の場合と、さらに荷重を搭載した場合(積車)について評価を行った。荷重としては、前席(90kg)、後席(100kg)及びトランク(100kg)の合計290kgとした。そして、前輪及び後輪の内圧をそれぞれ表3に示されるように変更して、評価を行った。
[Real car test]
Tires (215 / 45R17 SP9000) were mounted on a 4WD vehicle, and the following four cases were tested in actual vehicles at the Okayama test course of Sumitomo Rubber Industries, Ltd.
The conditions for initialization and evaluation were as follows. The front-rear distribution of driving force was 45 (front): 55 (rear).
Initialization One person was boarded at the standard internal pressure (front wheel: 230 kPa, rear wheel: 210 kPa).
At the time of evaluation: Evaluation was performed for the case of one person riding and a case where a load was loaded (vehicle loading). The load was 290 kg in total including the front seat (90 kg), the rear seat (100 kg), and the trunk (100 kg). Then, the internal pressures of the front wheels and the rear wheels were changed as shown in Table 3 for evaluation.
[初期化時]
各タイヤの動荷重半径と、車両の全駆動力(FX ALL)がゼロのときの動荷重半径(R0)から、前記式(2)に従い、スリップ率(slp)を算出した。
ついで、初期化時は、タイヤ内圧が基準値(前輪:230kPa、後輪:210kPa)であるので、得られたスリップ率を用いて、前記式(8)〜(10)に従い、FL(左前輪)に対するFR(右前輪)、RL(左後輪)及びRR(右後輪)の荷重比(輪荷重比)を算出し、さらに前記式(11)より求めた車両質量(推定質量)を用いて、各輪の輪荷重(推定輪荷重)を算出した。
[When initializing]
From the dynamic load radius of each tire and the dynamic load radius (R 0 ) when the total driving force (FX ALL) of the vehicle is zero, the slip ratio (slp) was calculated according to the equation (2).
Then, at the time of initialization, since the tire internal pressure is a reference value (front wheel: 230 kPa, rear wheel: 210 kPa), FL (left front wheel) is obtained using the obtained slip ratio according to the above formulas (8) to (10). ) (FR front right wheel), RL (left rear wheel) and RR (right rear wheel) load ratio (wheel load ratio) is calculated, and the vehicle mass (estimated mass) obtained from the equation (11) is used. Thus, the wheel load (estimated wheel load) of each wheel was calculated.
さらに、前記式(17)より、前後力がゼロであるときの動荷重半径(DLR)を求め、この動荷重半径と、輪荷重及び内圧を前記式(12)〜(15)に代入して、荷重感度(b)及び定数(d)を求め、ついでプリセットしておいた内圧感度と荷重感度の比例定数(e)から内圧感度(c)を算出した。
以上の結果を表2に示す。
Further, the dynamic load radius (DLR) when the longitudinal force is zero is obtained from the equation (17), and the dynamic load radius, the wheel load and the internal pressure are substituted into the equations (12) to (15). The load sensitivity (b) and the constant (d) were obtained, and the internal pressure sensitivity (c) was calculated from the preset internal pressure sensitivity and the proportional constant (e) of the load sensitivity.
The results are shown in Table 2.
[評価時]
初期化時と同様にしてスリップ率及び前後力がゼロのときの動荷重半径を算出した。また、前記式(18)〜(20)で求めた輪荷重比及び前記式(11)で求めた車両質量を用いて、各輪の輪荷重(推定輪荷重)を算出した。結果を表3に示す。また、実際の輪荷重と推定輪荷重との差を表3に示す。
[At the time of evaluation]
The dynamic load radius when the slip ratio and the longitudinal force were zero was calculated in the same manner as at the time of initialization. Moreover, the wheel load (estimated wheel load) of each wheel was calculated using the wheel load ratio obtained by the equations (18) to (20) and the vehicle mass obtained by the equation (11). The results are shown in Table 3. Table 3 shows the difference between the actual wheel load and the estimated wheel load.
表3より分かるように、本発明の推定方法により推定(算出)された各輪の輪荷重の誤差(推定輪荷重と実際の輪荷重との差)は20〜30kg程度、すなわち誤差{(推定輪荷重−実際の輪荷重)×100/実際の輪荷重}は±数%程度であり、実用上問題のない精度であった。 As can be seen from Table 3, the wheel load error (difference between the estimated wheel load and the actual wheel load) of each wheel estimated (calculated) by the estimation method of the present invention is about 20 to 30 kg, that is, the error {(estimated Wheel load−actual wheel load) × 100 / actual wheel load} is about ± several percent, and the accuracy has no practical problem.
なお、以上の実施の形態では、4輪駆動車を例にとって説明しているが、本発明は、これに限定されるものではなく、2輪駆動車に対しても適用が可能である。すなわち、2輪駆動車の場合、駆動力が作用するのは2輪だけであるが、制動力(ブレーキを踏んだとき)は4輪に作用する。したがって、この制動力を、例えば各輪のブレーキ力などから知ることができれば、前述した計算において、「駆動力」に代えて「制動力」を用いることで、前述した計算が可能となる。 In the above embodiment, a four-wheel drive vehicle has been described as an example. However, the present invention is not limited to this and can be applied to a two-wheel drive vehicle. That is, in the case of a two-wheel drive vehicle, the driving force acts on only two wheels, but the braking force (when the brake is depressed) acts on the four wheels. Therefore, if the braking force can be known from, for example, the braking force of each wheel, the above-described calculation can be performed by using “braking force” instead of “driving force” in the above-described calculation.
1 車輪速度検出手段
2 制御ユニット
2a インターフェース
2b CPU
2c ROM
2d RAM
3 初期化ボタン
4 GPS装置
4a GPSアンテナ
1 Wheel speed detection means 2
2c ROM
2d RAM
3
Claims (7)
前記車両の各タイヤの車輪回転情報を検出する工程と、
検出した車輪回転情報から車輪速度を算出する工程と、
車両速度を求める工程と、
前記車輪速度及び車両速度から各タイヤの動荷重半径を求める工程と、
この動荷重半径を用いて各タイヤのスリップ率を求める工程と、
前記車両の質量を求める工程と、
初期化時に、各輪の駆動力及びスリップ率から求められるドライビングスティフネス、車両速度並びに車輪速度を用いて、前後力がゼロであるときの各輪の動荷重半径を求め、この動荷重半径と、タイヤの輪荷重と、タイヤの初期内圧との関係に基づいて、各タイヤの内圧感度及び/又は荷重感度を算出する工程と、
各輪の駆動力、スリップ率及びドライビングスティフネスの関係式、並びに前記車両質量を求める工程で得られた車両質量から各タイヤの輪荷重を算出する工程と
を含むことを特徴とするタイヤの輪荷重推定方法。 A method for estimating a wheel load of a tire mounted on a vehicle based on a rotation speed of a wheel mounted on the vehicle,
Detecting wheel rotation information of each tire of the vehicle;
Calculating the wheel speed from the detected wheel rotation information;
Determining vehicle speed;
Obtaining a dynamic load radius of each tire from the wheel speed and vehicle speed;
The step of obtaining the slip ratio of each tire using this dynamic load radius,
Determining the mass of the vehicle;
At the time of initialization, using the driving stiffness and the vehicle speed and the wheel speed obtained from the driving force and slip ratio of each wheel, the dynamic load radius of each wheel when the longitudinal force is zero is obtained, and this dynamic load radius, Calculating the internal pressure sensitivity and / or load sensitivity of each tire based on the relationship between the wheel load of the tire and the initial internal pressure of the tire;
A wheel load of the tire, comprising: a relational expression of a driving force of each wheel, a slip ratio and a driving stiffness, and a step of calculating a wheel load of each tire from the vehicle mass obtained in the step of obtaining the vehicle mass. Estimation method.
DLR=bFZ+cIP+d
で表される式に基づいて算出される請求項1に記載のタイヤの輪荷重推定方法。 In the step of calculating the internal pressure sensitivity and / or load sensitivity at the time of initialization, when the internal pressure sensitivity and / or load sensitivity is zero, the dynamic load radius of the tire when the longitudinal force is zero is DLR, the wheel load is FZ, the internal pressure Is IP, load sensitivity is b, internal pressure sensitivity is c, and constant is d,
DLR = bFZ + cIP + d
The tire wheel load estimation method according to claim 1, which is calculated based on an expression represented by:
m(α+gsin(θ))+AV2=T/R
により車両質量を求める請求項1〜2のいずれかに記載のタイヤの輪荷重推定方法。 In the step of determining the vehicle mass, it is assumed that the vehicle is traveling on a road surface having an inclination angle θ, the vehicle mass is m, the vehicle speed is V, the vehicle acceleration is α, the total axle shaft torque of the vehicle is T, and a tire. M (α + gsin (θ)) + AV 2 = T / R where R is the load radius, θ is the slope of the road surface, A is the aerodynamic resistance, and g is the acceleration of gravity.
The wheel load estimation method for a tire according to claim 1, wherein the vehicle mass is obtained by:
FX=D×{1−V/(ωDLR)}
により動荷重半径を求める請求項1〜3のいずれかに記載のタイヤの輪荷重推定方法。 In the step of obtaining the dynamic load radius of each wheel when the longitudinal force is zero, the dynamic load radius is DLR, the driving force is FX, the driving stiffness obtained from the slip ratio is D, the vehicle speed is V, and the wheel speed is ω. And when
FX = D × {1-V / (ωDLR)}
The method for estimating a wheel load of a tire according to claim 1, wherein a dynamic load radius is obtained by:
前記車両の各タイヤの車輪回転情報を検出する車輪回転情報検出手段と、
検出した車輪回転情報から車輪速度を算出する車輪速度算出手段と、
車両速度を求める車両速度算出手段と、
前記車輪速度及び車両速度から各タイヤの動荷重半径を求める動荷重半径算出手段と、
この動荷重半径を用いて各タイヤのスリップ率を求めるスリップ率算出手段と、
前記車両の質量を求める車両質量算出手段と、
初期化時に、各輪の駆動力及びスリップ率から求められるドライビングスティフネス、車両速度並びに車輪速度を用いて、前後力がゼロであるときの各輪の動荷重半径を求め、この動荷重半径と、タイヤの輪荷重と、タイヤの初期内圧との関係に基づいて、各タイヤの内圧感度及び/又は荷重感度を算出するタイヤ感度算出手段と、
各輪の駆動力、スリップ率及びドライビングスティフネスの関係式、並びに前記車両質量を求める工程で得られた車両質量から各タイヤの輪荷重を算出するタイヤ輪荷重算出手段と
を含むことを特徴とするタイヤの輪荷重推定装置。 An apparatus for estimating a wheel load of a tire mounted on a vehicle based on a rotation speed of a wheel mounted on the vehicle,
Wheel rotation information detecting means for detecting wheel rotation information of each tire of the vehicle;
Wheel speed calculation means for calculating wheel speed from the detected wheel rotation information;
Vehicle speed calculation means for determining the vehicle speed;
A dynamic load radius calculating means for determining a dynamic load radius of each tire from the wheel speed and the vehicle speed;
Slip rate calculating means for determining the slip rate of each tire using the dynamic load radius;
Vehicle mass calculating means for determining the mass of the vehicle;
At the time of initialization, using the driving stiffness and the vehicle speed and the wheel speed obtained from the driving force and slip ratio of each wheel, the dynamic load radius of each wheel when the longitudinal force is zero is obtained, and this dynamic load radius, Tire sensitivity calculation means for calculating the internal pressure sensitivity and / or load sensitivity of each tire based on the relationship between the wheel load of the tire and the initial internal pressure of the tire;
Tire wheel load calculating means for calculating the wheel load of each tire from the relational expression of the driving force, slip ratio and driving stiffness of each wheel and the vehicle mass obtained in the step of determining the vehicle mass. Tire wheel load estimation device.
前記車両の各タイヤの車輪回転情報を検出する工程と、
検出した車輪回転情報から車輪速度を算出する工程と、
車両速度を求める工程と、
前記車輪速度及び車両速度から各タイヤの動荷重半径を求める工程と、
この動荷重半径を用いて各タイヤのスリップ率を求める工程と、
前記車両の質量を求める工程と、
初期化時に、各輪の制動力及びスリップ率から求められるドライビングスティフネス、車両速度並びに車輪速度を用いて、前後力がゼロであるときの各輪の動荷重半径を求め、この動荷重半径と、タイヤの輪荷重と、タイヤの初期内圧との関係に基づいて、各タイヤの内圧感度及び/又は荷重感度を算出する工程と、
各輪の制動力、スリップ率及びドライビングスティフネスの関係式、並びに前記車両質量を求める工程で得られた車両質量から各タイヤの輪荷重を算出する工程と
を含むことを特徴とするタイヤの輪荷重推定方法。 A method for estimating a wheel load of a tire mounted on a vehicle based on a rotation speed of a wheel mounted on the vehicle,
Detecting wheel rotation information of each tire of the vehicle;
Calculating the wheel speed from the detected wheel rotation information;
Determining vehicle speed;
Obtaining a dynamic load radius of each tire from the wheel speed and vehicle speed;
The step of obtaining the slip ratio of each tire using this dynamic load radius,
Determining the mass of the vehicle;
At the time of initialization, using the driving stiffness, vehicle speed and wheel speed obtained from the braking force and slip ratio of each wheel, the dynamic load radius of each wheel when the longitudinal force is zero is obtained, and this dynamic load radius, Calculating the internal pressure sensitivity and / or load sensitivity of each tire based on the relationship between the wheel load of the tire and the initial internal pressure of the tire;
A wheel load of a tire, comprising: a relational expression of braking force, slip ratio and driving stiffness of each wheel; and a step of calculating a wheel load of each tire from the vehicle mass obtained in the step of obtaining the vehicle mass. Estimation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008249725A JP2010076703A (en) | 2008-09-29 | 2008-09-29 | Method and device for estimating wheel load of tire, and program for estimating wheel load of tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008249725A JP2010076703A (en) | 2008-09-29 | 2008-09-29 | Method and device for estimating wheel load of tire, and program for estimating wheel load of tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010076703A true JP2010076703A (en) | 2010-04-08 |
Family
ID=42207633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008249725A Pending JP2010076703A (en) | 2008-09-29 | 2008-09-29 | Method and device for estimating wheel load of tire, and program for estimating wheel load of tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010076703A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017505429A (en) * | 2013-12-18 | 2017-02-16 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | Estimating the potential adhesion by evaluating the radius of rotation |
WO2019127830A1 (en) * | 2017-12-29 | 2019-07-04 | 深圳配天智能技术研究院有限公司 | Tire monitoring method, slip rate calculation device, system, vehicle, and storage device |
CN113895445A (en) * | 2021-11-22 | 2022-01-07 | 吉林大学重庆研究院 | Parasitic power classification and unnecessary parasitic power calculation method for vehicle |
-
2008
- 2008-09-29 JP JP2008249725A patent/JP2010076703A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017505429A (en) * | 2013-12-18 | 2017-02-16 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | Estimating the potential adhesion by evaluating the radius of rotation |
WO2019127830A1 (en) * | 2017-12-29 | 2019-07-04 | 深圳配天智能技术研究院有限公司 | Tire monitoring method, slip rate calculation device, system, vehicle, and storage device |
CN113895445A (en) * | 2021-11-22 | 2022-01-07 | 吉林大学重庆研究院 | Parasitic power classification and unnecessary parasitic power calculation method for vehicle |
CN113895445B (en) * | 2021-11-22 | 2024-01-05 | 吉林大学重庆研究院 | Parasitic power classification and unnecessary parasitic power calculation method for vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10632978B2 (en) | Method and system for determining friction between the ground and a tire of a vehicle | |
JP5346659B2 (en) | Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program | |
US6202020B1 (en) | Method and system for determining condition of road | |
US10710597B2 (en) | Method and system for computing a road friction estimate | |
JP3369467B2 (en) | Estimation arithmetic unit for height of center of gravity of vehicle | |
JP4926258B2 (en) | Vehicle mass estimation apparatus, method and program | |
TW201630764A (en) | Method for determining the angle of inclination of a two-wheeled vehicle | |
JP2008265545A (en) | Center of gravity position estimating device of vehicle and center of gravity position/yaw inertia moment estimating device | |
JP5427868B2 (en) | Tire pressure drop detection method, apparatus and program | |
JP2011247645A (en) | Method, apparatus and program for detecting inner pressure reduction of tire | |
JP5265145B2 (en) | Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program | |
JP3948678B2 (en) | Wheel turning stability evaluation method and wheel turning stability evaluation apparatus | |
JP3345346B2 (en) | Estimation arithmetic unit for height of center of gravity of vehicle | |
JP2010076702A (en) | Method and device for detecting tire internal pressure drop, and program for detecting tire internal pressure drop | |
EP3509875B1 (en) | Estimation of absolute wheel roll radii and estimation of vertical compression value | |
JP2010076703A (en) | Method and device for estimating wheel load of tire, and program for estimating wheel load of tire | |
JP5292116B2 (en) | Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program | |
JP5555486B2 (en) | Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program | |
JP5069970B2 (en) | Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program | |
JP2010076700A (en) | Method and device for estimating wheel load of tire, and program for estimating wheel load of tire | |
KR101571109B1 (en) | Position Distiction Method Using TPMS And Position Distiction Device Thereof | |
JP2008273458A (en) | Tire internal pressure decline determination method and device considering effect of load | |
JPH01267463A (en) | Apparatus for detecting acceleration of car body | |
JP2009014586A (en) | Method, device and program for detecting tire pressure lowering | |
JP4800025B2 (en) | Vehicle load state estimation method and tire pressure drop warning method |