JP2681048B2 - Magnetic scale material - Google Patents
Magnetic scale materialInfo
- Publication number
- JP2681048B2 JP2681048B2 JP60147174A JP14717485A JP2681048B2 JP 2681048 B2 JP2681048 B2 JP 2681048B2 JP 60147174 A JP60147174 A JP 60147174A JP 14717485 A JP14717485 A JP 14717485A JP 2681048 B2 JP2681048 B2 JP 2681048B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- scale
- iron
- thermal expansion
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
【発明の詳細な説明】
[発明の技術的範囲]
この発明は、磁気スケールに使用されるスケール材に
関するものである。
[発明の技術的背景]
磁気スケールに使用されるスケール材として要求され
る主な磁気特性としては、外部磁場によるノイズの影響
がないように抗磁力Hcは300エルステッド以上必要であ
り、さらに信号出力を大きくするために残留磁束密度Br
は100ガウス以上必要であるとされている。そこでこれ
らの磁気特性を満足させ、かつ加工性に優れた磁気スケ
ール材として、銅、ニッケル、鉄系合金材料(重量比で
Cu65〜75%、Ni17〜30%、Fe5%以上)が使用されてき
た(例えば、特公昭55−4248号公報参照)。この合金材
料は600℃近傍で時効処理を行なうと高い抗磁力が得ら
れ、時効処理後においては冷間加工ができるので、容易
に磁気スケール材に加工することができる特徴を持って
いる。
しかしながら、このように特徴を持っている合金材料
にもいくつかの問題点があることが明らかになった。
すなわち、(1)上記の銅、ニッケル、鉄系合金材料
はニッケルを媒体として銅ニッケル、鉄ニッケルがそれ
ぞれリッチな組織構成となっているため、材料を溶解す
るときに銅ニッケルの組織構造のうちの銅の部分が偏析
を起こすこと、そしてこの偏析があるとその部分の析出
粒子が変化して一様な磁気特性が得られず磁気スケール
の精度を低下させることを本発明者は実験により見い出
した。
(2)上記銅、ニッケル、鉄系合金材料は熱膨脹係数が
13.5×10-6/℃〜14.0×10-6/℃を示し、鉄の膨脹係数1
0.0〜11.0×10-6/℃に比べて大きいので磁気スケールと
して使用すると鉄のスケール外枠と磁気スケールの熱膨
脹係数が異なるので磁気スケールの両端を固定した場
合、温度変化によってタルミや張力を生じ、測定誤差を
生じることになる。実験によると、銅、ニッケル、鉄系
合金材料(熱膨脹係数13.5×10-6/℃)の2mmφの丸棒で
長さ1mのスケールとした場合に、鉄(熱膨脹係数10×10
-6/℃)に比較して温度が10℃変化すると35μmの誤差
を生じることが判明した。
(3)上記銅、ニッケル、鉄系合金材料は伸び弾性率が
13000〜14000Kg/mm2と小さいために、この合金で2mmφ
の丸棒で1m程度の長さのスケールを構成し両端で支持し
た場合にはスケールの中央部のタワミが無視できなくな
り、スケールと磁気ヘッドの位置関係が大きく傾斜した
状態となって測定誤差の原因となることが判明した。
[発明の目的]
この発明は上記の問題を解決するためになされたもの
であって、その目的とするところは、偏析の起こらない
合金を使用し、スケール材として必要な磁気特性を得、
スケール自体の精度をあげ、熱膨脹による誤差を少なく
すると共に、耐摩耗性のある磁気スケール材を提供する
ものである。
[発明の概要]
この発明は磁気的特性が優れており、かつ機械加工性
のよいCr、Co、Fe系合金(特器昭51−18884号公報参
照)を使用し、抗磁力Hcが300〜1000エルステッド、残
留磁束密度Brが7000〜15000ガウスの合金材料におい
て、上記の問題点を解決するために硬度Hvが350〜600で
あり、熱膨脹率が9.5〜11.5×-6/℃、ヤング率が20000
〜23000Kg/mm2を使用し、析出粒子の数が5.4×1014ヶ/m
m3〜5.1×109ヶ/mm3の範囲にあり、介在物の数を590ヶ/
mm2以下になるようにして上記欠点のない磁気スケール
材を得たものである。
[発明の実施例]
この発明においては、重量比でCr15〜40%、Co5〜35
%、Ti,Mo,Cu,の一種以上を合計添加量で0.1〜5%含有
させ残部FeとしたCr,Co,Fe系合金が使用される。この合
金は抗磁力Hcが300〜1000エルステッド、残留磁束密度B
rが7000ガウス以上の優れた磁気的性質を有している。
主成分のうちCoについては5%未満ではBrが下がり、35
%を越えるとHcが小さくなりすぎてしまう。Crについて
は逆に40%を越えるとBrが下がり、15%未満ではHcが小
さくなりすぎる。Ti,Cu,Moなどの添加物は加工性を良好
にするものであるが、このうちMoについては単独では加
工性を悪化させるので立の添加物と併用することが必要
である。上記したTi,Cu,Moの選択的追加成分の添加につ
いては主として機械的加工性を良好にする目的であるた
めであるが、その添加する量によっては磁気的特性に影
響を与えるものである。
Tiについては0.1%未満ではMoと同じくγ層の発生を
充分に抑制することができず、その結果機械的加工性が
悪くなる。一方、5%を超過するとBr、Hcともに劣化し
て磁気特性の改善にはならない。
次にCuについては、0.1%未満ではHcを向上する効果
がえられないので磁気特性が悪くなる。そして、5%を
超過するとγ層の発生を抑制できず機械的加工性が悪化
してしまう。
最後にMoについて見ると、他の添加物と併用した場合
でも0.1%未満ではTiと同じくγ層の発生を充分に抑制
することができないので、機械的加工性が悪くなる。ま
た、5%を超過するとBr、Hcともに劣化して磁気特性の
改善にならない。この磁性合金は抗磁力Hcが300〜1000
エルステッド、残留磁束密度Brが7000〜15000ガウスの
優れた磁気特性を有している。またこの合金は機械加工
性が優れており、塑性加工や切削加工が可能であるから
磁気スケール用の磁性材料として好ましいものである。
なお、この合金の磁気特性の詳細については前記特公昭
51−18884号公報を参照されたい。
このようにこの合金材料は優れた磁気的性質をもって
いるが、しかしながら、磁気スケール用の磁性材料とし
てはこのような性質だけでは充分ではない。磁気スケー
ル用の磁性材料として必要な性質として次のようなもの
がある。
(1)熱膨脹係数:磁気スケールとして使用するとき、
鉄のスケール外枠と磁気スケール材料との熱膨脹係数が
異なると磁気スケールの両端を固定した場合、温度変化
によってタルミや張力を生じ、測定誤差を生じることと
なる。従来の銅、ニッケル、鉄系合金材料は、前述のよ
うに熱膨脹係数が13.5〜14.0×10-6/℃であるため標準
的な工業的に使用される鉄材料の熱膨脹係数10.0〜11.0
×10-6/℃との差が大きく測定誤差が生じる。これに対
して前述のCr、Co、Fe系合金の熱膨脹係数は9.0〜13.5
×10-6/℃の範囲であるから鉄材料の熱膨脹係数に合せ
たものを選出することが可能である。熱膨脹係数を合金
材料の溶融後の処理状態、すなわち、イニシャル温度、
終了温度、冷却温度等、或いは時効効果によって変化
し、例えば1000℃から30分水冷したものの熱膨脹係数は
13.2×10-6/℃を示し、500℃まで冷却後最終時効後では
9.1×10-6/℃を示す。また635℃から500℃までを毎時13
℃の冷却温度で冷却したときには10.2×10-6/℃の熱膨
脹係数が得られた。したがってこれらの条件を適宜選択
することによって所望の熱膨脹係数を有する合金材料を
得ることができる。
(2)析出粒子数:本発明者は時効処理により生ずる析
出粒子数がスケールの測定誤差に非常に密接な関係にあ
ることを実験によって解明したものである。すなわち、
スケール材中に存在する析出粒子の数が多く過密の状態
であって、また、逆にその数が少なく過疎の状態であっ
ても磁気スケール記録部の記録特性が悪化することが判
明した。これはスケール材の表面にでることが判明し
た。これはスケール材の表面に出るフラックス値が析出
粒子の数によって変化し誤差の原因となるものであるこ
と明らかにしたものである。
(3)非金属介在物数:析出粒子と共存する非金属化合
物(主として酸化物)である介在物の数もフラックス値
をバラつかせ記録特性を悪化するので極力少なくするこ
とが望ましいことも明らかとなった。
本発明者が多くの実験により求めた析出粒子数と測定
精度の関係ならびに介在物数と測定精度の関係を表で示
すと次の如くである。
試 料
1: Cr20%,Co25%,Ti1%,残部Fe
2: Cr25%,Co12%,Ti1%,残部Fe
3: Cr33%,Co11%,Cu2%,残部Fe
4: Cr35%,Co 5%,Ti1%,残部Fe
5: Cr34%,Co16%,Ti1%,残部Fe
6: Cr10%,Co35%,Ti1%,残部Fe
7: Ni20%,Fe20%,残部Cu
磁気スケールにおいて1m当りの測定誤差を±1.0μm
以下にすることを目標とした場合の析出粒子数は5.4×1
014〜5.1×109の範囲内になるようにしなければならな
いが、望ましい範囲としては1.4×1014〜6.2×1010とす
ることが上記の表から明らかである。また、介在物質に
ついてもmm2当り589ヶ以下とすることが適当であり望ま
しくは152ヶ以下として可能な限り少なくすることが必
要である。
そして上記析出粒子数は磁性合金の溶解処理後の時効
処理によって決定されるので、その処理条件を適宜選択
することによってその数を制御できる。
(4)ヤング率:長いスケールを両端で支持すると中央
部にタワミを生じて誤差の原因となる。この中央部の最
大タワミ量δは、δ=KL/Eで表わされる。ここでKは定
数、Lはスケールの長さ、Eはヤング率である。したが
ってヤング率Eを大きくするほど最大タワミ量δを少な
くすることができる。またスケールの長さLが大きくな
ればヤング率Eはできるだけ大きくする必要がある。本
発明のスケール材合金のヤング率は20000〜23000Kg/mm2
であって十分にこの目的に合致するものである。なお前
述の銅、ニッケル、鉄合金材料のヤング率は13000〜140
00Kg〜mm2である。Co11.5%、Cr33%、Ti0.5%残部鉄の
長さ750mm、直径2mmのスケール材を両端で支持した場合
のタワミ量δは0.55mmであった。一方、Ni22%、Fe8
%、残部Cuの銅、ニッケル、鉄合金の場合にはタワミ量
δは0.55mmであった。
この発明の磁気スケール材は以上のように優れた特性
を有しているが、さらにその他の性質においても優れた
ものをもっている。すなわち、硬度Hvが350〜600であ
り、従来のニッケル、鉄係合材料のそれが240〜260であ
るのに比較して著しく高い。したがって、耐摩耗性が増
加し、磁気ヘッドとの摺動部が従来のもののように摩耗
変化するおそれがなくなる。また従来の鋼、ニッケル、
鉄系材料はキュリー点が480℃であり、しかも温度上昇
と共にHc,Brが低下するのに対して、この発明の磁気ス
ケール材のキュリー点は650℃以上であり、450℃までは
磁気特性に変化がみられない。したがって高い温度での
測定を可能にする。
ここでヤング率の特性を表にして示す。[発明の効果]
以上のように、この発明によれば従来の銅、ニッケ
ル、鉄系合金磁気スケール材に比較して誤差の少ない磁
気スケール材を得ることができる。すなわち、
(1)熱膨脹係数が鉄のそれに近いために熱膨脹係数に
よるエラーがほとんど生じない。
(2)時効処理によって生ずる析出粒子の数ならびに介
在物の数を一定の範囲内に限定して、スケール材表面の
フラックス値の変動を小さくしたので測定誤差を実用上
差支えなくした。
(3)ヤング率が高いためにタワミによるエラーが少な
い。
(4)硬度Hvが高いために摩耗による誤差が発生しにく
い。さらに、キュリー点が高いので高い温度で使用可能
であり、磁気特性も優れている。TECHNICAL FIELD OF THE INVENTION The present invention relates to a scale material used for a magnetic scale. [Technical background of the invention] As the main magnetic characteristics required for a scale material used in a magnetic scale, coercive force Hc is required to be 300 Oersted or more so that there is no influence of noise due to an external magnetic field, and further signal output. To increase the residual magnetic flux density Br
Is required to be 100 gauss or more. Therefore, as magnetic scale materials that satisfy these magnetic characteristics and are excellent in workability, copper, nickel, and iron-based alloy materials (by weight ratio)
Cu65-75%, Ni17-30%, Fe5% or more) have been used (see, for example, Japanese Patent Publication No. 55-4248). This alloy material has high coercive force when subjected to aging treatment at around 600 ° C, and can be cold worked after aging treatment, so that it has a feature that it can be easily processed into a magnetic scale material. However, it has become clear that the alloy material having such characteristics also has some problems. That is, (1) the above-mentioned copper, nickel, and iron-based alloy materials have a structure structure in which copper nickel and iron nickel are rich in nickel as a medium, so that when the material is melted, The present inventor has found through experiments that the copper portion of the copper alloy causes segregation, and that if there is this segregation, the precipitated particles in that portion change and uniform magnetic characteristics cannot be obtained, thus degrading the accuracy of the magnetic scale. It was (2) The coefficient of thermal expansion of the above copper, nickel, and iron alloy materials is
13.5 × indicates 10 -6 /℃~14.0×10 -6 / ℃, expansion coefficient of the iron 1
Since it is larger than 0.0 to 11.0 × 10 -6 / ℃, when used as a magnetic scale, the thermal expansion coefficient of the iron scale outer frame and the magnetic scale are different, so when both ends of the magnetic scale are fixed, temperature changes will cause tarmi and tension. , Will cause a measurement error. According to the experiment, when a 2 mmφ round bar made of copper, nickel, and an iron-based alloy material (coefficient of thermal expansion 13.5 × 10 −6 / ° C.) was used as a scale with a length of 1 m, iron (coefficient of thermal expansion 10 × 10
It was found that an error of 35 μm occurs when the temperature changes by 10 ° C compared to ( -6 / ° C). (3) The copper, nickel, and iron-based alloy materials have elongation elastic moduli
2mmφ with this alloy because it is as small as 13000-14000Kg / mm 2.
When a scale with a length of about 1 m is configured with the round bar and is supported at both ends, the deflection at the center of the scale cannot be ignored, and the positional relationship between the scale and the magnetic head is greatly inclined, causing measurement error. It turned out to be the cause. [Object of the Invention] The present invention has been made to solve the above problems, and an object of the present invention is to use an alloy that does not cause segregation and obtain the magnetic properties required as a scale material.
It is intended to provide a magnetic scale material having an abrasion resistance while increasing the accuracy of the scale itself, reducing an error due to thermal expansion. SUMMARY OF THE INVENTION The present invention uses a Cr, Co, Fe-based alloy (see Japanese Patent Publication No. 51-18884) having excellent magnetic properties and good machinability, and has a coercive force Hc of 300 to In order to solve the above problems, the hardness Hv is 350 to 600, the coefficient of thermal expansion is 9.5 to 11.5 × -6 / ° C, and the Young's modulus is 1000 oersted and the residual magnetic flux density Br is 7,000 to 15,000 gauss. 20000
~ 23000Kg / mm 2 and the number of deposited particles is 5.4 × 10 14 / m
m 3 to 5.1 × 10 9 pcs / mm 3 with the number of inclusions 590 pcs /
A magnetic scale material having the above-mentioned drawbacks was obtained by controlling the thickness to be 2 mm 2 or less. [Examples of the Invention] In the present invention, Cr15 to 40% and Co5 to 35% by weight.
%, And one or more of Ti, Mo, and Cu are added in a total amount of 0.1 to 5%, and the balance is Fe. Cr, Co, and Fe-based alloys are used. This alloy has a coercive force Hc of 300 to 1000 oersted and residual magnetic flux density B
It has excellent magnetic properties with r over 7,000 gauss.
Regarding Co among the main components, Br decreases when it is less than 5%, and 35
If it exceeds%, Hc becomes too small. On the contrary, when Cr exceeds 40%, Br decreases, and when it is less than 15%, Hc becomes too small. Additives such as Ti, Cu, and Mo improve workability, but among them, Mo alone deteriorates workability, so it is necessary to use it in combination with vertical additives. The above-mentioned addition of the selective additional components of Ti, Cu, and Mo is mainly for the purpose of improving the mechanical workability, but the magnetic properties are affected depending on the added amount. If the content of Ti is less than 0.1%, similarly to Mo, the formation of the γ layer cannot be sufficiently suppressed, resulting in poor mechanical workability. On the other hand, if it exceeds 5%, both Br and Hc deteriorate and the magnetic properties are not improved. Next, with respect to Cu, if it is less than 0.1%, the effect of improving Hc cannot be obtained, so that the magnetic properties deteriorate. If it exceeds 5%, the generation of the γ layer cannot be suppressed and the mechanical workability is deteriorated. Finally, regarding Mo, even if it is used in combination with other additives, if it is less than 0.1%, the generation of the γ layer cannot be sufficiently suppressed as with Ti, so the mechanical workability deteriorates. Further, if it exceeds 5%, both Br and Hc deteriorate and the magnetic properties are not improved. This magnetic alloy has a coercive force Hc of 300 to 1000
It has excellent magnetic properties of Oersted and residual magnetic flux density Br of 7,000 to 15,000 gauss. Further, this alloy is excellent in machinability and can be subjected to plastic working and cutting, and is therefore preferable as a magnetic material for a magnetic scale.
For details of the magnetic properties of this alloy, see
See 51-18884. As described above, this alloy material has excellent magnetic properties, however, such properties are not sufficient as a magnetic material for a magnetic scale. The following properties are necessary as a magnetic material for a magnetic scale. (1) Coefficient of thermal expansion: When used as a magnetic scale,
If the thermal expansion coefficient of the iron scale outer frame is different from that of the magnetic scale material, when both ends of the magnetic scale are fixed, temperature change causes talmi or tension, which causes a measurement error. Conventional copper, nickel, iron-based alloy materials have a coefficient of thermal expansion of 13.5 to 14.0 × 10 -6 / ° C as described above, so the standard coefficient of thermal expansion of iron materials used in standard industrial applications is 10.0 to 11.0.
There is a large difference from × 10 -6 / ° C, resulting in a measurement error. On the other hand, the coefficient of thermal expansion of the above-mentioned Cr, Co, and Fe-based alloys is 9.0 to 13.5.
Since it is in the range of × 10 -6 / ° C, it is possible to select one that matches the thermal expansion coefficient of the iron material. The thermal expansion coefficient is the processing state after melting of the alloy material, that is, the initial temperature,
It varies depending on the end temperature, cooling temperature, etc., or the aging effect. For example, the coefficient of thermal expansion of water cooled from 1000 ° C for 30 minutes is
13.2 × 10 -6 / ℃ shows, after cooling to 500 ℃ after final aging
Indicates 9.1 × 10 -6 / ° C. In addition, from 635 ℃ to 500 ℃ 13 / hour
A coefficient of thermal expansion of 10.2 × 10 -6 / ℃ was obtained when cooled at a cooling temperature of ℃. Therefore, an alloy material having a desired coefficient of thermal expansion can be obtained by appropriately selecting these conditions. (2) Number of deposited particles: The present inventor has clarified by experiments that the number of deposited particles generated by aging treatment is very closely related to the scale measurement error. That is,
It has been found that the recording characteristics of the magnetic scale recording portion are deteriorated even when the number of precipitated particles present in the scale material is large and the density is high, and conversely, when the number is small and the density is low. It was found that this was on the surface of the scale material. This reveals that the flux value appearing on the surface of the scale material changes depending on the number of precipitated particles and causes an error. (3) Number of non-metallic inclusions: The number of inclusions that are non-metallic compounds (mainly oxides) coexisting with the precipitated particles also causes the flux value to fluctuate and the recording characteristics to be deteriorated. It was The following table shows the relationship between the number of deposited particles and the measurement accuracy and the relationship between the number of inclusions and the measurement accuracy, which the inventor obtained through many experiments. Sample 1: Cr20%, Co25%, Ti1%, balance Fe2: Cr25%, Co12%, Ti1%, balance Fe3: Cr33%, Co11%, Cu2%, balance Fe4: Cr35%, Co5%, Ti1%, balance Fe5: Cr34%, Co16%, Ti1%, balance Fe6: Cr10%, Co35%, Ti1%, balance Fe7: Ni20%, Fe20%, balance Cu ± 1.0μm measurement error per 1m on the magnetic scale
The number of precipitated particles is 5.4 × 1 when the target is to be below.
It should be in the range of 0 14 to 5.1 × 10 9 , but it is clear from the above table that the preferable range is 1.4 × 10 14 to 6.2 × 10 10 . Also, it is appropriate that the number of intervening substances is 589 or less per mm 2 , and preferably 152 or less and as small as possible. Since the number of the precipitated particles is determined by the aging treatment after the dissolution treatment of the magnetic alloy, the number can be controlled by appropriately selecting the treatment condition. (4) Young's modulus: When a long scale is supported at both ends, a deflection occurs in the central part, which causes an error. The maximum amount of deflection δ in the central portion is represented by δ = KL / E. Here, K is a constant, L is the length of the scale, and E is the Young's modulus. Therefore, the larger the Young's modulus E is, the smaller the maximum deflection amount δ can be. If the length L of the scale becomes large, the Young's modulus E needs to be as large as possible. The Young's modulus of the scale material alloy of the present invention is 20000 to 23000 Kg / mm 2.
And is well suited to this purpose. The Young's modulus of the above-mentioned copper, nickel, and iron alloy materials is 13000 to 140.
It is from 00 kg to mm 2 . Co11.5%, Cr33%, Ti0.5%, balance iron 750 mm in length, 2 mm in diameter when supporting scale material at both ends, the amount of deflection δ was 0.55 mm. On the other hand, Ni22%, Fe8
%, And the balance Cu was copper, nickel, and iron alloys, the deflection amount δ was 0.55 mm. The magnetic scale material of the present invention has excellent properties as described above, but also has other properties. That is, the hardness Hv is 350 to 600, which is significantly higher than that of the conventional nickel and iron engaging materials, which is 240 to 260. Therefore, the wear resistance is increased, and there is no possibility that the sliding portion with respect to the magnetic head is worn and changed unlike the conventional one. Also conventional steel, nickel,
The Curie point of the iron-based material is 480 ° C., and Hc and Br decrease with increasing temperature, whereas the Curie point of the magnetic scale material of the present invention is 650 ° C. or higher, and the magnetic properties up to 450 ° C. There is no change. Therefore, measurement at high temperature is possible. Here, the characteristics of Young's modulus are shown in a table. [Advantages of the Invention] As described above, according to the present invention, it is possible to obtain a magnetic scale material with less error than the conventional copper, nickel, iron-based alloy magnetic scale material. That is, (1) Since the coefficient of thermal expansion is close to that of iron, an error due to the coefficient of thermal expansion hardly occurs. (2) The number of precipitated particles and the number of inclusions generated by the aging treatment were limited within a certain range to reduce the fluctuation of the flux value on the surface of the scale material, so that the measurement error was practically acceptable. (3) Since the Young's modulus is high, there are few errors due to bending. (4) Since the hardness Hv is high, errors due to wear are less likely to occur. Furthermore, since it has a high Curie point, it can be used at high temperatures and has excellent magnetic properties.
Claims (1)
以上を合計添加量で0.1〜5%含有させ残部FeとしたCr,
Co,Fe系合金で形成され、抗磁力Hcが300〜1000エルステ
ッド、残留磁束密度Brが7000〜15000ガウスで、硬度Hv
が350〜600を有し、熱膨脹率が9.5〜11.5×10-6/℃、ヤ
ング率が20000〜23000Kg/mm2、析出粒子数が5.4×1014
ヶ/mm3〜5.1×109ヶ/mm3で、しかも、0.1μm〜10μm
の介在物数が760ヶ/mm2以下である磁気スケール材。(57) [Claims] Cr 15 to 40% by weight, Co 5 to 35%, and one or more of Ti, Mo, and Cu in a total amount of 0.1 to 5% to make the balance Fe Cr,
It is made of Co, Fe alloys, has a coercive force Hc of 300 to 1000 Oersted, a residual magnetic flux density Br of 7,000 to 15,000 Gauss, and a hardness of Hv.
Have a thermal expansion coefficient of 9.5 to 11.5 × 10 −6 / ° C., a Young's modulus of 20000 to 23000 Kg / mm 2 , and a number of precipitated particles of 5.4 × 10 14.
In months / mm 3 ~5.1 × 10 9 months / mm 3, moreover, 0.1 m to 10 m
The magnetic scale material whose number of inclusions is less than 760 / mm 2 .
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60147174A JP2681048B2 (en) | 1985-07-04 | 1985-07-04 | Magnetic scale material |
AU59179/86A AU570848B2 (en) | 1985-07-04 | 1986-06-24 | Fe-cr-co alloys for magnetic scales |
GB8615518A GB2177420B (en) | 1985-07-04 | 1986-06-25 | Magnetic scale |
DE19863622033 DE3622033A1 (en) | 1985-07-04 | 1986-07-01 | MAGNETIC MEASURING ROD |
CN198686104497A CN86104497A (en) | 1985-07-04 | 1986-07-04 | Magnetic scale device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60147174A JP2681048B2 (en) | 1985-07-04 | 1985-07-04 | Magnetic scale material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS628503A JPS628503A (en) | 1987-01-16 |
JP2681048B2 true JP2681048B2 (en) | 1997-11-19 |
Family
ID=15424254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60147174A Expired - Lifetime JP2681048B2 (en) | 1985-07-04 | 1985-07-04 | Magnetic scale material |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2681048B2 (en) |
CN (1) | CN86104497A (en) |
AU (1) | AU570848B2 (en) |
DE (1) | DE3622033A1 (en) |
GB (1) | GB2177420B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10327082B4 (en) * | 2003-06-13 | 2007-06-21 | Vacuumschmelze Gmbh & Co. Kg | Rotationally symmetrical hollow body made of a deformable permanent magnetic alloy and its use and manufacturing method |
CN101285155B (en) * | 2008-05-29 | 2010-06-09 | 天津冶金集团天材科技发展有限公司 | Iron-chromium-cobalt permanent magnetic alloy compounding vanadium and tungsten, and deformation processing technology thereof |
EP2476506A1 (en) * | 2011-01-14 | 2012-07-18 | Siemens Aktiengesellschaft | Cobalt-based alloy with germanium and soldering method |
CN109097706A (en) * | 2018-09-20 | 2018-12-28 | 南通明月电器有限公司 | A kind of magnetic conduction iron-nickel alloy material and production technology |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1367174A (en) * | 1970-12-28 | 1974-09-18 | Inoue Japax Res | Magnetic-meterials |
JPS5536059B2 (en) * | 1974-05-02 | 1980-09-18 | ||
US3989556A (en) * | 1975-03-21 | 1976-11-02 | Hitachi Metals, Ltd. | Semihard magnetic alloy and a process for the production thereof |
US3982972A (en) * | 1975-03-21 | 1976-09-28 | Hitachi Metals, Ltd. | Semihard magnetic alloy and a process for the production thereof |
JPS5298613A (en) * | 1976-02-14 | 1977-08-18 | Inoue K | Spenodal dissolvic magnet alloy |
US4120704A (en) * | 1977-04-21 | 1978-10-17 | The Arnold Engineering Company | Magnetic alloy and processing therefor |
JPS587702B2 (en) * | 1977-12-27 | 1983-02-10 | 三菱製鋼株式会社 | Fe-Cr-Co magnet alloy |
FR2415145A1 (en) * | 1978-01-19 | 1979-08-17 | Aimants Ugimag Sa | THERMAL TREATMENT PROCESS OF FE-CO-CR ALLOYS FOR PERMANENT MAGNETS |
JPS608297B2 (en) * | 1978-06-02 | 1985-03-01 | 株式会社井上ジャパックス研究所 | magnet alloy |
JPS5822537B2 (en) * | 1978-06-19 | 1983-05-10 | 三菱製鋼株式会社 | Fe↓-Cr↓-Co magnetic alloy |
US4174983A (en) * | 1978-07-13 | 1979-11-20 | Bell Telephone Laboratories, Incorporated | Fe-Cr-Co magnetic alloy processing |
CA1130179A (en) * | 1978-07-13 | 1982-08-24 | Western Electric Company, Incorporated | Fe-cr-co permanent magnet alloy and alloy processing |
JPS5629115A (en) * | 1979-08-17 | 1981-03-23 | Inoue Japax Res Inc | Manufacture for magnetic scale |
AU6333680A (en) * | 1979-08-24 | 1981-03-19 | Western Electric Co. Inc. | Magnetic alloys containing fe-cr-co |
JPS56501051A (en) * | 1979-08-24 | 1981-07-30 | ||
JPS57149456A (en) * | 1981-03-10 | 1982-09-16 | Sumitomo Special Metals Co Ltd | Dendritic fe-cr-co magnet alloy |
JPS58179312A (en) * | 1982-04-15 | 1983-10-20 | Nec Corp | Magnetic scale and its production |
DE3334369C1 (en) * | 1983-09-23 | 1984-07-12 | Thyssen Edelstahlwerke AG, 4000 Düsseldorf | Permanent magnet alloy |
GB2163778B (en) * | 1984-08-30 | 1988-11-09 | Sokkisha | Magnetic medium used with magnetic scale |
-
1985
- 1985-07-04 JP JP60147174A patent/JP2681048B2/en not_active Expired - Lifetime
-
1986
- 1986-06-24 AU AU59179/86A patent/AU570848B2/en not_active Ceased
- 1986-06-25 GB GB8615518A patent/GB2177420B/en not_active Expired
- 1986-07-01 DE DE19863622033 patent/DE3622033A1/en active Granted
- 1986-07-04 CN CN198686104497A patent/CN86104497A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE3622033C2 (en) | 1989-10-05 |
GB2177420B (en) | 1989-07-12 |
AU5917986A (en) | 1987-01-08 |
JPS628503A (en) | 1987-01-16 |
DE3622033A1 (en) | 1987-01-15 |
GB2177420A (en) | 1987-01-21 |
GB8615518D0 (en) | 1986-07-30 |
CN86104497A (en) | 1986-12-31 |
AU570848B2 (en) | 1988-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5842741A (en) | Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head | |
JP2681048B2 (en) | Magnetic scale material | |
JPH0542493B2 (en) | ||
JPS6212296B2 (en) | ||
JPS5947017B2 (en) | Magnetic alloy for magnetic recording and playback heads and its manufacturing method | |
JPS6337177B2 (en) | ||
JPH11279717A (en) | Free cutting corrosion resistant soft magnetic material | |
JPH07166281A (en) | Wear resistant magnetic alloy | |
JP2907899B2 (en) | Method for producing molded article of high magnetic permeability alloy and magnetic head constituted by members of molded article obtained by this method | |
JPS6123750A (en) | Nonmagnetic steel | |
JPH0288746A (en) | High permeability magnetic material | |
JPH03191041A (en) | Fe-ni-cr series soft magnetic alloy | |
JPH0138862B2 (en) | ||
JPH02301544A (en) | Soft-magnetic alloy with high electric resistance for cold forging | |
JPS61235537A (en) | Nonmagnetic and amorphous high-carbon iron alloy | |
JPH01283349A (en) | Age-hardening austenitic tool steel | |
JPS58177434A (en) | Wear resistant magnetic alloy of high magnetic permeability | |
JPS59173248A (en) | Magnetic alloy | |
JPS6050860B2 (en) | Method for manufacturing wear-resistant high permeability magnetic material | |
JPH0531508A (en) | Wear resistant and thermal cracking resistant roll material for hot rolling | |
JPS6128010B2 (en) | ||
JPS59145760A (en) | Free cutting alloy with high magnetic permeability | |
JPH01217708A (en) | Magnetic alloy | |
JPS5858249A (en) | Mild magnetic steel bar with superior workability | |
JPH01184250A (en) | Fe-ni-si-al magnetic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |