JP2674797B2 - High frequency induction heating device - Google Patents
High frequency induction heating deviceInfo
- Publication number
- JP2674797B2 JP2674797B2 JP63229460A JP22946088A JP2674797B2 JP 2674797 B2 JP2674797 B2 JP 2674797B2 JP 63229460 A JP63229460 A JP 63229460A JP 22946088 A JP22946088 A JP 22946088A JP 2674797 B2 JP2674797 B2 JP 2674797B2
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- ring
- coil
- cooling liquid
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Bending Of Plates, Rods, And Pipes (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は配管の高周波誘導加熱装置に係わり、特に配
管の曲げ加工に好適な高周波誘導加熱装置に関する。Description: TECHNICAL FIELD The present invention relates to a high-frequency induction heating device for pipes, and more particularly to a high-frequency induction heating device suitable for bending pipes.
[従来の技術] 従来、この種の高周波誘導加熱装置は、第5図に示す
ように、配管Pの周りを取り巻いて断面長方形の加熱コ
イル18があり、その前側に断面台形の冷却リング19があ
り、加熱コイル18に高周波電流を流して配管Pを加熱
し、他方、加熱コイル18内に流した冷却液を冷却リング
19の孔より符号7で示すように噴射して配管Pを冷却
し、その加熱部14の巾を制御している。なお、図中、配
管Pは加熱コイル18および冷却リング19に対して相対的
に左方へ徐々に移動せしめられるものとする。この種の
公知例として特開昭58−93516号公報が挙げられる。[Prior Art] Conventionally, in this type of high-frequency induction heating device, as shown in Fig. 5, there is a heating coil 18 having a rectangular cross section surrounding a pipe P, and a cooling ring 19 having a trapezoidal cross section on the front side thereof. Yes, a high-frequency current is passed through the heating coil 18 to heat the pipe P, while the cooling liquid passed through the heating coil 18 is cooled by a cooling ring.
The pipe P is cooled by injecting from the hole of 19 as shown by reference numeral 7, and the width of the heating portion 14 is controlled. In the figure, the pipe P is gradually moved to the left relative to the heating coil 18 and the cooling ring 19. As a known example of this type, there is JP-A-58-93516.
[発明が解決しようとする課題] しかし、上記従来技術は、断面長方形の加熱コイル18
のため配管P側のコイル面が広くなることから配管の加
熱部14が広くなり、配管の小半径曲げ加工には対応が困
難である。また、加熱コイル18の前側の冷却リング19か
ら一定角度で配管表面に冷却液7を噴射して加熱部14の
幅を制御しているが、配管Pへの冷却液の衝突圧により
配管加熱板14への冷却液の戻り込みが発生し、その戻り
込み量が配管周方向において一定ではないこと、また、
加熱コイルに電流を供給する導体と加熱コイルとの接続
部を広くしてあるため、配管側において磁束密度が局部
的に低下すること等に因り、加熱部14の温度が配管周方
向において不均一となり、曲げ加工された配管の減肉率
及び楕円化率が大きいという問題があった。[Problems to be Solved by the Invention] However, in the above-described conventional technique, the heating coil 18 having a rectangular cross section is used.
Therefore, since the coil surface on the side of the pipe P is widened, the heating portion 14 of the pipe is widened, and it is difficult to handle the small radius bending of the pipe. Further, the width of the heating portion 14 is controlled by injecting the cooling liquid 7 onto the pipe surface from the cooling ring 19 on the front side of the heating coil 18 at a constant angle, but the pipe heating plate is controlled by the collision pressure of the cooling liquid on the pipe P. The return of the cooling liquid to 14 occurs, the return amount is not constant in the circumferential direction of the pipe, and
Since the connection between the heating coil and the conductor that supplies current to the heating coil is wide, the temperature of the heating section 14 is uneven in the circumferential direction of the piping due to the local decrease in the magnetic flux density on the piping side. Therefore, there is a problem that the bent pipe has a large thickness reduction rate and a large ovalization rate.
このように従来技術では配管加熱部の幅の広がり、冷
却液の加熱部への戻り込みを防止できず、また周方向に
均一な磁束密度が得られず、配管の均一温度加工及び狭
加熱幅による小半径曲げ加工への対応困難という問題が
あった。As described above, in the conventional technology, the width of the pipe heating part is widened, the return of the cooling liquid to the heating part cannot be prevented, and the uniform magnetic flux density in the circumferential direction cannot be obtained. There was a problem that it was difficult to cope with small radius bending due to.
本発明の目的は、配管加熱部への冷却材の戻り込みを
防止し、周方向に均一な磁束密度を附与し、配管加熱部
の幅を狭くし、以て配管を狭い幅において均一に加熱
し、高周波誘導加熱曲げ加工の際の配管の楕円化率、減
肉率の低減、小半径の曲げ加工への対応を可能にするこ
とにある。The object of the present invention is to prevent the return of the coolant to the pipe heating part, to impart a uniform magnetic flux density in the circumferential direction, to narrow the width of the pipe heating part, thereby making the pipe uniform in a narrow width. The purpose of this is to make it possible to reduce the ovalization rate of pipes and the wall thinning rate during heating and high-frequency induction heating bending, and to cope with bending with a small radius.
[課題を解決するための手段] 上記目的を達成するため、本発明は特許請求の範囲の
各請求項記載の高周波誘導加熱装置を提供するものであ
る。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a high-frequency induction heating device according to each of the claims.
[作用] 配管に対してリングコイルにより高周波誘電加熱をし
ながら冷却液を噴射し、その直後方よりパージ気体リン
グからパージ気体を斜めに配管に対し噴射する。配管に
衝突し前方へ流動した気体は、リングコイルより噴射さ
れた冷却材が配管と衝突して配管加熱域へ戻り込もうと
するのを押し返すことにより、加熱域への冷却液戻り込
みを阻止する。リングコイルは内部を二室に分けてあ
り、その隔壁には適宜多数の孔を開け、第1室に注入口
から注入された冷却液は均圧化されて第2室から噴射さ
れるので、配管に衝突する際の冷却液は全て等圧となっ
ている。コイルへ高周波電流を供給する導体のコイルと
の接合部を細くくびれさせたことによりコイル端での磁
束密度低下が防止される。コイルは配管側に突出した角
部を有する断面形状であることから、コイル表面積を大
としてコイルの電流容量を大とし得るにもかかわらず配
管に面する幅は狭くなり、配管加熱幅を小さくすること
が可能となる。これらによって、配管加熱域の温度は配
管周方向に対し均一となり、加工さるべき配管材の変形
抵抗が均一となり配管周方向に対する加工力が一定とな
る。又、狭加熱幅となったことから加工領域が狭くな
り、配管曲げ加工での配管曲げ内側の座屈発生防止及び
配管曲げ外側の減肉率低下、楕円化率の低下が可能とな
る。[Operation] Cooling liquid is injected to the pipe while high-frequency induction heating is performed by the ring coil, and immediately after that, the purge gas is obliquely injected to the pipe from the purge gas ring. The gas that collided with the pipe and flowed forward prevents the coolant injected from the ring coil from colliding with the pipe and trying to return to the pipe heating area, preventing the return of the cooling liquid to the heating area. To do. The inside of the ring coil is divided into two chambers, and a large number of holes are appropriately formed in the partition wall, and the cooling liquid injected from the injection port into the first chamber is equalized and ejected from the second chamber. All of the cooling liquid is at a constant pressure when it collides with the pipe. By making the joint of the conductor supplying the high-frequency current to the coil thin with the coil, it is possible to prevent a decrease in the magnetic flux density at the coil end. Since the coil has a cross-sectional shape with corners protruding toward the piping side, the width facing the piping becomes narrower even though the coil surface area can be increased and the current capacity of the coil can be increased, thus reducing the heating width of the piping. It becomes possible. By these, the temperature of the pipe heating region becomes uniform in the pipe circumferential direction, the deformation resistance of the pipe material to be processed becomes uniform, and the processing force in the pipe circumferential direction becomes constant. Further, since the heating width is narrow, the working area is narrowed, so that it is possible to prevent buckling on the inside of the pipe bending during pipe bending, reduce the wall thinning rate on the outside of the pipe bending, and reduce the ovalization rate.
[実 施 例] 以下本発明の一実施例を図面より順に説明する。[Examples] One example of the present invention will be described below in order from the drawings.
第2図は本実施例装置を軸線方向で見た概略図を示す
ものであり、コイルリング3の内側に曲げ加工対象たる
配管Pを設定するものである。コイルリング3には電流
供給導体2,2′及び冷却液注入管1,パージ気体注入管4
が結合されている。FIG. 2 is a schematic view of the apparatus of this embodiment as seen in the axial direction, in which the pipe P to be bent is set inside the coil ring 3. The coil ring 3 has current supply conductors 2 and 2 ', a coolant injection pipe 1, and a purge gas injection pipe 4
Are combined.
第1図は第2図A−Aで見たコイルリング3の断面を
示す。第1図において、配管Pはコイルリング3に対し
て相対的に左方に徐々に移動せしめられるものとする。
コイルリング3は銅製であり、中空のパージ気体リング
5と冷却リングコイル8との一体構造である。コイルリ
ング3はそれに流れる高周波電流により配管Pを高周波
誘導加熱する。それと共に、パージ気体注入管4よりパ
ージ気体リング5にパージ気体が注入され、このパージ
気体はコイルリング3を冷却し、パージ気体リングコイ
ル5の多数の孔5′から配管P表面に符号6で示す如く
斜めに噴射される。他方、冷却液(例えば水)が幾つか
の冷却液注入管1から冷却リングコイル8の第1室81に
注入され、そこから多数の孔9を通って冷却リングコイ
ル8の第2室82に入り、これにより、第2室82内の冷却
液は均一な圧力になり、第2室82の多数の孔8′から符
号7で示す如く斜めに配管P表面に噴射される。これに
より、配管Pの加熱部を冷却し、その加熱部の幅を制御
する。噴射された冷却液7は配管Pに衝突する際にその
一部の液が配管Pの加熱部へ(即ち第1図で右方へ)戻
り込もうとするが、この戻り込みは、噴射パージ気体6
によって配管周方向のどの位置においても阻止される。
なお、冷却液は、冷却リングコイル8内を流れる時に、
冷却リングコイル8を冷却すると共に、それと一体構造
のパージ気体リング5をも熱伝導により冷却する機能も
奏する。FIG. 1 shows a cross section of the coil ring 3 as seen in FIG. 2A-A. In FIG. 1, the pipe P is gradually moved to the left relative to the coil ring 3.
The coil ring 3 is made of copper and has a structure in which the hollow purge gas ring 5 and the cooling ring coil 8 are integrated. The coil ring 3 high-frequency induction-heats the pipe P by the high-frequency current flowing through it. At the same time, the purge gas is injected from the purge gas injection pipe 4 into the purge gas ring 5, the purge gas cools the coil ring 3, and the reference numeral 6 is applied to the surface of the pipe P from the numerous holes 5 ′ of the purge gas ring coil 5. It is jetted diagonally as shown. On the other hand, a cooling liquid (for example, water) is injected into the first chamber 81 of the cooling ring coil 8 from some cooling liquid injection pipes 1 and then passes through the multiple holes 9 to the second chamber 82 of the cooling ring coil 8. As a result, the cooling liquid in the second chamber 82 has a uniform pressure and is jetted obliquely from the multiple holes 8'of the second chamber 82 onto the surface of the pipe P as indicated by reference numeral 7. Thereby, the heating part of the pipe P is cooled and the width of the heating part is controlled. When the injected cooling liquid 7 collides with the pipe P, a part of the liquid tries to return to the heating portion of the pipe P (that is, rightward in FIG. 1). Gas 6
Is blocked at any position in the circumferential direction of the pipe.
When the cooling liquid flows in the cooling ring coil 8,
The cooling ring coil 8 is cooled, and the purge gas ring 5 integrated with the cooling ring coil 8 is also cooled by heat conduction.
第4図は本実施例による配管Pの加熱・冷却状況を示
す。配管Pはコイルリング3に対して相対的に左方に徐
々に移動する。高周波電流が電流供給導体2,2′を介し
てコイルリング3を流れることによって、それに向い合
った配管Pの部分が加熱され(図中、符号14は該加熱部
を示す)、それに引き続いて冷却液7で冷却される。配
管Pに衝突した冷却液の一部が加熱部14の方へ戻ろうと
するのをパージ気体6が阻止する様子が第4図に示され
ている。FIG. 4 shows the heating / cooling status of the pipe P according to this embodiment. The pipe P gradually moves to the left relative to the coil ring 3. By the high-frequency current flowing through the coil ring 3 via the current supply conductors 2 and 2 ′, the portion of the pipe P facing it is heated (in the figure, reference numeral 14 indicates the heating portion) and subsequently cooled. It is cooled with liquid 7. FIG. 4 shows how the purge gas 6 prevents a part of the cooling liquid that has collided with the pipe P from returning to the heating portion 14.
次に第3図に前記装置におけるコイルリング3と電流
供給導体2,2′との接続部を示す。この接続部10を図示
の様に細い電流通路規制部とすることにより強制的に電
流通路を制約する。これにより、電流がコイルリング3
の両端間のギャップ近傍を通過するので、従来磁束密度
が低下し配管に対する温度上昇作用の良くなかったギャ
ップ12近傍位置での磁束密度低下を防止することがで
き、この位置でも他の位置と同様の磁束密度を与えるこ
とができるので、配管の周方向における均一な温度分布
を得ることが可能となる。電流通路規制部10を狭くした
ことによる機械的強度の低下を防止するため絶縁材製の
補強板11をコイルリング3と電流供給導体2,2′に接続
して機械的強度を持たせる構成としてある。なお、ギャ
ップ12は適宜の絶縁板で埋めてもよい。Next, FIG. 3 shows the connection between the coil ring 3 and the current supply conductors 2, 2'in the above device. The current passage is forcibly restricted by making the connecting portion 10 a thin current passage restricting portion as shown in the drawing. As a result, the current is applied to the coil ring 3
Since it passes near the gap between the two ends of the pipe, it is possible to prevent the decrease in magnetic flux density at the position near the gap 12 where the conventional magnetic flux density decreased and the temperature rise effect on the pipe was not good. Since it is possible to give a magnetic flux density of, it is possible to obtain a uniform temperature distribution in the circumferential direction of the pipe. In order to prevent reduction in mechanical strength due to narrowing of the current passage restricting portion 10, a reinforcing plate 11 made of an insulating material is connected to the coil ring 3 and the current supply conductors 2 and 2'to provide mechanical strength. is there. The gap 12 may be filled with an appropriate insulating plate.
従来技術では、電流接続部10に相当する部分が広げて
あるので、主にその部分を電流が通り、ギャップ12近傍
の内側位置で磁束密度が低下する問題があったが、本発
明実施例では、上述のような狭い電流通路規制部を形成
したことにより、この問題を解消したものである。In the prior art, since the portion corresponding to the current connection portion 10 is widened, there was a problem that the current mainly passes through that portion, and the magnetic flux density decreases at the inner position near the gap 12, but in the embodiment of the present invention. The problem is solved by forming the narrow current passage restricting portion as described above.
第5図に示した従来技術では、断面長方形の加熱コイ
ル5の前方に冷却リング8があり加熱コイル5で配管P
を加熱し、冷却液7を噴射して配管Pを冷却し、加熱域
14を配管Pに形成する。そのため加熱域の巾は広くな
り、また冷却液7の加熱域14への戻り込みも大となり、
温度の均一分布を得ることが困難となっている。In the prior art shown in FIG. 5, the cooling ring 8 is provided in front of the heating coil 5 having a rectangular cross section, and the heating coil 5 is connected to the pipe P.
Is heated, the cooling liquid 7 is sprayed to cool the pipe P, and the heating area
14 is formed in the pipe P. Therefore, the width of the heating area becomes wide, and the return of the cooling liquid 7 to the heating area 14 becomes large,
It is difficult to obtain a uniform temperature distribution.
これに対して、本発明実施例装置では、第4図に示す
ように、冷却液7の後方よりパージ用気体6を冷却液7
と同角度で噴射するため、冷却液7の加熱部(加熱域)
14への戻り込みを阻止することができる。またパージ気
体リング5と冷却リングコイル8を1体構造としたこと
により熱伝導を良くし、配管の輻射熱と自己発熱による
コイルリング3の温度上昇を防止する。またコイルリン
グ3の断面形状を、第1図、第4図に示す如く、配管P
に向って突出した角部を持たせた形状にして配管P側の
コイルリング面積を少くしていることによって、配管P
の加熱域14の幅を狭くし、配管曲げ加工部の減肉率や楕
円化率の低下を図っている。On the other hand, in the apparatus according to the embodiment of the present invention, as shown in FIG.
Since it is injected at the same angle as, the heating part (heating area) of the cooling liquid 7
It is possible to prevent the return to 14. Further, the purge gas ring 5 and the cooling ring coil 8 have a one-piece structure to improve heat conduction and prevent the temperature rise of the coil ring 3 due to radiant heat of the pipe and self-heating. In addition, as shown in FIGS. 1 and 4, the cross-sectional shape of the coil ring 3 has a pipe P
Since the coil ring area on the pipe P side is reduced by forming the shape with corners protruding toward the pipe P,
The width of the heating area 14 is narrowed to reduce the wall thinning rate and the ellipticity rate of the pipe bending portion.
第6図に従来装置と本発明実施例装置による配管の加
工温度分布、第7図に配管曲げ加工部の楕円化率、減肉
率を示す。白丸は本発明実施例の場合を示し、黒丸は従
来装置の場合を示す。第6図に示す線に本発明実施例を
使用した場合は円周方向に対し均一な温度分布が可能で
あり、また第7図に示す様に楕円化率及び減肉率も向上
させることが可能である。FIG. 6 shows the processing temperature distribution of the pipe by the conventional device and the device of the present invention, and FIG. 7 shows the ellipticity and the wall thinning rate of the pipe bending part. White circles indicate the case of the embodiment of the present invention, and black circles indicate the case of the conventional device. When the embodiment of the present invention is used for the line shown in FIG. 6, a uniform temperature distribution can be made in the circumferential direction, and as shown in FIG. 7, the ellipticity and the wall thinning rate can be improved. It is possible.
第8図は本発明の他の実施例を示し、冷却液7を配管
に対し概ね直角に噴射して配管加熱域を狭くし、その後
方より気体パージして加熱域への冷却液戻り込みを防ぐ
ようにしたものである。FIG. 8 shows another embodiment of the present invention, in which the cooling liquid 7 is sprayed substantially at right angles to the pipe to narrow the pipe heating region, and gas is purged from behind to cool the cooling liquid back into the heating region. It was designed to prevent it.
第9図は更に他の実施例を示し、冷却リングコイル16
に高周波電流を流して配管Pを加熱すると共に該冷却リ
ングコイル16を冷却液で冷却し、冷却リングコイル16か
ら該冷却液7を配管Pに噴射し、他方、それとは別体の
後方のパージ気体リング17からパージ気体6を配管に噴
射して冷却液7の配管加熱域への戻り込みを防止するよ
うにしたものである。FIG. 9 shows still another embodiment, which is a cooling ring coil 16
A high-frequency current is applied to the pipe P to heat the pipe P, the cooling ring coil 16 is cooled with a cooling liquid, and the cooling liquid 7 is jetted from the cooling ring coil 16 to the pipe P. The purge gas 6 is sprayed from the gas ring 17 to the pipe to prevent the cooling liquid 7 from returning to the pipe heating area.
[発明の効果] 本発明によれば、配管の加熱域を制御する噴射冷却液
の後方よりパージ気体を噴射することにより配管周方向
に対し均一な加工温度を附与することができ、配管曲げ
加工部の減肉率、楕円化率を低下させる事が可能とな
る。またコイルリングへの電流通路規制部を設けること
により磁束密度の局部的低下を防止して周方向に均一な
高周波誘導加熱を可能とし、またコイルリング断面形状
を配管に向って傾斜した角部を持つ形状となして配管側
でのコイルリング面積を小さくした事により配管の加熱
域の幅を狭くし、配管の小径曲げ加工に対応可能とな
る。そのため、楕円化率、減肉率の低い品質の高い配管
曲げ加工をすることが可能となる。EFFECTS OF THE INVENTION According to the present invention, by injecting the purge gas from the rear of the injection cooling liquid that controls the heating area of the pipe, it is possible to apply a uniform processing temperature in the pipe circumferential direction, and to bend the pipe. It is possible to reduce the thinning rate and ellipticity rate of the processed part. In addition, by providing a current path restriction part to the coil ring, it is possible to prevent local decrease in magnetic flux density and to achieve high-frequency induction heating that is uniform in the circumferential direction. By making it have a shape and reducing the coil ring area on the pipe side, the width of the heating area of the pipe can be narrowed and it becomes possible to handle small diameter bending of the pipe. Therefore, it is possible to perform high-quality pipe bending with a low ovalization rate and a low wall thickness reduction rate.
第1図は本発明実施例装置の断面図、第2図は同装置の
概要正面図、第3図は同装置における電流供給導体接続
部を示す図、第4図は同装置の加熱・冷却状態を示す
図、第5図は従来装置の加熱・冷却状態を示す図、第6
図は従来例と本発明実施例の加工温度分布を示す図、第
7図は同じく配管曲げ加工の楕円化率、減肉率図を示す
図、第8図、第9図は他の実施例を示す図である。 1……冷却液注入管、2,2′……電流供給導体、 3……リングコイル、4……パージ気体注入管、 5……パージ気体リング、6……パージ気体、 7……冷却液、8……冷却リングコイル、 9……孔、10……電流通路規制部、 11……絶縁板製補強板、14……加熱域、 P……配管。FIG. 1 is a cross-sectional view of an apparatus of the present invention, FIG. 2 is a schematic front view of the apparatus, FIG. 3 is a view showing a current supply conductor connecting portion in the apparatus, and FIG. 4 is heating / cooling of the apparatus. FIG. 5 shows a state, FIG. 5 shows a heating / cooling state of a conventional device, FIG.
FIG. 7 is a diagram showing machining temperature distributions of the conventional example and the embodiment of the present invention, FIG. 7 is a diagram showing an ellipticity rate and a wall thinning rate diagram of the pipe bending process, FIG. 8 and FIG. 9 are other examples. FIG. 1 ... Coolant injection pipe, 2, 2 '... Current supply conductor, 3 ... Ring coil, 4 ... Purge gas injection pipe, 5 ... Purge gas ring, 6 ... Purge gas, 7 ... Coolant , 8 ... Cooling ring coil, 9 ... Hole, 10 ... Current passage control part, 11 ... Insulating plate reinforcing plate, 14 ... Heating area, P ... Piping.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 金沢 武 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (56)参考文献 特開 昭61−273220(JP,A) 実開 昭61−143711(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takeshi Kanazawa 3-1-1, Sachimachi, Hitachi, Ibaraki Hitachi, Ltd., Hitachi Works, Ltd. (56) References JP 61-273220 (JP, A) Actual Kai 61-143711 (JP, U)
Claims (4)
取り巻き、該リングコイルに対して相対的に配管を軸方
向に移動させて該配管の順次の部分を加熱する高周波誘
導加熱装置において、上記リングコイルを中空とし、そ
の内部に冷却液を流し且つ該冷却液を配管移動方向でみ
て加熱域の下流側へ該リングコイルから噴射するように
構成すると共に、上記冷却液の配管との衝突による配管
加熱域への戻り込みを阻止するように該冷却液と配管と
の衝突位置の上流側へパージ気体を斜めに噴射するパー
ジ気体リングを設け、さらに、前記リングコイルの断面
形状は配管に面する側が配管に対して突出した角部をな
すことを特徴とする高周波誘導加熱装置。1. A high-frequency induction heating apparatus for surrounding a pipe with a ring coil through which a high-frequency current flows, and axially moving the pipe relative to the ring coil to heat a sequential portion of the pipe. The coil is hollow, and the cooling liquid is caused to flow inside and the cooling liquid is jetted from the ring coil to the downstream side of the heating area as viewed in the pipe moving direction, and the pipe is formed by collision of the cooling liquid with the pipe. A purge gas ring for obliquely injecting a purge gas is provided upstream of the collision position of the cooling liquid and the pipe so as to prevent the pipe from returning to the heating region, and the ring coil has a sectional shape facing the pipe. A high-frequency induction heating device, characterized in that the side forms a corner protruding with respect to the pipe.
導体の該リングコイルとの接合部が細くくびれているこ
とを特徴とする請求項1記載の高周波誘導加熱装置。2. The high frequency induction heating device according to claim 1, wherein a joint portion of the conductor supplying the high frequency current to the ring coil and the ring coil is thinly constricted.
却液が注入されるリング状の第1室と、該第1室に多数
の孔によって連通するリング状の第2室とを有し、該第
2室から配管へ前記冷却液噴射を行うように構成したこ
とを特徴とする請求項1又は2のいずれかに記載の高周
波誘導加熱装置。3. The ring coil has a ring-shaped first chamber in which a cooling liquid is injected from a cooling liquid injection pipe, and a ring-shaped second chamber communicating with the first chamber by a large number of holes. The high frequency induction heating device according to claim 1 or 2, wherein the cooling liquid is injected from the second chamber to a pipe.
相接して一体的に構成されている請求項1,2又は3のい
ずれかに記載の高周波誘導加熱装置。4. The high frequency induction heating device according to claim 1, wherein the ring coil and the purge gas ring are in contact with each other and integrally formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229460A JP2674797B2 (en) | 1988-09-13 | 1988-09-13 | High frequency induction heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229460A JP2674797B2 (en) | 1988-09-13 | 1988-09-13 | High frequency induction heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0280125A JPH0280125A (en) | 1990-03-20 |
JP2674797B2 true JP2674797B2 (en) | 1997-11-12 |
Family
ID=16892550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63229460A Expired - Fee Related JP2674797B2 (en) | 1988-09-13 | 1988-09-13 | High frequency induction heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2674797B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101404386B1 (en) * | 2010-01-06 | 2014-06-09 | 신닛테츠스미킨 카부시키카이샤 | Induction heating coil, device for manufacturing of workpiece, and manufacturing method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6940801B1 (en) | 1997-11-10 | 2005-09-06 | Fuji Xerox Co., Ltd. | Optical recording medium, optical recording and reproducing method and apparatus |
JP2013035032A (en) * | 2011-08-08 | 2013-02-21 | Sankei Giken Kogyo Co Ltd | Apparatus for bending metallic material and method for manufacturing bent member |
US20220395881A1 (en) * | 2020-02-27 | 2022-12-15 | Nippon Steel Corporation | Cooling device and cooling method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61143711U (en) * | 1985-02-21 | 1986-09-05 | ||
JPS61273220A (en) * | 1985-05-29 | 1986-12-03 | Hitachi Ltd | Method and device for tube-bending by using high frequency induction heating |
-
1988
- 1988-09-13 JP JP63229460A patent/JP2674797B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101404386B1 (en) * | 2010-01-06 | 2014-06-09 | 신닛테츠스미킨 카부시키카이샤 | Induction heating coil, device for manufacturing of workpiece, and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0280125A (en) | 1990-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2674797B2 (en) | High frequency induction heating device | |
EP1524887A2 (en) | Nozzle for plasma torch | |
JPS5817716B2 (en) | Electric resistance welding equipment for manufacturing equipment for molten metal plated steel pipes | |
JPS60249300A (en) | Method and device for generating plasma flow having heated and expanded plasma jet | |
US11685092B2 (en) | Injection molding systems and methods | |
JPH04308718A (en) | Injection molding device | |
JPH0452768B2 (en) | ||
JPH04197559A (en) | Continuous casting method for steel | |
JPH08143947A (en) | Coil for quenching end surface of flange surface | |
JP3036335B2 (en) | Hollow injection molding equipment | |
JP2000334334A (en) | Combined nozzle mechanism of round pipe and square pipe | |
JP7381866B2 (en) | Slab heating device for continuous casting equipment | |
JP3342993B2 (en) | Method of cooling steel sheet uniformly | |
JP3345340B2 (en) | Roll crown control method | |
CN111601671A (en) | Method for heating steel sheet and method for producing hot-pressed product | |
JP2003089822A (en) | Induction hardening method for internal surface of cylindrical member | |
JPH05115915A (en) | Method and device for water cooling air steel/ wire rod | |
JPS6327849Y2 (en) | ||
JP4752252B2 (en) | H-shaped steel cooling method | |
JP2623254B2 (en) | Heating coil for hardening the peripheral one shot | |
JP2023056684A (en) | nozzle | |
JP2023530426A (en) | Manufacture of roll-formed tubes | |
JPH10176224A (en) | Method for cooling steel plate and cooling device therefor | |
JP2001300626A (en) | Induction heating method for steel sheet and device for manufacturing steel sheet | |
JP3055658B2 (en) | Internal quenching method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |