JPH10176224A - Cooling method and cooling device for steel sheet - Google Patents
Cooling method and cooling device for steel sheetInfo
- Publication number
- JPH10176224A JPH10176224A JP33835096A JP33835096A JPH10176224A JP H10176224 A JPH10176224 A JP H10176224A JP 33835096 A JP33835096 A JP 33835096A JP 33835096 A JP33835096 A JP 33835096A JP H10176224 A JPH10176224 A JP H10176224A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- nozzle
- water film
- partition plate
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は鋼板の冷却方法及び
その装置に係り、詳しくは鋼板の上面を低冷却水量で均
一に冷却する方法およびその冷却装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for cooling a steel sheet, and more particularly, to a method and apparatus for uniformly cooling the upper surface of a steel sheet with a small amount of cooling water.
【0002】[0002]
【従来の技術】製鉄所における熱延工場のランナウトテ
ーブル、厚板工場の制御冷却設備等における鋼板の上面
を冷却する装置としてラミナーフロー冷却装置が広く用
いられている。このなかには板状の平滑水膜で鋼板を冷
却するスリットラミナー型冷却装置がある。図5(A)
はスリットラミナー型冷却装置で鋼板4を冷却する方法
の説明図であり、図5(B)はそのY―Y断面図であ
る。給水管5を経てノズルヘッダー1に供給された冷却
水はノズル2の出口から板状の平滑水膜となって流出
し、鋼板4の表面上に整流状の水膜を形成して鋼板を冷
却する。この冷却装置を用いて冷却する方法には、鋼
板幅方向に均一な冷却ができる、冷却能力が高い、
ノズルと鋼板との間隔を大きくすることができるので設
備配置の自由度が増す、等の長所がある。2. Description of the Related Art A laminar flow cooling device is widely used as a device for cooling an upper surface of a steel plate in a runout table of a hot rolling mill in a steel mill, a control cooling facility of a plate mill, and the like. Among them, there is a slit laminar type cooling device that cools a steel plate with a plate-shaped smooth water film. FIG. 5 (A)
FIG. 5B is an explanatory view of a method of cooling the steel plate 4 by the slit laminar type cooling device, and FIG. 5B is a sectional view taken along the line YY. The cooling water supplied to the nozzle header 1 through the water supply pipe 5 flows out from the outlet of the nozzle 2 as a plate-shaped smooth water film, and forms a rectified water film on the surface of the steel plate 4 to cool the steel plate. I do. The method of cooling using this cooling device can provide uniform cooling in the width direction of the steel sheet, has a high cooling capacity,
Since the distance between the nozzle and the steel plate can be increased, there is an advantage that the degree of freedom of equipment arrangement is increased.
【0003】しかし、このような長所があるにもかかわ
らず、スリットラミナー型冷却装置が他の冷却方式に比
べて特に普及しているとは言えない。冷却制御を活用す
るには、冷却速度を自在に制御できることが望ましいの
であるが、本冷却方式ではノズル2の出口のスリット間
隔tによって決まる冷却水量の下限が大きく、低冷却能
が得にくいことが障害になっている。However, despite these advantages, the slit laminar type cooling device cannot be said to be particularly popular as compared with other cooling methods. In order to utilize the cooling control, it is desirable that the cooling rate can be freely controlled. However, in this cooling method, the lower limit of the amount of cooling water determined by the slit interval t at the outlet of the nozzle 2 is large, and it is difficult to obtain a low cooling capacity. Obstacles.
【0004】スリットラミナー型冷却装置で板状の平滑
な水膜が得られる水量の範囲は、その上限も下限も共に
スリット間隔tでほぼ決定される。水量が上限を超える
と水膜は乱流となり、下限を超えるとノズル出口部から
空気を吸い込んで水膜が途切れ(以下、これを単に「水
膜切れ」と記す)、平滑な水膜流が得られなくなる。水
膜切れが生じると、冷却の均一性や安定性が著しく損な
われて、製品の機械的性能や形状に甚大な悪影響を及ぼ
す。スリットラミナー型冷却装置はノズル1本あたりの
冷却能が高いのでノズル数を少なくして設備費や操業費
用を削減できるのが魅力の1つであるが、水膜切れが生
じると、ノズル数が少ないことが逆に安定操業を妨げ
る。このため、スリットラミナー型冷却装置を用いる場
合には、安定して板状の平滑水膜が得られる流量範囲に
限定して用いざるを得ず(これは高冷却能の領域であ
る)、冷却能の選択範囲が狭いのがこの装置の適用が見
送られる大きい理由である。[0004] The range of the amount of water in which a plate-like smooth water film can be obtained by the slit laminar type cooling device is substantially determined by the slit interval t at both upper and lower limits. When the amount of water exceeds the upper limit, the water film becomes turbulent. When the amount of water exceeds the lower limit, the water film is sucked from the nozzle outlet to break the water film (hereinafter, simply referred to as “water film breakage”), and a smooth water film flow is generated. No longer available. When the water film breaks, the uniformity and stability of cooling are significantly impaired, and the mechanical performance and shape of the product are greatly affected. The slit laminar type cooling device has one of the attractive features that the number of nozzles can be reduced and the equipment cost and operation cost can be reduced because the cooling capacity per nozzle is high. A small number will hinder stable operation. For this reason, when a slit laminar type cooling device is used, it must be used only in a flow rate range in which a plate-like smooth water film can be stably obtained (this is a high cooling capacity region). The narrow selection range of functions is a major reason why the application of this device is forgotten.
【0005】特開昭60-133911 号公報には、スリットラ
ミナーのノズルの断面形状を出口に向かってテーパー状
に細くする(t0 >tとする)ことで、板状の平滑水膜
流が得られる下限の流量(以下、単に「水膜下限流量」
と記す)を低減できる装置が開示されている。この方法
によれば、従来のテーパーが無いノズルを用いる場合に
較べて水膜下限流量が30%前後低減できるが、それでも
冷却制御範囲拡大の要求に対して十分ではない。Japanese Patent Application Laid-Open No. 60-133911 discloses that a plate-shaped smooth water film flow is obtained by narrowing the cross-sectional shape of a slit laminar nozzle toward an outlet (t 0 > t). The lower limit flow rate that can be obtained (hereinafter simply referred to as “water film lower limit flow rate”
) Is disclosed. According to this method, the lower limit of the water film flow rate can be reduced by about 30% as compared with the case where a conventional nozzle having no taper is used, but it is still not sufficient for a demand for expanding the cooling control range.
【0006】[0006]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、板状の平滑水膜が得られる流量範囲を低流
量側に拡大して、従来の高冷却能に加えて低冷却能領域
でも冷却できる鋼板の冷却方法および、その装置を提供
することを目的とする。The problem to be solved by the present invention is to increase the flow rate range in which a plate-shaped smooth water film can be obtained to the low flow rate side, and to provide a low cooling capacity in addition to the conventional high cooling capacity. It is an object of the present invention to provide a method of cooling a steel sheet that can be cooled even in a region and a device therefor.
【0007】[0007]
【課題を解決するための手段】本発明の要旨は下記
(1)項に記載の鋼板の冷却方法および(2)項に記載
のその冷却装置にある。The gist of the present invention resides in a method of cooling a steel sheet described in the following item (1) and a cooling device thereof described in the item (2).
【0008】(1)スリットラミナー型冷却装置を用い
た冷却方法であって、出口の幅方向端部近傍に冷却水の
流出方向と平行に仕切り板を設けたノズルから流出させ
た板状の平滑水膜を用いて冷却することを特微とする冷
却方法。(1) A cooling method using a slit laminar type cooling device, wherein a plate-shaped smooth surface is discharged from a nozzle provided with a partition plate near an end in a width direction of an outlet in parallel with a flow direction of cooling water. A cooling method characterized by cooling using a water film.
【0009】(2)スリットラミナー型冷却装置におい
て、ノズル出口の幅方向端部の内壁面から2〜50mmの位
置に、冷却水の流出方向と平行に、長さ10mm以上、厚さ
4mm以下の仕切り板を備えることを特徴とする冷却装
置。(2) In the slit laminar type cooling device, a length of 10 mm or more and a thickness of 4 mm or less are provided at a position of 2 to 50 mm from the inner wall surface at the width direction end of the nozzle outlet, in parallel with the outflow direction of the cooling water. A cooling device comprising a partition plate.
【0010】以下、この発明の基になった考え方を図面
によって説明する。Hereinafter, the concept based on the present invention will be described with reference to the drawings.
【0011】図6はスリットラミナー型冷却装置におけ
る水膜切れが発生する時のメカニズムを説明する図であ
る。図6に示すように、スリットラミナー装置において
流量を次第に小さくしていくと、表面張力の影響を受け
て水膜流の端部の縮流が大きくなる。そして、ついには
端部から空気を吸い込んで水膜切れに至る。水膜切れが
生じる条件を力の釣合から考えると、図6に示すような
水膜流の慣性力による界面の引き下げ力Iよりも表面張
力による界面の引き上げ力Sが大きくなることである。FIG. 6 is a view for explaining a mechanism when a water film break occurs in the slit laminar type cooling device. As shown in FIG. 6, when the flow rate is gradually reduced in the slit laminar apparatus, the contraction of the end of the water film flow becomes large under the influence of the surface tension. Finally, the air is sucked in from the end and the water film breaks. Considering the conditions under which the water film breaks from the balance of the forces, the interface pulling force S by the surface tension is larger than the interface pulling force I by the inertia force of the water film flow as shown in FIG.
【0012】ノズル内では幅方向の水の流れが自由なた
めに、一旦縮流が生じるとノズル内部の流速に幅方向の
成分が生じ、結果として慣性による界面引き下げ力Iが
小さくなり、それが更に縮流を大きくすることが考えら
れる。すなわち、縮流と流速の幅方向成分の増大(つま
り、垂直方向の流速成分の減少)とが相互に作用しあっ
てIを低下させ、相対的にSが大きくなって界面が上昇
し、ついには空気を吸い込んで水膜切れに至るものと推
測される。Since the flow of water in the width direction is free in the nozzle, once the contraction occurs, a component in the width direction is generated in the flow velocity inside the nozzle, and as a result, the interface lowering force I due to inertia decreases. It is conceivable to further increase the contraction. That is, the contraction and the increase in the width component of the flow velocity (that is, the decrease in the flow velocity component in the vertical direction) interact with each other to decrease I, increase S relatively, and raise the interface. It is presumed that the inhalation of air causes the water film to break.
【0013】逆に言えば、ノズル端部近傍で幅方向の流
速成分が生じないようにすれば縮流が抑制されて水膜形
成が安定すると共に、冷却水量を減少させても端部から
の水膜切れが生じ難くなり、低水量の板状平滑水膜での
冷却が可能になる。本発明は以上の考え方に基づいて完
成された。Conversely, if the flow velocity component in the width direction is not generated near the nozzle end, the contraction of the flow is suppressed and the water film formation is stabilized, and even if the cooling water amount is reduced, the flow from the end is reduced. Water film breakage is less likely to occur, and cooling with a plate-like smooth water film having a low water amount becomes possible. The present invention has been completed based on the above concept.
【0014】[0014]
【発明の実施の形態】本発明の実施の形態を実施例を用
いて説明する。図1は本発明の実施例を示すスリットラ
ミナー型冷却装置のノズル2の出口の一端部2a の拡大
断面図である。本発明ではノズル出口の端部近傍に仕切
り板6a を設置し、幅方向の流速成分の生成を抑制す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to examples. FIG. 1 is an enlarged sectional view of one end 2a of an outlet of a nozzle 2 of a slit laminar type cooling apparatus according to an embodiment of the present invention. In the present invention, the partition plate 6a is provided near the end of the nozzle outlet to suppress the generation of the flow velocity component in the width direction.
【0015】仕切り板6a の表面とノズル端部2a の内
壁面との間の距離Aは2〜50mmとする。距離Aが50mmを
超えて大きくなると、仕切り板6a と内壁面との間で幅
方向の流れ成分が生じ仕切り板を設ける効果が損なわれ
る。距離Aが2mmに満たない場合には、仕切り板と内壁
面との間の流路としての働きが小さくなって本発明の効
果が低下する。距離Aは好ましくは3〜20mmである。こ
れらの仕切り板はノズル2の幅方向左右の両端部近傍に
設置することが望ましい。しかし、ノズルの幅方向で流
量に偏りがある場合などでは低流量側の端部近傍のみに
設置することでもその効果を十分に発揮することができ
る。The distance A between the surface of the partition plate 6a and the inner wall surface of the nozzle end 2a is 2 to 50 mm. If the distance A exceeds 50 mm, a flow component in the width direction occurs between the partition plate 6a and the inner wall surface, and the effect of providing the partition plate is impaired. When the distance A is less than 2 mm, the function as a flow path between the partition plate and the inner wall surface is reduced, and the effect of the present invention is reduced. Distance A is preferably between 3 and 20 mm. These partition plates are desirably installed near the left and right ends of the nozzle 2 in the width direction. However, when the flow rate is uneven in the width direction of the nozzle or the like, the effect can be sufficiently exerted by installing only near the end on the low flow rate side.
【0016】仕切り板6a の長さBは、少なくともノズ
ル内での長さが10mm以上あることが好ましい。仕切り板
がこれよりも短くなると、ノズル端部近傍での幅方向の
流速成分の抑制が不十分なために縮流が生じやすくな
る。10mm以上であればいくら長くても構わない。仕切り
板6a の厚さCは、水の流れを乱さないために薄いもの
が好ましい。これが厚くなりすぎると水膜が仕切り板で
分断され、水膜形成が損なわれるおそれが増す。このた
め、仕切り板の厚さCは4mmを上限とするのが望まし
い。The length B of the partition plate 6a is preferably at least 10 mm or more in the nozzle. If the partition plate is shorter than this, a flow contraction is likely to occur due to insufficient suppression of the flow velocity component in the width direction near the nozzle end. Any length is acceptable as long as it is 10 mm or more. The thickness C of the partition plate 6a is preferably thin so as not to disturb the flow of water. If this is too thick, the water film is divided by the partition plate, and the water film formation is more likely to be impaired. Therefore, it is desirable that the upper limit of the thickness C of the partition plate is 4 mm.
【0017】仕切り板6a とノズル下端部との上下方向
の位置関係は、仕切り板の下端部がノズル2の下端部と
同じ高さに位置するのを基本とする。しかし、図4
(A)に示すように仕切り板6a の下端部がノズル下端
部よりも上部であるもの(両者間の距離をDa とす
る)、あるいは、図4(B)に示すようにノズル下端部
からはみ出しているもの(はみ出し代をDb とする)な
どでも構わない。図4(A)の場合の距離Da は5mm以
下であれば水膜下限流量を引き下げる効果は得られる。
5mmを超えるとノズル出口端部での幅方向の流速成分を
抑制する効果が弱くなるので好ましくない。図4(B)
の場合のはみ出し代Db は、仕切り板で水膜が分断され
ない限り大きくするのが好ましい。その理由は、はみ出
し部が縮流を抑制する効果を生むためである。Db が10
mm以上あれば水膜下限流量はDb :0の場合に較べて更
に5%程度改善される。Db を過度に大きくすると水膜
が分断されるおそれがあるので、Db は50mm以下とする
のが望ましい。仕切り板がノズル下端部からはみ出す場
合の仕切り板の長さBは、例えば、Db :15mmの場合で
あればBは25mm以上必要である。The vertical positional relationship between the partition plate 6a and the lower end of the nozzle is basically based on the fact that the lower end of the partition plate is positioned at the same height as the lower end of the nozzle 2. However, FIG.
The lower end of the partition plate 6a is higher than the lower end of the nozzle as shown in FIG. 4A (the distance between them is defined as Da), or protrudes from the lower end of the nozzle as shown in FIG. (A protruding margin is assumed to be Db) or the like. If the distance Da in the case of FIG. 4A is 5 mm or less, the effect of lowering the water film lower limit flow rate can be obtained.
If it exceeds 5 mm, the effect of suppressing the flow velocity component in the width direction at the nozzle outlet end is weakened, which is not preferable. FIG. 4 (B)
In the case of (1), it is preferable to increase the protrusion allowance Db unless the water film is divided by the partition plate. The reason is that the protruding portion produces an effect of suppressing the contraction. Db is 10
If it is not less than mm, the lower limit of the water film flow rate is further improved by about 5% as compared with the case of Db: 0. If Db is excessively large, the water film may be broken, so that Db is preferably set to 50 mm or less. The length B of the partition plate when the partition plate protrudes from the lower end of the nozzle is, for example, 25 mm or more when Db is 15 mm.
【0018】仕切り板の断面形状は水流を乱さない形状
であればよく、図1に示す仕切り板6a のように矩形断
面でもよい。しかし、図3(A)に示すような上下端部
を鋭角状にした仕切り板6b や、図3(B)に示すよう
に流線型の断面の仕切り板6c 等、水の流れを乱し難い
断面形状であればより好ましい。The sectional shape of the partition plate may be any shape which does not disturb the water flow, and may be a rectangular cross section like the partition plate 6a shown in FIG. However, as shown in FIG. 3A, a partition plate 6b having upper and lower ends formed into an acute angle, and a partition plate 6c having a streamlined cross section as shown in FIG. A shape is more preferable.
【0019】本発明による仕切り板を、特開昭60-13391
1 号公報で開示されているテーパー状のノズルに設ける
と、水膜下限水量は更に低減できる。The partition plate according to the present invention is disclosed in JP-A-60-13391.
By providing the tapered nozzle disclosed in Japanese Patent Publication No. 1, the lower limit of the water film volume can be further reduced.
【0020】[0020]
(実施例1)幅Wが1400mm、長さLが500 mm、ノズル出
口のスリット間隔tを7〜12mm、ノズル入り口のスリッ
ト間隔t0 =tとしたスリットラミナー型冷却装置を用
い、ノズル両端部のそれぞれの内壁面からの距離Aが5
mmの位置に、長さBが100 mm、厚さCが2mmで、上下端
部の断面形状が矩形である金属製仕切り板6a を設置
し、これに通水して水膜下限流量を求めた。仕切り板の
下端部の位置はノズルの下端部と同じ(Da =0)にし
た。ノズルの断面形状をt0 =4tのテーパー状にした
以外は上記と同様の寸法の装置による水膜下限流量の調
査も行なった。(Example 1) the width W is used 1400 mm, the length L is 500 mm, 7 to 12 mm slit interval t of the nozzle outlet, the slit laminar type cooling device and the slit interval t 0 = t of the nozzle inlet, a nozzle end portions Distance A from each inner wall surface is 5
At the position of mm, a metal partition plate 6a having a length B of 100 mm, a thickness C of 2 mm, and a rectangular cross section at the upper and lower ends is installed, and water is passed through the metal partition plate 6a to obtain a water film lower limit flow rate. Was. The position of the lower end of the partition plate was the same as the lower end of the nozzle (Da = 0). The lower limit flow rate of the water film was also examined using an apparatus having the same dimensions as above except that the cross-sectional shape of the nozzle was tapered at t 0 = 4t.
【0021】第2図にこれらの試験結果を示す。図2に
記載の本発明例1と比較例1とはノズル形状がt0 =t
の場合の結果であり、本発明例2と比較例2とはノズル
形状がt0 =4tの場合の結果である。この図からわか
るように、t0 =tである従来型のノズルに対して本発
明の仕切り板を適用した場合には水膜下限流量が約40%
低減された。また、特開昭60-133911 号公報で開示され
ているテーパー状のノズルに本発明の仕切り板を設ける
と、従来型の装置に対して約50%水膜下限流量が低減で
きた。FIG. 2 shows the results of these tests. In the present invention example 1 and the comparative example 1 shown in FIG. 2, the nozzle shape is t 0 = t.
And the results of the present invention example 2 and the comparative example 2 are obtained when the nozzle shape is t 0 = 4t. As can be seen from this figure, when the partition plate of the present invention is applied to the conventional nozzle in which t 0 = t, the lower limit of the water film flow rate is about 40%.
Reduced. In addition, when the partition plate of the present invention was provided to the tapered nozzle disclosed in Japanese Patent Application Laid-Open No. 60-133911, the lower limit flow rate of the water film could be reduced by about 50% compared to the conventional apparatus.
【0022】また、比較例では水膜下限流量近傍の水量
(例えば図2の点、t=9mm、流量が0.65m3/min.m
)では、ノズル両端部に縮流が生じて水圧変動などが
あると水膜形成が不安定になるが、本発明例でのの条
件では極めて安定した平滑水膜が得られた。In the comparative example, the amount of water near the lower limit of the water film flow rate (for example, the point in FIG. 2, t = 9 mm, and the flow rate is 0.65 m 3 /min.m
In (2), the water film formation becomes unstable if there is a water pressure fluctuation due to the contraction of flow at both ends of the nozzle. However, under the conditions of the present invention example, an extremely stable smooth water film was obtained.
【0023】(実施例2)幅Wが1400mm、長さLが500
mmで、ノズル出口のスリット間隔tが9mm、ノズル入り
口のスリット間隔t0 =tとしたスリットラミナー型冷
却装置のノズル2の出口の左右の端部のそれぞれの内壁
面からの距離Aが1.5 〜55mmの位置に、長さBが8〜50
0 mmの仕切り板を設置し、これに通水して水膜下限流量
を求めた。仕切り板の下端部の位置はノズルの下端部と
同じ(Da =0)にした。仕切り板の厚さCが4mmの場
合の水膜下限流量調査結果を表1に示す。(Embodiment 2) The width W is 1400 mm and the length L is 500
In mm, slit spacing t of the nozzle outlet is 9 mm, the distance A from the respective inner wall surfaces of the left and right ends of the outlet of the nozzle 2 of the slit laminar type cooling device and the slit interval t 0 = t of the nozzle inlet 1.5 to Length B is 8 to 50 at 55mm
A 0 mm partition plate was installed, and water was passed through the partition plate to determine the water film lower limit flow rate. The position of the lower end of the partition plate was the same as the lower end of the nozzle (Da = 0). Table 1 shows the results of the water film lower limit flow rate investigation when the thickness C of the partition plate was 4 mm.
【0024】[0024]
【表1】 [Table 1]
【0025】ノズル出口のスリット間隔が9mmで仕切り
板が無い場合の水膜下限流量は0.63m3/min.m であっ
た。表1に示されているように、本発明2に記載の条件
を満たす冷却装置を用いれば水膜下限流量が大幅に低減
されている。仕切り板の厚さCを2mmとした以外は上記
と同一の条件での水膜下限流量もC=4mmの場合と差異
はなかった。仕切り板の厚さCを6mmにすると水膜が分
断されて良好な板状の平滑水膜が得られなかった。When the slit interval at the nozzle outlet was 9 mm and there was no partition plate, the minimum flow rate of the water film was 0.63 m 3 /min.m. As shown in Table 1, the use of the cooling device that satisfies the condition described in the second aspect of the present invention significantly reduces the water film lower limit flow rate. The water film minimum flow rate under the same conditions as above except that the thickness C of the partition plate was 2 mm was not different from the case of C = 4 mm. When the thickness C of the partition plate was set to 6 mm, the water film was divided and a good plate-like smooth water film could not be obtained.
【0026】(実施例3)幅Wが1400mm、長さLが500
mmで、ノズル出口のスリット間隔tが9mm、ノズル入り
口のスリット間隔t0 =tとしたスリットラミナー型冷
却装置のノズル2の出口の左右の端部に、長さBが100
mm、厚さCが2mmの仕切り板を、それぞれの内壁面から
の距離Aが5mmで、仕切り板の下端部がノズル下端部か
らはみ出す位置に設け、これに通水して水膜下限流量を
求めた。この結果を表2に示す。(Embodiment 3) The width W is 1400 mm and the length L is 500
mm, the slit interval t at the nozzle outlet was 9 mm, and the slit interval t 0 = t at the nozzle inlet. The length B was 100 at the left and right ends of the outlet of the nozzle 2 of the slit laminar type cooling device.
mm, a partition plate having a thickness C of 2 mm, a distance A from each inner wall surface of 5 mm, and a lower end portion of the partition plate is provided at a position protruding from a lower end portion of the nozzle, and water is passed through the partition plate so that a water film lower limit flow rate is reduced. I asked. Table 2 shows the results.
【0027】[0027]
【表2】 [Table 2]
【0028】はみ出し量Db が10mm以上になるとDb =
0の場合に較べて平滑水膜が得られる下限の水量が0.39
から0.36m3/min.m に低減されており、水膜形成流領域
がさらに拡大されている。When the protrusion amount Db becomes 10 mm or more, Db =
In comparison with the case of 0, the lower limit of water amount at which a smooth water film is obtained is 0.39
To 0.36 m 3 /min.m, and the water film forming flow region is further expanded.
【0029】[0029]
【発明の効果】スリットラミナー型冷却装置ノズルの出
口の幅方向端部近傍に仕切り板を設置することにより、
冷却水量を大幅に低減しても安定して平滑な水膜流が得
られる。これにより、高冷却能から低冷却能までの広い
範囲で幅方向均一に冷却できる。また、この装置は、従
来と同一の寸法範囲内で、かつ、安価に製作できるし、
既設のスリットラミナー型冷却装置を手直しするだけで
も実現可能である。By installing a partition plate near the widthwise end of the exit of the slit laminar type cooling device nozzle,
Even if the amount of cooling water is significantly reduced, a stable and smooth water film flow can be obtained. Thereby, cooling can be performed uniformly in the width direction over a wide range from high cooling ability to low cooling ability. In addition, this device can be manufactured in the same size range as before and at low cost.
This can be realized only by modifying the existing slit laminar type cooling device.
【図1】本発明の実施例を示すノズル出口の一端部の拡
大断面図。FIG. 1 is an enlarged sectional view of one end of a nozzle outlet showing an embodiment of the present invention.
【図2】ノズル出口のスリット間隔と水膜下限流量との
関係を示す図。FIG. 2 is a diagram showing a relationship between a slit interval at a nozzle outlet and a water film lower limit flow rate.
【図3】本発明の他の実施例を示すノズル出口の一端部
の拡大断面図。FIG. 3 is an enlarged sectional view of one end of a nozzle outlet showing another embodiment of the present invention.
【図4】本発明の他の実施例を示すノズル出口の一端部
の拡大断面図。FIG. 4 is an enlarged sectional view of one end of a nozzle outlet showing another embodiment of the present invention.
【図5】(A)スリットラミナー型冷却装置による鋼板
冷却の説明図。 (B)スリットラミナー型冷却装置の断面図。FIG. 5A is an explanatory view of cooling a steel sheet by a slit laminar type cooling device. (B) Sectional drawing of a slit laminar type cooling device.
【図6】スリットラミナー型冷却装置における水膜切れ
発生メカニズムの説明図。FIG. 6 is an explanatory diagram of a water film breakage generation mechanism in a slit laminar type cooling device.
1 ノズルヘッダー 2 ノズル 2a ノズル出口端部 3 平滑水膜流 4 鋼板 5 給水管 6 仕切り板 L ノズルの長さ W ノズルの幅 I 水膜流の慣性力 S 水膜の表面張力 A 仕切り板表面とノズル端部の内壁面との間の距離 B 仕切り板長さ C 仕切り板の厚さ Da ノズル下端部からの仕切り板の引込み量 Db ノズル下端部からの仕切り板のはみ出し量 t0 ノズル入り口でのスリット間隔 t ノズル出口でのスリット間隔DESCRIPTION OF SYMBOLS 1 Nozzle header 2 Nozzle 2a Nozzle outlet end part 3 Smooth water film flow 4 Steel plate 5 Water supply pipe 6 Partition plate L Nozzle length W Nozzle width I Water film flow inertia S Surface tension of water film A the partition plate from the drawing amount Db nozzle lower end portion of the partition plate from the thickness Da nozzle lower end portion of the distance B partition plate length C partition plate between the inner wall surface of the nozzle end protrusion amount t 0 at the nozzle inlet Slit interval t Slit interval at nozzle exit
Claims (2)
方法であって、出口の幅方向端部近傍に冷却水の流出方
向と平行に仕切り板を設けたノズルから流出させた板状
の平滑水膜を用いて冷却することを特微とする鋼板の冷
却方法。1. A cooling method using a slit laminar type cooling device, wherein a plate-shaped smooth water film is discharged from a nozzle provided with a partition plate near an end in a width direction of an outlet in parallel with a flow direction of cooling water. A method for cooling a steel sheet, wherein the method is characterized by cooling using a steel sheet.
ズル出口の幅方向端部の内壁面から2〜50mmの位置に、
冷却水の流出方向と平行に、長さ10mm以上、厚さ4mm以
下の仕切り板を備えることを特徴とする冷却装置。2. In a slit laminar type cooling device, at a position of 2 to 50 mm from an inner wall surface at a width direction end of a nozzle outlet,
A cooling device comprising: a partition plate having a length of 10 mm or more and a thickness of 4 mm or less, which is parallel to a flow direction of cooling water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33835096A JPH10176224A (en) | 1996-12-18 | 1996-12-18 | Cooling method and cooling device for steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33835096A JPH10176224A (en) | 1996-12-18 | 1996-12-18 | Cooling method and cooling device for steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10176224A true JPH10176224A (en) | 1998-06-30 |
Family
ID=18317329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33835096A Pending JPH10176224A (en) | 1996-12-18 | 1996-12-18 | Cooling method and cooling device for steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10176224A (en) |
-
1996
- 1996-12-18 JP JP33835096A patent/JPH10176224A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8511126B2 (en) | Cooling device for cooling a metal strip | |
JP5840818B2 (en) | Method and apparatus for cooling surfaces in casting equipment, rolling equipment or other strip process lines | |
JP6554511B2 (en) | Three-dimensional contracted airflow nozzle and method for its use | |
JP2017197823A (en) | Molten metal plating equipment and method | |
JPH10176224A (en) | Cooling method and cooling device for steel sheet | |
JP2007284732A (en) | Gas wiping device | |
JPS6314053B2 (en) | ||
JPH0799027B2 (en) | Plate water faucet | |
HU216124B (en) | Ingate of a continuous aluminium casting machine | |
JPH09170668A (en) | Control valve | |
JP2002028537A (en) | Slit nozzle for liquid film generation | |
US5976251A (en) | Inlet for introducing water to wire edge guides for curtain coating | |
JP2980016B2 (en) | Edge overcoat prevention device | |
JPH05138078A (en) | Jet speed adjustable slit nozzle | |
JPS6087915A (en) | Device for forming stratiform water curtain for cooling sheet metal and band | |
US20100101243A1 (en) | Multipart roller | |
JP2008051718A (en) | Nozzle for tunnel, and tunnel device | |
JP3458046B2 (en) | Vertical continuous casting method of rectangular section aluminum alloy ingot and mold thereof | |
JPH10166119A (en) | In-mold electromagnetic stirring method in continuous casting | |
JP2019031756A (en) | Yarn cooling device | |
JPH07290136A (en) | Method and apparatus for cooling H-section steel | |
JP2596240B2 (en) | Continuous hot metal plating equipment | |
JP2020034713A (en) | Mist screen coupling device and mist screen formation device | |
JPH08174031A (en) | Method for passing strip through hot run table of hot rolling line | |
JP4580267B2 (en) | Gas wiping device |