JP2539655B2 - Twin turbo type internal combustion engine - Google Patents
Twin turbo type internal combustion engineInfo
- Publication number
- JP2539655B2 JP2539655B2 JP63014015A JP1401588A JP2539655B2 JP 2539655 B2 JP2539655 B2 JP 2539655B2 JP 63014015 A JP63014015 A JP 63014015A JP 1401588 A JP1401588 A JP 1401588A JP 2539655 B2 JP2539655 B2 JP 2539655B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- turbocharger
- switching valve
- exhaust passage
- twin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 10
- 238000005192 partition Methods 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/007—Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
- F01N13/10—Other arrangements or adaptations of exhaust conduits of exhaust manifolds
- F01N13/107—More than one exhaust manifold or exhaust collector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/013—Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/02—Gas passages between engine outlet and pump drive, e.g. reservoirs
- F02B37/025—Multiple scrolls or multiple gas passages guiding the gas to the pump drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
- F02B29/0412—Multiple heat exchangers arranged in parallel or in series
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、複数気筒を2群に分割し、それぞれの気筒
群に排気ターボ過給機を備えたツインターボ式内燃機関
に関するものである。Description: TECHNICAL FIELD The present invention relates to a twin turbo internal combustion engine in which a plurality of cylinders are divided into two groups and each cylinder group is provided with an exhaust turbocharger.
(従来技術及びその問題点) この種のツインターボ式内燃機関では、従来から2本
の排気通路の途中を連絡管で連通するようにした先行技
術が実開昭60−178329号で知られている。(Prior Art and Problems Thereof) In this type of twin turbo internal combustion engine, a prior art in which two exhaust passages are communicated with each other by a connecting pipe is known from Japanese Utility Model Publication No. 60-178329. There is.
しかしながら、この先行技術では2本の排気通路を流
れる排気ガスの脈動パルスが相互に干渉し合い、脈動パ
ルスが低下して過給効率の面で改善の余地がある。ま
た、特に低速時には排気ガス量が少なく過給効率の低下
が著しい。However, in this prior art, the pulsating pulses of the exhaust gas flowing through the two exhaust passages interfere with each other, and the pulsating pulses decrease, and there is room for improvement in terms of supercharging efficiency. Further, especially at low speeds, the amount of exhaust gas is small and the supercharging efficiency is significantly reduced.
複数気筒を2群に分割して排気ターボ過給機へ排気を
流す技術が特公昭38−1154号、特公昭59−692号に開示
してある。A technique for dividing a plurality of cylinders into two groups and flowing exhaust gas to an exhaust turbocharger is disclosed in Japanese Examined Patent Publication Nos. 38-1154 and 59-692.
(発明の目的) 本発明は、第1にツインターボ式内燃機関において、
排気干渉による過給効率の低下を防止でき、且つ中低速
域での性能を低圧段排気ターボ過給機で向上できるツイ
ンターボ式内燃機関を提供することを目的としている。(Object of the Invention) First, the present invention relates to a twin turbo internal combustion engine,
It is an object of the present invention to provide a twin turbo internal combustion engine that can prevent a decrease in supercharging efficiency due to exhaust interference and can improve the performance in the medium to low speed range with a low pressure stage exhaust turbocharger.
(発明の構成) (1)技術的手段 本発明は、複数気筒を2群に分割し、それぞれの気筒
群に排気ターボ過給機を備えたツインターボ式内燃機関
において、各気筒群毎に高圧段排気ターボ過給機を設
け、各高圧段排気ターボ過給機と各気筒群とを繋ぐ2本
の排気通路の間に両排気通路を連通する連絡管を設け、
一方の排気ターボ過給機にツインスクロールタービンを
設け、このツインスクロールタービンに繋がる第1排気
通路の前記連絡管より下流側に第1排気通路の断面積を
2分割する隔壁を形成し、前記第1排気通路と連絡管と
の接続部に閉弁時には連絡管開口を閉塞し、開弁時には
連絡管を第1排気通路の一方の分割通路に連通するよう
に切換える第1切換弁を設け、他方のターボ過給機に繋
がる第2排気通路と連絡管の接続部に、閉弁時には連絡
管開口を閉塞し、開弁時には第2排気通路の排気ガスの
全量を連絡管へ導くように切換える第2切換弁を設け、
前記両高圧段排気ターボ過給機の下流側にツインスクロ
ールタービンを有する低圧段排気ターボ過給機を1基設
け、低圧段排気ターボ過給機のツインスクロールタービ
ンの各渦巻き室へ前記高圧段排気ターボ過給機からの排
気ガスを独立して導く排気接続管を設け、低圧段排気タ
ーボ過給機からの過給給気を両高圧段排気ターボ過給機
へ導く給気接続管を設けたことを特徴とするツインター
ボ式内燃機関である。(Structure of the Invention) (1) Technical Means The present invention divides a plurality of cylinders into two groups, and in a twin turbo internal combustion engine provided with an exhaust turbocharger in each cylinder group, high pressure is applied to each cylinder group. A staged exhaust turbocharger is provided, and a connecting pipe that connects both exhaust passages is provided between two exhaust passages that connect each high pressure stage exhaust turbocharger and each cylinder group,
A twin scroll turbine is provided in one of the exhaust turbochargers, and a partition wall that divides a cross-sectional area of the first exhaust passage into two is formed downstream of the communication pipe of the first exhaust passage that is connected to the twin scroll turbine. (1) A first switching valve is provided at a connecting portion between the exhaust passage and the communication pipe to close the communication pipe opening when the valve is closed, and to switch the communication pipe to communicate with one of the divided passages of the first exhaust passage when the valve is opened, and the other. In the connection between the second exhaust passage and the connecting pipe connected to the turbocharger, the connecting pipe opening is closed when the valve is closed, and when the valve is opened, the entire amount of exhaust gas in the second exhaust passage is switched to the connecting pipe. Two switching valves are installed,
One low-pressure exhaust turbocharger having a twin scroll turbine is provided downstream of both the high-pressure exhaust turbochargers, and the high-pressure exhaust is supplied to each swirl chamber of the twin scroll turbine of the low-pressure exhaust turbocharger. An exhaust connection pipe was installed to guide the exhaust gas from the turbocharger independently, and a supply connection pipe was installed to guide the supercharged air from the low-pressure exhaust turbocharger to both high-pressure exhaust turbochargers. It is a twin-turbo type internal combustion engine characterized by the above.
(2)作用 両切換弁の開弁時には、隔壁およびツインスクロール
タービンで排気干渉を防止しながら排気ガスを高圧段排
気ターボ過給機のツインスクロールタービンへ流し、高
効率で過給する。(2) Action When both switching valves are opened, exhaust gas is allowed to flow to the twin scroll turbine of the high pressure exhaust turbocharger while preventing exhaust interference with the partition wall and twin scroll turbine, and supercharging is performed with high efficiency.
同時に、排気接続管の一方から低圧段排気ターボ過給
機のツインスクロールタービンへ排気ガスを流し、更に
過給する。At the same time, the exhaust gas is made to flow from one of the exhaust connecting pipes to the twin scroll turbine of the low pressure exhaust turbocharger and is further supercharged.
両切換弁の閉弁時には、両排気通路と連絡管とを遮断
して連絡管の影響を無くし、高圧段排気ターボ過給機の
過給効率を向上し、排気接続管から低圧段排気ターボ過
給機に独立して排気ガスを流し、低圧段排気ターボ過給
機の過給効率を向上する。When both switching valves are closed, the exhaust pipe and the connecting pipe are shut off to eliminate the influence of the connecting pipe, improve the supercharging efficiency of the high-pressure exhaust turbocharger, and connect the low-pressure exhaust turbocharger from the exhaust connecting pipe. The exhaust gas is made to flow independently to the turbocharger to improve the supercharging efficiency of the low pressure exhaust turbocharger.
(実施例) 本発明を採用したツインターボ式ディーゼル機関を示
す第1図で、10は機関本体である。この機関本体10は6
気筒のシリンダ11を有しており、シリンダ11の排気マニ
ホールド12は3気筒分ずつ集合して第1排気通路13と第
2排気通路14に繋がっている。(Embodiment) In FIG. 1 showing a twin turbo diesel engine adopting the present invention, 10 is an engine body. This engine body 10 is 6
It has a cylinder 11 of cylinders, and the exhaust manifolds 12 of the cylinder 11 are assembled for every three cylinders and are connected to the first exhaust passage 13 and the second exhaust passage 14.
第1排気通路13は高圧段排気ターボ過給機15に接続
し、高圧段排気ターボ過給機15はツインスクロールター
ビン16に2室の渦巻き室を有している。第2排気通路14
は高圧段排気ターボ過給機17に接続し、高圧段排気ター
ボ過給機17はシングルスクロールタービン18に単一の渦
巻き室を有している。高圧段排気ターボ過給機15、17の
ブロワ19、20は給気管21、22で機関本体10の給気マニホ
ールド23に連通し、給気マニホールド23にはインターク
ーラ24が設けられている。給気管21には逆止弁25を介装
してある。なお、図中27はインタークーラである。The first exhaust passage 13 is connected to a high pressure exhaust turbocharger 15, and the high pressure exhaust turbocharger 15 has two scroll chambers in a twin scroll turbine 16. Second exhaust passage 14
Is connected to a high pressure exhaust turbocharger 17, and the high pressure exhaust turbocharger 17 has a single scroll chamber in a single scroll turbine 18. The blowers 19 and 20 of the high-pressure stage turbochargers 15 and 17 are connected to the air supply manifold 23 of the engine body 10 by air supply pipes 21 and 22, and the air supply manifold 23 is provided with an intercooler 24. A check valve 25 is provided in the air supply pipe 21. In the figure, 27 is an intercooler.
更に、両高圧段排気ターボ過給機15,17の下流側には
詳しくは後述する低圧段排気ターボ過給機26を1基だけ
設けてある。Further, only one low-pressure stage exhaust turbocharger 26, which will be described in detail later, is provided on the downstream side of both high-pressure stage exhaust turbochargers 15, 17.
前記第1排気通路13と第2排気通路14の間には連絡管
30を架設してあり、連絡管30で第1排気通路13と第2排
気通路14を連通している。連絡管30の両端と第1排気通
路13、第2排気通路14との接続部には、第1切換弁31、
第2切換弁32が設けられており、第1切換弁31、第2切
換弁32で連絡管30を詳しくは後述するように開閉制御す
る機能を果たしている。連絡管30の中央部には伸縮継手
33が設けられている。A connecting pipe is provided between the first exhaust passage 13 and the second exhaust passage 14.
A connection pipe 30 connects the first exhaust passage 13 and the second exhaust passage 14 with each other. A first switching valve 31 is provided at a connecting portion between both ends of the communication pipe 30 and the first exhaust passage 13 and the second exhaust passage 14.
A second switching valve 32 is provided, and the first switching valve 31 and the second switching valve 32 serve to control the opening and closing of the connecting pipe 30 as described later in detail. Expansion joint in the center of the connecting pipe 30
33 are provided.
前記第1排気通路13の連絡管30より下流側には隔壁34
が形成されており、隔壁34で第1排気通路13の断面積を
略2等分するように分割している。したがって、第1排
気通路13を流れる排気ガスは隔壁34で区画された分割通
路35、36を通ってツインスクロールタービン16の渦巻き
室にそれぞれ独立して流れ込むようになっている。A partition wall 34 is provided downstream of the communication pipe 30 in the first exhaust passage 13.
Is formed, and the partition wall 34 divides the first exhaust passage 13 so as to divide the sectional area of the first exhaust passage 13 into two substantially equal parts. Therefore, the exhaust gas flowing through the first exhaust passage 13 independently flows into the spiral chamber of the twin scroll turbine 16 through the divided passages 35 and 36 defined by the partition wall 34.
第1切換弁31は支点37で軸支されており、支点37は連
絡管30の開口の上流側近傍位置に配置してある。また、
第2切換弁32の支点38は連絡管30の開口の下流側近傍位
置に配置してある。The first switching valve 31 is pivotally supported by a fulcrum 37, and the fulcrum 37 is arranged near the upstream side of the opening of the connecting pipe 30. Also,
The fulcrum 38 of the second switching valve 32 is arranged near the downstream side of the opening of the connecting pipe 30.
前記第1切換弁31、第2切換弁32は第1図で図示する
中低速、高負荷時には、第1切換弁31の先端部が隔壁34
に一致するように半開状態で開弁し、第2切換弁32は第
2排気通路14の排気ガスの全量を連絡管30へ流すように
全開状態で開弁している。次に、高速、高負荷時には第
2図に示すように連絡管30の両端開口を閉塞するように
閉弁している。The first switching valve 31 and the second switching valve 32 have a partition wall 34 at the tip end of the first switching valve 31 at the time of medium and low speed and high load shown in FIG.
The second switching valve 32 is fully opened so that the entire amount of the exhaust gas in the second exhaust passage 14 flows to the connecting pipe 30. Next, at high speed and high load, as shown in FIG. 2, both ends of the connecting pipe 30 are closed so as to close the openings.
前記ツインスクロールタービン16とシングルスクロー
ルタービン18と低圧段排気ターボ過給機26のツインスク
ロールタービン60との間は、ツインスクロールタービン
60の各渦巻き室へ排気ガスを流す排気接続管61、62で接
続してある。排気接続管61、62の基端部には自在継手6
3、64が介装してある。排気接続管61、62の先端部は、
タービン支え65で機関本体10を搭載する基台に支持して
ある。更に、排気接続管61、62の先端部は前記ツインス
クロールタービン60に連結し、両タービン16,18からの
排気ガスを各々独立してツインスクロールタービン60内
の各渦巻き室へ導くようになっている。Between the twin scroll turbine 16, the single scroll turbine 18, and the twin scroll turbine 60 of the low pressure exhaust turbocharger 26, there are twin scroll turbines.
Exhaust gas connection pipes 61 and 62 for flowing exhaust gas are connected to the respective 60 swirl chambers. Universal joint 6 at the base end of the exhaust connection pipe 61, 62
3 and 64 are installed. The tips of the exhaust connection pipes 61 and 62 are
A turbine support 65 supports the base on which the engine body 10 is mounted. Further, the tip end portions of the exhaust connection pipes 61 and 62 are connected to the twin scroll turbine 60 so that the exhaust gas from both turbines 16 and 18 is independently guided to the respective swirl chambers within the twin scroll turbine 60. There is.
低圧段排気ターボ過給機26のブロワ70には給気接続管
71が接続し、給気接続管71はインジェクタークーラー72
を介して高圧側のブロワ19,20に繋がっている。The blower 70 of the low pressure exhaust turbocharger 26 has an air supply connecting pipe.
71 is connected, the air supply connection pipe 71 is an injector cooler 72
It is connected to the blowers 19 and 20 on the high voltage side via.
以上の構成では、第1排気通路13、第2排気通路14の
排気ガス量が減って高圧段排気ターボ過給機15、17の過
給効率が低下する場合に、第1図のように第1切換弁3
1、第2切換弁32を切換えて、第1排気通路13を流れる
排気ガスを第1切換弁31で分割通路35に案内し、第2排
気通路14を流れる排気ガスを第2切換弁32で連絡管30に
通し、連絡管30から第1切換弁31で分割通路36に案内す
る。With the above configuration, when the amount of exhaust gas in the first exhaust passage 13 and the second exhaust passage 14 decreases and the supercharging efficiency of the high pressure exhaust turbochargers 15, 17 decreases, as shown in FIG. 1 switching valve 3
1, the second switching valve 32 is switched to guide the exhaust gas flowing through the first exhaust passage 13 to the split passage 35 by the first switching valve 31, and the exhaust gas flowing through the second exhaust passage 14 by the second switching valve 32. The connecting pipe 30 is passed through and the first switching valve 31 guides the connecting pipe 30 to the divided passage 36.
したがって、2群に分割したシリンダ11の排気ガスを
ツインスクロールタービン16の渦巻き室に分割して供給
し、高圧段排気ターボ過給機15に対しては相対的に排気
ガス量が増えることになり、所謂可変入口ノズル(VG
S)と同様の働きをして、少ない排気ガス量でも高圧段
排気ターボ過給機15は高い過給効率を発揮する。Therefore, the exhaust gas of the cylinder 11 divided into two groups is divided and supplied to the swirl chamber of the twin scroll turbine 16, and the amount of exhaust gas increases relative to the high pressure exhaust turbocharger 15. , So-called variable inlet nozzle (VG
The high pressure stage exhaust turbocharger 15 exhibits a high supercharging efficiency even with a small amount of exhaust gas by performing the same function as S).
また、2群に分割したシリンダ11の排気ガスを隔壁34
でツインスクロールタービン16の渦巻き室にそれぞれ独
立した状態で供給し、分割通路35、36を流れる排気ガス
の脈動パルスが相互に干渉せず、高い脈動パルスで高圧
段排気ターボ過給機15の過給効果を上げる。In addition, the exhaust gas of the cylinder 11 divided into two groups is separated by the partition wall 34.
The pulsating pulses of the exhaust gas flowing through the split passages 35 and 36 do not interfere with each other and are supplied to the swirl chamber of the twin scroll turbine 16 independently of each other. Increase the salary effect.
更に、タービン16から排気接続管61を通って低圧段排
気ターボ過給機26のツインスクロールタービン60へ供給
された排気ガスは、断面積が小さな排気接続管61からツ
インスクロールタービン60の渦巻き室の一方へ流れ込む
ことになる。したがって、低圧段排気ターボ過給機26に
対して相対的に排気ガス量が増えることになり、前述と
同様に低圧段排気ターボ過給機26を高効率で駆動し、ブ
ロワ70から過給給気が給気接続管71を通ってブロワ19,2
0に流れ込む。Further, the exhaust gas supplied from the turbine 16 to the twin scroll turbine 60 of the low-pressure exhaust turbocharger 26 through the exhaust connection pipe 61 has a small cross-sectional area from the exhaust connection pipe 61 to the swirl chamber of the twin scroll turbine 60. It will flow to one side. Therefore, the amount of exhaust gas increases relative to the low pressure stage exhaust turbocharger 26, and the low pressure stage exhaust turbocharger 26 is driven with high efficiency as described above, and the supercharger from the blower 70 is used. Blower 19,2 through the air supply connection pipe 71
Flow into 0.
この第1図の運転状態では、回転数nに対する出力P
のグラフである第3図において、R1の範囲で特性X1を発
揮する。この特性X1は、高圧段排気ターボ過給機15,17
だけを作動した場合の特性X2、領域W2と比較して、高圧
段排気ターボ過給機15側のみの作動によって領域W1分だ
け中低速域の出力Pが向上する。In the operating state of FIG. 1, the output P with respect to the rotation speed n
In Fig. 3, which is the graph of Fig. 3, the characteristic X1 is exhibited in the range of R1. This characteristic X1 is the high pressure exhaust turbocharger 15,17
As compared with the characteristic X2 and the region W2 when only the high pressure stage is operated, the output P in the medium and low speed region is improved by the region W1 by the operation only on the high pressure stage exhaust turbocharger 15 side.
第2図の高速、高負荷時には第1切換弁31、第2切換
弁32が連絡管30の両端開口を閉塞するように閉弁し、連
絡管30は第1排気通路13、第2排気通路14から完全に遮
断され、第1排気通路13、第2排気通路14の排気ガスは
直接に高圧段排気ターボ過給機15、17へ流れる。At the time of high speed and high load in FIG. 2, the first switching valve 31 and the second switching valve 32 are closed so as to close both end openings of the connecting pipe 30, and the connecting pipe 30 is connected to the first exhaust passage 13 and the second exhaust passage. The exhaust gas from the first exhaust passage 13 and the second exhaust passage 14 is completely cut off from the exhaust gas 14 and directly flows to the high pressure exhaust turbochargers 15 and 17.
この高速、高負荷時には第1排気通路13、第2排気通
路14の排気ガス量が十分に増えているので、高圧段排気
ターボ過給機15、17は高い過給効率を発揮する。また、
連絡管30は第1切換弁31、第2切換32で遮断されている
ので、連絡管30の容積が第1排気通路13、第2排気通路
14を流れる排気ガスの脈動パルスを減衰することも無
く、この面でも過給効率が向上する。At high speed and high load, the exhaust gas amounts in the first exhaust passage 13 and the second exhaust passage 14 are sufficiently increased, so that the high pressure stage exhaust turbochargers 15, 17 exhibit high supercharging efficiency. Also,
Since the communication pipe 30 is shut off by the first switching valve 31 and the second switching 32, the capacity of the communication pipe 30 is the first exhaust passage 13 and the second exhaust passage.
The pulsating pulse of the exhaust gas flowing through 14 is not attenuated, and the supercharging efficiency is improved also in this aspect.
更に、下流側に設けられた低圧段排気ターボ過給機26
のツインスクロールタービン60に排気接続管61、62を通
って、各渦巻き室へ独立して両タービン16,18から排気
ガスが流れ込み、両タービン16,18双方からの排気ガス
が排気干渉を起こさず、低圧段排気ターボ過給機26の過
給効率が高い。Further, a low pressure exhaust turbocharger 26 provided downstream
The exhaust gas from both turbines 16 and 18 independently flows into each of the swirl chambers through the exhaust connection pipes 61 and 62 of the twin scroll turbine 60, and the exhaust gas from both turbines 16 and 18 does not cause exhaust interference. The supercharging efficiency of the low pressure exhaust turbocharger 26 is high.
第2図の運転状態は第3図の領域W3の範囲(回転数R
2)で実行し、特性X3を発揮する。The operating condition in Fig. 2 is the range of the region W3 in Fig. 3 (rotation speed R
Perform in 2) and exhibit characteristics X3.
次に、第4図で第1切換弁31、第2切換弁32の切換機
構を説明する。第4図中で、第1切換弁31、第2切換弁
32の基端部にはアーム40、41を第1切換弁31、第2切換
弁32に連続して一体に支点37、38回りに回動自在に形成
してある。アーム40、41は第1排気通路13、第2排気通
路14の外方に突出している。Next, the switching mechanism of the first switching valve 31 and the second switching valve 32 will be described with reference to FIG. In FIG. 4, a first switching valve 31 and a second switching valve
Arms 40 and 41 are formed at the base end of 32 so as to be rotatable around fulcrums 37 and 38 integrally with the first switching valve 31 and the second switching valve 32. The arms 40 and 41 project to the outside of the first exhaust passage 13 and the second exhaust passage 14.
アーム40、41の先端部にはリンク42がピン43、44で回
動自在に連結しており、リンク42で第1切換弁31、第2
切換弁32の開閉動作を連動するようになている。アーム
40の中間部には、エアシリンダ45(アクチュエーター)
のロッド46が回動自在に連結しており、ロッド46の伸縮
ストロークで第1切換弁31、第2切換弁32を開閉する機
能を発揮する。エアシリンダ45は比較的小型で、1個だ
け設けられている。A link 42 is rotatably connected to the tip ends of the arms 40 and 41 by pins 43 and 44, and the link 42 connects the first switching valve 31 and the second switching valve 31.
The opening / closing operation of the switching valve 32 is linked. arm
Air cylinder 45 (actuator) in the middle of 40
The rod 46 is rotatably connected, and exhibits the function of opening and closing the first switching valve 31 and the second switching valve 32 by the expansion and contraction stroke of the rod 46. The air cylinder 45 is relatively small, and only one air cylinder 45 is provided.
第4図の状態ではエアシリンダ45のロッド46は最も短
縮した位置にある。また、アーム40、41の長さは、この
状態からストロークsだけ伸びて最も伸長した位置で、
第1切換弁31をθ1だけ回動し、同時に第2切換弁32を
θ2だけ回動して、第1切換弁31、第2切換弁32を同時
に閉弁し得るようにL1:L2の比を設定してある。In the state shown in FIG. 4, the rod 46 of the air cylinder 45 is in the most shortened position. Further, the length of the arms 40 and 41 is at the most extended position by extending the stroke s from this state,
The ratio of L1: L2 is set so that the first switching valve 31 is rotated by θ1 and the second switching valve 32 is simultaneously rotated by θ2 so that the first switching valve 31 and the second switching valve 32 can be simultaneously closed. Has been set.
なお、エアシリンダ45の代わりに真空ポンプまたはス
テップモータ等の他のアクチュエーターを使用すること
もでき、リンク42、アーム40の途中に任意の長さで固定
可能な長さ調整機構48、49を設けることも可能である。Note that other actuators such as a vacuum pump or a step motor can be used instead of the air cylinder 45, and length adjustment mechanisms 48 and 49 that can be fixed at arbitrary lengths are provided in the middle of the link 42 and the arm 40. It is also possible.
エアシリンダ45には配管47、47aを通って圧縮空気供
給機構50からの圧縮空気が流通しており、圧縮空気供給
機構50は制御装置51で制御される。更に制御装置51には
機関本体10(第1図)の回転計(図示せず)からの回転
数信号53や第1排気通路13、第2排気通路14の圧力計54
からの圧力信号55が入力しており、制御装置51は両信号
53、55に基づいて機関の運転状態を判別し、中低速、高
負荷時には第1図のように第1切換弁31、第2切換弁32
を開弁し、高速、高負荷時には第1切換弁31、第2切換
弁32を閉弁するようになっている。The compressed air from the compressed air supply mechanism 50 flows through the air cylinder 45 through the pipes 47 and 47a, and the compressed air supply mechanism 50 is controlled by the control device 51. Further, the control device 51 includes a rotation speed signal 53 from a tachometer (not shown) of the engine body 10 (FIG. 1) and a pressure gauge 54 of the first exhaust passage 13 and the second exhaust passage 14.
The pressure signal 55 from the
The operating state of the engine is determined based on 53 and 55, and at the time of medium and low speed and high load, the first switching valve 31 and the second switching valve 32 as shown in FIG.
Is opened, and the first switching valve 31 and the second switching valve 32 are closed at high speed and high load.
以上の構成では、第1切換弁31、第2切換弁32をリン
ク42で連結してエアシリンダ45を設けたので、2箇所の
第1切換弁31、第2切換弁32は1個のエアシリンダ45だ
けで開閉動作する。In the above configuration, since the first switching valve 31 and the second switching valve 32 are connected by the link 42 and the air cylinder 45 is provided, the first switching valve 31 and the second switching valve 32 at two locations are one air. It can be opened and closed with only the cylinder 45.
また、第1切換弁31、第2切換弁32はリンク42で連結
し、第1切換弁31が開弁している時には第2切換弁32も
開弁し、第1切換弁31が閉弁している時には第2切換弁
32も閉弁する。したがって、第2切換弁32が開弁してい
る時に第1切換弁31が閉弁して第2排気通路14の排気ガ
スの流通が阻害されることが無く、第2排気通路14の排
気ガス流通に抵抗が発生しない。The first switching valve 31 and the second switching valve 32 are connected by a link 42. When the first switching valve 31 is open, the second switching valve 32 is also open and the first switching valve 31 is closed. Second switching valve when
32 also closes. Therefore, when the second switching valve 32 is open, the first switching valve 31 is not closed and the flow of the exhaust gas in the second exhaust passage 14 is not hindered, and the exhaust gas in the second exhaust passage 14 is not blocked. There is no resistance to distribution.
(発明の効果) 以上説明したように本発明によるツインターボ式内燃
機関では、両高圧段排気ターボ過給機15,17の下流側に
ツインスクロールタービン60を有する低圧段排気ターボ
過給機26を1基設け、低圧段排気ターボ過給機26のツイ
ンスクロールタービン60の各渦巻き室へ前記高圧段排気
ターボ過給機15,17からの排気ガスを独立して導く排気
接続管61,62を設け、低圧段排気ターボ過給機26からの
過給給気を両高圧段排気ターボ過給機15,17へ導く給気
接続管71を設けたので、次の効果を奏する。(Effects of the Invention) As described above, in the twin turbo internal combustion engine according to the present invention, the low pressure exhaust turbocharger 26 having the twin scroll turbine 60 on the downstream side of both the high pressure exhaust turbochargers 15 and 17 is provided. One unit is provided, and exhaust connection pipes 61, 62 for independently guiding the exhaust gas from the high pressure exhaust turbochargers 15, 17 to the respective swirl chambers of the twin scroll turbine 60 of the low pressure exhaust turbocharger 26 are provided. Since the supply air connection pipe 71 for guiding the supercharged air from the low-pressure stage exhaust turbocharger 26 to both the high-pressure stage exhaust turbochargers 15, 17 is provided, the following effects are achieved.
排気ガス量が少ない中低速時に、高圧段排気ターボ過
給機15から低圧段排気ターボ過給機26へ供給される排気
ガスの運動エネルギを回収して、低圧段排気ターボ過給
機26のブロワ70からブロワ19へ過給給気を還流でき、第
3図のR1の範囲で領域W1分だけ従来より出力Pが向上し
た特性X1を発揮できる。The kinetic energy of the exhaust gas supplied from the high pressure exhaust turbocharger 15 to the low pressure exhaust turbocharger 26 is recovered at low and medium speeds with a small amount of exhaust gas, and the blower of the low pressure exhaust turbocharger 26 is recovered. The supercharged air can be recirculated from 70 to the blower 19, and the characteristic X1 in which the output P is improved by the area W1 in the range of R1 in FIG. 3 can be exhibited.
特に、ツインスクロールタービン60に排気接続管61だ
けから排気ガスを流すので、排気ガス量が少ない中低速
時にも低圧段排気ターボ過給機26の過給効率を上げるこ
とができる。In particular, since the exhaust gas is made to flow into the twin scroll turbine 60 only from the exhaust connection pipe 61, the supercharging efficiency of the low pressure stage exhaust turbocharger 26 can be improved even at low and medium speeds where the exhaust gas amount is small.
低圧段排気ターボ過給機26のツインスクロールタービ
ン60には2本の排気接続管61、62から独立して排気ガス
を流すようにしたので、排気接続管61、62を流れる排気
ガスが排気干渉を起こさず、第3図のR2の範囲でも過給
効率が高い。The exhaust gas flowing through the exhaust connecting pipes 61 and 62 interferes with the exhaust gas because the exhaust gas flows through the twin scroll turbine 60 of the low-pressure exhaust turbocharger 26 independently from the two exhaust connecting pipes 61 and 62. The supercharging efficiency is high even in the range of R2 in FIG.
第1図は本発明を採用したツインターボ式ディーゼル機
関の構造略図、第2図は閉弁状態を示す第1図の要部略
図、第3図は回転数と出力のグラフ、第4図は切換弁の
切換機構を示す構造略図である。10……機関本体、11…
…シリンダ、13……第1排気通路、15、17……高圧段排
気ターボ過給機、23……給気マニホールド、26……低圧
段排気ターボ過給機、30……連絡管、31……第1切換
弁、32……第2切換弁、37、38……支点、61、62……排
気接続管、71……給気接続管FIG. 1 is a structural schematic diagram of a twin turbo diesel engine adopting the present invention, FIG. 2 is a schematic diagram of a main part of FIG. 1 showing a valve closed state, FIG. 3 is a graph of rotational speed and output, and FIG. 6 is a schematic structural view showing a switching mechanism of a switching valve. 10 ... engine body, 11 ...
… Cylinder, 13 …… First exhaust passage, 15,17 …… High pressure exhaust turbocharger, 23 …… Supply manifold, 26 …… Low pressure exhaust turbocharger, 30 …… Communication pipe, 31… … First switching valve, 32 …… Second switching valve, 37,38 …… Support point, 61,62 …… Exhaust gas connection pipe, 71 …… Air supply connection pipe
Claims (1)
群に排気ターボ過給機を備えたツインターボ式内燃機関
において、各気筒群毎に高圧段排気ターボ過給機を設
け、各高圧段排気ターボ過給機と各気筒群とを繋ぐ2本
の排気通路の間に両排気通路を連通する連絡管を設け、
一方の排気ターボ過給機にツインスクロールタービンを
設け、このツインスクロールタービンに繋がる第1排気
通路の前記連絡管より下流側に第1排気通路の断面積を
2分割する隔壁を形成し、前記第1排気通路と連絡管と
の接続部に閉弁時には連絡管開口を閉塞し、開弁時には
連絡管を第1排気通路の一方の分割通路に連通するよう
に切換える第1切換弁を設け、他方のターボ過給機に繋
がる第2排気通路と連絡管の接続部に、閉弁時には連絡
管開口を閉塞し、開弁時には第2排気通路の排気ガスの
全量を連絡管へ導くように切換える第2切換弁を設け、
前記両高圧段排気ターボ過給機の下流側にツインスクロ
ールタービンを有する低圧段排気ターボ過給機を1基設
け、低圧段排気ターボ過給機のツインスクロールタービ
ンの各渦巻き室へ前記高圧段排気ターボ過給機からの排
気ガスを独立して導く排気接続管を設け、低圧段排気タ
ーボ過給機からの過給給気を両高圧段排気ターボ過給機
へ導く給気接続管を設けたことを特徴とするツインター
ボ式内燃機関。1. A twin turbo internal combustion engine in which a plurality of cylinders are divided into two groups, and each cylinder group is provided with an exhaust turbocharger, and a high pressure exhaust turbocharger is provided for each cylinder group. Between the two exhaust passages that connect the high pressure exhaust turbocharger and each cylinder group, a communication pipe that connects both exhaust passages is provided.
A twin scroll turbine is provided in one of the exhaust turbochargers, and a partition wall that divides the cross-sectional area of the first exhaust passage into two is formed on the downstream side of the communication pipe of the first exhaust passage that is connected to the twin scroll turbine. (1) A first switching valve is provided at a connecting portion between the exhaust passage and the communication pipe to close the communication pipe opening when the valve is closed, and to switch the communication pipe to communicate with one of the divided passages of the first exhaust passage when the valve is opened, and the other. In the connection between the second exhaust passage and the connecting pipe connected to the turbocharger, the connecting pipe opening is closed when the valve is closed, and when the valve is opened, the entire amount of exhaust gas in the second exhaust passage is switched to the connecting pipe. Two switching valves are installed,
One low-pressure exhaust turbocharger having a twin scroll turbine is provided downstream of both the high-pressure exhaust turbochargers, and the high-pressure exhaust is supplied to each swirl chamber of the twin scroll turbine of the low-pressure exhaust turbocharger. An exhaust connection pipe was provided to independently guide the exhaust gas from the turbocharger, and a supply air connection pipe was introduced to guide the supercharged air from the low pressure exhaust turbocharger to both high pressure exhaust turbochargers. A twin-turbo internal combustion engine characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63014015A JP2539655B2 (en) | 1988-01-25 | 1988-01-25 | Twin turbo type internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63014015A JP2539655B2 (en) | 1988-01-25 | 1988-01-25 | Twin turbo type internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01190920A JPH01190920A (en) | 1989-08-01 |
JP2539655B2 true JP2539655B2 (en) | 1996-10-02 |
Family
ID=11849369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63014015A Expired - Fee Related JP2539655B2 (en) | 1988-01-25 | 1988-01-25 | Twin turbo type internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2539655B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6418721B1 (en) * | 2001-01-05 | 2002-07-16 | Caterpillar Inc. | Two turbocharger exhaust gas re-circulation system having a first stage variable nozzle turbine |
DE102004035323A1 (en) * | 2004-07-21 | 2006-02-16 | Bayerische Motoren Werke Ag | Sequential loader control with cylinder deactivation |
DE102004035324A1 (en) * | 2004-07-21 | 2006-02-16 | Bayerische Motoren Werke Ag | Circuit of register charging and sequential charging |
US7644585B2 (en) * | 2004-08-31 | 2010-01-12 | The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency | Multi-stage turbocharging system with efficient bypass |
US8387385B2 (en) | 2004-08-31 | 2013-03-05 | The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency | Efficient bypass valve for multi-stage turbocharging system |
DE102005046507A1 (en) | 2005-09-29 | 2007-04-05 | Daimlerchrysler Ag | Internal combustion engine comprises exhaust gas turbochargers each having a turbine with a bypass having an outflow valve integrated in the turbine housing |
DE102005053977B4 (en) | 2005-11-11 | 2017-03-30 | Volkswagen Ag | Internal combustion engine and method for operating an internal combustion engine |
FI123489B (en) * | 2011-01-05 | 2013-05-31 | Waertsilae Finland Oy | Large internal combustion engine dual turbocharger arrangement |
DE102011120337A1 (en) * | 2011-12-06 | 2013-06-06 | Daimler Ag | Internal combustion engine, in particular for a motor vehicle |
-
1988
- 1988-01-25 JP JP63014015A patent/JP2539655B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01190920A (en) | 1989-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9903267B2 (en) | Multi-stage turbocharger system | |
JP2539655B2 (en) | Twin turbo type internal combustion engine | |
JPS5982526A (en) | Supercharger for internal-combustion engine | |
JPH03151519A (en) | Multiple cylinder engine with turbo charger | |
JPH02112619A (en) | Twin-turbo internal combustion engine | |
JP2539656B2 (en) | Twin turbo type internal combustion engine | |
JPS63309727A (en) | Exhaust gas treatment device for internal combustion engine with exhaust turbosupercharger | |
JP2008031942A (en) | Engine with supercharger | |
JPS6245056Y2 (en) | ||
JPS6120294Y2 (en) | ||
CN107448278A (en) | Engine with turbocharger | |
JPS62131923A (en) | Engine with exhaust turbo-supercharger | |
JP2513525Y2 (en) | Supercharged engine | |
JPH09209769A (en) | Intake air control mechanism for internal combustion engine | |
JP2710951B2 (en) | Exhaust system structure of turbocharged engine | |
JP2995200B2 (en) | Engine air supply | |
JP2743609B2 (en) | Exhaust turbocharger for multi-cylinder internal combustion engine | |
JPS61112734A (en) | Multiple turbo-supercharger for internal-combustion engine | |
JP2708780B2 (en) | Exhaust system structure of turbocharged engine | |
JPS63129120A (en) | Multiple supercharging structure | |
JPS626254Y2 (en) | ||
JPH03138420A (en) | Internal combustion engine with turbocharger | |
JPH0346653B2 (en) | ||
JPH04183930A (en) | Exhaust device of turbo-supercharging type multiple cylinder engine | |
JPH04262017A (en) | Exhaust manifold for engine equipped with supercharger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |