[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03151519A - Multiple cylinder engine with turbo charger - Google Patents

Multiple cylinder engine with turbo charger

Info

Publication number
JPH03151519A
JPH03151519A JP1288710A JP28871089A JPH03151519A JP H03151519 A JPH03151519 A JP H03151519A JP 1288710 A JP1288710 A JP 1288710A JP 28871089 A JP28871089 A JP 28871089A JP H03151519 A JPH03151519 A JP H03151519A
Authority
JP
Japan
Prior art keywords
exhaust
turbocharger
turbine
exhaust passage
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288710A
Other languages
Japanese (ja)
Inventor
Yoshimasa Watanabe
義正 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1288710A priority Critical patent/JPH03151519A/en
Publication of JPH03151519A publication Critical patent/JPH03151519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To improve supercharging efficiency at the low speed time and motive pressure supercharging effect at the low-middle time in a two-stage twin turbo engine by independently arranging a plurality of exhaust passages to a turbine inlet of a turbocharger so as to prevent mutual exhaust interference. CONSTITUTION:At the low speed and transient time of an engine, an exhaust changeover valve 49 is closed. Exhaust air from first to third cylinders #1-#3 is supplied to a turbine 45 of a first turbocharger 41 via a collection part 39 of exhaust passages 37, an exhaust passage 43 and an inlet 45a. Exhaust air from fourth or sixth cylinders #4-#6 is also supplied to the same turbine 45. Only the first turbocharger 41 is actuated by the exhaust air from all cylinders so as to increase supercharging pressure at the low speed. Exhaust passages 43, 48 are independently formed to the inlets 45a, 45b of a turbine scroll respec tively so as to prevent mutual exhaust interference.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、2つのターボチャージャを並列に配置し、低
速域では一方のターボチャージャのみで過給し、高速域
では両ターボチャージャで過給するターボチャージャ付
多気筒エンジン、いわゆる2ステージツインターボエン
ジンに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention arranges two turbochargers in parallel, supercharging with only one turbocharger in the low speed range, and supercharging with both turbochargers in the high speed range. The present invention relates to a turbocharged multi-cylinder engine, a so-called two-stage twin-turbo engine.

[従来の技術] ターボチャージャ付多気筒エンジンにおいては、たとえ
ば第10図に示すように(図示例は6気筒エンジン)、
互に排気干渉を生じない気筒#1、#2、#3および#
4、#5、#6の2つの気筒群からの排気通路1.2.
3および4.5.6をそれぞれ独立に集合させてターボ
チャージャ7.8のタービン9.10に接続することに
より、排気の動圧を有効に利用した動圧過給(パルスヂ
ャージ〉を実現できる。つまり、第10図に示した過給
ターボシステムでは、排気の圧力変動が第11図に示す
ようになり、排気干渉が生じないため、排気圧力持性1
1の谷部は十分に低い圧力となる。エンジンの吸気カム
と排気カムの吸気弁、排気弁リフ1〜作動領域は、第1
2図の領域12.13に示すように、互にオーバラップ
しており、オーバラップ領域で燃焼室のガス交換が行わ
れる。このオルバラツブ領域は、第10図に示すように
、排気圧力特性11の谷部に略一致する。したがって、
ウェストゲートバルブ(図示路)が閉じた状態の低速域
では、吸気圧が十分に低い排気圧に押し勝って吸気が燃
焼室に流入し、ガス交換がスムーズに行われ、その分体
積効率が上がりトルクが向上する。
[Prior Art] In a turbocharged multi-cylinder engine, for example, as shown in FIG. 10 (the illustrated example is a six-cylinder engine),
Cylinders #1, #2, #3 and # that do not cause exhaust interference with each other
Exhaust passages from two cylinder groups: 4, #5, #6 1.2.
3 and 4.5.6 independently and connected to the turbine 9.10 of the turbocharger 7.8, dynamic pressure supercharging (pulse charging) that effectively utilizes the dynamic pressure of the exhaust gas can be realized. In other words, in the supercharging turbo system shown in Fig. 10, the exhaust pressure fluctuations are as shown in Fig. 11, and since no exhaust interference occurs, the exhaust pressure retention is 1.
The pressure in the valley of No. 1 is sufficiently low. The engine intake cam and exhaust cam intake valve, exhaust valve riff 1~operation area is the 1st
As shown in region 12.13 of FIG. 2, they overlap each other, and gas exchange in the combustion chamber takes place in the overlap region. As shown in FIG. 10, this overlapping region substantially coincides with the valley of the exhaust pressure characteristic 11. therefore,
At low speeds when the wastegate valve (path shown) is closed, the intake pressure overcomes the sufficiently low exhaust pressure and the intake air flows into the combustion chamber, allowing smooth gas exchange and increasing volumetric efficiency. Torque is improved.

しかし、上記システムでは、ガス流量の少ない低速域に
おいても2つのターボチャージャ7.8に排気ガスが供
給されるため、低速域においては各ターボチャージャ7
.80回転数が十分に上昇せず、過給圧が十分に上がら
ないのでトルク向上の程度が不十分になるという問題が
ある。
However, in the above system, exhaust gas is supplied to the two turbochargers 7.8 even in the low speed range where the gas flow rate is low, so each turbocharger 7.
.. 80 The problem is that the number of revolutions does not increase sufficiently and the supercharging pressure does not increase sufficiently, resulting in an insufficient degree of torque improvement.

この問題に対し、たとえば第13図に示すように、2つ
のターボチャージャ20.21の一方のタービン下流に
排気切替弁22を設け、低速域では排気切替弁22を閉
じて、仝気筒からの排気を一方のターボチャージt20
のみに供給し、該ターボチャージX720のみを作動さ
せて過給圧を上げるようにした、いわゆる2ステージツ
インターボシステムが知られている(たとえば実公昭6
0−1224号公報、実開昭60−178329号公報
)。
To solve this problem, for example, as shown in FIG. 13, an exhaust switching valve 22 is provided downstream of one of the turbines of the two turbochargers 20 and 21, and the exhaust switching valve 22 is closed in the low speed range, so that the exhaust gas from the two cylinders is closed. One turbocharged T20
A so-called two-stage twin turbo system is known in which the turbocharger X720 is supplied to the
0-1224, Utility Model Application Publication No. 178329/1983).

[発明が解決しようとする課題] しかしながら、上記2ステージツインターボシステムで
は、仝気筒全での排気が一つのポー1〜に集合するため
、各気筒からの排気に干渉が生じ、この排気干渉のため
とくに排気流量の小さい低、中速域において排気の動圧
を有効に利用できないという問題がおる。
[Problems to be Solved by the Invention] However, in the above-mentioned two-stage twin turbo system, since the exhaust gas from all cylinders is collected in one port 1~, interference occurs between the exhaust gases from each cylinder, and this exhaust interference Therefore, there is a problem in that the dynamic pressure of the exhaust cannot be used effectively, especially in low and medium speed ranges where the exhaust flow rate is small.

また、各気筒からの排気が一つのボー1〜に集合するた
め、排気圧力が高くなり、第14図に示すように、排気
圧力特性は比較的高い領域で変動する特性23となる。
Further, since the exhaust gas from each cylinder is collected in one bow 1~, the exhaust pressure becomes high, and as shown in FIG. 14, the exhaust pressure characteristic becomes a characteristic 23 that fluctuates in a relatively high range.

そのため、吸気カムと排気カムのオーバラップ時の排気
圧力も高くなり、燃焼室のガス交換効率が悪くなって、
その分体積効率、トルクの向上が難しくなる。
As a result, the exhaust pressure increases when the intake cam and exhaust cam overlap, reducing gas exchange efficiency in the combustion chamber.
This makes it difficult to improve volumetric efficiency and torque.

本発明は、2ステージツインターボシステムの、低速域
における過給効率向上の利点を活かしつつ、排気干渉を
抑え排気の動圧を有効に利用して低、中速域における動
圧過給効果を高めるとともに、吸、排気カムオーバラッ
プ時の排気圧力を低く保ってガス交換をスムーズに行わ
せ、エンジンの出力性能を向上することを目的とする。
The present invention takes advantage of the two-stage twin turbo system's improved supercharging efficiency in the low speed range, while suppressing exhaust interference and effectively utilizing the dynamic pressure of the exhaust to increase the dynamic pressure supercharging effect in the low and medium speed range. The purpose is to increase engine output performance by keeping exhaust pressure low during intake and exhaust cam overlap to ensure smooth gas exchange.

[課題を解決するための手段] この目的に沿う本発明のターボチャージャ付多気筒エン
ジンは、第1、第2のターボチャージャを並列に配置し
、低速域では第2のターボチャージャのタービン下流に
設けた排気切替弁を閉じて第1のターボチャージャのみ
で過給し、高速域では排気切替弁を開いて第1、第2の
両ターボチャージャで過給するターボチャージャ付多気
筒エンジンにおいて、互に排気干渉を生じない気筒から
の排気通路を第1、第2の排気通路群としてそれぞれ独
立に集合させ、第1の排気通路群を第1のターボチャー
ジャのタービンに、第2の排気通路群を第2のターボチ
ャージャのタービンに接続するとともに、第1の排気通
路群を第2のターボチャージPに、第2の排気通路群を
第1のターボチャージャに、それぞれ、他方の排気通路
群とは少なくともタービン入口直前まで独立させて接続
したものから成る。
[Means for Solving the Problems] A multi-cylinder engine with a turbocharger of the present invention that meets this objective has a first and a second turbocharger arranged in parallel, and in a low speed range, the turbocharger is placed downstream of the turbine of the second turbocharger. In a multi-cylinder engine with a turbocharger, the exhaust switching valve installed is closed and supercharging is carried out only by the first turbocharger, and in the high-speed range, the exhaust switching valve is opened and supercharging is carried out by both the first and second turbochargers. Exhaust passages from cylinders that do not cause exhaust interference are assembled independently into first and second exhaust passage groups, and the first exhaust passage group is connected to the turbine of the first turbocharger, and the second exhaust passage group is connected to the turbine of the first turbocharger. is connected to the turbine of the second turbocharger, and the first exhaust passage group is connected to the second turbocharger P, the second exhaust passage group is connected to the first turbocharger, and the other exhaust passage group is connected to the other exhaust passage group. consists of independently connected units at least up to just before the turbine inlet.

[作  用] このようなターボチャージャ付エンジンにおいては、低
速域では排気切替弁が閉じられ、仝気筒からの、つまり
第1、第2の両排気通路群を通しての排気が第1のター
ボチャージャのタービンに送られ、第1のターボチャー
ジャのみが作動されて低速域における過給圧が高められ
る。
[Function] In such a turbocharged engine, the exhaust switching valve is closed in the low speed range, and the exhaust from the second cylinder, that is, through both the first and second exhaust passage groups, is transferred to the first turbocharger. The fuel is sent to the turbine, and only the first turbocharger is operated to increase supercharging pressure in the low speed range.

また、各気筒からの排気通路は、互に排気干渉を生じな
い気筒からの排気通路同士が、第1、第2の排気通路群
としてまとめられ、両排気通路群は、少なくとも第1、
第2のターボチャージャのタービン入口直前まで連通さ
せずに独立形成されているため、実質的に両排気通路群
間の圧力干渉は回避される。したがって排気干渉が避け
られ、各排気通路からの排気の動圧が各ターボチャージ
Pのタービンで有効に利用され、とくに低、中速域での
動圧過給効果が高められる。
Furthermore, the exhaust passages from each cylinder that do not cause exhaust interference with each other are grouped together as a first and second exhaust passage group, and both exhaust passage groups are composed of at least the first, second, and second exhaust passage groups.
Since the second turbocharger is formed independently without communicating with the second turbocharger up to just before the turbine inlet, pressure interference between the two exhaust passage groups is substantially avoided. Therefore, exhaust interference is avoided, and the dynamic pressure of the exhaust gas from each exhaust passage is effectively used by the turbine of each turbocharger P, and the dynamic pressure supercharging effect is particularly enhanced in the low and medium speed ranges.

さらに、全気筒からの排気通路が2つの排気通路群とし
て集合され、該2つの排気通路群からは、第1、第2の
両ターボチャージャにそれぞれ接続されているので、各
気筒からの排気ガス排出時、つまりガス交換時の排気圧
力を低く保つことができ、吸気とのガス交換がスムーズ
に行われて吸気の体積効率が向上する。
Furthermore, the exhaust passages from all the cylinders are collected into two exhaust passage groups, and these two exhaust passage groups are connected to both the first and second turbochargers, so that the exhaust gas from each cylinder is The exhaust pressure at the time of exhaust, that is, gas exchange, can be kept low, gas exchange with intake air is performed smoothly, and the volumetric efficiency of intake air is improved.

[実施例] 以下に、本発明の望ましい実施例を、図面を参照して説
明する。
[Embodiments] Preferred embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第6図は、本発明の一実施例に係るターボ
チャージャ付多気筒エンジンを示しており、6気筒エン
ジンに本発明を適用した場合を示している。第7図およ
び第8図は上記エンジンの各作動状態を、第9図は排気
圧力特性を、それぞれ示している。
1 to 6 show a turbocharged multi-cylinder engine according to an embodiment of the present invention, and show a case where the present invention is applied to a six-cylinder engine. 7 and 8 show the operating states of the engine, and FIG. 9 shows the exhaust pressure characteristics.

第1図ないし第6図において、30はエンジン本体を示
しており、#1〜#6は各気筒を示している。#1〜#
6気筒のうち、互に排気干渉を生じない気筒#1〜#3
および気筒#4〜#6からの排気通路31.32.33
および排気通路34.35.36は、互に独立の第1の
排気通路群37、第2の排気通路群38として、それぞ
れ集合部39.40に集合されている。
In FIGS. 1 to 6, 30 indicates the engine body, and #1 to #6 indicate each cylinder. #1~#
Among the 6 cylinders, cylinders #1 to #3 that do not cause exhaust interference with each other
and exhaust passages 31.32.33 from cylinders #4 to #6
The exhaust passages 34, 35, and 36 are collected in a gathering portion 39, 40 as a first exhaust passage group 37 and a second exhaust passage group 38, which are independent from each other.

ターボチャージャとして、第1、第2の2つのターボチ
ャージャ41.42が並列に配置される。第1の排気通
路群37の集合部39からの排気通路43は、第1のタ
ーボチャージャ41のタービン45に接続されている。
As turbochargers, two turbochargers 41 and 42, a first and a second turbocharger, are arranged in parallel. The exhaust passage 43 from the gathering part 39 of the first exhaust passage group 37 is connected to the turbine 45 of the first turbocharger 41 .

第2の排気通路群38の集答部40からの排気通路44
は、第2のターボチャージャ42のタービン46に接続
されている。第1の排気通路群37の集合部39からは
、別の排気通路47が分岐され、該排気通路47は、第
2のターボチャージt=42に対して使方の排気通路4
4とはタービン46の入口まで独立して接続されている
。第2の排気通路群38の集合部40からは、別の排気
通路48が分岐され、該排気通路48は、第1のターボ
チャージャ41に、他方の排気通路43とはタービン4
5の入口まで独立されて接続されている。本実施例では
、各ターボチャージャ41.42は、タービン45.4
6のタービンスクロールが、それぞれ2つの入口45a
 、 45b 146a 146bを有する、いわゆる
ツインエントリー型に構成されており、排気通路43が
入口45aに、排気通路48が入口45bに、排気通路
44が入口46aに、排気通路47が入口46bにそれ
ぞれ接続されている。
Exhaust passage 44 from the collection section 40 of the second exhaust passage group 38
is connected to the turbine 46 of the second turbocharger 42 . Another exhaust passage 47 is branched from the gathering part 39 of the first exhaust passage group 37, and this exhaust passage 47 is the one used for the second turbocharger t=42.
4 is independently connected to the inlet of the turbine 46. Another exhaust passage 48 is branched from the gathering part 40 of the second exhaust passage group 38, and the exhaust passage 48 is connected to the first turbocharger 41, and the other exhaust passage 43 is connected to the turbine 4.
5 entrances are connected independently. In this example, each turbocharger 41.42 includes a turbine 45.4.
6 turbine scrolls each have two inlets 45a.
, 45b, 146a, and 146b, the exhaust passage 43 is connected to the inlet 45a, the exhaust passage 48 is connected to the inlet 45b, the exhaust passage 44 is connected to the inlet 46a, and the exhaust passage 47 is connected to the inlet 46b. has been done.

ただし、図示は省略するが、本発明においては、入口が
一つのシングルエントリー型ターボチャージャであって
もよく、排気通路43と排気通路48、排気通路44と
排気通路47とが、各ターボチャージャのタービン入口
直前まで互に連通しないよう独立形成されていればよい
However, although not shown, the present invention may be a single-entry turbocharger with one inlet, and the exhaust passage 43 and the exhaust passage 48, and the exhaust passage 44 and the exhaust passage 47 are connected to each turbocharger. It is sufficient that they are formed independently so that they do not communicate with each other until immediately before the turbine inlet.

第2のターボチャージャ42のタービン46下流には、
エンジン低速域および過渡時には閉じられ、高速域では
開かれる排気切替弁49が設けられている。50.51
は、各ターボチャージャ41.42のコンプレッサをボ
している。
Downstream of the turbine 46 of the second turbocharger 42,
An exhaust switching valve 49 is provided, which is closed during engine low speed ranges and transitions, and opened during high speed ranges. 50.51
is the compressor of each turbocharger 41.42.

本実施例においては、第2図および第3図に示すように
、ターボチャージャ41.42のタービン45.46の
タービンスクロールの巻き方向が逆に設定されており、
各ターボチャージャ41.42は、第4図に示すように
、タービンフランジが互に対向するようにターボチャー
ジャユニット52として組込まれている。また、第5図
および第6図に本実施例のエキゾーストマニホルド53
を示すように、排気通路47.48および排気出口54
.55か上下にずらして配置されている。
In this embodiment, as shown in FIGS. 2 and 3, the winding directions of the turbine scrolls of the turbines 45, 46 of the turbocharger 41, 42 are set to be opposite,
As shown in FIG. 4, each turbocharger 41, 42 is assembled as a turbocharger unit 52 with turbine flanges facing each other. In addition, FIGS. 5 and 6 show the exhaust manifold 53 of this embodiment.
As shown, the exhaust passages 47, 48 and the exhaust outlet 54
.. 55 or vertically shifted.

上記のように構成された実施例装置の作用について説明
する。
The operation of the embodiment device configured as described above will be explained.

低速時および過渡時には、第7図に示すように、排気切
替弁49が閉じられる。図の矢印で示すように、#1、
#2、#3気筒からの排気は、排気通路31.32.3
3から第1の排気通路?!¥37の集合部39、排気通
路43、入口45aを通して第1のターボチャージャ4
1のタービン45に送られ、#4、#5、#6気筒から
の排気も、排気通路34.35.36から第2の排気通
路群38の集合部40、排気通路48、入ロア15bを
通してタービン45に送られる。全気筒からの排気によ
り一つのターボチャージV741のみが作動されるため
、低速域であってもターボチャージ1−41駆動用とし
て十分な排気量が確保され、十分に高い過給圧が得られ
る。
At low speeds and during transient periods, the exhaust gas switching valve 49 is closed, as shown in FIG. As shown by the arrow in the figure, #1,
Exhaust from #2 and #3 cylinders goes through exhaust passage 31.32.3
3 to 1st exhaust passage? ! The first turbocharger 4 passes through the collecting part 39, the exhaust passage 43, and the inlet 45a.
Exhaust gas from cylinders #4, #5, and #6 is also sent to the turbine 45 of No. 1, through the exhaust passage 34, 35, 36, the gathering part 40 of the second exhaust passage group 38, the exhaust passage 48, and the inlet lower 15b. It is sent to the turbine 45. Since only one turbocharger V741 is operated by the exhaust gas from all cylinders, a sufficient displacement is secured for driving the turbochargers 1-41 even in a low speed range, and a sufficiently high supercharging pressure is obtained.

高速域においては、排気量が多いため、排気切替弁49
が開かれ、排気は第1、第2の両ターボチャージャ41
.42に供給されて両ターボチャージャが作動される。
In the high speed range, the exhaust volume is large, so the exhaust switching valve 49
is opened, and the exhaust gas flows through both the first and second turbochargers 41.
.. 42 to operate both turbochargers.

より詳しくは、第1の排気通路群37からの排気は、集
合部39から排気通路43、排気通路47を介してター
ボチャージャ41.42のタービン45.46に送られ
、第2の排気通路群38からの排気は、集合部40から
排気通路44、排気通路48を介してターボチャージt
741.42のタービン45.46に送られる。
More specifically, the exhaust gas from the first exhaust passage group 37 is sent from the gathering part 39 via the exhaust passage 43 and the exhaust passage 47 to the turbine 45.46 of the turbocharger 41.42, and is then sent to the turbine 45.46 of the turbocharger 41.42. The exhaust gas from 38 is sent from the collection part 40 to the turbocharger t via an exhaust passage 44 and an exhaust passage 48.
741.42 to turbine 45.46.

そして本システムにおいては、上記第1のターボチャー
ジャ41のみが作動されているときには、排気通路43
、排気通路48がタービンスクロールの入口45a 、
45bまで独立形成されているため、互の排気通路の排
気圧力干渉が避けられ、上記第1、第2の両ターボチャ
ージャ41.42が作動されているときにも、排気通路
43、排気通路48および排気通路44、排気通路47
がそれぞれタービンスクロールの入口45a 、 45
bおよび入口46a 、 46bまで独立形成されてい
るため、互の排気通路43.48および排気通路44.
47の排気圧力干渉がそれぞれ回避される。したがって
、排気干渉が防止され、排気が有する動圧が各タービン
駆動用に有効に利用される。とくに、低、中速域では排
気量が高速域に比べ少なく、その分排気が有する動圧も
小さいが、該動圧が排気干渉により減殺されることなく
有効に利用されるので、動圧過給効果が高められ、ター
ボチャージャによる十分な過給圧力〈得られる。
In this system, when only the first turbocharger 41 is operated, the exhaust passage 43
, the exhaust passage 48 is the inlet 45a of the turbine scroll,
Since up to 45b are formed independently, exhaust pressure interference between the exhaust passages can be avoided, and even when both the first and second turbochargers 41 and 42 are operated, the exhaust passages 43 and 48 and exhaust passage 44, exhaust passage 47
are the inlets 45a and 45 of the turbine scroll, respectively.
b and the inlets 46a and 46b are formed independently, so that the exhaust passages 43, 48 and 44.
47 exhaust pressure interferences are avoided. Therefore, exhaust interference is prevented, and the dynamic pressure of the exhaust gas is effectively used for driving each turbine. In particular, in the low and medium speed range, the displacement is smaller than in the high speed range, and the dynamic pressure of the exhaust is correspondingly small, but this dynamic pressure is effectively used without being diminished by exhaust interference, so dynamic pressure overload is reduced. The charging effect is enhanced and sufficient supercharging pressure can be obtained from the turbocharger.

また、ターボチャージャ41、又はターボチャージャ4
1およびターボチャージャ42への排気通路がタービン
入口又は入口直前まで独立形成される結果、第9図に示
すように、従来の金気筒の排気が一つにまとめられた場
合の排気圧力特性(破線)61に比べ、圧力変動におけ
る谷部の圧力が低い排気圧力特性(実線)62を?する
ことができ、吸、排気カムのオーバラップ領域63にお
ける排気圧力を低減することができる。したがって、吸
、排気のガス交換がスムーズに行われ、吸気の体積効率
が向上する。
Also, the turbocharger 41 or the turbocharger 4
1 and the turbocharger 42 are formed independently up to the turbine inlet or just before the inlet. As a result, as shown in FIG. 9, the exhaust pressure characteristics (broken line) ) 61, the exhaust pressure characteristic (solid line) 62 has a lower pressure in the valley during pressure fluctuation? Therefore, the exhaust pressure in the overlap region 63 of the intake and exhaust cams can be reduced. Therefore, gas exchange between intake and exhaust gases is performed smoothly, and the volumetric efficiency of intake air is improved.

また、排気切替弁49を閉じた1個ターボチャージャ4
1過給時においては、排気切替弁49の上流に位置する
第2のターボチャージャ42のタービン46にも排気の
動圧がかかり、該動圧によって第2のターボチャージャ
42が助走回転されることが知られているが、第1、第
2の排気通路群37.38両方からの動圧が互に排気干
渉のない状態で加わるので、助走回転数が高められる。
In addition, one turbocharger 4 with the exhaust switching valve 49 closed
1. During supercharging, dynamic pressure of the exhaust is also applied to the turbine 46 of the second turbocharger 42 located upstream of the exhaust switching valve 49, and the dynamic pressure causes the second turbocharger 42 to perform a run-up rotation. However, since the dynamic pressures from both the first and second exhaust passage groups 37, 38 are applied to each other without exhaust interference, the run-up rotation speed is increased.

その結果、1個ターボチャージャから2個ターボチャー
ジャ作動への切替時のショックが低減される。
As a result, the shock at the time of switching from one turbocharger operation to two turbocharger operation is reduced.

ざらに、本実施例の如く、エキゾーストマニホルド53
の排気出口54.55を上下にずらし、かつターボチャ
ージャ41.42のタービンスクロールの巻き方向を逆
にすることにより、排気の流れがスムーズになるととも
に、ターボチャージャ41.42のタービン45.46
のフランジを向かい合う形で取付けることができ、コン
パクトな設計が可能となり、しかも外観上もバランスの
とれた構成をとることができる。
Roughly speaking, as in this embodiment, the exhaust manifold 53
By vertically shifting the exhaust outlet 54.55 of the turbocharger 41.42 and reversing the winding direction of the turbine scroll of the turbocharger 41.42, the exhaust flow becomes smooth, and the turbine 45.46 of the turbocharger 41.42
The flanges can be mounted facing each other, allowing for a compact design and a well-balanced configuration in terms of appearance.

なお、上記実施例は6気筒エンジンの場合について説明
したが、他の多気筒エンジン、たとえば4気筒エンジン
についても、互に排気干渉が生じない気筒の群からター
ボチャージャのタービン入口又は入口直前まで排気通路
を独立形成することにより、本発明を適用することが可
能である。
Although the above embodiment has been described for the case of a 6-cylinder engine, other multi-cylinder engines, for example, 4-cylinder engines, can also be used to extend the exhaust gas from a group of cylinders that do not cause exhaust interference to each other up to the turbine inlet of the turbocharger or just before the inlet. The invention can be applied by forming the passages independently.

[発明の効果] 以上説明したように、本発明のターボデセージV付多気
筒エンジンによるとぎは、ターボチャージャのタービン
入口又は入口直前まで排気通路を独立形成して排気干渉
を回避できるようにしたので2ステージツインターボシ
ステムの低速域における過給効率向上の利点を活かしつ
つ、排気の動圧を有効に利用でき、とくに低、中速域で
の出力トルクの向上をはかることができる。
[Effects of the Invention] As explained above, in the multi-cylinder engine with a turbo dissage V according to the present invention, the exhaust passage is formed independently up to the turbine inlet of the turbocharger or just before the inlet, thereby avoiding exhaust interference. While taking advantage of the stage twin turbo system's improved supercharging efficiency in the low speed range, it is also possible to effectively utilize the dynamic pressure of the exhaust, making it possible to improve output torque, especially in the low and medium speed ranges.

また、燃焼室の吸、排気ガス交換時の排気圧力を低く保
って、ガス交換をスムーズに行うことができ、吸気の体
積効率を上げて出力トルクを向上することができる。
In addition, the exhaust pressure during intake and exhaust gas exchange in the combustion chamber can be kept low, allowing smooth gas exchange, increasing the volumetric efficiency of intake air, and improving output torque.

ざらに、排気の動圧の有効利用により、1個り−ボチャ
ージャ作動時の他方のターボチャージャの助走回転数を
向上でき、1個ターボチャージャから2個ターボチャー
ジャ作動への切替時のショックを低減することもできる
In general, by effectively using the dynamic pressure of the exhaust, it is possible to increase the run-up speed of the other turbocharger when one turbocharger is operating, reducing the shock when switching from one turbocharger to two turbochargers. You can also.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るターボチャージAz付
多気筒エンジンの概略透視底面図、第2図は第1図の■
−■線に沿う縦断面図、第3図は第1図の■−■線に沿
う縦断面図、第4図は第1図の装置のターボチャージャ
部の拡大正面図、 第5図は第1図の装置のエキゾーストマニホルドの平面
図、 第6図は第5図のエキゾーストマニホルドの正面図、 第7図は第1図の装置の排気切替弁閉時の排気の流れを
示す概略透視底面図、 第8図は第1図の装置の排気切替弁開時の排気の流れを
示す概略透視底面図、 第9図は第1図の装置の排気圧力とクランク角との関係
図、 第10図は従来のツインターボエンジンの概略透視底面
図、 第11図は第10図の装置の排気圧力とクランク角との
関係図、 第12図は10図のエンジンの吸、排気カムのオーバラ
ップ領域を示すカム作動特性図、 第13図は従来の2ステージツインターボエンジンの概
略透視底面図、 第14図は第13図のエンジンの排気圧力とクランク角
との関係図、 である。 30・・・・・・エンジン本体 31.32.33.34.35.36・・・・・・排気
通路37・・・・・・第1の排気通路群 38・・・・・・第2の排気通路群 39.40・・・・・・集合部 41・・・・・・第1のターボチャージャ42・・・・
・・第2のターボチャージャ43.44.47.48・
・・・・・排気通路45.46・・・・・・タービン 45a 、 45b 146a 、 46b ・−−−
−−人口49・・・・・・排気切替弁 50151・・・・・・コンプレッサ 53・・・・・・エキゾーストマニホルド54.55・
・・・・・排気出口 第2図 第3図 第4図 第12図 第13図 クランク角Cυ
FIG. 1 is a schematic perspective bottom view of a multi-cylinder engine with turbocharged Az according to an embodiment of the present invention, and FIG.
3 is a vertical sectional view taken along the line 2--2 in FIG. 1, FIG. 4 is an enlarged front view of the turbocharger section of the device in FIG. 1 is a plan view of the exhaust manifold of the device shown in FIG. 1, FIG. 6 is a front view of the exhaust manifold of FIG. , Fig. 8 is a schematic perspective bottom view showing the flow of exhaust gas when the exhaust switching valve of the device shown in Fig. 1 is open, Fig. 9 is a diagram showing the relationship between exhaust pressure and crank angle of the device shown in Fig. 1, and Fig. 10 is a schematic perspective bottom view of a conventional twin-turbo engine, Figure 11 is a diagram showing the relationship between the exhaust pressure and crank angle of the device in Figure 10, and Figure 12 shows the overlap area of the intake and exhaust cams of the engine in Figure 10. 13 is a schematic transparent bottom view of a conventional two-stage twin turbo engine; FIG. 14 is a diagram showing the relationship between exhaust pressure and crank angle of the engine shown in FIG. 13. 30...Engine body 31.32.33.34.35.36...Exhaust passage 37...First exhaust passage group 38...Second Exhaust passage groups 39, 40, gathering portion 41, first turbocharger 42, etc.
・Second turbocharger 43.44.47.48・
...Exhaust passage 45.46...Turbine 45a, 45b 146a, 46b...
--Population 49... Exhaust switching valve 50151... Compressor 53... Exhaust manifold 54.55.
...Exhaust outlet Fig. 2 Fig. 3 Fig. 4 Fig. 12 Fig. 13 Crank angle Cυ

Claims (1)

【特許請求の範囲】[Claims] 1、第1、第2のターボチャージャを並列に配置し、低
速域では第2のターボチャージャのタービン下流に設け
た排気切替弁を閉じて第1のターボチャージャのみで過
給し、高速域では排気切替弁を開いて第1、第2の両タ
ーボチャージャで過給するターボチャージャ付多気筒エ
ンジンにおいて、互に排気干渉を生じない気筒からの排
気通路を第1、第2の排気通路群としてそれぞれ独立に
集合させ、第1の排気通路群を第1のターボチャージャ
のタービンに、第2の排気通路群を第2のターボチャー
ジャのタービンに接続するとともに、第1の排気通路群
を第2のターボチャージャに、第2の排気通路群を第1
のターボチャージャに、それぞれ、他方の排気通路群と
は少なくともタービン入口直前まで独立させて接続した
ことを特徴とするターボチャージャ付多気筒エンジン。
1, the first turbocharger, and the second turbocharger are arranged in parallel, and in the low speed range, the exhaust switching valve installed downstream of the turbine of the second turbocharger is closed, and supercharging is performed only by the first turbocharger, and in the high speed range, the exhaust switching valve is closed. In a turbocharged multi-cylinder engine in which exhaust switching valves are opened and supercharging is performed by both first and second turbochargers, exhaust passages from cylinders that do not cause exhaust interference with each other are defined as first and second exhaust passage groups. The first exhaust passage group is connected to the turbine of the first turbocharger, the second exhaust passage group is connected to the turbine of the second turbocharger, and the first exhaust passage group is connected to the second exhaust passage group. of the turbocharger, the second exhaust passage group is connected to the first exhaust passage group.
A multi-cylinder engine with a turbocharger, each of which is independently connected to the other exhaust passage group at least up to just before the turbine inlet.
JP1288710A 1989-11-08 1989-11-08 Multiple cylinder engine with turbo charger Pending JPH03151519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288710A JPH03151519A (en) 1989-11-08 1989-11-08 Multiple cylinder engine with turbo charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288710A JPH03151519A (en) 1989-11-08 1989-11-08 Multiple cylinder engine with turbo charger

Publications (1)

Publication Number Publication Date
JPH03151519A true JPH03151519A (en) 1991-06-27

Family

ID=17733686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288710A Pending JPH03151519A (en) 1989-11-08 1989-11-08 Multiple cylinder engine with turbo charger

Country Status (1)

Country Link
JP (1) JPH03151519A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042626A1 (en) * 1999-12-10 2001-06-14 Honda Giken Kogyo Kabushiki Kaisha Waste heat recovery device of multi-cylinder internal combustion engine
DE102004036384A1 (en) * 2004-07-27 2006-03-23 Bayerische Motoren Werke Ag Internal combustion engine has exhaust gases of first and second exhaust manifolds acting upon first and second worm drives of compressor respectively in low to medium RPM range of engine
EP1662106A1 (en) * 2004-11-26 2006-05-31 Bayerische Motorenwerke Aktiengesellschaft Exhaust system for an internal combustion engine
DE102006042464A1 (en) * 2006-09-09 2008-03-27 Audi Ag Internal combustion engine i.e. V8 engine, for use in motor vehicle i.e. passenger car, has turbocharger connected with two groups of cylinders of two cylinder banks and another turbocharger connected with other groups of cylinders
DE102006042443A1 (en) * 2006-09-09 2008-03-27 Bayerische Motoren Werke Ag Exhaust gas system for internal-combustion engine, has exhaust gas line discharging exhaust gas into gas inlet of two different turbo-chargers, and throttle unit arranged in flow direction of exhaust gas behind turbo-chargers
DE102006047322A1 (en) * 2006-10-06 2008-04-10 Audi Ag Combustion engine for use in passenger car, has exhaust gas turbocharger arrangement provided with two exhaust gas turbochargers, which are provided with double-flow exhaust-gas turbines with flow inlets
DE102007002829A1 (en) * 2007-01-19 2008-07-31 Audi Ag Internal combustion engine unit has internal combustion engine with two exhaust gas tracts and two exhaust gas turbochargers each of which is connected with both exhaust gas tracts
EP2048326A2 (en) 2007-10-10 2009-04-15 Bayerische Motoren Werke Aktiengesellschaft Twin-scroll exhaust turbo charger
DE102008056358A1 (en) 2008-11-07 2010-05-12 Bayerische Motoren Werke Aktiengesellschaft Twin Scroll turbocharger
US20120159946A1 (en) * 2009-09-10 2012-06-28 Borgwarner Inc. Exhaust-gas supply device of a turbine wheel of an exhaust-gas turbocharger
JP2014525008A (en) * 2011-08-09 2014-09-25 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine for automobile
US20140298799A1 (en) * 2013-04-04 2014-10-09 GM Global Technology Operations LLC Exhaust manifold
GB2535537A (en) * 2015-02-23 2016-08-24 Jaguar Land Rover Ltd Exhaust manifold assembly
KR20160135412A (en) * 2015-05-18 2016-11-28 최리라 Apparatus for guiding pet lead
DE102017210582A1 (en) * 2017-06-23 2018-12-27 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine
JP2020090946A (en) * 2018-12-07 2020-06-11 ダイハツディーゼル株式会社 engine
DE102016106306B4 (en) 2016-04-06 2023-08-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method of operating a supercharged internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195920A (en) * 1988-01-31 1989-08-07 Mazda Motor Corp Supercharger for engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195920A (en) * 1988-01-31 1989-08-07 Mazda Motor Corp Supercharger for engine

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042626A1 (en) * 1999-12-10 2001-06-14 Honda Giken Kogyo Kabushiki Kaisha Waste heat recovery device of multi-cylinder internal combustion engine
EP1243759A1 (en) * 1999-12-10 2002-09-25 Honda Giken Kogyo Kabushiki Kaisha Waste heat recovery device of multi-cylinder internal combustion engine
EP1243759A4 (en) * 1999-12-10 2004-03-03 Honda Motor Co Ltd Waste heat recovery device of multi-cylinder internal combustion engine
US6761030B2 (en) 1999-12-10 2004-07-13 Honda Giken Kogyo Kabushiki Kaisha Waste heat recovery device of multi-cylinder internal combustion engine
DE102004036384A1 (en) * 2004-07-27 2006-03-23 Bayerische Motoren Werke Ag Internal combustion engine has exhaust gases of first and second exhaust manifolds acting upon first and second worm drives of compressor respectively in low to medium RPM range of engine
EP1662106A1 (en) * 2004-11-26 2006-05-31 Bayerische Motorenwerke Aktiengesellschaft Exhaust system for an internal combustion engine
DE102006042464A1 (en) * 2006-09-09 2008-03-27 Audi Ag Internal combustion engine i.e. V8 engine, for use in motor vehicle i.e. passenger car, has turbocharger connected with two groups of cylinders of two cylinder banks and another turbocharger connected with other groups of cylinders
DE102006042443A1 (en) * 2006-09-09 2008-03-27 Bayerische Motoren Werke Ag Exhaust gas system for internal-combustion engine, has exhaust gas line discharging exhaust gas into gas inlet of two different turbo-chargers, and throttle unit arranged in flow direction of exhaust gas behind turbo-chargers
DE102006047322A1 (en) * 2006-10-06 2008-04-10 Audi Ag Combustion engine for use in passenger car, has exhaust gas turbocharger arrangement provided with two exhaust gas turbochargers, which are provided with double-flow exhaust-gas turbines with flow inlets
DE102007002829A1 (en) * 2007-01-19 2008-07-31 Audi Ag Internal combustion engine unit has internal combustion engine with two exhaust gas tracts and two exhaust gas turbochargers each of which is connected with both exhaust gas tracts
EP2048326A2 (en) 2007-10-10 2009-04-15 Bayerische Motoren Werke Aktiengesellschaft Twin-scroll exhaust turbo charger
DE102007048666A1 (en) 2007-10-10 2009-04-16 Bayerische Motoren Werke Aktiengesellschaft Twin-scroll turbocharger
EP2048326A3 (en) * 2007-10-10 2016-01-13 Bayerische Motoren Werke Aktiengesellschaft Twin-scroll exhaust turbo charger
US8333550B2 (en) 2008-11-07 2012-12-18 Bayerische Motoren Werke Aktiengesellschaft Twin scroll exhaust gas turbocharger
DE102008056358A1 (en) 2008-11-07 2010-05-12 Bayerische Motoren Werke Aktiengesellschaft Twin Scroll turbocharger
US9016060B2 (en) * 2009-09-10 2015-04-28 Borgwarner Inc. Exhaust-gas supply device of a turbine wheel of an exhaust-gas turbocharger
US20120159946A1 (en) * 2009-09-10 2012-06-28 Borgwarner Inc. Exhaust-gas supply device of a turbine wheel of an exhaust-gas turbocharger
JP2014525008A (en) * 2011-08-09 2014-09-25 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine for automobile
DE102014104402B4 (en) * 2013-04-04 2017-11-02 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) exhaust system
US20140298799A1 (en) * 2013-04-04 2014-10-09 GM Global Technology Operations LLC Exhaust manifold
US9303555B2 (en) * 2013-04-04 2016-04-05 GM Global Technology Operations LLC Exhaust manifold
GB2535537A (en) * 2015-02-23 2016-08-24 Jaguar Land Rover Ltd Exhaust manifold assembly
GB2535537B (en) * 2015-02-23 2019-05-08 Jaguar Land Rover Ltd Exhaust manifold assembly
KR20160135412A (en) * 2015-05-18 2016-11-28 최리라 Apparatus for guiding pet lead
DE102016106306B4 (en) 2016-04-06 2023-08-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method of operating a supercharged internal combustion engine
DE102017210582A1 (en) * 2017-06-23 2018-12-27 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine
US10927751B2 (en) 2017-06-23 2021-02-23 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine
JP2020090946A (en) * 2018-12-07 2020-06-11 ダイハツディーゼル株式会社 engine

Similar Documents

Publication Publication Date Title
JP4725656B2 (en) Exhaust passage structure of multi-cylinder engine
JPH03151519A (en) Multiple cylinder engine with turbo charger
JP5375151B2 (en) Exhaust passage structure of multi-cylinder engine
JP2742809B2 (en) Multi-cylinder engine intake system
JPS61210224A (en) Engine with exhaust turbosupercharger
JPS63309724A (en) Exhaust device for multi cylinder engine with supercharger
JPH0635858B2 (en) Exhaust system for engines with pressure supercharger
JPS591332B2 (en) Turbine compartment for turbocharger
JP6399043B2 (en) Turbocharged engine
JPH1030446A (en) Supercharger for engine
JPS63140822A (en) Valve gear of engine with supercharger
JP2787157B2 (en) Intake and exhaust system for turbocharged engines
JPS6038027Y2 (en) multi-cylinder internal combustion engine
JPH0563616B2 (en)
JPS63297733A (en) Supercharging device for engine
JPH0517379B2 (en)
JPS6019916A (en) Engine provided with turbo-supercharger
JP2513525Y2 (en) Supercharged engine
JPH0720342Y2 (en) Inertial supercharger for internal combustion engine
JPH0216036Y2 (en)
JPH04183930A (en) Exhaust device of turbo-supercharging type multiple cylinder engine
JPS6155317A (en) Exhauster of multi-cylinder engine with supercharger
JPH04237858A (en) Supercharged engine
JPH1130126A (en) Air charge amount controller of supercharging internal combustion engine
JPS62243925A (en) Supercharger for engine