JP2516469B2 - Alloy type temperature fuse - Google Patents
Alloy type temperature fuseInfo
- Publication number
- JP2516469B2 JP2516469B2 JP2289839A JP28983990A JP2516469B2 JP 2516469 B2 JP2516469 B2 JP 2516469B2 JP 2289839 A JP2289839 A JP 2289839A JP 28983990 A JP28983990 A JP 28983990A JP 2516469 B2 JP2516469 B2 JP 2516469B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- weight
- temperature
- fuse element
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H2037/768—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H37/761—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
Landscapes
- Fuses (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は合金型温度ヒューズに関するものである。TECHNICAL FIELD The present invention relates to an alloy type thermal fuse.
合金型温度ヒューズにおいては、ヒューズエレメント
に低融点可溶合金片を用いている。In the alloy type thermal fuse, a low melting point fusible alloy piece is used for the fuse element.
この合金型温度ヒューズの作動メカニズムは、当該温
度ヒューズによって保護しようとする電気機器が過電流
によって発熱すると、その発生熱によって低融点可溶合
金片が溶断し、この溶断により機器への通電を遮断する
ことにあり、その結果、当該電気機器の異常発熱を未然
に防止できる。The operating mechanism of this alloy-type thermal fuse is that when the electric device to be protected by the thermal fuse generates heat due to overcurrent, the generated heat causes the low melting point fusible alloy piece to melt, and this melting cuts the power supply to the device. As a result, abnormal heat generation of the electric device can be prevented.
上記低融点可溶合金片の溶断は、低融点可溶合金片の
融点金属がその表面張力のために球状化して分断される
結果であり、低融点可溶合金の融点温度が当該温度ヒュ
ーズの作動温度となる。The melting of the low melting point fusible alloy piece is a result that the melting point metal of the low melting point fusible alloy piece is spheroidized and divided due to its surface tension, and the melting point temperature of the low melting point fusible alloy is The operating temperature is reached.
従来、作動温度が100℃以下の合金型温度ヒューズと
しては、溶融温度95℃のBi−Pb−Sn系共晶合金をヒュー
ズエレメントとするもの、溶融温度72℃(固相線温度:7
0℃,液相線温度:72℃)のBi−Pb−Sn−Cd合金(Bi:50
重量%,Pb:25重量%,Sn:12.5重量%,Cd:12.5重量%)を
ヒューズエレメントとするものが存在する。Conventionally, alloy-type thermal fuses with an operating temperature of 100 ° C or less have a Bi-Pb-Sn eutectic alloy with a melting temperature of 95 ° C as the fuse element, and a melting temperature of 72 ° C (solidus temperature: 7
Bi-Pb-Sn-Cd alloy (Bi: 50 at 0 ℃, liquidus temperature: 72 ℃)
%, Pb: 25% by weight, Sn: 12.5% by weight, Cd: 12.5% by weight) as fuse elements.
(解決しようとする課題) しかしながら、これら温度ヒューズの作動温度の離隔
巾は20℃以上にも達し、この間の中間温度を作動温度と
する温度ヒューズの出現が望まれている。(Problems to be Solved) However, the gap between the operating temperatures of these thermal fuses reaches 20 ° C. or more, and the emergence of thermal fuses having an operating temperature at an intermediate temperature between them is desired.
従来、融点が100℃以下の合金においては、通常、Bi,
Pb,Sn,Cd,In等から成り、必ず、Biを含有している。こ
のBiは、合金の低融点化に不可欠な元素として使用され
ているが、Biを配合すると合金が脆弱化し、線径0.4〜
1.0mmといった細線のヒューズエレメントの線引加工が
著しく困難になる。Conventionally, in alloys having a melting point of 100 ° C. or lower, Bi,
It is composed of Pb, Sn, Cd, In, etc. and always contains Bi. This Bi is used as an element indispensable for lowering the melting point of the alloy, but when Bi is blended, the alloy becomes brittle and the wire diameter of 0.4-
It becomes extremely difficult to draw a fuse element with a fine wire of 1.0 mm.
従来、上記の中間温度(95℃と72℃との間)に属する
溶融温度の低融点はんだとして、Bi:39重量%,Pb:31重
量%,Sn:15重量%,Cd:15重量%の合金組成(固相線温
度:68℃,液相線温度:85℃)が公知であるが、脆く、上
記細線ヒューズエレメントへの線引き加工は至難であ
り、例え、かかる細線を製作できても、その機械的強度
が低いために、温度ヒューズ製造中でのヒューズエレメ
ントの断線が懸念され、温度ヒューズの製造の困難化が
避けられない。Conventionally, as a low melting point solder having a melting temperature belonging to the above intermediate temperature (between 95 ° C and 72 ° C), Bi: 39 wt%, Pb: 31 wt%, Sn: 15 wt%, Cd: 15 wt% Although the alloy composition (solidus temperature: 68 ° C, liquidus temperature: 85 ° C) is known, it is difficult to draw the fine wire fuse element, and even if such a fine wire can be produced, Due to its low mechanical strength, there is concern about disconnection of the fuse element during the manufacture of the thermal fuse, and the manufacturing of the thermal fuse is inevitable.
上記したように、低融点合金に通常使用されている元
素は、Bi,Pb,Sn,Cd,In等であり、従来、新たな合金組成
の探索は、通常、これらの元素の組合せの範囲内で、そ
の配合を変えることによっておこなわれている。As described above, the elements usually used in low melting point alloys are Bi, Pb, Sn, Cd, In, etc., and conventionally, the search for new alloy compositions is usually within the range of combinations of these elements. It is done by changing the composition.
而るに、本発明車等においては、上記の中間温度であ
る作動温度85℃の合金型温度ヒューズを開発するために
鋭意探求した結果、Znの添加によって細線ヒューズエレ
メントの線引き加工が容易であり、かつ、そのヒューズ
エレメントをバラツキなく一定の温度(85℃)で溶断で
きる合金組成を見出した。Therefore, in the vehicle of the present invention, as a result of earnest research to develop an alloy type thermal fuse having an operating temperature of 85 ° C. which is the above intermediate temperature, it is easy to draw a fine wire fuse element by adding Zn. Moreover, they have found an alloy composition capable of fusing the fuse element at a constant temperature (85 ° C) without variation.
本発明の目的は、かかる知見に基づき85℃で温度のバ
ラツキなく作動させ得、しかも製作が容易な合金型温度
ヒューズを提供することにある。It is an object of the present invention to provide an alloy type thermal fuse which can be operated at 85 ° C. without temperature variations and is easy to manufacture based on the above findings.
(課題を解決するための手段) 本発明に係わる合金型温度ヒューズはZn:0.8〜5重量
%,Cd:10〜15重量%,In:42〜50重量%,残部Snから成る
合金をヒューズエレメントとして用いたことを特徴とす
る構成である。(Means for Solving the Problems) The alloy-type thermal fuse according to the present invention uses a fuse element made of an alloy consisting of Zn: 0.8 to 5% by weight, Cd: 10 to 15% by weight, In: 42 to 50% by weight, and the balance Sn. The configuration is characterized by being used as.
本発明において使用する合金組成の中核は、Zn:2重量
%、Cd:12重量%、In:46重量%、残部:Snであり、その
固相線温度と液相線温度とは実質上等しく、85℃であ
る。The core of the alloy composition used in the present invention is Zn: 2% by weight, Cd: 12% by weight, In: 46% by weight, and the balance: Sn, and the solidus temperature and the liquidus temperature thereof are substantially equal to each other. , 85 ℃.
上記合金組成において、Znは合金を細線に線引き加工
する際の線引き張力に耐え得る機械的強度を付与するた
めに添加している。その添加量を0.8〜5重量%に限定
した理由は、0.8重量%以下では、その機械的強度の保
証が困難になり、5重量%以上では、合金融点を85℃に
保つことが困難になるためである。In the above alloy composition, Zn is added to impart mechanical strength that can withstand the drawing tension when the alloy is drawn into a thin wire. The reason why the addition amount is limited to 0.8 to 5% by weight is that it is difficult to guarantee the mechanical strength below 0.8% by weight, and it is difficult to maintain the alloy melting point at 85 ° C above 5% by weight. This is because
上記合金組成において、Cdの範囲を10〜15重量%に、
Inの範囲を42〜50重量%に、Snの範囲を残部にそれぞれ
限定した理由は、合金の液相線温度〜固相線温度を83℃
〜87℃の間に保持し、かつ、上記線引きのための機械的
強度を保持するためである。In the above alloy composition, the range of Cd is 10 to 15% by weight,
The reason for limiting the In range to 42 to 50% by weight and the Sn range to the rest is that the liquidus temperature to solidus temperature of the alloy is 83 ° C.
This is to maintain the temperature between ˜87 ° C. and the mechanical strength for the drawing.
合金型温度ヒューズの形式としては、従来のすべての
形式を使用できる。代表的には、一直線状に対向する
リード線間にヒューズエレメントを溶接し、該ヒューズ
エレメント上にフラックスを塗布し、このフラックスを
塗布したヒューズエレメント上に筒状ケースを挿通し、
筒状ケースと各リード線との間を接着剤(例えば、エポ
キシ樹脂)で封止する形式、互いに並行なリード線の
先端間にヒューズエレメントを溶接し、該ヒューズエレ
メント上にフラックスを塗布し、このフラックスを塗布
したヒューズエレメントに、一側部開口のボックス状ケ
ースを被せ、このケース開口とリード線との間を接着剤
で封止する形式、互いに並行なリード線の先端間にヒ
ューズエレメントを溶接し、該ヒューズエレメント上に
フラックスを塗布し、このフラックスを塗布したヒュー
ズエレメントに、硬化性樹脂液のデイッピング塗装によ
って絶縁層を被覆する形式等を使用できる。As the type of the alloy type thermal fuse, all the conventional types can be used. Typically, a fuse element is welded between lead wires that are linearly opposed to each other, flux is applied onto the fuse element, and a tubular case is inserted over the fuse element applied with the flux.
Adhesive (for example, epoxy resin) is sealed between the cylindrical case and each lead wire, a fuse element is welded between the tips of lead wires parallel to each other, and flux is applied onto the fuse element. The fuse element coated with this flux is covered with a box-shaped case with one side opening, and the case opening and the lead wire are sealed with an adhesive. It is possible to use a method in which the fuse element is welded, flux is applied on the fuse element, and the fuse element applied with the flux is coated with an insulating layer by dipping coating with a curable resin liquid.
上記ヒューズエレメント上に塗布するフラックスに
は、融点が上記の合金融点よりも低融点のものを使用す
る必要があり、例えば、ロジン:90〜60重量部、ステア
リン酸:10〜40重量部、活性剤;0〜3重量部を使用でき
る。ロジンには、天然ロジン、変性ロジン(例えば、水
添ロジン、不均化ロジン、重合ロジン)並びにこれらの
精製ロジンを使用でき、活性剤には、ジエチルアミンの
塩酸塩、臭酸塩等を使用できる。The flux to be applied on the fuse element, it is necessary to use a melting point having a lower melting point than the alloy melting point, for example, rosin: 90-60 parts by weight, stearic acid: 10-40 parts by weight, Activator; 0 to 3 parts by weight can be used. As rosin, natural rosin, modified rosin (for example, hydrogenated rosin, disproportionated rosin, polymerized rosin) and their purified rosins can be used, and activator can be diethylamine hydrochloride, hydrobromide, etc. .
(実施例の説明) 以下、本発明の実施例について説明する。(Description of Example) Hereinafter, an example of the present invention will be described.
実施例 Zn:2重量%、Cd:12重量%、In:46重量%、残部:Snの
合金組成を用いて直径0.55mmの細線を線引き加工した。
この合金細線を長さ4.0mmに切断してヒューズエレメン
トに形成し、このヒューズエレメントを一直線配置の直
径0.55mmの銅リード線間に溶接により橋設し、重合ロジ
ン:80重量部、ステァリン酸:20重量部から成るフラック
スをヒューズエレメント上に塗布した。このフラックス
を塗布したヒューズエレメント上に外径:2.5mm,長さ:9.
0mmの筒状セラミックスケースを挿通し、該ケース両端
の各端と各リード線との間をエポキシ樹脂で封止した。Example A thin wire having a diameter of 0.55 mm was drawn using an alloy composition of Zn: 2% by weight, Cd: 12% by weight, In: 46% by weight, and the balance: Sn.
This thin alloy wire is cut into a length of 4.0 mm to form a fuse element, and this fuse element is bridged by welding between copper lead wires having a diameter of 0.55 mm in a straight line.Polymerized rosin: 80 parts by weight, stearic acid: 20 parts by weight of flux was applied on the fuse element. Outer diameter: 2.5 mm, length: 9.on the fuse element coated with this flux.
A 0 mm cylindrical ceramic case was inserted, and an epoxy resin was sealed between each end of each case and each lead wire.
上記において、合金の線引きによる細線化は、断線な
くスムーズに行ない得た。In the above, the thinning of the alloy by drawing could be performed smoothly without disconnection.
又、実施例品200個をシリコンオイル中に浸漬し、各
実施例品につき0.1A以下の電流を通電し、シリコンオイ
ルを1℃/分の速度で温度上昇させ、各実施例品におい
て電流が遮断した時の温度を測定したところ、最小温度
は84.8℃、最大温度は85.2℃であり、平均値は85℃であ
った。Further, 200 pieces of the example products are immersed in silicon oil, a current of 0.1 A or less is applied to each of the example products, and the temperature of the silicon oil is increased at a rate of 1 ° C./min. When the temperature at the time of interruption was measured, the minimum temperature was 84.8 ° C, the maximum temperature was 85.2 ° C, and the average value was 85 ° C.
比較例 合金として、液相線温度:85℃、固相線温度:68℃の市
販の低融点はんだ(Bi−Pb−Sn−Cd合金(Bi:50重量%,
Pb:25重量%,Sn:12.5重量%,Cd:12.5重量%)を用い、
実施例と同一寸法、同一形状の合金型温度ヒューズを製
作した。しかしながら、合金の線引きによる細線化は著
しく困難であった。そこで、回転ドラム式紡糸法により
細線化した。また、比較例品につき、実施例品と同様に
して作動温度を測定したところ、73℃〜88℃の間でバラ
ツキが観られた(液相線温度である85℃に達しても、作
動しない比較例品においては、ヒューズエレメント表面
に厚い酸化被膜が存在し、この酸化被膜をフラックスに
よって満足に溶解除去できなかったものと推定され
る)。Comparative Example As the alloy, liquidus temperature: 85 ℃, solidus temperature: 68 ℃ commercially available low melting point solder (Bi-Pb-Sn-Cd alloy (Bi: 50 wt%,
Pb: 25 wt%, Sn: 12.5 wt%, Cd: 12.5 wt%),
An alloy type thermal fuse having the same size and shape as those of the example was manufactured. However, it has been extremely difficult to thin the alloy by drawing it. Therefore, the spinning drum type spinning method was used to thin the wire. Moreover, when the operating temperature of the comparative example product was measured in the same manner as the example product, a variation was observed between 73 ° C and 88 ° C (even if the liquidus temperature reached 85 ° C, it did not operate. In the comparative example product, a thick oxide film was present on the surface of the fuse element, and it is presumed that this oxide film could not be satisfactorily dissolved and removed by the flux).
(発明の効果) 上述した通り本発明によれば、ヒューズエレメントの
製作が容易であり、しかも、実質上バラツキなく85℃で
作動させ得る合金型温度ヒューズを提供できる。(Effects of the Invention) As described above, according to the present invention, it is possible to provide an alloy-type thermal fuse in which a fuse element can be easily manufactured and can be operated at 85 ° C. with substantially no variation.
Claims (1)
〜50重量%,残部Snから成る合金をヒューズエレメント
として用いたことを特徴とする合金型温度ヒューズ。1. Zn: 0.8 to 5% by weight, Cd: 10 to 15% by weight, In: 42
Alloy type thermal fuse characterized by using an alloy consisting of ~ 50% by weight and the balance Sn as a fuse element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2289839A JP2516469B2 (en) | 1990-10-26 | 1990-10-26 | Alloy type temperature fuse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2289839A JP2516469B2 (en) | 1990-10-26 | 1990-10-26 | Alloy type temperature fuse |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04163818A JPH04163818A (en) | 1992-06-09 |
JP2516469B2 true JP2516469B2 (en) | 1996-07-24 |
Family
ID=17748439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2289839A Expired - Lifetime JP2516469B2 (en) | 1990-10-26 | 1990-10-26 | Alloy type temperature fuse |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2516469B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004106568A1 (en) * | 2003-05-29 | 2006-07-20 | 松下電器産業株式会社 | Thermal fuse element, thermal fuse and battery using the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050040369A1 (en) * | 2002-01-30 | 2005-02-24 | Lalena John N. | Thermal interface materials; and compositions comprising indium and zinc |
CN1294286C (en) * | 2005-04-20 | 2007-01-10 | 北京航空航天大学 | Iridium hafnium niobium high temperature alloy materials and method for preparing same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5226209B2 (en) * | 1973-02-09 | 1977-07-13 |
-
1990
- 1990-10-26 JP JP2289839A patent/JP2516469B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004106568A1 (en) * | 2003-05-29 | 2006-07-20 | 松下電器産業株式会社 | Thermal fuse element, thermal fuse and battery using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH04163818A (en) | 1992-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4001757B2 (en) | Alloy type temperature fuse | |
JP3990169B2 (en) | Alloy type temperature fuse | |
JP3841257B2 (en) | Alloy type temperature fuse | |
JP4360666B2 (en) | Alloy type thermal fuse and wire for thermal fuse element | |
JP3995058B2 (en) | Alloy type temperature fuse | |
JP2819408B2 (en) | Alloy type temperature fuse | |
JP2516469B2 (en) | Alloy type temperature fuse | |
JP3761846B2 (en) | Alloy type thermal fuse and wire for thermal fuse element | |
JP4409747B2 (en) | Alloy type thermal fuse | |
JP2001266723A (en) | Alloy-type thermal-fuse | |
JP3885995B2 (en) | Thermal fuse | |
JP4101536B2 (en) | Alloy type thermal fuse | |
JP2001143592A (en) | Fuse alloy | |
JP2005276577A (en) | Fusible alloy type thermal fuse | |
JPH1140025A (en) | Thermal alloy fuse | |
JP2001325876A (en) | Fuse element | |
JP2001135216A (en) | Alloy-type thermal fuse | |
JP2007113024A (en) | Fusible alloy type thermal fuse | |
JP2010077459A (en) | Element for thermal fuse, and alloy-type thermal fuse | |
JP2007031775A (en) | Lead-free fusible alloy type thermal fuse | |
JP2000182492A (en) | Alloy-type temperature fuse | |
JP2004146228A (en) | Lead free alloy thermal fuse | |
JP2001243861A (en) | Fuse with flux | |
JP2001143590A (en) | Alloy fuse | |
JP2001143591A (en) | Alloy fuse |