[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004146228A - Lead free alloy thermal fuse - Google Patents

Lead free alloy thermal fuse Download PDF

Info

Publication number
JP2004146228A
JP2004146228A JP2002310685A JP2002310685A JP2004146228A JP 2004146228 A JP2004146228 A JP 2004146228A JP 2002310685 A JP2002310685 A JP 2002310685A JP 2002310685 A JP2002310685 A JP 2002310685A JP 2004146228 A JP2004146228 A JP 2004146228A
Authority
JP
Japan
Prior art keywords
thermal fuse
alloy
weight
composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002310685A
Other languages
Japanese (ja)
Other versions
JP4338377B2 (en
JP2004146228A5 (en
Inventor
Kiyotomo Terasawa
寺澤 精朋
Kiyohito Ishida
石田 清仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Schott Components Corp
Original Assignee
NEC Schott Components Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Schott Components Corp filed Critical NEC Schott Components Corp
Priority to JP2002310685A priority Critical patent/JP4338377B2/en
Publication of JP2004146228A publication Critical patent/JP2004146228A/en
Publication of JP2004146228A5 publication Critical patent/JP2004146228A5/ja
Application granted granted Critical
Publication of JP4338377B2 publication Critical patent/JP4338377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a lead free alloy thermal fuse superior in operating reliability in a range of 70-109 °C without containing lead or cadmium which causes environmental problems. <P>SOLUTION: In the thermal fuse which uses a fusible alloy as a fuse element, a lead free alloy thermal fuse is obtained by using a low melting-point fusible alloy in which a ternary alloy composed of the composition of Bi 64 wt% to 69 wt%, Ag 0.05 wt% to 0.3 wt%, and In the rest, the composition of Bi 47 wt% to 55 wt%, Ag 0.05 wt% to 0.2 wt%, and In the rest, and the composition of Bi 32 wt% to 37 wt%, Ag 0.01 wt% to 0.1 wt%, and In the rest is used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、保護素子に関するもので、詳しくは、電気・電子機器等に使用され、特定温度で溶融する可溶合金を用いた温度ヒューズに関する。
【0002】
【従来の技術】
電気・電子機器等を過熱損傷から保護する保護素子として、特定温度で動作して回路を遮断する温度ヒューズが用いられている。可溶合金型温度ヒューズは、感温素子として特定温度で溶融する可溶合金を用いて、この可溶合金に通電し、周囲温度の上昇により可溶合金が溶融して回路を遮断するものである。
【0003】
さらに、可溶合金と抵抗体とを具備し、抵抗体の通電過熱により可溶合金を強制的に溶断させる抵抗内蔵型温度ヒューズと称される保護素子もある。
【0004】
【発明が解決しようとする課題】
上記の可溶合金型温度ヒューズは、保温コタツ、炊飯器等の家電製品、液晶テレビや複写機器等のOA機器、照明機器などに保護素子として用いられている。このうち98〜88℃の範囲の動作温度を有する可溶合金には、従来52Bi−32Pb−16Sn(重量%)三元合金(98℃)、42.5In−38.6Sn−12.4Cd−6.5Ag(重量%)四元合金(94℃)、44In−42Sn−14Cd(重量%)三元合金(93℃)、50.5Bi−31Pb−15.5Sn−3In(重量%)四元合金(90℃)、48Bi−30Pb−15Sn−7In(重量%)四元合金(84℃)、42〜50In−10〜15Cd−0.8〜5Zn−残Sn(重量%)四元合金(85℃)など人体に有害な重金属である鉛やカドミウムを10重量%以上含有するものがあった。最近、廃棄された電気・電子機器から雨水などの作用により有害金属が溶出し、地下水に深刻な汚染をもたらしていることが、地球環境上の問題となり、可溶合金の改良が必要とされている。
【0005】
また、可溶合金型温度ヒューズの可溶合金は、特定の温度で液状化を進行させ球状化に導き溶断させる必要上、できれば単一の溶融点を持つ共晶合金組成が好ましい。さらに、電源回路に直列に実装される温度ヒューズの特性上から、かかる温度ヒューズの内部抵抗値は長期の高温保管によっても変化せず比抵抗が0.79mΩ・mm以下であることが、省エネルギーの面や動作温度の安定性に上からも望ましい。
【0006】
PbやCdを含まず、溶融温度が110℃以下の合金を設計する場合、Bi−In二元合金系が良く知られているが、(例えば67.4Bi−32.6In(重量%)の109.7℃組成、50Bi−50In(重量%)の88.7℃組成、33.3Bi−66.7In(重量%)の72.7℃組成)これらの既存組成は何れも、BiIn、BiIn、BiInの金属間化合物との共晶組成であるため機械強度が弱く、また温度ヒューズに組み込んだ場合の比抵抗が0.79mΩ・mm以上あるため、温度ヒューズに実用できる可溶合金としてはそのまま利用し難い欠点がある。
【0007】
本発明は、PbやCdによる問題を生じないように、上記した可溶合金にPbおよびCdを使用しない環境対応型の鉛フリー合金型温度ヒューズを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明による鉛フリー合金型温度ヒューズにおける可溶合金組成は、Bi−In二元合金系に、適量のAgを加えて結晶組織の微細化を図って機械的強度を改善すると共に、温度ヒューズの比抵抗を0.79mΩ・mm以下に抑えたBi−In−Ag三元合金である。Agの添加量については、Agを過剰に添加することでAgIn2が生成し固液共存域が増大し、またAgの添加量が少なすぎるとAg添加の効果が得られないため、Ag添加量をBi−Inの構成組成に対して好適な範囲を定めたものである。
【0009】
本発明の請求項1に係る鉛フリー合金型温度ヒューズは、感温素子にBiを64重量%〜69重量%、Agを0.05重量%〜0.3重量%、残部がInからなる可溶合金を使用することで107〜109℃の動作温度を有する温度ヒューズを可能としたものである。
【0010】
本発明の請求項2に係る鉛フリー合金型温度ヒューズは、感温素子にBiを47重量%〜55重量%、Agを0.05重量%〜0.2重量%、残部がInからなる可溶合金を使用することで87〜97℃の動作温度を有する温度ヒューズを可能としたものである。
【0011】
本発明の請求項3に係る鉛フリー合金型温度ヒューズは、感温素子にBiを32重量%〜37重量%、Agを0.01重量%〜0.1重量%、残部がInからなる可溶合金を使用することで70〜73℃の動作温度を有する温度ヒューズを可能としたものである。
【0012】
【発明の実施の形態】
本発明による実施の形態について図1を用いて説明する。図1は、本発明による鉛フリー合金型温度ヒューズを示し、アキシャル型温度ヒューズと称される温度ヒューズの縦断面図である。
【0013】
図1に示すアキシャル型温度ヒューズは、Sn−Cuめっき銅線からなる端子リード1、2間に、可溶合金3を抵抗溶接により接合した後、可溶合金3をロジン、ワックス、活性剤からなるフラックス4で被覆し、アルミナセラミック碍管5中に挿入して、エポキシ系封止樹脂6、7によりケース端部をそれぞれ封止して形成したものである。なお、端子リード1、2のSn−Cuめっき銅線は、必要に応じてAgめっき銅線、Snめっき銅線、Niめっき銅線等に変更でき、Sn−Cuめっき銅線に限定されるものではない。
【0014】
このような構成の温度ヒューズにおいて、可溶合金3にφ0.4〜0.7mm線のものを使用でき、また必要に応じて同一断面積を有するテープ状合金の平角片も使用できる。
【0015】
本発明の温度ヒューズに用いられる可溶合金は、合金鋳塊の押出し加工により製造され、その後必要に応じてテープ状に圧延加工することもできる。
【0016】
また、将来本発明の趣旨を逸脱しない範囲において、可溶合金3の線径は要求に応じてφ0.4mm以下とすることができ、さらにまた、要求に応じてφ0.7mm以上に変更することもできる。
【0017】
また、本発明による鉛フリー合金型温度ヒューズは、アキシャル型温度ヒューズに限定されるものではなく、ラジアル型温度ヒューズ、薄型温度ヒューズ、抵抗内蔵型温度ヒューズと称される温度ヒューズに使用することができ、特定の形式に限定されるものではない。
【0018】
【実施例】
本発明の実施例と比較例を表1に示す。表1はそれぞれの実施例と比較例における可溶合金組成とその固相温度、液相温度、固液共存域を示したもので、表中の固相、液相はそれぞれ合金の固相温度(℃)、液相温度(℃)を示し、液相温度と固相温度の差を固液共存域(℃)という。固液共存域が10℃未満である時、その可溶合金を温度ヒューズの感温素子として使用できる。従って固液共存域が10℃未満である実施例の可溶合金は、実施形態の温度ヒューズにおいて良好な動作特性を有する。以下実施例と比較例についての動作特性を説明する。
【表1】

Figure 2004146228
【0019】
(実施例1−4)請求項1の範囲にあるBiを66.70重量%、Inを33.07重量%、Agを0.23重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例1−4の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は108±2℃であった。また、88℃で500時間、1000時間、2000時間それぞれ保管した実施例1−4の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.63±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度108±2℃の初期範囲を維持できることがわかった。
【0020】
(実施例2−2)請求項2の範囲にあるBiを53.00重量%、Inを46.86重量%、Agを0.14重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例2−2の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は96±2℃であった。また、76℃で500時間、1000時間、2000時間それぞれ保管した実施例2−2の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.55±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度96±2℃の初期範囲を維持できることがわかった。
【0021】
(実施例2−5)請求項2の範囲にあるBiを49.70重量%、Inを50.22重量%、Agを0.08重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例2−5の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は89±2℃であった。また、69℃で500時間、1000時間、2000時間それぞれ保管した実施例2−5の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.55±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度89±2℃の初期範囲を維持できることがわかった。
【0022】
(実施例2−9)請求項2の範囲にあるBiを48.50重量%、Inを51.43重量%、Agを0.07重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例2−9の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は88±2℃であった。また、68℃で500時間、1000時間、2000時間それぞれ保管した実施例2−9の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.47±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度88±2℃の初期範囲を維持できることがわかった。
【0023】
(実施例3−2)請求項3の範囲にあるBi34.20重量%、Inを65.78重量%、Agを0.02重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例3−2の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は73±2℃であった。また、53℃で500時間、1000時間、2000時間それぞれ保管した実施例3−2の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.32±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度73±2℃の初期範囲を保持できることがわかった。
【0024】
【比較例】
(比較例1−1)BiとInの組成を請求項1の範囲にしAgの量を0.4重量%にした合金組成(66.53Bi−33.07In−0.4Ag(重量%))は、固液共存域が26.7℃と10℃以上有し溶融開始から溶融完了までの温度域が広すぎるため温度ヒューズとして実用に至らなかった。同様にAgの量を0.5重量%にした合金組成(66.43Bi−33.07In−0.5Ag(重量%))の固液共存域は37.3℃もあり温度ヒューズとして実用できなかった。また、Agの量を0.05重量%以下とした合金組成(66.92Bi−33.07In−0.01Ag(重量%))のφ0.6mm線を押出し加工により作製を試みたが、合金強度が劣り脆すぎるため作製できなかった。請求項1におけるBi、Inの組成範囲に対して有効なAg配合量は0.05〜0.3重量%であった。
【0025】
(比較例2−1)BiとInの組成を請求項2の範囲にしAgの量を0.3重量%にした合金組成(52.84Bi−46.86In−0.3Ag(重量%))は、固液共存域が、10.1℃以上と10℃以上有し溶融開始から溶融完了までの温度域が広すぎるため温度ヒューズとして実用に至らなかった。同様にAgの量を0.4重量%にした合金組成(52.74Bi−46.86In−0.4Ag(重量%))の固液共存域は23.1℃であり温度ヒューズとして実用できなかった。また、Agの量を0.05重量%以下とした組成(53.13Bi−46.86In−0.01Ag(重量%))のφ0.6mm線を押出し加工により作製を試みたが、合金強度が劣り脆すぎるため作製できなかった。請求項2におけるBi、Inの組成範囲に対して有効なAg配合量は0.05〜0.2重量%であった。
【0026】
(比較例3−1)BiとInの組成を請求項3の範囲にしAgの量を0.2重量%にした合金組成(34.2Bi−65.6In−0.2Ag(重量%))は、固液共存域が21.7℃と10℃以上有し溶融開始から溶融完了までの温度域が広すぎるため温度ヒューズとして実用に至らなかった。同様にAgの量を0.3重量%にした合金組成(34.2Bi−65.5In−0.3Ag(重量%))の固液共存域は31℃であり温度ヒューズとして実用できなかった。また、Agの量を0.01重量%以下とした組成(34.200Bi−65.795In−0.005Ag(重量%))のφ0.6mm線を押出し加工により作製を試みたが、合金が軟らかすぎるため組立時の変形が大きく温度ヒューズを作製できなかった。請求項3におけるBi、Inの組成範囲に対して有効なAg配合量は0.01〜0.1重量%であった。
【0027】
【発明の効果】
以上に説明したように本発明は、70〜109℃で動作可能な信頼性に優れた鉛フリー合金型温度ヒューズをPbやCdを含有しないBi−In−Ag三元合金により実現するものである。
【図面の簡単な説明】
【図1】本発明の実施形態であるアキシャル型温度ヒューズの縦断面図
【符号の説明】
1、2 端子リード
3   可溶合金
4   フラックス
5   絶縁性のケース
6、7 封止樹脂[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a protection element, and more particularly, to a thermal fuse using a fusible alloy that is used at a specific temperature and is used for electric / electronic devices and the like.
[0002]
[Prior art]
2. Description of the Related Art A thermal fuse that operates at a specific temperature and shuts off a circuit is used as a protection element that protects electric and electronic devices from overheat damage. A fusible alloy-type thermal fuse uses a fusible alloy that melts at a specific temperature as a temperature-sensitive element, energizes this fusible alloy, and when the ambient temperature rises, the fusible alloy melts and interrupts the circuit. is there.
[0003]
Further, there is a protection element called a built-in resistor type thermal fuse that includes a fusible alloy and a resistor, and forcibly blows the fusible alloy by energizing and overheating the resistor.
[0004]
[Problems to be solved by the invention]
The above-mentioned fusible alloy type thermal fuse is used as a protective element in home electric appliances such as heat insulation kotatsu and rice cookers, OA equipment such as liquid crystal televisions and copying equipment, and lighting equipment. Among these, a fusible alloy having an operating temperature in the range of 98 to 88 ° C includes a conventional 52Bi-32Pb-16Sn (wt%) ternary alloy (98 ° C), 42.5In-38.6Sn-12.4Cd-6. 0.5Ag (wt%) quaternary alloy (94 ° C), 44In-42Sn-14Cd (wt%) ternary alloy (93 ° C), 50.5Bi-31Pb-15.5Sn-3In (wt%) quaternary alloy ( 90 ° C), 48Bi-30Pb-15Sn-7In (wt%) quaternary alloy (84 ° C), 42-50In-10-10Cd-0.8-5Zn-Remaining Sn (wt%) quaternary alloy (85 ° C) Some of them contain 10% by weight or more of lead and cadmium, which are heavy metals harmful to the human body. Recently, harmful metals eluted from the discarded electric and electronic equipment by the action of rainwater and cause serious pollution to the groundwater have become a global environmental problem, and the improvement of fusible alloys has been required. I have.
[0005]
Further, the fusible alloy of the fusible alloy type thermal fuse is preferably a eutectic alloy composition having a single melting point if possible because liquefaction proceeds at a specific temperature to lead to spheroidization and fusing. Furthermore, from the characteristics of the thermal fuse mounted in series with the power supply circuit, the internal resistance of the thermal fuse does not change even after long-term high-temperature storage, and the specific resistance is 0.79 mΩ · mm or less. It is also desirable from the viewpoint of stability of surface and operating temperature.
[0006]
When an alloy containing no Pb or Cd and having a melting temperature of 110 ° C. or less is designed, a Bi—In binary alloy system is well known (for example, 109% of 67.4 Bi-32.6 In (% by weight)). .7 ° C. composition, 88.7 ° C. the composition of 50Bi-50in (wt%), none of 72.7 ° C. composition) these existing composition of 33.3Bi-66.7In (wt%), BiIn, Bi 5 an in 3. Because of its eutectic composition with BiIn 2 intermetallic compound, its mechanical strength is weak, and its specific resistance when incorporated in a thermal fuse is 0.79 mΩ · mm or more. Has a disadvantage that it is difficult to use it as it is.
[0007]
An object of the present invention is to provide an environment-friendly lead-free alloy-type thermal fuse that does not use Pb and Cd as the fusible alloy so as not to cause a problem due to Pb and Cd.
[0008]
[Means for Solving the Problems]
The fusible alloy composition in the lead-free alloy type thermal fuse according to the present invention is not only capable of improving the mechanical strength by adding a suitable amount of Ag to the Bi-In binary alloy system, but also improving the mechanical strength by improving the crystal structure. It is a Bi-In-Ag ternary alloy whose specific resistance is suppressed to 0.79 mΩ · mm or less. Regarding the amount of Ag to be added, AgIn2 is generated by adding Ag excessively, and the solid-liquid coexistence region is increased. If the amount of Ag is too small, the effect of adding Ag cannot be obtained. The preferred range is determined for the composition of Bi-In.
[0009]
In the lead-free alloy type thermal fuse according to claim 1 of the present invention, the thermosensitive element may be composed of 64% to 69% by weight of Bi, 0.05% to 0.3% by weight of Ag, and the balance of In. The use of a molten alloy enables a thermal fuse having an operating temperature of 107 to 109 ° C.
[0010]
In the lead-free alloy type thermal fuse according to claim 2 of the present invention, Bi may be made of 47% by weight to 55% by weight, Ag of 0.05% by weight to 0.2% by weight, and the balance of In. The use of a molten alloy enables a thermal fuse having an operating temperature of 87 to 97 ° C.
[0011]
In the lead-free alloy type thermal fuse according to claim 3 of the present invention, the thermosensitive element may be composed of 32% to 37% by weight of Bi, 0.01% to 0.1% by weight of Ag, and the balance of In. The use of a molten alloy enables a thermal fuse having an operating temperature of 70 to 73 ° C.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described with reference to FIG. FIG. 1 is a longitudinal sectional view showing a lead-free alloy type thermal fuse according to the present invention, which is called an axial type thermal fuse.
[0013]
In the axial type thermal fuse shown in FIG. 1, after a fusible alloy 3 is joined by resistance welding between terminal leads 1 and 2 made of Sn—Cu plated copper wire, the fusible alloy 3 is made of rosin, wax, and activator. This is formed by covering with a flux 4, inserting into an alumina ceramic insulator tube 5, and sealing the case ends with epoxy-based sealing resins 6 and 7, respectively. The Sn-Cu-plated copper wires of the terminal leads 1 and 2 can be changed to Ag-plated copper wires, Sn-plated copper wires, Ni-plated copper wires, and the like, if necessary, and are limited to Sn-Cu-plated copper wires. is not.
[0014]
In the thermal fuse having such a configuration, a fusible alloy 3 having a wire diameter of 0.4 to 0.7 mm can be used, and a rectangular piece of tape-like alloy having the same sectional area can be used if necessary.
[0015]
The fusible alloy used in the thermal fuse of the present invention is manufactured by extruding an alloy ingot, and then can be rolled into a tape if necessary.
[0016]
In addition, the wire diameter of the fusible alloy 3 can be set to φ0.4 mm or less as required, and further changed to φ0.7 mm or more as required, without departing from the spirit of the present invention in the future. You can also.
[0017]
Further, the lead-free alloy type thermal fuse according to the present invention is not limited to an axial type thermal fuse, but may be used for a thermal fuse called a radial type thermal fuse, a thin type thermal fuse, or a thermal fuse having a built-in resistor. Yes, but not limited to a particular format.
[0018]
【Example】
Table 1 shows examples of the present invention and comparative examples. Table 1 shows the fusible alloy compositions and their solidus temperatures, liquidus temperatures, and solid-liquid coexistence regions in the respective Examples and Comparative Examples. (° C.) and liquidus temperature (° C.), and the difference between the liquidus temperature and the solid phase temperature is called a solid-liquid coexistence area (° C.). When the solid-liquid coexistence region is lower than 10 ° C., the fusible alloy can be used as a temperature-sensitive element of a thermal fuse. Therefore, the fusible alloy of the example in which the solid-liquid coexistence region is less than 10 ° C. has good operating characteristics in the thermal fuse of the embodiment. Hereinafter, operation characteristics of the example and the comparative example will be described.
[Table 1]
Figure 2004146228
[0019]
(Example 1-4) A φ0.6 mm wire having a composition of 66.70% by weight of Bi, 33.07% by weight of In, and 0.23% by weight of Ag according to claim 1 was prepared by extrusion. Then, this alloy wire was applied to the thermal fuse of the embodiment. When operated in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C./min while applying a detection current of 10 mA to the 30 thermal fuses of Examples 1-4, the operating temperature range is 108 ± 2 ° C. Met. In addition, each of the ten thermal fuses of Example 1-4 stored at 88 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, was connected by a voltage drop method so as to eliminate the contact resistance. Was measured at a measurement current of 100 mA, and it was found that the specific resistance could be maintained in the range of 0.63 ± 0.2 mΩ · mm. Further, when each of these 10 pieces was operated in a constant temperature bath (gas phase) in which the temperature was raised at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 108 ± 2 ° C. could be maintained even after high-temperature storage.
[0020]
(Example 2-2) A φ0.6 mm wire having a composition of 53.00% by weight of Bi, 46.86% by weight of In, and 0.14% by weight of Ag according to claim 2 was prepared by extrusion. Then, this alloy wire was applied to the thermal fuse of the embodiment. When operated in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C./min while applying a detection current of 10 mA to the 30 thermal fuses of Example 2-2, the operating temperature range is 96 ± 2 ° C. Met. Further, each of the ten thermal fuses of Example 2-2 stored at 76 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, was connected by a voltage drop method so as to eliminate the contact resistance, and between the leads at a point of 25 mm including the main body. Was measured at a measurement current of 100 mA, and it was found that the specific resistance could be maintained in the range of 0.55 ± 0.2 mΩ · mm. Furthermore, when each of these 10 pieces was operated in a thermostatic chamber (gas phase) in which the temperature was raised at a rate of 1 ° C./min, it was found that the initial temperature range of 96 ± 2 ° C. could be maintained even after high-temperature storage.
[0021]
(Example 2-5) A φ0.6 mm line having a composition of 49.70% by weight of Bi, 50.22% by weight of In, and 0.08% by weight of Ag according to claim 2 was prepared by extrusion. Then, this alloy wire was applied to the thermal fuse of the embodiment. When operated in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C./min while applying a detection current of 10 mA to the 30 thermal fuses of Example 2-5, the operating temperature range is 89 ± 2 ° C. Met. In addition, each of the ten thermal fuses of Example 2-5 stored at 69 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, was connected by a voltage drop method so as to eliminate contact resistance. Was measured at a measurement current of 100 mA, and it was found that the specific resistance could be maintained in the range of 0.55 ± 0.2 mΩ · mm. Furthermore, when each of these 10 pieces was operated in a constant temperature bath (gas phase) in which the temperature was increased at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 89 ± 2 ° C. could be maintained even after high-temperature storage.
[0022]
(Example 2-9) A φ0.6 mm wire having a composition of 48.50% by weight of Bi, 51.43% by weight of In, and 0.07% by weight of Ag according to claim 2 was produced by extrusion. Then, this alloy wire was applied to the thermal fuse of the embodiment. When operated in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C./min while applying a detection current of 10 mA to the 30 thermal fuses of Example 2-9, the operating temperature range is 88 ± 2 ° C. Met. In addition, each of the 10 thermal fuses of Example 2-9 stored at 68 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, was connected by a voltage drop method so as to eliminate the contact resistance. Was measured at a measurement current of 100 mA, and it was found that the specific resistance could be maintained in the range of 0.47 ± 0.2 mΩ · mm. Furthermore, when each of these 10 pieces was operated in a constant temperature bath (gas phase) in which the temperature was raised at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 88 ± 2 ° C. could be maintained even after high-temperature storage.
[0023]
(Example 3-2) A φ0.6 mm wire having a composition of 34.20% by weight of Bi, 65.78% by weight of In, and 0.02% by weight of Ag according to claim 3 was produced by extrusion. This alloy wire was applied to the thermal fuse of the embodiment. When operated in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C./min while applying a detection current of 10 mA to the 30 thermal fuses of Example 3-2, the operating temperature range is 73 ± 2 ° C. Met. In addition, each of the ten thermal fuses of Example 3-2 stored at 53 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, was connected by a voltage drop method so as to eliminate the contact resistance. Was measured at a measurement current of 100 mA, and it was found that the specific resistance could be maintained in the range of 0.32 ± 0.2 mΩ · mm. Furthermore, when each of these 10 pieces was operated in a constant temperature bath (gas phase) in which the temperature was raised at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 73 ± 2 ° C. was maintained even after high-temperature storage.
[0024]
[Comparative example]
(Comparative Example 1-1) An alloy composition (66.53Bi-33.07In-0.4Ag (% by weight)) in which the composition of Bi and In was set to claim 1 and the amount of Ag was 0.4% by weight was as follows. Since the solid-liquid coexistence region was 26.7 ° C. and 10 ° C. or more, and the temperature range from the start of melting to the completion of melting was too wide, it was not practically used as a thermal fuse. Similarly, the solid-liquid coexistence range of the alloy composition (66.43Bi-33.07In-0.5Ag (% by weight)) in which the amount of Ag was 0.5% by weight was 37.3 ° C., and it could not be used as a thermal fuse. Was. An attempt was made to extrude a φ0.6 mm wire of an alloy composition (66.92Bi-33.07In-0.01Ag (% by weight)) in which the amount of Ag was 0.05% by weight or less. Was inferior and too brittle to produce. The effective Ag content in the composition range of Bi and In in claim 1 was 0.05 to 0.3% by weight.
[0025]
(Comparative Example 2-1) The alloy composition (52.84Bi-46.86In-0.3Ag (% by weight)) in which the composition of Bi and In was set in the range of claim 2 and the amount of Ag was 0.3% by weight was as follows. Since the solid-liquid coexistence region was 10.1 ° C. or higher and 10 ° C. or higher, the temperature range from the start of melting to the completion of melting was too wide, and thus it was not practical as a temperature fuse. Similarly, the solid-liquid coexistence range of the alloy composition (52.74Bi-46.86In-0.4Ag (% by weight)) in which the amount of Ag was set to 0.4% by weight was 23.1 ° C., so that it could not be used as a thermal fuse. Was. An attempt was made to extrude a φ0.6 mm wire of a composition (53.13Bi-46.86In-0.01Ag (% by weight)) in which the amount of Ag was 0.05% by weight or less. It could not be produced because it was inferior and brittle. The effective Ag compounding amount in the composition range of Bi and In in claim 2 was 0.05 to 0.2% by weight.
[0026]
(Comparative Example 3-1) The alloy composition (34.2Bi-65.6In-0.2Ag (% by weight)) in which the composition of Bi and In is set in the range of claim 3 and the amount of Ag is 0.2% by weight is as follows. Since the solid-liquid coexistence range was 21.7 ° C. and 10 ° C. or higher, the temperature range from the start of melting to the completion of melting was too wide, and thus it was not practical as a temperature fuse. Similarly, the solid-liquid coexistence range of the alloy composition (34.2Bi-65.5In-0.3Ag (% by weight)) in which the amount of Ag was set to 0.3% by weight was 31 ° C, so that it could not be used as a thermal fuse. An attempt was made to extrude a φ0.6 mm wire having a composition (34.200 Bi-65.795In-0.005Ag (% by weight)) in which the amount of Ag was 0.01% by weight or less, but the alloy was soft. Because of too much deformation during assembly, a thermal fuse could not be produced. The effective amount of Ag in the composition range of Bi and In in claim 3 was 0.01 to 0.1% by weight.
[0027]
【The invention's effect】
As described above, the present invention realizes a highly reliable lead-free alloy type thermal fuse that can operate at 70 to 109 ° C. by using a Bi-In-Ag ternary alloy containing no Pb or Cd. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an axial type thermal fuse according to an embodiment of the present invention.
1, 2 terminal lead 3 fusible alloy 4 flux 5 insulating case 6, 7 sealing resin

Claims (3)

可溶合金の両端にリード部材を接続したものを絶縁物からなるケースに挿入し、前記絶縁物からなるケースよりリード部材を導出する端部を封止してなる温度ヒューズにおいて、前記可溶合金にBiを64重量%〜69重量%、Agを0.05重量%〜0.3重量%、残部Inの組成からなる可溶合金を用いることを特徴とする鉛フリー合金型温度ヒューズ。In a thermal fuse in which a lead member connected to both ends of a fusible alloy is inserted into a case made of an insulator, and an end from which the lead member is led out from the case made of the insulator is sealed, the fusible alloy A lead-free alloy type thermal fuse characterized by using a fusible alloy having a composition of 64 to 69% by weight of Bi, 0.05 to 0.3% by weight of Ag, and the balance of In. 可溶合金の両端にリード部材を接続したものを絶縁物からなるケースに挿入し、前記絶縁物からなるケースよりリード部材を導出する端部を封止してなる温度ヒューズにおいて、前記可溶合金にBiを47重量%〜55重量%、Agを0.05重量%〜0.2重量%、残部Inの組成からなる可溶合金を用いることを特徴とする鉛フリー合金型温度ヒューズ。In a thermal fuse in which a lead member connected to both ends of a fusible alloy is inserted into a case made of an insulator, and an end from which the lead member is led out from the case made of the insulator is sealed, the fusible alloy A lead-free alloy type thermal fuse characterized by using a fusible alloy having a composition of 47% to 55% by weight of Bi, 0.05% to 0.2% by weight of Ag, and the balance of In. 可溶合金の両端にリード部材を接続したものを絶縁物からなるケースに挿入し、前記絶縁物からなるケースよりリード部材を導出する端部を封止してなる温度ヒューズにおいて、前記可溶合金にBiを32重量%〜37重量%、Agを0.01重量%〜0.1重量%、残部Inの組成からなる可溶合金を用いることを特徴とする鉛フリー合金型温度ヒューズ。In a thermal fuse in which a lead member connected to both ends of a fusible alloy is inserted into a case made of an insulator, and an end from which the lead member is led out from the case made of the insulator is sealed, the fusible alloy A fusible alloy having a composition of 32 to 37% by weight of Bi, 0.01 to 0.1% by weight of Ag, and the balance of In.
JP2002310685A 2002-10-25 2002-10-25 Lead-free alloy type thermal fuse Expired - Fee Related JP4338377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310685A JP4338377B2 (en) 2002-10-25 2002-10-25 Lead-free alloy type thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310685A JP4338377B2 (en) 2002-10-25 2002-10-25 Lead-free alloy type thermal fuse

Publications (3)

Publication Number Publication Date
JP2004146228A true JP2004146228A (en) 2004-05-20
JP2004146228A5 JP2004146228A5 (en) 2005-05-26
JP4338377B2 JP4338377B2 (en) 2009-10-07

Family

ID=32456113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310685A Expired - Fee Related JP4338377B2 (en) 2002-10-25 2002-10-25 Lead-free alloy type thermal fuse

Country Status (1)

Country Link
JP (1) JP4338377B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172903A (en) * 2009-01-27 2010-08-12 Nec Schott Components Corp Thermosensitive material and method for manufacturing the same, thermal fuse, and circuit protection element
JP2010281463A (en) * 2009-06-02 2010-12-16 Fuji Koki Corp Soluble plug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172903A (en) * 2009-01-27 2010-08-12 Nec Schott Components Corp Thermosensitive material and method for manufacturing the same, thermal fuse, and circuit protection element
JP2010281463A (en) * 2009-06-02 2010-12-16 Fuji Koki Corp Soluble plug

Also Published As

Publication number Publication date
JP4338377B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
JP4001757B2 (en) Alloy type temperature fuse
JP3353662B2 (en) Solder alloy
JP2004176106A (en) Alloy type thermal fuse, and material for thermal fuse element
EP1343187B1 (en) Alloy type thermal fuse and fuse element thereof
JP2819408B2 (en) Alloy type temperature fuse
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP2001266724A (en) Alloy-type thermal fuse
JP2004176105A (en) Alloy type thermal fuse, and material for thermal fuse element
JP2001291459A (en) Alloy temperature fuse
JP3885995B2 (en) Thermal fuse
JP4338377B2 (en) Lead-free alloy type thermal fuse
JP3901028B2 (en) Lead-free thermal fuse
JP2005150075A (en) Alloy type thermal fuse and protecting device using it
JP4375713B2 (en) Thermal fuse
JP4409747B2 (en) Alloy type thermal fuse
JP2516469B2 (en) Alloy type temperature fuse
JP2003249155A (en) Thermal fuse composed of lead-free alloy
JP2004035929A (en) Lead-free alloy type thermal fuse
JP2005276577A (en) Fusible alloy type thermal fuse
EP1343186B1 (en) Alloy type thermal fuse and fuse element thereof
JP2007113024A (en) Fusible alloy type thermal fuse
JP2007031775A (en) Pb-free fusible alloy type thermal fuse
JP2004247269A (en) Tubular casing type alloyed thermal fuse
JP2005285561A (en) Use method for alloy-type temperature fuse, and the alloy-type temperature fuse
JP2006299289A (en) Alloy type temperature-sensitive element material, and temperature fuse using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080814

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Ref document number: 4338377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees