JP2004146228A - Lead free alloy thermal fuse - Google Patents
Lead free alloy thermal fuse Download PDFInfo
- Publication number
- JP2004146228A JP2004146228A JP2002310685A JP2002310685A JP2004146228A JP 2004146228 A JP2004146228 A JP 2004146228A JP 2002310685 A JP2002310685 A JP 2002310685A JP 2002310685 A JP2002310685 A JP 2002310685A JP 2004146228 A JP2004146228 A JP 2004146228A
- Authority
- JP
- Japan
- Prior art keywords
- thermal fuse
- alloy
- weight
- composition
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 31
- 239000000956 alloy Substances 0.000 title claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 35
- 229910000743 fusible alloy Inorganic materials 0.000 claims abstract description 33
- 239000012212 insulator Substances 0.000 claims description 7
- 229910052738 indium Inorganic materials 0.000 abstract description 9
- 229910052793 cadmium Inorganic materials 0.000 abstract description 6
- 229910002058 ternary alloy Inorganic materials 0.000 abstract description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 229910052709 silver Inorganic materials 0.000 abstract 3
- 239000007788 liquid Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- 230000008018 melting Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052797 bismuth Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052745 lead Inorganic materials 0.000 description 4
- 229910002059 quaternary alloy Inorganic materials 0.000 description 4
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 3
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 3
- 229910016334 Bi—In Inorganic materials 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- 229910002056 binary alloy Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Fuses (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、保護素子に関するもので、詳しくは、電気・電子機器等に使用され、特定温度で溶融する可溶合金を用いた温度ヒューズに関する。
【0002】
【従来の技術】
電気・電子機器等を過熱損傷から保護する保護素子として、特定温度で動作して回路を遮断する温度ヒューズが用いられている。可溶合金型温度ヒューズは、感温素子として特定温度で溶融する可溶合金を用いて、この可溶合金に通電し、周囲温度の上昇により可溶合金が溶融して回路を遮断するものである。
【0003】
さらに、可溶合金と抵抗体とを具備し、抵抗体の通電過熱により可溶合金を強制的に溶断させる抵抗内蔵型温度ヒューズと称される保護素子もある。
【0004】
【発明が解決しようとする課題】
上記の可溶合金型温度ヒューズは、保温コタツ、炊飯器等の家電製品、液晶テレビや複写機器等のOA機器、照明機器などに保護素子として用いられている。このうち98〜88℃の範囲の動作温度を有する可溶合金には、従来52Bi−32Pb−16Sn(重量%)三元合金(98℃)、42.5In−38.6Sn−12.4Cd−6.5Ag(重量%)四元合金(94℃)、44In−42Sn−14Cd(重量%)三元合金(93℃)、50.5Bi−31Pb−15.5Sn−3In(重量%)四元合金(90℃)、48Bi−30Pb−15Sn−7In(重量%)四元合金(84℃)、42〜50In−10〜15Cd−0.8〜5Zn−残Sn(重量%)四元合金(85℃)など人体に有害な重金属である鉛やカドミウムを10重量%以上含有するものがあった。最近、廃棄された電気・電子機器から雨水などの作用により有害金属が溶出し、地下水に深刻な汚染をもたらしていることが、地球環境上の問題となり、可溶合金の改良が必要とされている。
【0005】
また、可溶合金型温度ヒューズの可溶合金は、特定の温度で液状化を進行させ球状化に導き溶断させる必要上、できれば単一の溶融点を持つ共晶合金組成が好ましい。さらに、電源回路に直列に実装される温度ヒューズの特性上から、かかる温度ヒューズの内部抵抗値は長期の高温保管によっても変化せず比抵抗が0.79mΩ・mm以下であることが、省エネルギーの面や動作温度の安定性に上からも望ましい。
【0006】
PbやCdを含まず、溶融温度が110℃以下の合金を設計する場合、Bi−In二元合金系が良く知られているが、(例えば67.4Bi−32.6In(重量%)の109.7℃組成、50Bi−50In(重量%)の88.7℃組成、33.3Bi−66.7In(重量%)の72.7℃組成)これらの既存組成は何れも、BiIn、Bi5In3、BiIn2の金属間化合物との共晶組成であるため機械強度が弱く、また温度ヒューズに組み込んだ場合の比抵抗が0.79mΩ・mm以上あるため、温度ヒューズに実用できる可溶合金としてはそのまま利用し難い欠点がある。
【0007】
本発明は、PbやCdによる問題を生じないように、上記した可溶合金にPbおよびCdを使用しない環境対応型の鉛フリー合金型温度ヒューズを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明による鉛フリー合金型温度ヒューズにおける可溶合金組成は、Bi−In二元合金系に、適量のAgを加えて結晶組織の微細化を図って機械的強度を改善すると共に、温度ヒューズの比抵抗を0.79mΩ・mm以下に抑えたBi−In−Ag三元合金である。Agの添加量については、Agを過剰に添加することでAgIn2が生成し固液共存域が増大し、またAgの添加量が少なすぎるとAg添加の効果が得られないため、Ag添加量をBi−Inの構成組成に対して好適な範囲を定めたものである。
【0009】
本発明の請求項1に係る鉛フリー合金型温度ヒューズは、感温素子にBiを64重量%〜69重量%、Agを0.05重量%〜0.3重量%、残部がInからなる可溶合金を使用することで107〜109℃の動作温度を有する温度ヒューズを可能としたものである。
【0010】
本発明の請求項2に係る鉛フリー合金型温度ヒューズは、感温素子にBiを47重量%〜55重量%、Agを0.05重量%〜0.2重量%、残部がInからなる可溶合金を使用することで87〜97℃の動作温度を有する温度ヒューズを可能としたものである。
【0011】
本発明の請求項3に係る鉛フリー合金型温度ヒューズは、感温素子にBiを32重量%〜37重量%、Agを0.01重量%〜0.1重量%、残部がInからなる可溶合金を使用することで70〜73℃の動作温度を有する温度ヒューズを可能としたものである。
【0012】
【発明の実施の形態】
本発明による実施の形態について図1を用いて説明する。図1は、本発明による鉛フリー合金型温度ヒューズを示し、アキシャル型温度ヒューズと称される温度ヒューズの縦断面図である。
【0013】
図1に示すアキシャル型温度ヒューズは、Sn−Cuめっき銅線からなる端子リード1、2間に、可溶合金3を抵抗溶接により接合した後、可溶合金3をロジン、ワックス、活性剤からなるフラックス4で被覆し、アルミナセラミック碍管5中に挿入して、エポキシ系封止樹脂6、7によりケース端部をそれぞれ封止して形成したものである。なお、端子リード1、2のSn−Cuめっき銅線は、必要に応じてAgめっき銅線、Snめっき銅線、Niめっき銅線等に変更でき、Sn−Cuめっき銅線に限定されるものではない。
【0014】
このような構成の温度ヒューズにおいて、可溶合金3にφ0.4〜0.7mm線のものを使用でき、また必要に応じて同一断面積を有するテープ状合金の平角片も使用できる。
【0015】
本発明の温度ヒューズに用いられる可溶合金は、合金鋳塊の押出し加工により製造され、その後必要に応じてテープ状に圧延加工することもできる。
【0016】
また、将来本発明の趣旨を逸脱しない範囲において、可溶合金3の線径は要求に応じてφ0.4mm以下とすることができ、さらにまた、要求に応じてφ0.7mm以上に変更することもできる。
【0017】
また、本発明による鉛フリー合金型温度ヒューズは、アキシャル型温度ヒューズに限定されるものではなく、ラジアル型温度ヒューズ、薄型温度ヒューズ、抵抗内蔵型温度ヒューズと称される温度ヒューズに使用することができ、特定の形式に限定されるものではない。
【0018】
【実施例】
本発明の実施例と比較例を表1に示す。表1はそれぞれの実施例と比較例における可溶合金組成とその固相温度、液相温度、固液共存域を示したもので、表中の固相、液相はそれぞれ合金の固相温度(℃)、液相温度(℃)を示し、液相温度と固相温度の差を固液共存域(℃)という。固液共存域が10℃未満である時、その可溶合金を温度ヒューズの感温素子として使用できる。従って固液共存域が10℃未満である実施例の可溶合金は、実施形態の温度ヒューズにおいて良好な動作特性を有する。以下実施例と比較例についての動作特性を説明する。
【表1】
【0019】
(実施例1−4)請求項1の範囲にあるBiを66.70重量%、Inを33.07重量%、Agを0.23重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例1−4の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は108±2℃であった。また、88℃で500時間、1000時間、2000時間それぞれ保管した実施例1−4の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.63±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度108±2℃の初期範囲を維持できることがわかった。
【0020】
(実施例2−2)請求項2の範囲にあるBiを53.00重量%、Inを46.86重量%、Agを0.14重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例2−2の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は96±2℃であった。また、76℃で500時間、1000時間、2000時間それぞれ保管した実施例2−2の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.55±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度96±2℃の初期範囲を維持できることがわかった。
【0021】
(実施例2−5)請求項2の範囲にあるBiを49.70重量%、Inを50.22重量%、Agを0.08重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例2−5の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は89±2℃であった。また、69℃で500時間、1000時間、2000時間それぞれ保管した実施例2−5の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.55±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度89±2℃の初期範囲を維持できることがわかった。
【0022】
(実施例2−9)請求項2の範囲にあるBiを48.50重量%、Inを51.43重量%、Agを0.07重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例2−9の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は88±2℃であった。また、68℃で500時間、1000時間、2000時間それぞれ保管した実施例2−9の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.47±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度88±2℃の初期範囲を維持できることがわかった。
【0023】
(実施例3−2)請求項3の範囲にあるBi34.20重量%、Inを65.78重量%、Agを0.02重量%とした組成のφ0.6mm線を押出し加工により作製し、この合金線を実施形態の温度ヒューズに適用した。実施例3−2の温度ヒューズ30個に10mAの検知電流を通電しながら、1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ動作温度範囲は73±2℃であった。また、53℃で500時間、1000時間、2000時間それぞれ保管した実施例3−2の温度ヒューズ各10個を電圧降下法により接触抵抗を除くように接続し、本体を含め25mmの点でリード間の電気抵抗を測定電流100mAで測定したところ、比抵抗0.32±0.2mΩ・mmの範囲を保持できることがわかった。さらに、この各10個を1℃/分の割合で温度上昇する恒温槽(気相)中で動作させたところ、高温保管後も動作温度73±2℃の初期範囲を保持できることがわかった。
【0024】
【比較例】
(比較例1−1)BiとInの組成を請求項1の範囲にしAgの量を0.4重量%にした合金組成(66.53Bi−33.07In−0.4Ag(重量%))は、固液共存域が26.7℃と10℃以上有し溶融開始から溶融完了までの温度域が広すぎるため温度ヒューズとして実用に至らなかった。同様にAgの量を0.5重量%にした合金組成(66.43Bi−33.07In−0.5Ag(重量%))の固液共存域は37.3℃もあり温度ヒューズとして実用できなかった。また、Agの量を0.05重量%以下とした合金組成(66.92Bi−33.07In−0.01Ag(重量%))のφ0.6mm線を押出し加工により作製を試みたが、合金強度が劣り脆すぎるため作製できなかった。請求項1におけるBi、Inの組成範囲に対して有効なAg配合量は0.05〜0.3重量%であった。
【0025】
(比較例2−1)BiとInの組成を請求項2の範囲にしAgの量を0.3重量%にした合金組成(52.84Bi−46.86In−0.3Ag(重量%))は、固液共存域が、10.1℃以上と10℃以上有し溶融開始から溶融完了までの温度域が広すぎるため温度ヒューズとして実用に至らなかった。同様にAgの量を0.4重量%にした合金組成(52.74Bi−46.86In−0.4Ag(重量%))の固液共存域は23.1℃であり温度ヒューズとして実用できなかった。また、Agの量を0.05重量%以下とした組成(53.13Bi−46.86In−0.01Ag(重量%))のφ0.6mm線を押出し加工により作製を試みたが、合金強度が劣り脆すぎるため作製できなかった。請求項2におけるBi、Inの組成範囲に対して有効なAg配合量は0.05〜0.2重量%であった。
【0026】
(比較例3−1)BiとInの組成を請求項3の範囲にしAgの量を0.2重量%にした合金組成(34.2Bi−65.6In−0.2Ag(重量%))は、固液共存域が21.7℃と10℃以上有し溶融開始から溶融完了までの温度域が広すぎるため温度ヒューズとして実用に至らなかった。同様にAgの量を0.3重量%にした合金組成(34.2Bi−65.5In−0.3Ag(重量%))の固液共存域は31℃であり温度ヒューズとして実用できなかった。また、Agの量を0.01重量%以下とした組成(34.200Bi−65.795In−0.005Ag(重量%))のφ0.6mm線を押出し加工により作製を試みたが、合金が軟らかすぎるため組立時の変形が大きく温度ヒューズを作製できなかった。請求項3におけるBi、Inの組成範囲に対して有効なAg配合量は0.01〜0.1重量%であった。
【0027】
【発明の効果】
以上に説明したように本発明は、70〜109℃で動作可能な信頼性に優れた鉛フリー合金型温度ヒューズをPbやCdを含有しないBi−In−Ag三元合金により実現するものである。
【図面の簡単な説明】
【図1】本発明の実施形態であるアキシャル型温度ヒューズの縦断面図
【符号の説明】
1、2 端子リード
3 可溶合金
4 フラックス
5 絶縁性のケース
6、7 封止樹脂[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a protection element, and more particularly, to a thermal fuse using a fusible alloy that is used at a specific temperature and is used for electric / electronic devices and the like.
[0002]
[Prior art]
2. Description of the Related Art A thermal fuse that operates at a specific temperature and shuts off a circuit is used as a protection element that protects electric and electronic devices from overheat damage. A fusible alloy-type thermal fuse uses a fusible alloy that melts at a specific temperature as a temperature-sensitive element, energizes this fusible alloy, and when the ambient temperature rises, the fusible alloy melts and interrupts the circuit. is there.
[0003]
Further, there is a protection element called a built-in resistor type thermal fuse that includes a fusible alloy and a resistor, and forcibly blows the fusible alloy by energizing and overheating the resistor.
[0004]
[Problems to be solved by the invention]
The above-mentioned fusible alloy type thermal fuse is used as a protective element in home electric appliances such as heat insulation kotatsu and rice cookers, OA equipment such as liquid crystal televisions and copying equipment, and lighting equipment. Among these, a fusible alloy having an operating temperature in the range of 98 to 88 ° C includes a conventional 52Bi-32Pb-16Sn (wt%) ternary alloy (98 ° C), 42.5In-38.6Sn-12.4Cd-6. 0.5Ag (wt%) quaternary alloy (94 ° C), 44In-42Sn-14Cd (wt%) ternary alloy (93 ° C), 50.5Bi-31Pb-15.5Sn-3In (wt%) quaternary alloy ( 90 ° C), 48Bi-30Pb-15Sn-7In (wt%) quaternary alloy (84 ° C), 42-50In-10-10Cd-0.8-5Zn-Remaining Sn (wt%) quaternary alloy (85 ° C) Some of them contain 10% by weight or more of lead and cadmium, which are heavy metals harmful to the human body. Recently, harmful metals eluted from the discarded electric and electronic equipment by the action of rainwater and cause serious pollution to the groundwater have become a global environmental problem, and the improvement of fusible alloys has been required. I have.
[0005]
Further, the fusible alloy of the fusible alloy type thermal fuse is preferably a eutectic alloy composition having a single melting point if possible because liquefaction proceeds at a specific temperature to lead to spheroidization and fusing. Furthermore, from the characteristics of the thermal fuse mounted in series with the power supply circuit, the internal resistance of the thermal fuse does not change even after long-term high-temperature storage, and the specific resistance is 0.79 mΩ · mm or less. It is also desirable from the viewpoint of stability of surface and operating temperature.
[0006]
When an alloy containing no Pb or Cd and having a melting temperature of 110 ° C. or less is designed, a Bi—In binary alloy system is well known (for example, 109% of 67.4 Bi-32.6 In (% by weight)). .7 ° C. composition, 88.7 ° C. the composition of 50Bi-50in (wt%), none of 72.7 ° C. composition) these existing composition of 33.3Bi-66.7In (wt%), BiIn, Bi 5 an in 3. Because of its eutectic composition with BiIn 2 intermetallic compound, its mechanical strength is weak, and its specific resistance when incorporated in a thermal fuse is 0.79 mΩ · mm or more. Has a disadvantage that it is difficult to use it as it is.
[0007]
An object of the present invention is to provide an environment-friendly lead-free alloy-type thermal fuse that does not use Pb and Cd as the fusible alloy so as not to cause a problem due to Pb and Cd.
[0008]
[Means for Solving the Problems]
The fusible alloy composition in the lead-free alloy type thermal fuse according to the present invention is not only capable of improving the mechanical strength by adding a suitable amount of Ag to the Bi-In binary alloy system, but also improving the mechanical strength by improving the crystal structure. It is a Bi-In-Ag ternary alloy whose specific resistance is suppressed to 0.79 mΩ · mm or less. Regarding the amount of Ag to be added, AgIn2 is generated by adding Ag excessively, and the solid-liquid coexistence region is increased. If the amount of Ag is too small, the effect of adding Ag cannot be obtained. The preferred range is determined for the composition of Bi-In.
[0009]
In the lead-free alloy type thermal fuse according to claim 1 of the present invention, the thermosensitive element may be composed of 64% to 69% by weight of Bi, 0.05% to 0.3% by weight of Ag, and the balance of In. The use of a molten alloy enables a thermal fuse having an operating temperature of 107 to 109 ° C.
[0010]
In the lead-free alloy type thermal fuse according to claim 2 of the present invention, Bi may be made of 47% by weight to 55% by weight, Ag of 0.05% by weight to 0.2% by weight, and the balance of In. The use of a molten alloy enables a thermal fuse having an operating temperature of 87 to 97 ° C.
[0011]
In the lead-free alloy type thermal fuse according to claim 3 of the present invention, the thermosensitive element may be composed of 32% to 37% by weight of Bi, 0.01% to 0.1% by weight of Ag, and the balance of In. The use of a molten alloy enables a thermal fuse having an operating temperature of 70 to 73 ° C.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described with reference to FIG. FIG. 1 is a longitudinal sectional view showing a lead-free alloy type thermal fuse according to the present invention, which is called an axial type thermal fuse.
[0013]
In the axial type thermal fuse shown in FIG. 1, after a fusible alloy 3 is joined by resistance welding between terminal leads 1 and 2 made of Sn—Cu plated copper wire, the fusible alloy 3 is made of rosin, wax, and activator. This is formed by covering with a flux 4, inserting into an alumina ceramic insulator tube 5, and sealing the case ends with epoxy-based sealing resins 6 and 7, respectively. The Sn-Cu-plated copper wires of the terminal leads 1 and 2 can be changed to Ag-plated copper wires, Sn-plated copper wires, Ni-plated copper wires, and the like, if necessary, and are limited to Sn-Cu-plated copper wires. is not.
[0014]
In the thermal fuse having such a configuration, a fusible alloy 3 having a wire diameter of 0.4 to 0.7 mm can be used, and a rectangular piece of tape-like alloy having the same sectional area can be used if necessary.
[0015]
The fusible alloy used in the thermal fuse of the present invention is manufactured by extruding an alloy ingot, and then can be rolled into a tape if necessary.
[0016]
In addition, the wire diameter of the fusible alloy 3 can be set to φ0.4 mm or less as required, and further changed to φ0.7 mm or more as required, without departing from the spirit of the present invention in the future. You can also.
[0017]
Further, the lead-free alloy type thermal fuse according to the present invention is not limited to an axial type thermal fuse, but may be used for a thermal fuse called a radial type thermal fuse, a thin type thermal fuse, or a thermal fuse having a built-in resistor. Yes, but not limited to a particular format.
[0018]
【Example】
Table 1 shows examples of the present invention and comparative examples. Table 1 shows the fusible alloy compositions and their solidus temperatures, liquidus temperatures, and solid-liquid coexistence regions in the respective Examples and Comparative Examples. (° C.) and liquidus temperature (° C.), and the difference between the liquidus temperature and the solid phase temperature is called a solid-liquid coexistence area (° C.). When the solid-liquid coexistence region is lower than 10 ° C., the fusible alloy can be used as a temperature-sensitive element of a thermal fuse. Therefore, the fusible alloy of the example in which the solid-liquid coexistence region is less than 10 ° C. has good operating characteristics in the thermal fuse of the embodiment. Hereinafter, operation characteristics of the example and the comparative example will be described.
[Table 1]
[0019]
(Example 1-4) A φ0.6 mm wire having a composition of 66.70% by weight of Bi, 33.07% by weight of In, and 0.23% by weight of Ag according to claim 1 was prepared by extrusion. Then, this alloy wire was applied to the thermal fuse of the embodiment. When operated in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C./min while applying a detection current of 10 mA to the 30 thermal fuses of Examples 1-4, the operating temperature range is 108 ± 2 ° C. Met. In addition, each of the ten thermal fuses of Example 1-4 stored at 88 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, was connected by a voltage drop method so as to eliminate the contact resistance. Was measured at a measurement current of 100 mA, and it was found that the specific resistance could be maintained in the range of 0.63 ± 0.2 mΩ · mm. Further, when each of these 10 pieces was operated in a constant temperature bath (gas phase) in which the temperature was raised at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 108 ± 2 ° C. could be maintained even after high-temperature storage.
[0020]
(Example 2-2) A φ0.6 mm wire having a composition of 53.00% by weight of Bi, 46.86% by weight of In, and 0.14% by weight of Ag according to claim 2 was prepared by extrusion. Then, this alloy wire was applied to the thermal fuse of the embodiment. When operated in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C./min while applying a detection current of 10 mA to the 30 thermal fuses of Example 2-2, the operating temperature range is 96 ± 2 ° C. Met. Further, each of the ten thermal fuses of Example 2-2 stored at 76 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, was connected by a voltage drop method so as to eliminate the contact resistance, and between the leads at a point of 25 mm including the main body. Was measured at a measurement current of 100 mA, and it was found that the specific resistance could be maintained in the range of 0.55 ± 0.2 mΩ · mm. Furthermore, when each of these 10 pieces was operated in a thermostatic chamber (gas phase) in which the temperature was raised at a rate of 1 ° C./min, it was found that the initial temperature range of 96 ± 2 ° C. could be maintained even after high-temperature storage.
[0021]
(Example 2-5) A φ0.6 mm line having a composition of 49.70% by weight of Bi, 50.22% by weight of In, and 0.08% by weight of Ag according to claim 2 was prepared by extrusion. Then, this alloy wire was applied to the thermal fuse of the embodiment. When operated in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C./min while applying a detection current of 10 mA to the 30 thermal fuses of Example 2-5, the operating temperature range is 89 ± 2 ° C. Met. In addition, each of the ten thermal fuses of Example 2-5 stored at 69 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, was connected by a voltage drop method so as to eliminate contact resistance. Was measured at a measurement current of 100 mA, and it was found that the specific resistance could be maintained in the range of 0.55 ± 0.2 mΩ · mm. Furthermore, when each of these 10 pieces was operated in a constant temperature bath (gas phase) in which the temperature was increased at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 89 ± 2 ° C. could be maintained even after high-temperature storage.
[0022]
(Example 2-9) A φ0.6 mm wire having a composition of 48.50% by weight of Bi, 51.43% by weight of In, and 0.07% by weight of Ag according to claim 2 was produced by extrusion. Then, this alloy wire was applied to the thermal fuse of the embodiment. When operated in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C./min while applying a detection current of 10 mA to the 30 thermal fuses of Example 2-9, the operating temperature range is 88 ± 2 ° C. Met. In addition, each of the 10 thermal fuses of Example 2-9 stored at 68 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, was connected by a voltage drop method so as to eliminate the contact resistance. Was measured at a measurement current of 100 mA, and it was found that the specific resistance could be maintained in the range of 0.47 ± 0.2 mΩ · mm. Furthermore, when each of these 10 pieces was operated in a constant temperature bath (gas phase) in which the temperature was raised at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 88 ± 2 ° C. could be maintained even after high-temperature storage.
[0023]
(Example 3-2) A φ0.6 mm wire having a composition of 34.20% by weight of Bi, 65.78% by weight of In, and 0.02% by weight of Ag according to claim 3 was produced by extrusion. This alloy wire was applied to the thermal fuse of the embodiment. When operated in a thermostatic chamber (gas phase) in which the temperature rises at a rate of 1 ° C./min while applying a detection current of 10 mA to the 30 thermal fuses of Example 3-2, the operating temperature range is 73 ± 2 ° C. Met. In addition, each of the ten thermal fuses of Example 3-2 stored at 53 ° C. for 500 hours, 1000 hours, and 2000 hours, respectively, was connected by a voltage drop method so as to eliminate the contact resistance. Was measured at a measurement current of 100 mA, and it was found that the specific resistance could be maintained in the range of 0.32 ± 0.2 mΩ · mm. Furthermore, when each of these 10 pieces was operated in a constant temperature bath (gas phase) in which the temperature was raised at a rate of 1 ° C./min, it was found that the initial range of the operating temperature of 73 ± 2 ° C. was maintained even after high-temperature storage.
[0024]
[Comparative example]
(Comparative Example 1-1) An alloy composition (66.53Bi-33.07In-0.4Ag (% by weight)) in which the composition of Bi and In was set to claim 1 and the amount of Ag was 0.4% by weight was as follows. Since the solid-liquid coexistence region was 26.7 ° C. and 10 ° C. or more, and the temperature range from the start of melting to the completion of melting was too wide, it was not practically used as a thermal fuse. Similarly, the solid-liquid coexistence range of the alloy composition (66.43Bi-33.07In-0.5Ag (% by weight)) in which the amount of Ag was 0.5% by weight was 37.3 ° C., and it could not be used as a thermal fuse. Was. An attempt was made to extrude a φ0.6 mm wire of an alloy composition (66.92Bi-33.07In-0.01Ag (% by weight)) in which the amount of Ag was 0.05% by weight or less. Was inferior and too brittle to produce. The effective Ag content in the composition range of Bi and In in claim 1 was 0.05 to 0.3% by weight.
[0025]
(Comparative Example 2-1) The alloy composition (52.84Bi-46.86In-0.3Ag (% by weight)) in which the composition of Bi and In was set in the range of claim 2 and the amount of Ag was 0.3% by weight was as follows. Since the solid-liquid coexistence region was 10.1 ° C. or higher and 10 ° C. or higher, the temperature range from the start of melting to the completion of melting was too wide, and thus it was not practical as a temperature fuse. Similarly, the solid-liquid coexistence range of the alloy composition (52.74Bi-46.86In-0.4Ag (% by weight)) in which the amount of Ag was set to 0.4% by weight was 23.1 ° C., so that it could not be used as a thermal fuse. Was. An attempt was made to extrude a φ0.6 mm wire of a composition (53.13Bi-46.86In-0.01Ag (% by weight)) in which the amount of Ag was 0.05% by weight or less. It could not be produced because it was inferior and brittle. The effective Ag compounding amount in the composition range of Bi and In in claim 2 was 0.05 to 0.2% by weight.
[0026]
(Comparative Example 3-1) The alloy composition (34.2Bi-65.6In-0.2Ag (% by weight)) in which the composition of Bi and In is set in the range of claim 3 and the amount of Ag is 0.2% by weight is as follows. Since the solid-liquid coexistence range was 21.7 ° C. and 10 ° C. or higher, the temperature range from the start of melting to the completion of melting was too wide, and thus it was not practical as a temperature fuse. Similarly, the solid-liquid coexistence range of the alloy composition (34.2Bi-65.5In-0.3Ag (% by weight)) in which the amount of Ag was set to 0.3% by weight was 31 ° C, so that it could not be used as a thermal fuse. An attempt was made to extrude a φ0.6 mm wire having a composition (34.200 Bi-65.795In-0.005Ag (% by weight)) in which the amount of Ag was 0.01% by weight or less, but the alloy was soft. Because of too much deformation during assembly, a thermal fuse could not be produced. The effective amount of Ag in the composition range of Bi and In in claim 3 was 0.01 to 0.1% by weight.
[0027]
【The invention's effect】
As described above, the present invention realizes a highly reliable lead-free alloy type thermal fuse that can operate at 70 to 109 ° C. by using a Bi-In-Ag ternary alloy containing no Pb or Cd. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an axial type thermal fuse according to an embodiment of the present invention.
1, 2 terminal lead 3 fusible alloy 4 flux 5 insulating case 6, 7 sealing resin
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002310685A JP4338377B2 (en) | 2002-10-25 | 2002-10-25 | Lead-free alloy type thermal fuse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002310685A JP4338377B2 (en) | 2002-10-25 | 2002-10-25 | Lead-free alloy type thermal fuse |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004146228A true JP2004146228A (en) | 2004-05-20 |
JP2004146228A5 JP2004146228A5 (en) | 2005-05-26 |
JP4338377B2 JP4338377B2 (en) | 2009-10-07 |
Family
ID=32456113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002310685A Expired - Fee Related JP4338377B2 (en) | 2002-10-25 | 2002-10-25 | Lead-free alloy type thermal fuse |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4338377B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010172903A (en) * | 2009-01-27 | 2010-08-12 | Nec Schott Components Corp | Thermosensitive material and method for manufacturing the same, thermal fuse, and circuit protection element |
JP2010281463A (en) * | 2009-06-02 | 2010-12-16 | Fuji Koki Corp | Soluble plug |
-
2002
- 2002-10-25 JP JP2002310685A patent/JP4338377B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010172903A (en) * | 2009-01-27 | 2010-08-12 | Nec Schott Components Corp | Thermosensitive material and method for manufacturing the same, thermal fuse, and circuit protection element |
JP2010281463A (en) * | 2009-06-02 | 2010-12-16 | Fuji Koki Corp | Soluble plug |
Also Published As
Publication number | Publication date |
---|---|
JP4338377B2 (en) | 2009-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4001757B2 (en) | Alloy type temperature fuse | |
JP3353662B2 (en) | Solder alloy | |
JP2004176106A (en) | Alloy type thermal fuse, and material for thermal fuse element | |
EP1343187B1 (en) | Alloy type thermal fuse and fuse element thereof | |
JP2819408B2 (en) | Alloy type temperature fuse | |
JP4360666B2 (en) | Alloy type thermal fuse and wire for thermal fuse element | |
JP2001266724A (en) | Alloy-type thermal fuse | |
JP2004176105A (en) | Alloy type thermal fuse, and material for thermal fuse element | |
JP2001291459A (en) | Alloy temperature fuse | |
JP3885995B2 (en) | Thermal fuse | |
JP4338377B2 (en) | Lead-free alloy type thermal fuse | |
JP3901028B2 (en) | Lead-free thermal fuse | |
JP2005150075A (en) | Alloy type thermal fuse and protecting device using it | |
JP4375713B2 (en) | Thermal fuse | |
JP4409747B2 (en) | Alloy type thermal fuse | |
JP2516469B2 (en) | Alloy type temperature fuse | |
JP2003249155A (en) | Thermal fuse composed of lead-free alloy | |
JP2004035929A (en) | Lead-free alloy type thermal fuse | |
JP2005276577A (en) | Fusible alloy type thermal fuse | |
EP1343186B1 (en) | Alloy type thermal fuse and fuse element thereof | |
JP2007113024A (en) | Fusible alloy type thermal fuse | |
JP2007031775A (en) | Pb-free fusible alloy type thermal fuse | |
JP2004247269A (en) | Tubular casing type alloyed thermal fuse | |
JP2005285561A (en) | Use method for alloy-type temperature fuse, and the alloy-type temperature fuse | |
JP2006299289A (en) | Alloy type temperature-sensitive element material, and temperature fuse using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040730 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071010 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080610 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080707 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080814 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20081024 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4338377 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130710 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |