[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2506761B2 - Gas detector - Google Patents

Gas detector

Info

Publication number
JP2506761B2
JP2506761B2 JP11864287A JP11864287A JP2506761B2 JP 2506761 B2 JP2506761 B2 JP 2506761B2 JP 11864287 A JP11864287 A JP 11864287A JP 11864287 A JP11864287 A JP 11864287A JP 2506761 B2 JP2506761 B2 JP 2506761B2
Authority
JP
Japan
Prior art keywords
light
gas
photoconductive medium
plate
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11864287A
Other languages
Japanese (ja)
Other versions
JPS63282636A (en
Inventor
泰男 片野
俊之 古田
浩幸 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11864287A priority Critical patent/JP2506761B2/en
Publication of JPS63282636A publication Critical patent/JPS63282636A/en
Application granted granted Critical
Publication of JP2506761B2 publication Critical patent/JP2506761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 〔本発明の目的〕 本発明の目的は、高感度で小型の光学式気体濃度セン
サを提供することにある。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Present Invention] An object of the present invention is to provide a highly sensitive and compact optical gas concentration sensor.

〔従来技術〕[Prior art]

化学反応を利用した気体濃度センサとしては、半導体
を用いた電気的方法や光ファイバー等を用いた光学的方
法があり、本発明は光学的方法を用いた技術に属する。
As a gas concentration sensor using a chemical reaction, there are an electric method using a semiconductor and an optical method using an optical fiber, and the present invention belongs to a technique using the optical method.

この分野での最近技術の1つは特開昭61-1786622号公
報の技術であって、該技術は、気体と光伝導媒体との界
面で浸出するエバネッシェント波の気体への吸収によっ
て生ずる伝導光の光量変化を利用するものである。しか
しながら、一般の無色の気体の特定吸収波長は赤外領域
又は紫外領域でありまた、その波長における吸収係数が
小さいため高感度化がのぞめない。また、検出器それ自
体も低価格化、小型化を行うには難点がある。
One of the recent technologies in this field is the technology disclosed in Japanese Patent Laid-Open No. 61-1786622, which is a method of conducting light generated by absorption of evanescent waves leaching at the interface between a gas and a photoconductive medium into the gas. This is to utilize the change in the amount of light. However, the specific absorption wavelength of a general colorless gas is in the infrared region or the ultraviolet region, and since the absorption coefficient at that wavelength is small, high sensitivity cannot be expected. Further, the detector itself has a difficulty in reducing the price and the size.

又、特公昭58-48850号公報の技術は、光伝導媒体の周
囲に気体と接触する光透過能力が変化する物質を塗布す
ることにより伝導光の光量変化を測定する方法である。
この方法によれば気体と接触すると可視光波長領域で光
吸収係数が変化するような物質を選んで塗布してやれば
赤外より短波長のところでも使用でき、また、光反射の
際、光吸収がおこるので導波管内の光反射が多いほど検
出感度が上る。
Further, the technique of Japanese Patent Publication No. 58-48850 is a method of measuring the change in the amount of transmitted light by applying a substance around the photoconductive medium, which is in contact with gas and whose light transmission capacity changes.
According to this method, if a substance whose light absorption coefficient changes in the visible light wavelength region when contacted with a gas is selected and applied, it can be used even at a wavelength shorter than infrared, and at the time of light reflection, light absorption Since this occurs, the more light is reflected in the waveguide, the higher the detection sensitivity.

さらに、本出願人が先に出願した気体検知装置や液体
検知装置は、前記特公昭58-48850号公報の光ファイバー
のかわりに、光伝導媒体として平面又は曲面をもつ板状
体により形成されており、該板状体の側面のうち少なく
とも1つが光反射層で覆われている光伝導媒体の使用を
提案したものである。
Further, the gas detection device and the liquid detection device that the applicant previously applied are formed by a plate-shaped body having a flat surface or a curved surface as a photoconductive medium instead of the optical fiber of Japanese Patent Publication No. 58-48850. , A use of a photoconductive medium in which at least one of the side surfaces of the plate is covered with a light reflecting layer.

しかしながら、これらの光伝導媒体上に塗布して形成
されたいわゆる検知層はすべて乾燥した固体層であり、
気体と検知層との化学反応が溶液中での反応に較べて悪
くなり、気体の濃度変化に対する感度が今一つの感があ
った。
However, the so-called sensing layers formed by coating on these photoconductive media are all dry solid layers,
The chemical reaction between the gas and the sensing layer became worse than the reaction in the solution, and there was another sense of sensitivity to changes in the gas concentration.

〔本発明の特色と効果〕[Characteristics and effects of the present invention]

本発明は、検知層に不揮発性水溶性液状有機化合物を
含有させることにより、これが液体の形で存在するた
め、従来の固体乾燥状態の検知層の場合に較べて感度、
応答速度の向上に成功したものである。
The present invention, by containing a non-volatile water-soluble liquid organic compound in the sensing layer, because it is present in the liquid form, sensitivity compared to the case of the conventional solid dry sensing layer,
It has succeeded in improving the response speed.

〔不揮発性水溶性液状有機化合物について〕[Nonvolatile water-soluble liquid organic compound]

検知層にいわゆるしめり気を付与する該有機化合物
は、検知層に長時間しめり気を安定的に付与でき検知反
応を妨害しない物であれば、いづれの化合物でも使用で
きる。不揮発性の程度は沸点100℃以上というのが一応
の目安である。
As the organic compound that imparts so-called sensation to the detection layer, any compound can be used as long as it can stably impart sensation to the detection layer for a long time and does not interfere with the detection reaction. A non-volatile degree is that the boiling point is 100 ° C or higher.

多価アルコールは安価で入手しやすい物質であり、該
化合物として好ましいものである。代表的なものをあげ
ると、プロパントリオール(グリセリン)、ブタントリ
オール、エチレングルコール、プロピレングリコール、
ブチレングリコールなどがある。
Polyhydric alcohols are inexpensive and easily available substances, and are preferable as the compound. Typical examples are propanetriol (glycerin), butanetriol, ethylene glycol, propylene glycol,
Butylene glycol and the like.

多価アルコールのほかには、水溶性、不揮発性のエス
テル、エーテル(たとえばエチレンオキシドの低付加物
等)が挙げられる。
In addition to polyhydric alcohols, water-soluble, non-volatile esters and ethers (for example, low adducts of ethylene oxide) can be mentioned.

〔光伝導媒体〕[Photoconductive medium]

本発明における光伝導媒体は従来の光ファイバーも使
用できるがとくに好ましい光伝導媒体としては、平面又
は曲面をもつ板状体であり、その板状体の側面のうち少
くとも1側面が光反射層で覆われた構造をもつものであ
る。とくに好ましくは図面に示すように1側面の1部分
に入射光部と受光部を設ける以外は全側面を光反射層で
覆うことである。このような構造を採ることにより、入
射光部より入射した光は図面に示すように反射層で何度
となく反射をくりかえした後、受光部から出てゆくこと
になり、結果として光伝導路を非常に長くすることがで
きるため、小さな板状体にもかかわらず、光伝導媒体と
して非常に長い光ファイバーを使用した場合と同様の効
果を奏するものである。
The photoconductive medium in the present invention may be a conventional optical fiber, but a particularly preferred photoconductive medium is a plate having a flat surface or a curved surface, and at least one side surface of the plate is a light reflecting layer. It has a covered structure. Particularly preferably, as shown in the drawing, all side surfaces are covered with a light reflecting layer except that an incident light portion and a light receiving portion are provided in one portion on one side surface. By adopting such a structure, the light incident from the incident light section is repeatedly reflected by the reflection layer as shown in the drawing, and then goes out from the light receiving section. Since it can be made very long, it has the same effect as the case where an extremely long optical fiber is used as a photoconductive medium in spite of a small plate-shaped body.

光伝導媒体としては、ガラス、石英等の無機物や、ポ
リメチルメタクリレート(PMMA)、ポリメチルペンラン
等の有機重合体等、従来公知の光学用素材が使用でき
る。
As the photoconductive medium, conventionally known optical materials such as inorganic substances such as glass and quartz and organic polymers such as polymethylmethacrylate (PMMA) and polymethylpenlane can be used.

又、板状体の形状は必ずしも直方体である必要はな
く、前述の本発明の趣旨を逸脱しないかぎり種々の変形
が可能である。
Further, the shape of the plate-like body does not necessarily have to be a rectangular parallelepiped, and various modifications can be made without departing from the gist of the present invention.

板状体への入射光部と受光部の取付は第1図に示すよ
うに板状体の側面に取付けることができるが、たとえ
ば、第2〜4図に示すように平面上に光結合部材たとえ
ばプリズムを介して入射光部と受光部を形成することも
できるし、第5図に示すように板状体それ自体の端部を
プリズム状にカットして入射光部、受光部とすることも
できる。
The incident light section and the light receiving section can be attached to the side surface of the plate-shaped body as shown in FIG. 1, but for example, as shown in FIGS. For example, the incident light portion and the light receiving portion can be formed via a prism, or the end portion of the plate-shaped body itself can be cut into a prism shape to form the incident light portion and the light receiving portion as shown in FIG. You can also

又、検知層材料の屈折率は1.4以上であり、これより
も屈折率の高い光伝導媒体を選び出すことは容易である
(例えば、ホウケイ酸ガラス、弗化物ガラス)。
Also, the refractive index of the sensing layer material is 1.4 or more, and it is easy to select a photoconductive medium having a refractive index higher than this (for example, borosilicate glass, fluoride glass).

〔検知層〕[Detection layer]

検知層は気体中の特定物質と接触したときそれと選択
的に反応して光伝導媒体の光透過能力を測定可能なほど
に変化させる物質すなわち検知用物質と不揮発性水溶性
液状有機化合物とを含む組成物を、該板状体の上下面の
少くとも1面、とくに好ましくは両面に層として形成す
ればよい。
The sensing layer contains a substance that selectively reacts with a specific substance in a gas to selectively change the light transmission ability of the photoconductive medium, that is, a sensing substance and a non-volatile water-soluble liquid organic compound. The composition may be formed as a layer on at least one surface, and particularly preferably both surfaces, of the upper and lower surfaces of the plate-shaped body.

検知層の形成には樹脂バインダを用いるのが適当であ
り、またこの樹脂バインダとしては前記不揮発性水溶性
液状化合物の存在を均一にするために水溶性バインダが
好ましく、でんぷん、セルロース、コラーゲン等の天然
高分子またはPVA、ポリアクリルアミド、ポリエチレン
グリコール、ポリエチレンオキサイドなどの合成高分子
が適当である。
It is appropriate to use a resin binder for forming the detection layer, and as the resin binder, a water-soluble binder is preferable in order to make the presence of the non-volatile water-soluble liquid compound uniform, and starch, cellulose, collagen, etc. Natural polymers or synthetic polymers such as PVA, polyacrylamide, polyethylene glycol, polyethylene oxide are suitable.

〔光反射層〕[Light reflection layer]

光反射層は、Al,Au,Agなどの無機物を真空蒸着あるい
は銀鏡反応させて形成することができる。さらに具体的
には入射光部、受光部など光反射層を形成したくない部
分はマスクしておき、金属蒸着をするのが好ましい。
The light reflecting layer can be formed by vacuum vapor deposition or silver mirror reaction of an inorganic substance such as Al, Au, and Ag. More specifically, it is preferable to mask the portions such as the incident light portion and the light receiving portion where the light reflection layer is not formed and deposit metal.

〔気体中の特定物質がアンモニアである場合について〕[When the specific substance in the gas is ammonia]

アンモニアに対する検知物質としては特公昭58-48850
号公報に開示されているいずれの物質も使用できるが、
とくに下記(i)〜(iii)のものが好ましい。
Japanese Patent Publication Sho 58-48850 as a substance to detect ammonia
Although any of the substances disclosed in the publication can be used,
The following (i) to (iii) are particularly preferable.

(i) pH指示薬の利用 この場合は、指示薬と適切な緩衝液とを組合せて使用
するのが好ましい。例えば、特定のpHを維持できる緩衝
液とそのpHで呈色反応を示す指示薬とを高分子水溶液の
形で光伝導媒体である板状体上にスピンコートする。
(I) Utilization of pH indicator In this case, it is preferable to use the indicator and a suitable buffer in combination. For example, a buffer solution capable of maintaining a specific pH and an indicator showing a color reaction at that pH are spin-coated in the form of an aqueous polymer solution on a plate-like body which is a photoconductive medium.

緩衝液と指示薬等の組合せ例を第1表に示す。 Table 1 shows an example of a combination of a buffer solution and an indicator.

使用する光は任意であるが500〜700nmの範囲で吸光度
が変化する指示薬を使用すると検知層の複素屈折率が50
0〜700nmの波長に対して変化する。そして、この程度の
波長の光だと光源としてLEDのような安価で小型の光源
ですますことができる。
The light used is arbitrary, but when an indicator whose absorbance changes in the range of 500 to 700 nm is used, the complex refractive index of the detection layer is 50
It varies for wavelengths from 0 to 700 nm. And, with light of such a wavelength, it is possible to use an inexpensive and small light source such as an LED as the light source.

(ii) 検知物質としてインドフェノールまたはインド
チモールを生成する物質群の利用 好ましい組合せ例 フェノール+クロラミンT α−ナフトール+次亜塩素酸ナトリウム チモール+クロラミンT チモール+次亜塩素酸ナトリウム が使用でき、これらはアンモニアの存在で青色に着色す
る。
(Ii) Utilization of a group of substances that generate indophenol or indothymol as a detection substance Preferable combination example Phenol + chloramine T α-naphthol + sodium hypochlorite thymol + chloramine T thymol + sodium hypochlorite can be used. Turns blue in the presence of ammonia.

〔気体中の特定物質が炭素ガスの場合〕[When the specific substance in the gas is carbon gas]

広い意味のpH指示薬を利用することができる。その具
体的態様については、アンモニアの場合と較べて酸とア
ルカリという点で反対である以外はほぼ同様であるの
で、省略する。
A wide range of pH indicators are available. Its specific embodiment is almost the same as that of ammonia except that it is the same in terms of acid and alkali, and is omitted.

実施例1 光伝導媒体としてBK−7板状体(10mm×10mm×0.3m
m)を用い、入射光源としてLED(波長660nm)、受光部
としてシリコンフォトダイオードを用い、媒体の1側面
に入射光部、受光部を設定した〔第1図(A)と同じ構
成〕。
Example 1 As a photoconductive medium, a BK-7 plate (10 mm × 10 mm × 0.3 m)
m), an LED (wavelength 660 nm) was used as an incident light source, a silicon photodiode was used as a light receiving portion, and an incident light portion and a light receiving portion were set on one side surface of the medium [same configuration as in FIG. 1 (A)].

光伝導媒体側面の真空蒸着により入、受光部、及び、
両広面をマスクして、2000Åの厚みのAl反射層を形成し
た。
Light-receiving part, and light-receiving part by vacuum deposition on the side of the photoconductive medium,
Both wide surfaces were masked to form an Al reflective layer having a thickness of 2000Å.

つぎに、BTB 1wt% ポリアクリルアミド 4wt% 水 44wt% エタノール 50wt% グリセリン 1wt% よりなるコーティング液をつくり、これをスピンコート
(3000rpm.2秒)によりBK−7の平面上に検知層を形成
した。
Next, a coating solution containing 1 wt% of BTB, 4 wt% of polyacrylamide, 44 wt% of water, 50 wt% of ethanol, and 1 wt% of glycerin was prepared, and this was spin-coated (3000 rpm.2 seconds) to form a detection layer on the flat surface of BK-7.

この検知層はグリセリンの使用によりある程度の水分
を保持することができる。
This sensing layer can retain a certain amount of water by using glycerin.

実施例2 コーティング液として、次の組成のものを使用する以
外は実施例1と同様である。
Example 2 The same as Example 1 except that the coating liquid having the following composition was used.

コーティング液の組成 BTB 1wt% ポリアクリルアミド 4wt% 水 39wt% エタノール 50wt% グリセリン 6wt% 対照例 コーティング液としてグリセリンを含まない下記の組
成のものを用いるほかは実施例1と同様である。
Composition of coating liquid BTB 1 wt% Polyacrylamide 4 wt% Water 39 wt% Ethanol 50 wt% Glycerin 6 wt% Control example The same as Example 1 except that the following composition containing no glycerin was used as the coating liquid.

コーティング液の組成 BTB 1wt% ポリアクリルアミド 4wt% 水 45wt% エタノール 50wt% グリセリン 0wt%Composition of coating liquid BTB 1wt% Polyacrylamide 4wt% Water 45wt% Ethanol 50wt% Glycerin 0wt%

【図面の簡単な説明】[Brief description of drawings]

第1図(A)は、本発明装置に使用する光伝導媒体素子
の1例を示す上面図である。第1図(B)は、その断面
図である。第2図は、本発明装置に使用する光伝導媒体
素子に対する入射光部、受光部の取付態様を示す1例で
ある。第3〜5図は、その変形例を示す。第6図は対照
例に較べて、実施例1,2が鋭敏な反応を示すことを明ら
かにしたグラフである。 1……板状体状光伝導媒体、2……反射層 3……検知層、4……入射光部 5……受光部、6……光 7……エバネッシェント波、8……プリズム 9……光源、10……測定装置
FIG. 1 (A) is a top view showing an example of a photoconductive medium element used in the device of the present invention. FIG. 1 (B) is a sectional view thereof. FIG. 2 is an example showing how the incident light section and the light receiving section are attached to the photoconductive medium element used in the device of the present invention. 3 to 5 show the modified examples. FIG. 6 is a graph clarified that Examples 1 and 2 show a sensitive reaction as compared with the control example. DESCRIPTION OF SYMBOLS 1 ... Plate-shaped photoconductive medium, 2 ... Reflection layer 3 ... Detection layer, 4 ... Incident light part 5 ... Light receiving part, 6 ... Light 7 ... Evanescent wave, 8 ... Prism 9 ... … Light source, 10… Measuring device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−70694(JP,A) 特開 昭52−98545(JP,A) 特表 昭61−500631(JP,A) 国際公開第86/05589(WO,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-51-70694 (JP, A) JP-A-52-98545 (JP, A) Special table JP-A-6500631 (JP, A) International publication No. 86 / 05589 (WO, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】気体中の特定物質と接触したときそれと選
択的に反応して光伝導媒体の光透過能力を測定可能なほ
どに変化させる検知用物質を含有する検知層を該光伝導
媒体の外表面に有した光伝導媒体と、この光伝導媒体内
へ光を透過させるように配置された光源と、該光伝導媒
体から出た光を測定するための手段を備えた、気体中の
特定物質を検知するための光学的検知装置において、該
検知層中に不揮発性水溶性液状有機化合物を含有させた
ことを特徴とする気体検知装置。
1. A sensing layer containing a sensing substance that, when contacted with a specific substance in a gas, selectively reacts with it to measurably change the light transmission capacity of the photoconductive medium. Identification in gas, comprising a photoconductive medium on the outer surface, a light source arranged to transmit light into the photoconductive medium, and means for measuring the light emitted from the photoconductive medium. An optical detection device for detecting a substance, wherein the detection layer contains a non-volatile water-soluble liquid organic compound.
【請求項2】不揮発性水溶性液状有機化合物が多価アル
コール、不揮発性水溶性エステル及び不揮発性水溶性エ
ーテルからなる群から選択される少なくとも1種の化合
物であることを特徴とする特許請求の範囲第1項記載の
気体検知装置。
2. The non-volatile water-soluble liquid organic compound is at least one compound selected from the group consisting of polyhydric alcohols, non-volatile water-soluble esters and non-volatile water-soluble ethers. A gas detection device according to claim 1.
【請求項3】光伝導媒体が平面又は曲面をもつ板状体に
より形成されており、該板状体の側面のうち少なくとも
1つが光反射層で覆われていることを特徴とする特許請
求の範囲第1項記載の気体検知装置。
3. The photoconductive medium is formed by a plate-like body having a flat surface or a curved surface, and at least one of the side surfaces of the plate-like body is covered with a light reflecting layer. A gas detection device according to claim 1.
【請求項4】気体中の特定物質と接触したとき、それと
選択的に反応して光伝導媒体の光透過能力を測定可能な
ほどに変化させる検知用物質を含有する検知層を前記板
状体の表裏の少くとも1面に形成することを特徴とする
特許請求の範囲第1項記載の気体検知装置。
4. The plate-like body having a detection layer containing a detection substance which, when brought into contact with a specific substance in a gas, selectively reacts with the substance to change the light transmission ability of the photoconductive medium to a measurable amount. The gas detection device according to claim 1, wherein the gas detection device is formed on at least one of the front and back sides of the above.
【請求項5】光伝導媒体が平面又は曲面をもつ板状体に
より形成されており、該板状体の1つの同一側面に入射
光部と受光部を設けこの部分を除いた全側面に光反射層
を設け、あるいは全側面に光反射層を設け光結合部材を
該板状体の平面又は曲面に設け入射光部、受光部とした
ことを特徴とする特許請求の範囲第1項記載の気体検知
装置。
5. A photoconductive medium is formed by a plate-shaped body having a flat surface or a curved surface, and an incident light section and a light-receiving section are provided on one and the same side surface of the plate-shaped body, and light is emitted on all side surfaces except this portion. 2. A reflection layer is provided, or a light reflection layer is provided on all side surfaces, and an optical coupling member is provided on a flat surface or a curved surface of the plate-like member to serve as an incident light portion and a light receiving portion. Gas detector.
JP11864287A 1987-05-14 1987-05-14 Gas detector Expired - Fee Related JP2506761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11864287A JP2506761B2 (en) 1987-05-14 1987-05-14 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11864287A JP2506761B2 (en) 1987-05-14 1987-05-14 Gas detector

Publications (2)

Publication Number Publication Date
JPS63282636A JPS63282636A (en) 1988-11-18
JP2506761B2 true JP2506761B2 (en) 1996-06-12

Family

ID=14741599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11864287A Expired - Fee Related JP2506761B2 (en) 1987-05-14 1987-05-14 Gas detector

Country Status (1)

Country Link
JP (1) JP2506761B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834496A (en) * 1987-05-22 1989-05-30 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber sensors for chemical detection
US5125742A (en) * 1990-07-25 1992-06-30 General Analysis Corporation Long path gas absorption cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2550420A1 (en) * 1974-11-11 1976-05-13 Monsanto Co OPTICAL ANALYSIS EQUIPMENT AND METHOD OF ANALYSIS
JPS5848851B2 (en) * 1976-02-10 1983-10-31 モンサント・カンパニ− Organic vapor detection device and method

Also Published As

Publication number Publication date
JPS63282636A (en) 1988-11-18

Similar Documents

Publication Publication Date Title
CN1940529B (en) Biochemical sensor chip of optical waveguide type and manufacturing method therefor
US6535658B1 (en) Hydrogen sensor apparatus and method of fabrication
CN102066997B (en) Method for manufacturing optical waveguide, optical waveguide, and sensor arrangement
US7842243B2 (en) Chemical sensor with an indicator dye
JPS61292044A (en) Optical waveguide biosensor
GB2197065A (en) Optical sensor device
GB2256477A (en) Optical sensor with dielectric resonant cavity
US6798521B2 (en) Robust integrated surface plasmon resonance sensor
WO2001090728A1 (en) Differential spr sensor and measuring method using it
WO1993013418A1 (en) Fluorescent immunity measuring instrument
JP2009025199A (en) Optical fiber type surface plasmon humidity sensor, surface plasmon humidity sensor, optical fiber type humidity sensor, and humidity measuring apparatus
JPS59105517A (en) Fiber optic sensor for measuring physical quantity
US6462808B2 (en) Small optical microphone/sensor
JP2506761B2 (en) Gas detector
US5245410A (en) Optical fiber sensor based on the excitation of surface plasmon
JP4673714B2 (en) Optical waveguide type biochemical sensor chip and manufacturing method thereof
US20090202193A1 (en) Waveguide core and biosensor
Otsuki et al. A novel fiber-optic gas sensing arrangement based on an air gap design and an application to optical detection of humidity
JP4823330B2 (en) Optical waveguide type biochemical sensor chip and measuring method for measuring object
EP1293768A3 (en) Sensor utilizing attenuated total reflection
JP4076902B2 (en) Optical biosensor
JP5777277B2 (en) Optical waveguide type biochemical sensor chip
US6360031B1 (en) Optical waveguide sensors
JPH11223597A (en) Optical-fiber surface plasmon sensor
Dahne et al. Detection of antibody-antigen reactions at a glass-liquid interface: A novel fibre-optic sensor concept

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees