[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2565112B2 - Method for forming laminated structure of semiconductor and method for forming semiconductor device using the same - Google Patents

Method for forming laminated structure of semiconductor and method for forming semiconductor device using the same

Info

Publication number
JP2565112B2
JP2565112B2 JP5264610A JP26461093A JP2565112B2 JP 2565112 B2 JP2565112 B2 JP 2565112B2 JP 5264610 A JP5264610 A JP 5264610A JP 26461093 A JP26461093 A JP 26461093A JP 2565112 B2 JP2565112 B2 JP 2565112B2
Authority
JP
Japan
Prior art keywords
type
semiconductor
substrate
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5264610A
Other languages
Japanese (ja)
Other versions
JPH07122550A (en
Inventor
陽子 内田
義昭 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5264610A priority Critical patent/JP2565112B2/en
Publication of JPH07122550A publication Critical patent/JPH07122550A/en
Application granted granted Critical
Publication of JP2565112B2 publication Critical patent/JP2565112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Light Receiving Elements (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体の積層構造の形
成方法及びその積層構造を用いて製造する半導体装置の
形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a semiconductor laminated structure and a method for forming a semiconductor device manufactured by using the laminated structure.

【0002】[0002]

【従来の技術】従来、半導体積層構造を形成するため
に、基板となる半導体表面の汚染物除去を目的とし、前
処理として、基板の洗浄、表面層のエッチングを行なっ
ている。その後、通常、酸化膜等の保護膜を形成し、積
層構造形成前にこれらの保護膜を除去する手法を取って
いる。酸化膜を保護膜として用いた場合、加熱処理によ
り酸化膜が分解するため、真空中で加熱処理を行なうこ
とにより、半導体清浄表面が得られ、結晶性のよい半導
体積層構造が形成されることが知られている。しかし、
Siを基板として用いた場合、酸化シリコンの分解温度
が1200℃程度であるため、通常は1100℃、良く
制御された数10Å程度の薄い酸化膜を用いた場合でも
800℃、15分程度の高温熱処理が必要となる。な
お、これに関連するものとして、例えば、ジャーナル・
オブ・エレクトロケミカル・ソサエティー,133(198
6)第666頁〜第671頁(J.Electrochem.Soc.133(198
6)pp666〜671が挙げられる。
2. Description of the Related Art Conventionally, in order to form a semiconductor laminated structure, a substrate is cleaned and a surface layer is etched as a pretreatment for the purpose of removing contaminants on the semiconductor surface which becomes a substrate. After that, usually, a protective film such as an oxide film is formed, and the protective film is removed before the laminated structure is formed. When the oxide film is used as the protective film, the oxide film is decomposed by the heat treatment. Therefore, by performing the heat treatment in vacuum, a clean semiconductor surface can be obtained and a semiconductor laminated structure with good crystallinity can be formed. Are known. But,
When Si is used as a substrate, the decomposition temperature of silicon oxide is about 1200 ° C, so it is usually 1100 ° C, and even if a well-controlled thin oxide film of several tens of liters is used, the temperature is about 800 ° C for about 15 minutes. Heat treatment is required. In addition, as a thing related to this, for example, a journal
Of Electrochemical Society, 133 (198
6) 666 to 671 (J. Electrochem. Soc. 133 (198
6) pp666 to 671.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術は、高
温熱処理の採用し難い加工マスク等のパターンで覆われ
た半導体基板、拡散し易い不純物を添加した半導体基板
には用いることができないという問題があった。
The above-mentioned conventional technique cannot be used for a semiconductor substrate covered with a pattern such as a processing mask which is difficult to adopt high temperature heat treatment, or a semiconductor substrate to which impurities that easily diffuse are added. was there.

【0004】本発明の目的は、加工マスク等のパターン
で覆われた半導体基板や不純物を拡散した半導体基板等
の表面を清浄化し、その上に積層構造を形成する方法を
提供することにある。本発明の他の目的は、その積層構
造を用いて製造する半導体装置の形成方法を提供するこ
とにある。
An object of the present invention is to provide a method of cleaning the surface of a semiconductor substrate covered with a pattern such as a processing mask or a semiconductor substrate having impurities diffused, and forming a laminated structure thereon. Another object of the present invention is to provide a method for forming a semiconductor device manufactured by using the laminated structure.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体の積層構造の形成方法は、第1の半
導体からなる基板をフッ酸水溶液に浸し、水洗し、真空
中で加熱処理を行なう工程と、この基板上に、第1の半
導体と異なる材料の第2の半導体を積層する工程を行な
うものである。
In order to achieve the above object, a method for forming a laminated structure of a semiconductor according to the present invention is such that a substrate made of a first semiconductor is dipped in an aqueous solution of hydrofluoric acid, washed with water, and heated in vacuum. The step of performing the treatment and the step of laminating a second semiconductor made of a material different from that of the first semiconductor on this substrate are performed.

【0006】上記加熱処理は、350℃から550℃の
範囲の温度で行なうことが好ましく、400℃から50
0℃の範囲の温度で行なうことがより好ましい。また、
フッ酸水溶液は、0.5%から10%の範囲とすること
が好ましく、1%から10%の範囲とすることがより好
ましい。10%を越えた濃度で処理すると、清浄にした
第1の半導体の基板の表面が荒れやすく、また、低濃度
で処理すると処理時間が長くなる。また、第1の半導体
からなる基板は、第3の半導体からなる基板上に形成さ
れた積層構造であってもよい。
The above heat treatment is preferably carried out at a temperature in the range of 350 ° C. to 550 ° C., and 400 ° C. to 50 ° C.
More preferably, it is carried out at a temperature in the range of 0 ° C. Also,
The hydrofluoric acid aqueous solution is preferably in the range of 0.5% to 10%, more preferably in the range of 1% to 10%. If the concentration is higher than 10%, the surface of the cleaned first semiconductor substrate tends to be rough, and if the concentration is low, the treatment time is long. Further, the substrate made of the first semiconductor may have a laminated structure formed on the substrate made of the third semiconductor.

【0007】第1の半導体は、Siであること、第2の
半導体は、III−V族化合物半導体であることが好まし
い。III−V族化合物半導体としては、GaAs、Al
As、InAs、GaP、GaSb、InP等又はこれ
らの混晶、例えばAlGaAs、InGaAs等を用い
ることができる。
The first semiconductor is preferably Si, and the second semiconductor is preferably a III-V group compound semiconductor. III-V group compound semiconductors include GaAs and Al
As, InAs, GaP, GaSb, InP or the like or a mixed crystal thereof such as AlGaAs or InGaAs can be used.

【0008】さらに、上記他の目的を達成するために、
本発明の半導体装置の製造方法は、上記の半導体の積層
構造の形成方法により半導体の積層構造を形成し、少な
くとも第2の半導体の積層構造に半導体素子を形成する
ものである。
Furthermore, in order to achieve the above-mentioned other objects,
A semiconductor device manufacturing method of the present invention is to form a semiconductor laminated structure by the above-described method for forming a semiconductor laminated structure, and form a semiconductor element in at least a second semiconductor laminated structure.

【0009】[0009]

【作用】半導体基板表面をフッ酸水溶液に曝すことによ
り、表面に形成されている半導体酸化膜を除去し、ま
た、酸化膜上に付着していた汚染物も同時に除去でき
る。さらに、表面の原子にフッ酸水溶液中の水素が付着
又は結合するために半導体表面が不活性化される。真空
中での加熱処理により、酸化物が分解するのではなく、
水素が遊離するため、低温で半導体清浄面を露出させる
ことができる。
By exposing the surface of the semiconductor substrate to an aqueous solution of hydrofluoric acid, the semiconductor oxide film formed on the surface can be removed, and contaminants attached to the oxide film can be removed at the same time. Further, the hydrogen in the hydrofluoric acid aqueous solution is attached or bonded to the surface atoms, so that the semiconductor surface is inactivated. Heat treatment in vacuum does not decompose oxides,
Since hydrogen is released, the semiconductor clean surface can be exposed at a low temperature.

【0010】また、半導体基板が、(100)面方位を
持ったSiの場合、上記の処理を行なうと500℃付近
で(2×1)表面構造が形成される。この上にGaAs
等の有極性化合物半導体膜を成長した場合、同一層内に
2種類の原子が存在するアンチ フェーズ ドメインが
形成されることはなくなり、結晶性のよいシングルフェ
ーズ ドメインの半導体層の形成が可能となる。
When the semiconductor substrate is Si having a (100) plane orientation, a (2 × 1) surface structure is formed at around 500 ° C. by the above treatment. GaAs on this
When a polar compound semiconductor film, such as, is grown, an anti-phase domain in which two types of atoms exist is not formed in the same layer, and it is possible to form a single-phase domain semiconductor layer with good crystallinity. .

【0011】[0011]

【実施例】以下、実施例により、本発明を説明する。 実施例1 図1は、本発明の一実施例を説明するための光電変換装
置の模式的断面図である。この装置は、p型Si基板
1、高濃度n型Si層2、高濃度p型Si層3からな
り、Siのpn構造を持つ光電変換素子と、高濃度p型
GaAs層4、p型GaAs層5、n型GaAs層6か
らなり、GaAsのpn構造を持つ光電変換素子から形
成されるタンデム型の光電変換装置である。
The present invention will be described below with reference to examples. Example 1 FIG. 1 is a schematic sectional view of a photoelectric conversion device for explaining an example of the present invention. This device comprises a p-type Si substrate 1, a high-concentration n-type Si layer 2, and a high-concentration p-type Si layer 3, a photoelectric conversion element having a Si pn structure, a high-concentration p-type GaAs layer 4, and a p-type GaAs. This is a tandem type photoelectric conversion device including a layer 5 and an n-type GaAs layer 6 and formed of a photoelectric conversion element having a pn structure of GaAs.

【0012】この光電変換装置は、図の上部から入射し
た光がGaAs光電変換素子中で吸収され、pn接合部
12で電流を発生させる。発生した電流は、Si光電変
換素子を通ってp型電極10に流れ込む。また、GaA
s光電変換素子中で吸収されなかった波長範囲の光はS
i光電変換素子中で吸収され、pn接合部11で電流を
発生させる。この時、p型GaAs層5、n型GaAs
層6からなるGaAs光電変換部で発生した電流が電極
に到達するために、GaAsとSiの界面13は電気的
に接触している必要がある。また、GaAs光電変換素
子形成前にSi光電変換素子部が形成されていれば、素
子作製工程数が削減でき、また、工程中の劣化もなくな
る。
In this photoelectric conversion device, the light incident from the upper part of the figure is absorbed in the GaAs photoelectric conversion element, and a current is generated at the pn junction 12. The generated current flows into the p-type electrode 10 through the Si photoelectric conversion element. Also, GaA
s Light in the wavelength range not absorbed in the photoelectric conversion element is S
It is absorbed in the i photoelectric conversion element and generates a current at the pn junction 11. At this time, p-type GaAs layer 5, n-type GaAs
The interface 13 between GaAs and Si needs to be in electrical contact with each other in order for the current generated in the GaAs photoelectric conversion portion formed of the layer 6 to reach the electrode. Further, if the Si photoelectric conversion element portion is formed before the GaAs photoelectric conversion element is formed, the number of element manufacturing steps can be reduced, and deterioration during the steps is eliminated.

【0013】本発明を用いれば、GaAs積層構造を形
成する前のSi基板洗浄を低温で行なえることから、S
i基板中のp型、n型不純物が結晶層に拡散してSi光
電変換素子の構造、特性を損なうことがなくなり、さら
にGaAsの結晶性を向上させることができるため、S
iとの電気的接合が良好な光電変換装置を作製できる。
According to the present invention, the Si substrate can be cleaned at a low temperature before the GaAs laminated structure is formed.
Since the p-type and n-type impurities in the i substrate are not diffused into the crystal layer to impair the structure and characteristics of the Si photoelectric conversion element, the crystallinity of GaAs can be further improved.
A photoelectric conversion device having a good electrical connection with i can be manufactured.

【0014】以下に、この光電変換装置の作製法を説明
する。なお、本明細書において、結晶面又は方位を表す
式として、表1に例示したように、マイナス記号を番号
の上に記載せずに前に記載することとする。
A method of manufacturing this photoelectric conversion device will be described below. In addition, in the present specification, as a formula representing a crystal plane or an orientation, as illustrated in Table 1, a minus sign is not described above a number but described before.

【0015】[0015]

【表1】 [Table 1]

【0016】p型Si基板(抵抗率0.3〜1Ωcm、
厚さ0.4mm)1に、900℃でP(りん)を拡散
し、厚さ0.3〜0.5μmの高濃度n型Si層2を形
成する。その後、裏面の高濃度n型層をエッチングし、
Alを蒸着してp型電極10を形成し、750℃で熱処
理することにより、厚さ0.3〜0.5μmの高濃度p
型Si層3を形成する。この時、Si基板は(100)
面方位を持ち、〈110〉方向に2°オフ傾斜させたも
のを使用する。上記のように作製したSi基板を有機溶
剤で洗浄し、水洗した後、5%フッ酸水溶液中に30秒
浸して表面の自然酸化膜を除き、その後、10秒水洗
し、ただちに分子線結晶成長装置の真空チャンバーに導
入する。
P-type Si substrate (resistivity 0.3 to 1 Ωcm,
P (phosphorus) is diffused at a temperature of 900 ° C. to form a high-concentration n-type Si layer 2 having a thickness of 0.3 to 0.5 μm. After that, the high concentration n-type layer on the back surface is etched,
By depositing Al to form the p-type electrode 10 and heat-treating at 750 ° C., a high concentration p of 0.3 to 0.5 μm is obtained.
The type Si layer 3 is formed. At this time, the Si substrate is (100)
It has a plane orientation and is tilted 2 ° off in the <110> direction. The Si substrate manufactured as described above is washed with an organic solvent, washed with water, immersed in a 5% aqueous solution of hydrofluoric acid for 30 seconds to remove the natural oxide film on the surface, and then washed with water for 10 seconds to immediately grow a molecular beam crystal. Introduce into the vacuum chamber of the device.

【0017】この時、反射高エネルギー電子線回析法に
よるパターン(以下、RHEEDパターンという)は、
バルク構造と同じ周期を持つことを表す(1×1)パタ
ーンを示す。これは、表面Si原子が水素原子と結合し
ているため、表面原子の再配列が置きていないことを示
す。その後、500℃まで加熱すると、RHEEDパタ
ーンは(2×1)再配列構造パターンに変化する。この
加熱は、350℃から550℃程度の温度範囲で行なえ
ば同様の結果が得られる。
At this time, the pattern (hereinafter referred to as RHEED pattern) by the reflection high energy electron diffraction method is
The (1x1) pattern showing having the same period as a bulk structure is shown. This indicates that the surface Si atoms are bonded to hydrogen atoms, and therefore the rearrangement of the surface atoms is not placed. After that, when heated to 500 ° C., the RHEED pattern changes into a (2 × 1) rearrangement structure pattern. If this heating is performed in a temperature range of about 350 ° C. to 550 ° C., similar results can be obtained.

【0018】(2×1)パターンを確認した後、高濃度
p型GaAs層(1×1019cm-3)4を100Å、p
型GaAs層(8×1016cm-3)5を2.5μm、高
濃度n型GaAs層(3×1018cm-3)6を0.5μ
mを順次積層する。さらに、その上に、窓層としてn型
Al0.7Ga0.3As層(3×1018cm-3)7を300
Å、電極接続部として高濃度n型GaAs層(5×10
18cm-3)8を1000Å積層する。その後、n型電極
部だけを残して、高濃度n型GaAs層8をエッチング
し、n型電極9及びp型電極10を所定のパターンにす
る。
After confirming the (2 × 1) pattern, the high-concentration p-type GaAs layer (1 × 10 19 cm −3 ) 4 is set to 100 Å, p
Type GaAs layer (8 × 10 16 cm −3 ) 5 is 2.5 μm, and high concentration n-type GaAs layer (3 × 10 18 cm −3 ) 6 is 0.5 μm.
m are sequentially laminated. Furthermore, an n-type Al 0.7 Ga 0.3 As layer (3 × 10 18 cm −3 ) 7 as a window layer is further formed thereon.
Å High concentration n-type GaAs layer (5 × 10
18 cm −3 ) 8 is laminated by 1000Å. After that, the high-concentration n-type GaAs layer 8 is etched leaving only the n-type electrode portion to form the n-type electrode 9 and the p-type electrode 10 in a predetermined pattern.

【0019】なお、上記p型Si基板1をn型に、高濃
度n型Si層2を高濃度p型に、高濃度p型Si層3を
高濃度n型に、高濃度p型GaAs層4を高濃度n型
に、p型GaAs層5をn型に、n型GaAs層6をp
型に、n型Al0.7Ga0.3As層7をp型に、高濃度n
型GaAs層8を高濃度p型に、n型電極9をp型に、
p型電極10をn型にしても同様に効果がある。
The p-type Si substrate 1 is an n-type, the high-concentration n-type Si layer 2 is a high-concentration p-type, the high-concentration p-type Si layer 3 is a high-concentration n-type, and the high-concentration p-type GaAs layer. 4 is a high-concentration n-type, p-type GaAs layer 5 is an n-type, and n-type GaAs layer 6 is a p-type.
The n-type Al 0.7 Ga 0.3 As layer 7 into the p-type and the high concentration n
Type GaAs layer 8 of high concentration p-type, n-type electrode 9 of p-type,
Even if the p-type electrode 10 is an n-type, the same effect can be obtained.

【0020】また、p型Si基板上に形成する第2の半
導体としてGaAsを用いたが、これに変えて、Al
0.3Ga0.7As、In0.5Ga0.5As、GaP又はGa
Sbを用いても同様の結果が得られた。ただし、In
0.5Ga0.5Asを用いたときは光の入射方向を逆にする
必要があった。
Further, GaAs was used as the second semiconductor formed on the p-type Si substrate, but instead of this, Al is used.
0.3 Ga 0.7 As, In 0.5 Ga 0.5 As, GaP or Ga
Similar results were obtained using Sb. However, In
When 0.5 Ga 0.5 As was used, it was necessary to reverse the incident direction of light.

【0021】実施例2 図2は、本発明の他の実施例を説明するための光電変換
装置の模式的断面図である。この装置は、n型Si基板
21上にGaAsのpn構造を持つ光電変換素子が設け
られた構造である。n型Si基板21を加工用マスク
(図示せず)で被うことにより形成したピラミッド状の
n型GaAs層23上に、n型GaAs層23´、p型
GaAs層24からなるGaAsのpn接合が形成さ
れ、図上部から入射した光を、ピラミッド内で多重反射
させることができる。このことにより、pn接合で発生
する電流が倍増し、光電変換効率を上げることができ
る。本発明を用いれば、GaAs積層構造を形成する前
のSi基板洗浄を低温で行なえることから、加工マスク
からの汚染を軽減することができ、さらに、GaAsの
結晶性を向上させることができるため、Siとの電気的
接合が良好な光電変換装置を作製できる。
Embodiment 2 FIG. 2 is a schematic sectional view of a photoelectric conversion device for explaining another embodiment of the present invention. This device has a structure in which a photoelectric conversion element having a pn structure of GaAs is provided on an n-type Si substrate 21. A GaAs pn junction composed of an n-type GaAs layer 23 ′ and a p-type GaAs layer 24 is formed on a pyramidal n-type GaAs layer 23 formed by covering the n-type Si substrate 21 with a processing mask (not shown). Is formed, the light incident from the upper part of the figure can be multiple-reflected in the pyramid. As a result, the current generated at the pn junction is doubled, and the photoelectric conversion efficiency can be increased. According to the present invention, since the Si substrate can be cleaned at a low temperature before forming the GaAs laminated structure, it is possible to reduce the contamination from the processing mask and further improve the crystallinity of GaAs. , A photoelectric conversion device having good electrical connection with Si can be manufactured.

【0022】以下にこの光電変換装置の作製法を説明す
る。図3に示すように、(001)面方位を持ち、〈1
10〉方向に2°オフしたn型Si基板21(比抵抗
0.5〜2Ωcm)上に、熱酸化によりSiO2膜22
を3000Å形成し、フォトリソグラフ法により、〈1
10〉〈−100〉を辺とする四角形の開口部を形成す
る。開口部の長さ、開口部間の間隔は入射光量あるいは
SiO2膜領域を除去して形成される電極(図2の電極
27)の比抵抗に応じて変えることができる。ここで
は、開口部の長さを縦横とも50μm、開口部の間隔を
10μmとした。
A method of manufacturing this photoelectric conversion device will be described below. As shown in FIG. 3, it has a (001) plane orientation and <1
On the n-type Si substrate 21 (specific resistance 0.5 to 2 Ωcm) which is turned off by 2 ° in the 10> direction, the SiO 2 film 22 is formed by thermal oxidation.
Is formed by 3000 liters, and <1
10> A square opening having a side of <-100> is formed. The length of the openings and the interval between the openings can be changed according to the amount of incident light or the specific resistance of the electrode (electrode 27 in FIG. 2) formed by removing the SiO 2 film region. Here, the length of the openings is 50 μm in both length and width, and the distance between the openings is 10 μm.

【0023】上記方法で加工用マスクを形成したn型S
i基板21を有機溶剤で洗浄し、水洗した後、5%フッ
酸水溶液中に30秒浸し、その後、10秒水洗し、ただ
ちに有機金属気相結晶成長装置に導入する。この時、S
i上のRHEEDパターンを観察すれば、実施例1と同
様に(1×1)パターンが観察される。その後、500
℃まで加熱し、(2×1)が観察されることを確認した
後、ドーピング量2×1017cm-3のn型GaAs層2
3を成長させる。図3で示すように、n型GaAs層2
3は、SiO2膜22上には成長せず、Si上(開口
部)のみに成長し、しかも、ピラミッド状に形成され
る。その後、SiO2膜22を除去する。なお、加熱
は、350℃から550℃程度の温度範囲で行なえば同
様の結果が得られる。
An n-type S having a processing mask formed by the above method
The i-substrate 21 is washed with an organic solvent, washed with water, immersed in a 5% hydrofluoric acid aqueous solution for 30 seconds, then washed with water for 10 seconds, and immediately introduced into an organometallic vapor phase crystal growth apparatus. At this time, S
When the RHEED pattern on i is observed, a (1 × 1) pattern is observed as in Example 1. Then 500
After confirming that (2 × 1) is observed after heating to ℃, n-type GaAs layer 2 with a doping amount of 2 × 10 17 cm -3
Grow 3 As shown in FIG. 3, the n-type GaAs layer 2
3 does not grow on the SiO 2 film 22 but grows only on Si (opening) and is formed in a pyramid shape. After that, the SiO 2 film 22 is removed. The same result can be obtained if the heating is performed in a temperature range of 350 ° C to 550 ° C.

【0024】再び図2を用いて説明する。上記の処理の
後、n型GaAs層(2×1017cm-3)23´を50
0Å、p型GaAs層(4×1018cm-3)24を50
00Å、p型Al0.7Ga0.3As層(3×1018
-3)25を300Å、電極接続部として高濃度p型G
aAs層(2×1019cm-3)26を1000Å、順次
積層する。さらに、ピラミッド部の高濃度p型GaAs
層26を選択エッチングした後、p型電極27を、ま
た、基板裏面にn型電極28を形成する。なお、n型G
aAs層23´形成前に、上記で述べたSi基板表面清
浄化処理と同様の処理(フッ酸水溶液浸漬後、水洗処
理)を行なってもよい。
The description will be made again with reference to FIG. After the above treatment, the n-type GaAs layer (2 × 10 17 cm −3 ) 23 ′ is 50
0Å, p-type GaAs layer (4 × 10 18 cm −3 ) 24 50
00Å, p-type Al 0.7 Ga 0.3 As layer (3 × 10 18 c
m -3 ) 25 300 Å, high concentration p-type G as electrode connection
An as layer (2 × 10 19 cm −3 ) 26 of 1000 Å is sequentially laminated. Furthermore, high-concentration p-type GaAs in the pyramid part
After the layer 26 is selectively etched, a p-type electrode 27 and an n-type electrode 28 are formed on the back surface of the substrate. In addition, n-type G
Before the formation of the aAs layer 23 ', the same treatment as the Si substrate surface cleaning treatment described above (immersing in a hydrofluoric acid aqueous solution and then washing with water) may be performed.

【0025】本実施例において、n型Si基板21をp
型に、n型GaAs層23、23´をp型に、p型Ga
As層24をn型に、p型Al0.7Ga0.3As層25を
n型に、高濃度p型GaAs層26を高濃度n型に、p
型電極27をn型に、n型電極28をp型にしても同様
の効果がある。さらに、上記加工用マスクをSiO2
に変えて、窒化シリコン、アモルファスシリコン、酸化
アルミニウム又は窒化アルミニウムを化学気相成長法に
より形成して同様な操作を行なったときも同様の効果が
認められた。
In the present embodiment, the n-type Si substrate 21 is replaced with p
The n-type GaAs layers 23 and 23 'to the p-type and the p-type Ga
The As layer 24 is an n-type, the p-type Al 0.7 Ga 0.3 As layer 25 is an n-type, and the high-concentration p-type GaAs layer 26 is a high-concentration n-type.
Even if the mold electrode 27 is of n-type and the n-type electrode 28 is of p-type, the same effect can be obtained. Further, when the above-mentioned processing mask was changed to a SiO 2 film and silicon nitride, amorphous silicon, aluminum oxide or aluminum nitride was formed by a chemical vapor deposition method and the same operation was performed, the same effect was recognized. .

【0026】また、n型Si基板上に形成する第2の半
導体としてGaAsを用いたが、これに変えて、Al
0.3Ga0.7As、In0.5Ga0.5As、GaP又はGa
Sbを用いても同様の結果が得られた。
Further, GaAs was used as the second semiconductor formed on the n-type Si substrate, but instead of this, Al is used.
0.3 Ga 0.7 As, In 0.5 Ga 0.5 As, GaP or Ga
Similar results were obtained using Sb.

【0027】[0027]

【発明の効果】本発明によれば、350〜550℃の低
温で半導体基板表面の清浄化ができた。また、Si基板
が(001)面方位を持っている場合、清浄化された状
態で(2×1)構造を持っているため、この上に形成さ
れたGaAs等の有極性化合物半導体は、同一層内に同
じ原子のみが存在するシングル フェーズ ドメイン成
長が可能となり、結晶性が向上した。基板表面清浄化処
理の低温化とGaAs膜のシングル フェーズ ドメイ
ン化により、基板内に不純物拡散層を設けたSi基板あ
るいは加工用マスクを上部に形成したSi基板を用いた
GaAs積層構造が形成できた。このため、Si−pn
構造とGaAs−pn構造が電気的、結晶学的に接続し
ているタンデム型光電変換装置が作製できた。この光電
変換装置の効率は従来型より1.5〜2倍向上した。ま
た、Si基板表面を加工マスクで被うことにより、ピラ
ミッド構造のGaAs光電変換装置を作製することがで
きた。この光電変換装置は光の多重反射により光路長を
長くとれるため、効率が20〜30%向上した。
According to the present invention, the semiconductor substrate surface can be cleaned at a low temperature of 350 to 550 ° C. Further, when the Si substrate has a (001) plane orientation, it has a (2 × 1) structure in a cleaned state, and therefore, a polar compound semiconductor such as GaAs formed on the Si substrate has the same structure. Single-phase domain growth in which only the same atoms exist in one layer has become possible, and crystallinity has improved. By lowering the temperature of the substrate surface cleaning process and turning the GaAs film into a single-phase domain, we were able to form a GaAs laminated structure using a Si substrate with an impurity diffusion layer in the substrate or a Si substrate with a processing mask formed on top. . Therefore, Si-pn
A tandem type photoelectric conversion device in which the structure and the GaAs-pn structure are electrically and crystallically connected to each other could be manufactured. The efficiency of this photoelectric conversion device is improved by 1.5 to 2 times as compared with the conventional type. Moreover, a GaAs photoelectric conversion device having a pyramid structure could be manufactured by covering the surface of the Si substrate with a processing mask. Since this photoelectric conversion device has a long optical path length due to multiple reflection of light, the efficiency is improved by 20 to 30%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための光電変換装
置の模式的断面図。
FIG. 1 is a schematic cross-sectional view of a photoelectric conversion device for explaining an embodiment of the present invention.

【図2】本発明の他の実施例を説明するための光電変換
装置の模式的断面図。
FIG. 2 is a schematic cross-sectional view of a photoelectric conversion device for explaining another embodiment of the present invention.

【図3】図2に示した光電変換装置の形成工程を示す模
式的断面図。
3A and 3B are schematic cross-sectional views showing the steps of forming the photoelectric conversion device shown in FIG.

【符号の説明】[Explanation of symbols]

1…p型Si基板、 2…高濃度n型Si層、 3…高濃度p型Si層、 4…高濃度p型GaAs層、 5…p型GaAs層、 6…n型GaAs層、 7…n型Al0.7Ga0.3As層、 8…高濃度n型GaAs層、 9、28…n型電極、 10、27…p型電極、 11、12…pn接合部、 13…界面、 21…n型Si基板、 22…SiO2膜、 23、23´…n型GaAs層、 24…p型GaAs層、 25…p型Al0.7Ga0.3As層、 26…高濃度p型GaAs層。1 ... p-type Si substrate, 2 ... high-concentration n-type Si layer, 3 ... high-concentration p-type Si layer, 4 ... high-concentration p-type GaAs layer, 5 ... p-type GaAs layer, 6 ... n-type GaAs layer, 7 ... n-type Al 0.7 Ga 0.3 As layer, 8 ... High-concentration n-type GaAs layer, 9, 28 ... N-type electrode, 10, 27 ... P-type electrode, 11, 12 ... Pn junction, 13 ... Interface, 21 ... N-type Si substrate, 22 ... SiO 2 film, 23, 23 '... n-type GaAs layer, 24 ... p-type GaAs layer, 25 ... p-type Al 0.7 Ga 0.3 As layer, 26 ... high-concentration p-type GaAs layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/10 H01L 31/10 A (56)参考文献 特開 平4−338642(JP,A) 特開 平2−258979(JP,A) 特開 平3−187213(JP,A) 特開 平2−83983(JP,A) 特開 平1−150328(JP,A) 特開 平5−175182(JP,A) 特開 平5−267260(JP,A) 特開 平5−217982(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 31/10 H01L 31/10 A (56) Reference JP-A-4-338642 (JP, A) JP-A-2-258979 (JP, A) JP-A-3-187213 (JP, A) JP-A-2-83983 (JP, A) JP-A-1-150328 (JP, A) JP-A-5-175182 (JP, A) JP 5-267260 (JP, A) JP 5-217982 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Siからなる基板をフッ酸水溶液に浸し、
水洗し、真空中で350℃から550℃の範囲にある温
度で加熱処理を行う工程と、該基板上にGaAs,Al
GaAs,InGaAs,GaPまたはGaSbからな
る化合物半導体層を積層する工程を有することを特徴と
する半導体の積層構造の形成方法。
1. A substrate made of Si is immersed in an aqueous solution of hydrofluoric acid,
Wash with water and heat in vacuum at a temperature in the range of 350 ° C to 550 ° C.
Of heat treatment at a certain temperature and GaAs, Al on the substrate
Made of GaAs, InGaAs, GaP or GaSb
And a step of laminating compound semiconductor layers according to claim 1.
【請求項2】請求項1記載の半導体の積層構造の形成方
法において、上記基板は、予め酸化シリコン,窒化シリ
コン,アモルファスシリコン,酸化アルミニウムまたは
窒化アルミニウムからなる加工用マスクが形成されてい
ることを特徴とする半導体の積層構造の形成方法。
2. The method for forming a laminated structure of semiconductors according to claim 1, wherein the substrate is made of silicon oxide or silicon nitride in advance.
Con, amorphous silicon, aluminum oxide or
A method for forming a laminated structure of a semiconductor, wherein a processing mask made of aluminum nitride is formed.
【請求項3】請求項1又は2に記載の半導体の積層構造
の形成方法により半導体の積層構造を形成し、少なくと
上記化合物半導体層に半導体素子を形成することを特
徴とする半導体装置の製造方法。
3. A method for manufacturing a semiconductor device, comprising forming a semiconductor laminated structure by the method for forming a semiconductor laminated structure according to claim 1 or 2 , and forming a semiconductor element on at least the compound semiconductor layer. .
【請求項4】請求項記載の半導体装置の製造方法にお
いて、上半導体素子は、光電変換素子であることを特
徴とする半導体装置の製造方法。
4. A method according to claim 3, wherein the upper Symbol semiconductor device, a method of manufacturing a semiconductor device which is a photoelectric conversion element.
JP5264610A 1993-10-22 1993-10-22 Method for forming laminated structure of semiconductor and method for forming semiconductor device using the same Expired - Fee Related JP2565112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5264610A JP2565112B2 (en) 1993-10-22 1993-10-22 Method for forming laminated structure of semiconductor and method for forming semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5264610A JP2565112B2 (en) 1993-10-22 1993-10-22 Method for forming laminated structure of semiconductor and method for forming semiconductor device using the same

Publications (2)

Publication Number Publication Date
JPH07122550A JPH07122550A (en) 1995-05-12
JP2565112B2 true JP2565112B2 (en) 1996-12-18

Family

ID=17405722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5264610A Expired - Fee Related JP2565112B2 (en) 1993-10-22 1993-10-22 Method for forming laminated structure of semiconductor and method for forming semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2565112B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270743A (en) * 1997-03-27 1998-10-09 Shinichiro Uekusa Photodetector and raman shifter element
JP5277366B2 (en) * 2007-03-15 2013-08-28 国立大学法人豊橋技術科学大学 Multilayer wafer and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071761B2 (en) * 1987-12-07 1995-01-11 松下電器産業株式会社 Semiconductor substrate processing method
JPH0283983A (en) * 1988-09-21 1990-03-26 Canon Inc Photoelectric transducer
JPH02258979A (en) * 1989-02-21 1990-10-19 Anelva Corp Method and device for normal-pressure cvd
JPH03187213A (en) * 1989-12-15 1991-08-15 Fujitsu Ltd Manufacture of semiconductor crystal
JPH04338642A (en) * 1991-05-16 1992-11-25 Fujitsu Ltd Stabilization of the surface of silicon substrate

Also Published As

Publication number Publication date
JPH07122550A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
JP6746854B2 (en) Solar cell having emitter region containing wide bandgap semiconductor material
US5269852A (en) Crystalline solar cell and method for producing the same
KR100390670B1 (en) Process for bonding crystalline substrates with different crystal lattices
JP3578539B2 (en) Solar cell manufacturing method and solar cell structure
JP2962918B2 (en) Method of forming silicon thin film and method of manufacturing solar cell
JPS58106866A (en) Producing process for high speed bipolar transistor
US4925810A (en) Compound semiconductor device and a method of manufacturing the same
JP2565112B2 (en) Method for forming laminated structure of semiconductor and method for forming semiconductor device using the same
JP3193287B2 (en) Solar cell
JP4537549B2 (en) Method for manufacturing compound semiconductor device
JP2000208813A (en) GaN SEMICONDUCTOR ELEMENT AND ITS MANUFACTURE
US20200135944A1 (en) Method for manufacturing selective emitter using surface structure and solar cell including selective emitter using surface structure
JPH04333288A (en) Manufacture of solar cell
JPH08274358A (en) Iii-v compound semiconductor solar cell
US4006045A (en) Method for producing high power semiconductor device using anodic treatment and enhanced diffusion
JP3786809B2 (en) Solar cell manufacturing method
JP3245100B2 (en) Method for manufacturing semiconductor element and method for manufacturing solar cell
EP0108910B1 (en) Method of forming a passivated compound semiconductor substrate
JP4853008B2 (en) Method for fabricating a semiconductor optical device
JP2547967B2 (en) Semiconductor laminated structure, manufacturing method thereof, and semiconductor device using the same
JPH0922872A (en) Semiconductor laminated structure and its production and semiconductor device therewith
JP3167604B2 (en) Solar cell and method of manufacturing the same
JP2833924B2 (en) Crystal solar cell and method of manufacturing the same
JP2911291B2 (en) Method for manufacturing semiconductor device
JP2934072B2 (en) Solar cell manufacturing method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees