JP2563241B2 - Zinc alkaline battery - Google Patents
Zinc alkaline batteryInfo
- Publication number
- JP2563241B2 JP2563241B2 JP59171971A JP17197184A JP2563241B2 JP 2563241 B2 JP2563241 B2 JP 2563241B2 JP 59171971 A JP59171971 A JP 59171971A JP 17197184 A JP17197184 A JP 17197184A JP 2563241 B2 JP2563241 B2 JP 2563241B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- zinc
- negative electrode
- hydrogen gas
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/50—Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/52—Removing gases inside the secondary cell, e.g. by absorption
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
- H01M4/08—Processes of manufacture
- H01M4/12—Processes of manufacture of consumable metal or alloy electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は亜鉛を負極の主活物質とし、アルカリ水溶液
を電解液とする亜鉛アルカリ電池において、電池内で発
生する水素ガスによる電池内圧の上昇を抑止する手段を
提供するものである。TECHNICAL FIELD The present invention relates to a zinc-alkaline battery using zinc as a negative electrode main active material and an alkaline aqueous solution as an electrolytic solution, and suppressing an increase in battery internal pressure due to hydrogen gas generated in the battery. It provides the means to do.
従来の技術 亜鉛アルカリ電池の亜鉛負極の電解液による腐食反応
を抑制し、電池の保存中の亜鉛の自己消耗と水素ガス発
生を抑制するため、亜鉛に重量比で5〜10%程度の水銀
を添加してアマルガム化して負極として用いるが、現在
一般的な方法として採用されている。これにより、保存
による電池内圧上昇を防ぎ、耐漏液性,貯蔵性を確保
し、電池の膨張,破裂がなく、性能劣化の少ない実用電
池として普及している。しかし、近年、低公害化の社会
的ニーズが高まり、使用する水銀量を低減し、さらに水
銀を使用せずに上記の実用性能を確保するための研究開
発が行われているが、水銀量の低減はある程度可能であ
っても、本質的な解決を可能とする手段は見当らないの
が現状である。2. Description of the Related Art In order to suppress the corrosion reaction of the zinc negative electrode of a zinc-alkaline battery due to the electrolytic solution and to prevent self-depletion of zinc and hydrogen gas generation during battery storage, about 5-10% by weight of mercury is added to zinc. It is added to form an amalgam and used as a negative electrode, which is currently used as a general method. As a result, the internal pressure of the battery is prevented from rising due to storage, the liquid leakage resistance and the storability are secured, and the battery is prevailing as a practical battery that does not expand or burst and has little performance degradation. However, in recent years, social needs for low pollution have increased, and research and development have been conducted to reduce the amount of mercury used and to secure the above-mentioned practical performance without using mercury. Even if the reduction is possible to some extent, there is currently no means that can essentially solve the problem.
発明が解決しようとする問題点 例えば、亜鉛に鉛,インジウム,ガリウムなどを添加
した耐食性亜鉛合金を用い、水銀を1〜3%程度に低減
できそうな技術が検討されているが水銀を殆んど使わな
い負極亜鉛の十分な耐食性を確保するのは至難と考えら
れる。そこで、今一つの提案として、電池内で発生した
水素ガスを電池に内蔵した水素吸蔵合金により吸蔵して
固定し、電池の内圧上昇を防ぐ方法が考えられている。
しかし水素吸蔵合金を有効に作用させ、しかも電池内の
発電要素が占める有効内容積を犠牲にすることなく、内
蔵させる具体的かつ適切な方法がないのが現状である。Problems to be Solved by the Invention For example, a technique using a corrosion-resistant zinc alloy in which lead, indium, gallium, etc. are added to zinc has been studied, and a technique capable of reducing mercury to about 1 to 3% has been studied. It is considered extremely difficult to secure sufficient corrosion resistance of unused negative electrode zinc. Therefore, as another proposal, a method is considered in which hydrogen gas generated in the battery is stored and fixed by a hydrogen storage alloy incorporated in the battery to prevent the internal pressure of the battery from rising.
However, under the present circumstances, there is no specific and appropriate method for effectively incorporating the hydrogen storage alloy, and without sacrificing the effective internal volume occupied by the power generation element in the battery.
本発明は前記の電池内で発生する水素ガスによる電池
の内圧の上昇、及び放電反応の劣化を抑制するため、電
池の空室部の水素ガスはもとより、負極や電解液中に存
在する水素ガスをも水素吸蔵合金中に吸蔵,固定して総
合的な実用性能を備えた低公害電池を提供するものであ
る。The present invention suppresses the increase in the internal pressure of the battery due to the hydrogen gas generated in the battery, and the deterioration of the discharge reaction, so that not only the hydrogen gas in the vacant chamber of the battery but also the hydrogen gas present in the negative electrode or the electrolytic solution. It also provides a low-pollution battery with comprehensive practical performance by storing and fixing it in a hydrogen storage alloy.
問題点を解決するための手段 本発明は水銀添加量が低いアルカリマンガン電池にお
いて、比較的低い圧力で水素を吸蔵し、安価な特定の水
素吸蔵合金を充填したマイクロカプセルを添加したこと
を特徴とするものである。Means for Solving the Problems The present invention is characterized in that, in an alkaline manganese battery having a low mercury addition amount, hydrogen is occluded at a relatively low pressure, and microcapsules filled with an inexpensive specific hydrogen occluding alloy are added. To do.
作用 従来、水素吸蔵合金を電池に内蔵させる方法として提
案されていたものが、電池の空室部に蓄積された水素ガ
スを吸蔵して電池内圧の上昇を防ぐことに主眼を置いて
いたのに加え、本発明では負極、或いは電解液中に存在
する水素ガスをも水素吸蔵合金に吸蔵させて除去するこ
とにより、これら水素ガスが、負極の活性表面を被って
放電反応を阻害する問題をなくし、これにより保存時の
漏液,膨張の発生を防止することはもとより、放電性能
の劣化を最小限に止め、負極の防食のために使用する水
銀が十分な量でなく、多少の水素ガスが電池内で発生し
ても総合的な実用性能を発揮し得る低公害電池を実現し
たものである。すなわち、比較的低い圧力で水素を吸蔵
する水素吸蔵合金の内、安価なZrMnα(0<α<3.
5)、ZrVβ(0<β<3.5)、Ti1- γZrγM(0<γ<
1、M=Cr,V,Co,Mn,Ni,Fe,Cu)およびCaNiδ(3.5<δ
<6.0)のうち少なくとも一種を粉体化し、これをナイ
ロン,ポリエチレン,ポリプロピレンなどの耐アルカリ
性樹脂の水素ガス透過性の薄膜で被覆したマイクロカプ
セルを亜鉛又は亜鉛合金粉もしくはこれらを汞化した粉
末から成る負極活物質中に混在させることにより、負極
活物質とアルカリ電解液との電池保存中の腐食反応で発
生して負極活物質の表面に付着したり、電解液中に気泡
として存在する水素ガスを水素吸蔵合金中に吸蔵して固
定し、放電反応のさまたげとなる前記の水素ガスを除去
し、正常な放電反応を行わしめて電池性能の保存による
劣化を最小限に止めるものである。負極から発生する水
素ガスが多くなると、前記の如く負極の近傍や電解液中
に滞留するだけでなく、電池の空室部に蓄積してて電池
の内圧を上昇させ、漏液や破裂、或いは放電性能を更に
悪化させる原因となるので、このような場合には、負極
内にマイクロカプセルを混在させた上にさらに電池の空
室部にも前記のマイクロカプセル化した水素吸蔵合金を
配するか、後に実施例で示すような方法で水素吸蔵合金
を包んで空室部に配設する方法を併用することにより、
空室部の水素ガスを合金に吸蔵させ、内圧の上昇を防げ
ばよい。Action Conventionally, what was proposed as a method of incorporating a hydrogen storage alloy into a battery was to focus on preventing the rise of the internal pressure of the battery by storing the hydrogen gas accumulated in the empty space of the battery. In addition, in the present invention, by removing the hydrogen gas existing in the negative electrode or the electrolytic solution by absorbing it in the hydrogen storage alloy, these hydrogen gas eliminate the problem of covering the active surface of the negative electrode and inhibiting the discharge reaction. In addition to preventing leakage and swelling during storage, this also minimizes the deterioration of discharge performance and the amount of mercury used for corrosion protection of the negative electrode is not sufficient, and some hydrogen gas may be generated. This is a low-pollution battery that can exhibit overall practical performance even if it occurs inside the battery. That is, among hydrogen storage alloys that store hydrogen at a relatively low pressure, inexpensive ZrMn α (0 <α <3.
5), ZrV β (0 <β <3.5), Ti 1- γ Zr γ M (0 <γ <
1, M = Cr, V, Co, Mn, Ni, Fe, Cu) and CaNi δ (3.5 <δ
At least one of <6.0) is pulverized and coated with a hydrogen gas permeable thin film of an alkali-resistant resin such as nylon, polyethylene or polypropylene from microcapsules of zinc or zinc alloy powder or a powder of these. When mixed in the negative electrode active material, the hydrogen gas is generated by a corrosion reaction between the negative electrode active material and the alkaline electrolyte during battery storage and adheres to the surface of the negative electrode active material, or hydrogen gas existing as bubbles in the electrolyte. Is stored and fixed in a hydrogen storage alloy, the above-mentioned hydrogen gas that interferes with the discharge reaction is removed, and a normal discharge reaction is performed to minimize deterioration of the battery performance due to storage. When the amount of hydrogen gas generated from the negative electrode increases, the hydrogen gas not only stays in the vicinity of the negative electrode or in the electrolytic solution as described above, but also accumulates in the empty space of the battery to increase the internal pressure of the battery, causing leakage or rupture, or In such a case, it is necessary to mix the microcapsules in the negative electrode and further dispose the above-mentioned microencapsulated hydrogen storage alloy in the vacant space of the battery. By combining the method of wrapping the hydrogen storage alloy and arranging it in the vacant chamber by the method as shown in the examples later,
It is sufficient to prevent the internal pressure from rising by allowing the alloy to occlude hydrogen gas in the vacant chamber.
実施例 図は本発明を適用したカルカリマンガン乾電池の断面
図である。Example FIG. 1 is a sectional view of a calcarimanganese dry battery to which the present invention is applied.
図において、1は金属製外装缶、2は正極絶縁用リン
グ、3は負極絶縁用リング、4は絶縁用熱収縮チュー
ブ、5は金属製正極端子、6は金属製負極端子、7は鉄
にニッケルメッキを施した正極ケース、8は二酸化マン
ガンに黒鉛を混合して加圧成型した正極、9はポリプロ
ピレンの不織布から成るセパレータである。10は本発明
の説明において「空室部」として表現している気相、11
はポリプロピレン製の封口板で、この封口板の凹部11′
には水素吸蔵合金粉12を充填したフッ素樹脂製の微多孔
性チューブ13が装着され、空室部10に蓄積される水素ガ
スを吸蔵して内圧上昇を防止する仕組みになっている。In the figure, 1 is a metal outer can, 2 is a positive electrode insulating ring, 3 is a negative electrode insulating ring, 4 is an insulating heat-shrinkable tube, 5 is a metallic positive electrode terminal, 6 is a metallic negative electrode terminal, and 7 is iron. A nickel-plated positive electrode case, 8 is a positive electrode positively formed by mixing manganese dioxide with graphite, and 9 is a separator made of polypropylene non-woven fabric. 10 is a gas phase expressed as "vacant space" in the description of the present invention, 11
Is a polypropylene sealing plate, the recess 11 'of this sealing plate.
A microporous tube 13 made of a fluororesin filled with hydrogen-absorbing alloy powder 12 is attached to the inside, and it has a mechanism for storing hydrogen gas accumulated in the vacant chamber 10 and preventing an increase in internal pressure.
14はセルロース製の底板、15はカルボキシメチルセル
ロースでゲル化されたカセイカリ水溶液の電解液に約10
0μの平均粒径の亜鉛合金粉16と、10〜30μに粉砕され
た水素吸蔵合金粉をナイロンの薄膜で被覆した平均粒
径、約50μのマイクロカプセル17を混在させて分散させ
たゲル状の亜鉛負極で亜鉛合金は鉛,インジウム,ガリ
ウムを各々0.05wt%添加された比較的耐食性の良いもの
を用いた。18は真鍮製の負極集電子である。本発明の効
果を検討するため、各種の単3形電池を試作した。用い
た水素吸蔵合金は何れもZrMn2をアルゴン雰囲気中で粉
砕したものを用い、負極の亜鉛合金は汞化処理を施して
いないものと施したものを実験に取り入れ、従来例とし
て、負極中にマイクロカプセルを含有せず、空室部にの
み水素吸蔵合金12を装着したものや、全くこれら合金を
電池内に含まないものを試作した。これらの試作電池の
構成は上述の内容及び第1表の試作内訳で断りのない部
分はすべて図の構成と同一とした。第1表に試作内訳と
貯蔵後の試験結果を示す。14 is a bottom plate made of cellulose, 15 is about 10% of the electrolyte solution of the aqueous solution of causticari gelated with carboxymethyl cellulose.
Zinc alloy powder 16 having an average particle size of 0μ, and a hydrogen-absorbing alloy powder crushed to 10 to 30μ with an average particle size of nylon thin film, about 50μ microcapsules 17 are mixed and dispersed in a gel form. The zinc alloy used in the zinc negative electrode was 0.05% by weight of lead, indium, and gallium, each of which had relatively good corrosion resistance. 18 is a brass negative electrode current collector. In order to study the effect of the present invention, various AA batteries were experimentally manufactured. The hydrogen storage alloys used were all ZrMn 2 crushed in an argon atmosphere, and the zinc alloys of the negative electrode were taken into the experiment as those not subjected to denaturation treatment. Prototypes that did not contain microcapsules and were equipped with the hydrogen storage alloy 12 only in the vacant chamber, or those that did not contain these alloys at all in the battery were manufactured. The configurations of these prototype batteries were the same as those shown in the figures, except for the contents described above and the trial production contents of Table 1 unless otherwise specified. Table 1 shows the details of the prototype and the test results after storage.
第1表における試験結果はいづれも、60℃,1カ月の貯
蔵後の結果であり、20℃,10Ωの連続放電性能,耐漏液
性,膨張度合を評価したものである。 All the test results in Table 1 are the results after storage at 60 ° C for 1 month, and evaluate continuous discharge performance at 20 ° C and 10Ω, leakage resistance, and expansion degree.
第1表に見られるように、aは負極の腐食抑制のた
め、若干の水銀を添加しているが腐食を抑制し切れず、
水素吸蔵合金を全く含まないため、電池内圧が上昇し、
漏液入,膨張が顕著で、放電性能も著しく低下してい
る。bはaの場合と異り、負極の汞化処理を施してない
ので水素ガスの発生量は多いが、空室部に水素吸蔵合金
を多く含んでいるため電池内圧の上昇の原因となる水素
ガスは吸蔵されて内圧の上昇は防止され、膨張や、漏液
は止められている。しかし、負極や電解液中に滞留して
いる水素ガスのため、実施例として挙げたc,dに比べ放
電性能が悪く、実用性能としては、c,dに及ばない。c,d
はこれらの問題がすべて解消され、すぐれた実用性能を
示している。cの場合、負極からの水素ガス発生量が多
いので負極,空室部の双方に水素吸蔵合金を使用するこ
とにより問題を解決し、dの場合、若干の水銀添加によ
り、或る程度水素ガス発生は抑制されているので負極中
の水素吸蔵合金のみで十分な機能を果している。これら
の効果の相違は、先に述べた理由により自明である。As can be seen from Table 1, a is added with a small amount of mercury for suppressing the corrosion of the negative electrode, but the corrosion cannot be completely suppressed,
Since it does not contain hydrogen storage alloy at all, the internal pressure of the battery rises,
Liquid leakage and expansion are remarkable, and the discharge performance is also significantly reduced. Unlike in the case of a, b has a large amount of hydrogen gas generated because the negative electrode has not been subjected to a hydrogenation treatment, but since the vacant chamber contains a large amount of hydrogen storage alloy, it causes a rise in the internal pressure of the battery. The gas is occluded to prevent the internal pressure from rising, and expansion and leakage are stopped. However, since the hydrogen gas stays in the negative electrode and the electrolytic solution, the discharge performance is worse than that of the examples c and d, and the practical performance is less than c and d. c, d
Has all these problems solved and shows excellent practical performance. In the case of c, a large amount of hydrogen gas is generated from the negative electrode, so the problem can be solved by using a hydrogen storage alloy in both the negative electrode and the vacant space. In the case of d, some mercury gas is added to the hydrogen gas to some extent. Since the generation is suppressed, only the hydrogen storage alloy in the negative electrode fulfills a sufficient function. The difference in these effects is obvious for the reasons described above.
発明の効果 上述の如く、本発明は低公害で実用性能のすぐれた亜
鉛アルカリ電池を得るに極めて効果的な手段である。EFFECTS OF THE INVENTION As described above, the present invention is an extremely effective means for obtaining a zinc alkaline battery with low pollution and excellent practical performance.
図は本発明の実施例の電池の断面図である。 7……正極ケース、8……正極、15……亜鉛負極、17…
…水素吸蔵合金を充填したマイクロカプセル。The drawing is a cross-sectional view of a battery according to an embodiment of the present invention. 7 ... Positive electrode case, 8 ... Positive electrode, 15 ... Zinc negative electrode, 17 ...
… Microcapsules filled with hydrogen storage alloy.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 寛治 門真市大字門真1006番地 松下電器産業 株式会社内 (72)発明者 三浦 晃 門真市大字門真1006番地 松下電器産業 株式会社内 (56)参考文献 特開 昭51−13934(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koji Takada 1006 Kadoma, Kadoma, Kadoma City, Matsushita Electric Industrial Co., Ltd. (72) Akira Miura 1006 Kadoma, Kadoma, Matsuda Electric Co., Ltd. (56) References JP-A-51-13934 (JP, A)
Claims (1)
極の主活物質として亜鉛、電解液としてアルカリ性水溶
液を用い、水銀の添加量が亜鉛に対して0.5重量%以下
である亜鉛アルカリ電池であって、ZrMnα(0<α<3.
5)、ZrVβ(0<β<3.5)、Ti1- γZrγM(0<γ<
1、M=Cr,V,Co,Mn,Ni,Fe,Cu)およびCaNiδ(3.5<δ
<6.0)のうち少なくとも一種の水素吸蔵合金を充填し
たマイクロカプセルを少なくとも負極内に添加したこと
を特徴とする亜鉛アルカリ電池。1. A zinc-alkaline battery in which manganese dioxide is used as the main active material of the positive electrode, zinc is used as the main active material of the negative electrode, an alkaline aqueous solution is used as the electrolytic solution, and the addition amount of mercury is 0.5% by weight or less based on zinc. ZrMn α (0 <α <3.
5), ZrV β (0 <β <3.5), Ti 1- γ Zr γ M (0 <γ <
1, M = Cr, V, Co, Mn, Ni, Fe, Cu) and CaNi δ (3.5 <δ
A zinc-alkaline battery, wherein microcapsules filled with at least one hydrogen storage alloy of <6.0) are added at least in the negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59171971A JP2563241B2 (en) | 1984-08-18 | 1984-08-18 | Zinc alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59171971A JP2563241B2 (en) | 1984-08-18 | 1984-08-18 | Zinc alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6151764A JPS6151764A (en) | 1986-03-14 |
JP2563241B2 true JP2563241B2 (en) | 1996-12-11 |
Family
ID=15933143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59171971A Expired - Lifetime JP2563241B2 (en) | 1984-08-18 | 1984-08-18 | Zinc alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2563241B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4322190A1 (en) * | 1993-07-03 | 1995-01-12 | Varta Batterie | Galvanic element |
JP2006302597A (en) * | 2005-04-19 | 2006-11-02 | Sii Micro Parts Ltd | Button type alkaline battery |
JP5344003B2 (en) * | 2011-05-19 | 2013-11-20 | 三菱電機株式会社 | Alkaline battery |
JPWO2021065861A1 (en) * | 2019-09-30 | 2021-04-08 | ||
US20220344650A1 (en) * | 2019-09-30 | 2022-10-27 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
CN114325956B (en) * | 2021-12-09 | 2022-10-11 | 长飞光纤光缆股份有限公司 | Optical path system and method for testing fiber core of multi-core optical fiber |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2527173A1 (en) * | 1974-06-19 | 1976-01-02 | Western Electric Co | ENERGY CONVERTER IN WHICH CHEMICAL ENERGY IS CONVERTED INTO ELECTRICAL |
-
1984
- 1984-08-18 JP JP59171971A patent/JP2563241B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6151764A (en) | 1986-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2563241B2 (en) | Zinc alkaline battery | |
WO2005104277A1 (en) | Alkaline battery | |
JP2004047321A (en) | Alkaline battery and its manufacturing method | |
JP2000311704A (en) | Sealed nickel hydrogen secondary battery | |
JPH11162459A (en) | Nickel-hydrogen secondary battery | |
JPS6119066A (en) | Manufacture of battery | |
US5496665A (en) | Hydrogen-occlusion-alloy electrode | |
JP2995893B2 (en) | Nickel / metal hydride storage battery | |
JP2006302597A (en) | Button type alkaline battery | |
JP3326274B2 (en) | Sealed alkaline storage battery | |
WO1998054775A9 (en) | Hydrogen storage alloy | |
JPH08279355A (en) | Button type alkaline battery | |
JP2846707B2 (en) | Hydrogen storage alloy electrode for alkaline storage batteries | |
JPH0562434B2 (en) | ||
JPH1196999A (en) | Sealed nickel-hydrogen secondary battery | |
JPH11111283A (en) | Sealed nickel hydrogen secondary battery | |
JPH0620681A (en) | Metal-hydrogen alkaline battery | |
JP2000090921A (en) | Alkaline secondary battery | |
JP3742149B2 (en) | Alkaline secondary battery | |
JPS6149379A (en) | Zinc alkali cell | |
JPH11149939A (en) | Closed type hydride secondary battery | |
JPS6116476A (en) | Alkali-zinc primary battery | |
JPH0685324B2 (en) | Zinc alkaline battery | |
JP2000340254A (en) | Manufacture of secondary battery | |
JPH10255833A (en) | Manufacture of sealed hydride secondary battery |