[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000090921A - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JP2000090921A
JP2000090921A JP10259663A JP25966398A JP2000090921A JP 2000090921 A JP2000090921 A JP 2000090921A JP 10259663 A JP10259663 A JP 10259663A JP 25966398 A JP25966398 A JP 25966398A JP 2000090921 A JP2000090921 A JP 2000090921A
Authority
JP
Japan
Prior art keywords
surface area
specific surface
bet method
alloy
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10259663A
Other languages
Japanese (ja)
Inventor
Kaoru Hosobuchi
馨 細渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP10259663A priority Critical patent/JP2000090921A/en
Publication of JP2000090921A publication Critical patent/JP2000090921A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline secondary battery with high discharge capacity at low temperature in addition to good charge/discharge cycle characteristics. SOLUTION: A negative electrode contains a mixture of alloy powder having a specific surface area by BET method of 0.05-0.07 m2/g obtained by mechanical crushing of a rare-earth family hydrogen storage alloy (A) having a large specific area by BET method when hydro-crushing is conducted once at 2-30 deg.C and at 5-10 atm. (gage pressure), and alloy powder having a specific surface area by BET method of 0.10-0.12 m2/g obtained by mechanical crushing of a rare-earth family hydrogen storage alloy (B) having a small specific surface area by BET method when hydro-crushing is conducted similarly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金を含
む負極を改良したアルカリ二次電池に関する。
The present invention relates to an alkaline secondary battery having an improved negative electrode containing a hydrogen storage alloy.

【0002】[0002]

【従来の技術】近年、水素を吸蔵・放出する水素吸蔵合
金を含む負極を備えたアルカリ二次電池が、注目されれ
ている。この二次電池は、高エネルギー密度を有するた
めに容積効率が高く、かつ安全作動が可能で、しかも特
性的にも高い信頼性を有する。
2. Description of the Related Art In recent years, an alkaline secondary battery provided with a negative electrode including a hydrogen storage alloy that stores and releases hydrogen has attracted attention. This secondary battery has a high energy density, has a high volumetric efficiency, can operate safely, and has high reliability in characteristics.

【0003】前記負極材料に用いられる水素吸蔵合金と
しては、AB5 タイプのLaNi5が従来より多用され
ている。この水素吸蔵合金は、負極材料として優れた特
性を有するものの、Laが高価であるために実用的では
ない。このため、La、Ce、Pr、Nd、Smなどの
ランタン系元素の混合物であるミッシュメタル(Mm)
とNiとの合金であるMmNi5 も広く使用されてい
る。また、LaNi5およびMmNi5 に関しては、N
iの一部をCo,Mn,Al,Cu,Zr,Fe,T
i,Cr,VおよびBのような元素で置換した多元系の
ものも使用されている。
[0003] Examples of the hydrogen-absorbing alloy used in the negative electrode material, AB 5 type LaNi 5 has been frequently used conventionally. Although this hydrogen storage alloy has excellent characteristics as a negative electrode material, it is not practical because La is expensive. Therefore, misch metal (Mm), which is a mixture of lanthanum-based elements such as La, Ce, Pr, Nd, and Sm.
MmNi 5 which is an alloy of Ni and Ni is also widely used. For LaNi 5 and MmNi 5 , N
Part of i is Co, Mn, Al, Cu, Zr, Fe, T
Multi-elements substituted with elements such as i, Cr, V and B have also been used.

【0004】前述した水素吸蔵合金を負極材料として適
用するには、前記合金の構成元素を例えば公衆は酔う回
答により溶解して合金インゴットとし、これを機械的に
粉砕して粉末状態にしている。
In order to apply the above-mentioned hydrogen storage alloy as a negative electrode material, the constituent elements of the alloy are melted, for example, in response to intoxication by the public to form an alloy ingot, which is mechanically pulverized to a powder state.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記水
素吸蔵合金の粉末を含む負極を備えたアルカリ二次電池
はサイクル初期の低温条件下(−20℃)における放電
容量が低いという問題があった。
However, the alkaline secondary battery provided with the negative electrode containing the powder of the hydrogen storage alloy has a problem that the discharge capacity under low temperature conditions (-20 ° C.) at the beginning of the cycle is low.

【0006】本発明は、良好な充放電サイクル特性を維
持しつつ、低温条件下での放電容量の大きいアルカリ二
次電池を提供しようとするものである。
An object of the present invention is to provide an alkaline secondary battery having a large discharge capacity under a low temperature condition while maintaining good charge / discharge cycle characteristics.

【0007】[0007]

【課題を解決するための手段】本発明に係わるアルカリ
二次電池は、2〜30℃、5〜10気圧(ゲージ圧)の
圧力下で1回水素化粉砕したときのBET法による比表
面積の大きい希土類系水素吸蔵合金(A)を機械粉砕し
たBET法による比表面積が0.05〜0.07m2
gの合金粉末と同水素粉砕したときのBET法による比
表面積が小さい希土類系水素吸蔵合金(B)を機械粉砕
したBET法による比表面積が0.10〜0.12m2
/gの合金粉末との混合粉末を含む負極を備えることを
特徴とするものである。
The alkaline secondary battery according to the present invention has a specific surface area determined by the BET method when hydrogenated and pulverized once at a temperature of 2 to 30 ° C. and a pressure of 5 to 10 atm (gauge pressure). The specific surface area by the BET method obtained by mechanically pulverizing a large rare earth hydrogen storage alloy (A) is 0.05 to 0.07 m 2 /
g alloy powder having a small specific surface area according to the BET method when crushed with hydrogen by the same hydrogen method. The specific surface area according to the BET method obtained by mechanically crushing the rare earth hydrogen storage alloy (B) is 0.10 to 0.12 m 2.
/ G of an alloy powder.

【0008】[0008]

【発明の実施の形態】以下、本発明に係わるアルカリ二
次電池(円筒形ニッケル水素二次電池)を図1を参照し
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an alkaline secondary battery (cylindrical nickel-metal hydride secondary battery) according to the present invention will be described with reference to FIG.

【0009】有底円筒状の容器1内には、正極2とセパ
レータ3と負極4とを積層してスパイラル状に捲回する
ことにより作製された電極群5が収納されている。前記
負極4は、前記電極群5の最外周に配置されて前記容器
1と電気的に接触している。アルカリ電解液は、前記容
器1内に収容されている。中央に孔6を有する円形の封
口板7は、前記容器1の上部開口部に配置されている。
リング状の絶縁性ガスケット8は、前記封口板7の周縁
と前記容器1の上部開口部内面の間に配置され、前記上
部開口部を内側に縮径するカシメ加工により前記容器1
に前記封口板7を前記ガスケット8を介して気密に固定
している。正極リード9は、一端が前記正極2に接続、
他端が前記封口板7の下面に接続されている。帽子形状
をなす正極端子10は、前記封口板7上に前記孔6を覆
うように取り付けられている。ゴム製の安全弁11は、
前記封口板7と前記正極端子10で囲まれた空間内に前
記孔6を塞ぐように配置されている。中央に穴を有する
絶縁材料からなる円形の押え板12は、前記正極端子1
0上に前記正極端子10の突起部がその押え板12の前
記穴から突出されるように配置されている。外装チュー
ブ13は、前記押え板12の周縁、前記容器1の側面及
び前記容器1の底部周縁を被覆している。
An electrode group 5 produced by laminating a positive electrode 2, a separator 3, and a negative electrode 4 and winding them in a spiral shape is accommodated in a bottomed cylindrical container 1. The negative electrode 4 is arranged at the outermost periphery of the electrode group 5 and is in electrical contact with the container 1. The alkaline electrolyte is contained in the container 1. A circular sealing plate 7 having a hole 6 in the center is arranged at the upper opening of the container 1.
The ring-shaped insulating gasket 8 is disposed between the peripheral edge of the sealing plate 7 and the inner surface of the upper opening of the container 1, and the container 1 is formed by caulking to reduce the diameter of the upper opening inward.
The sealing plate 7 is hermetically fixed via the gasket 8. One end of the positive electrode lead 9 is connected to the positive electrode 2,
The other end is connected to the lower surface of the sealing plate 7. The positive electrode terminal 10 having a hat shape is attached on the sealing plate 7 so as to cover the hole 6. The rubber safety valve 11
The hole 6 is disposed in a space surrounded by the sealing plate 7 and the positive electrode terminal 10 so as to close the hole 6. The circular holding plate 12 made of an insulating material having a hole in the center is
The projecting portion of the positive electrode terminal 10 is disposed on the reference numeral 0 so as to project from the hole of the holding plate 12. The outer tube 13 covers the periphery of the holding plate 12, the side surface of the container 1, and the periphery of the bottom of the container 1.

【0010】次に、前記負極4、正極2、セパレータ3
および電解液について説明する。
Next, the negative electrode 4, the positive electrode 2, the separator 3
And the electrolyte will be described.

【0011】2)負極4 この負極4は、水素吸蔵合金と導電性材料とを含む負極
材料を導電性基板に担持させた構造を有する。このよう
な構造の負極4は、例えば水素吸蔵合金粉末、導電性材
料および高分子結着剤を水と共に混練してペーストを調
製し、このペーストを前記導電性基板に充填し、乾燥
し、必要に応じて加圧成形することにより作製される。
2) Negative Electrode 4 The negative electrode 4 has a structure in which a negative electrode material containing a hydrogen storage alloy and a conductive material is supported on a conductive substrate. The negative electrode 4 having such a structure is prepared by, for example, kneading a hydrogen storage alloy powder, a conductive material and a polymer binder together with water to prepare a paste, filling the conductive substrate with the paste, drying, and drying the paste. It is produced by press molding according to

【0012】前記水素吸蔵合金は、2〜30℃、5〜1
0気圧(ゲージ圧)の圧力下で1回水素化粉砕したとき
のBET法による比表面積の大きい希土類系水素吸蔵合
金(A)を機械粉砕したBET法による比表面積が0.
05〜0.07m2/gの合金粉末と同水素粉砕したと
きのBET法による比表面積が小さい希土類系水素吸蔵
合金(B)を機械粉砕したBET法による比表面積が
0.10〜0.12m2/gの合金粉末との混合粉末か
らなる。
[0012] The hydrogen storage alloy is at 2 to 30 ° C and 5 to 1 ° C.
When the rare earth-based hydrogen storage alloy (A) having a large specific surface area according to the BET method when subjected to hydrogenation and pulverization once under a pressure of 0 atm (gauge pressure) has a specific surface area according to the BET method of mechanical pulverization of 0.
The specific surface area of the rare earth-based hydrogen storage alloy (B) obtained by mechanically pulverizing a rare earth hydrogen absorbing alloy (B) having a small specific surface area by the BET method when the hydrogen powder is pulverized with an alloy powder of 0.5 to 0.07 m 2 / g is 0.10 to 0.12 m. It is composed of a mixed powder with 2 / g alloy powder.

【0013】前記希土類系水素吸蔵合金(A),(B)
の組成は、格別制限されるものではなく、電解液中で電
気化学的に発生させた水素を吸蔵でき、かつ放電時にそ
の吸蔵水素を容易に放出できるものであればよい。この
水素吸蔵合金としては、例えばLaNi5 、MmNi5
(Mm;La、Ce、Pr、Nd、Smなどのランタン
系元素の混合物からなるミッシュメタル)、LmNi5
(Lm;ランタン富化したミッシュメタル)、またはこ
れらのNiの一部をAl、Mn、Co、Ti、Cu、Z
n、Zr、Cr、Bのような元素で置換した多元素系の
ものを挙げることができる。特に、一般式LmNix
y (ただし、LmはLaを含む少なくとも1つの希土
類元素、AはCo,Mn,Al,Cu,Zr,Vおよび
Bから選ばれる少なくとも一種の金属、原子比x,yは
その合計値が4.5≦x+y≦5.5を示す、にて表わ
される希土類系水素吸蔵合金が好ましい。
The rare earth hydrogen storage alloys (A) and (B)
Is not particularly limited, as long as it can occlude electrochemically generated hydrogen in the electrolytic solution and can easily release the occluded hydrogen during discharge. Examples of the hydrogen storage alloy include LaNi 5 and MmNi 5
(Mm; misch metal made of a mixture of lanthanum elements such as La, Ce, Pr, Nd, and Sm), LmNi 5
(Lm; lanthanum-enriched misch metal), or a part of these Nis is Al, Mn, Co, Ti, Cu, Z
Examples include multi-element materials substituted with elements such as n, Zr, Cr, and B. In particular, the general formula LmNi x A
y (where Lm is at least one rare earth element containing La, A is at least one metal selected from Co, Mn, Al, Cu, Zr, V and B, and the atomic ratio x, y has a total value of 4. A rare earth-based hydrogen storage alloy represented by the following formula: 5 ≦ x + y ≦ 5.5 is preferable.

【0014】前記水素吸蔵合金(A)は、2〜30℃、
5〜10気圧(ゲージ圧)の圧力下で1回水素化粉砕し
たときのBET法による比表面積が0.10〜0.12
2/gであることが好ましい。前記水素吸蔵合金
(B)は、同水素化粉砕したときのBET法による比表
面積は0.05〜0.07m2/gであること好まし
い。
The hydrogen storage alloy (A) is 2 to 30 ° C.
The specific surface area by the BET method when hydrogenating and pulverizing once under a pressure of 5 to 10 atm (gauge pressure) is 0.10 to 0.12.
It is preferably m 2 / g. The hydrogen storage alloy (B) preferably has a specific surface area by the BET method of 0.05 to 0.07 m 2 / g when subjected to the hydrogenation and pulverization.

【0015】前記水素吸蔵合金(A)の粉末と水素吸蔵
合金(B)の粉末との混合比率は、重量割合で4:6〜
6:4にすることが好ましい。
The mixing ratio of the powder of the hydrogen storage alloy (A) and the powder of the hydrogen storage alloy (B) is from 4: 6 by weight.
Preferably, the ratio is 6: 4.

【0016】前記混合粉末は、平均粒径35±10μm
で、10μm以下の粒子が13重量%以下、75μm以
上の粒子が1重量%以下である粒度分布を有することが
好ましい。
The mixed powder has an average particle size of 35 ± 10 μm.
Preferably, particles having a particle size of 10 μm or less have a particle size distribution of 13% by weight or less, and particles of 75 μm or more have a particle size distribution of 1% by weight or less.

【0017】前記導電材としては、例えばアセチレンブ
ラック、ケッチャンブラック、ファーネスブラックのよ
うなカーボンブラック等を用いることができる。このよ
うな導電材は、水素吸蔵合金100重量部に対して4重
量部以下配合することが好ましい。
As the conductive material, for example, carbon black such as acetylene black, Ketchan black and furnace black can be used. It is preferable to mix such a conductive material in an amount of 4 parts by weight or less with respect to 100 parts by weight of the hydrogen storage alloy.

【0018】前記高分子結着剤としては、例えばポリテ
トラフルオロエチレン、ポリエチレン、ボリプロピレン
等の疎水性ポリマ;カルボキシメチルセルロース、メチ
ルセルロース、ヒドロキシプロピルメチルセルロース等
のセルロース系材料;ポリアクリル酸ナトリウム等のア
クリル酸エステル;ポリビニルアルコール、ポリエチレ
ンオキシド等の親水性ポリマ;ラテックス等のゴム系ポ
リマをを挙げることができる。このような高分子結着剤
は、水素吸蔵合金100重量部に対して0.5〜5重量
部配合することが好ましい。
Examples of the polymer binder include hydrophobic polymers such as polytetrafluoroethylene, polyethylene, and polypropylene; cellulosic materials such as carboxymethylcellulose, methylcellulose and hydroxypropylmethylcellulose; acrylic acid such as sodium polyacrylate Esters; hydrophilic polymers such as polyvinyl alcohol and polyethylene oxide; and rubber-based polymers such as latex. It is preferable to add 0.5 to 5 parts by weight of such a polymer binder to 100 parts by weight of the hydrogen storage alloy.

【0019】前記導電性基板としては、パンチドメタ
ル、エキスパンデッドメタル、穿孔剛板、金網などの二
次元構造や、発泡メタル、網城焼結金属繊維などの三次
元構造のものを挙げることができる。
Examples of the conductive substrate include those having a two-dimensional structure such as a punched metal, an expanded metal, a perforated rigid plate, and a wire mesh, and a three-dimensional structure such as a foamed metal and a mesh metal sintered metal fiber. Can be.

【0020】2)正極2 この正極2は、例えば活物質であるニッケル化合物およ
び導電材を導電性基板に担持させた構造を有する。この
ような正極は、例えば活物質であるニッケル化合物と導
電材と高分子結着剤を水と共に混練してペーストを調製
し、このペーストを導電性基板に充填し、乾燥し、必要
に応じて加圧成形を施すことにより作製される。
2) Positive Electrode 2 The positive electrode 2 has a structure in which, for example, a nickel compound as an active material and a conductive material are supported on a conductive substrate. Such a positive electrode is prepared by, for example, kneading a nickel compound as an active material, a conductive material, and a polymer binder together with water to prepare a paste, filling the paste into a conductive substrate, drying, and, if necessary, It is produced by applying pressure molding.

【0021】前記ニッケル化合物としては、例えば水酸
化ニッケル、亜鉛およびコバルトが共沈された水酸化ニ
ッケルまたはニッケル酸化物等を挙げることができる。
特に、亜鉛およびコバルトが共沈された水酸化ニッケル
が好ましい。
Examples of the nickel compound include nickel hydroxide, nickel oxide and nickel oxide in which nickel hydroxide, zinc and cobalt are coprecipitated.
Particularly, nickel hydroxide in which zinc and cobalt are coprecipitated is preferable.

【0022】前記導電材料としては、例えばコバルト化
合物および金属コバルトから選ばれる少なくとも1種以
上のものが用いられる。前記コバルト化合物としては、
例えば水酸化コバルト[Co(OH)2 ]、一酸化コバ
ルト(CoO)等を挙げることができる。特に、水酸化
コバルト、一酸化コバルト酸化物もしくはこれらの混合
物を導電材料ととて用いることが好ましい。
As the conductive material, for example, at least one selected from a cobalt compound and metallic cobalt is used. As the cobalt compound,
For example, cobalt hydroxide [Co (OH) 2 ], cobalt monoxide (CoO), and the like can be given. In particular, it is preferable to use cobalt hydroxide, cobalt monoxide, or a mixture thereof as the conductive material.

【0023】前記高分子結着剤としては、前負極4で用
いたのと同様なものを挙げることができる。
Examples of the polymer binder include those similar to those used in the front negative electrode 4.

【0024】前記導電性基板としては、例えばニッケ
ル、ステンレスまたはニッケルメッキが施された金属か
ら形成された網状、スポンジ状、繊維状、もしくはフェ
ルト状の金属多孔体等を挙げることができる。
Examples of the conductive substrate include a mesh-like, sponge-like, fiber-like, or felt-like porous metal body made of nickel, stainless steel, or nickel-plated metal.

【0025】3)セパレータ3 このセパレータ3は、例えばポリエチレン繊維製不織
布、エチレン−ビニルアルコール共重合体繊維製不織
布、ポリプロピレン繊維製不織布などのオレフィン系繊
維製不織布、またはポリプロピレン繊維製不織布のよう
なオレフィン系繊維製不織布に親水性官能基を付与した
もの、ナイロン6,6のようなポリアミド繊維製不織布
を挙げることができる。前記オレフィン系繊維製不織布
に親水性官能基を付与するには、例えばコロナ放電処
理、スルホン化処理、グラフト共重合、または界面活性
剤や親水性樹脂の塗布等を採用することができる。
3) Separator 3 This separator 3 is made of, for example, an olefin-based nonwoven fabric such as a nonwoven fabric made of polyethylene fiber, a nonwoven fabric made of ethylene-vinyl alcohol copolymer fiber, or a nonwoven fabric made of polypropylene fiber, or an olefin such as a nonwoven fabric made of polypropylene fiber. Examples thereof include nonwoven fabrics made of a nonwoven fabric made of a base fiber and hydrophilic functional groups, and nonwoven fabrics made of polyamide fibers such as nylon 6,6. In order to impart a hydrophilic functional group to the olefin fiber nonwoven fabric, for example, corona discharge treatment, sulfonation treatment, graft copolymerization, or application of a surfactant or a hydrophilic resin can be employed.

【0026】4)アルカリ電解液 このアルカリ電解液としては、例えば水酸化ナトリウム
(NaOH)と水酸化リチウム(LiOH)の混合液、
水酸化カリウム(KOH)とLiOHの混合液、KOH
とLiOHとNaOHの混合液等を用いることができ
る。
4) Alkaline Electrolyte As the alkaline electrolyte, for example, a mixed solution of sodium hydroxide (NaOH) and lithium hydroxide (LiOH),
A mixture of potassium hydroxide (KOH) and LiOH, KOH
And a mixed solution of LiOH and NaOH.

【0027】以上説明した本発明に係わるアルカリ二次
電池は、2〜30℃、5〜10気圧(ゲージ圧)の圧力
下で1回水素化粉砕したときのBET法による比表面積
の大きい希土類系水素吸蔵合金(A)を機械粉砕したB
ET法による比表面積が0.05〜0.07m2/gの
合金粉末と同水素粉砕したときのBET法による比表面
積が小さい希土類系水素吸蔵合金(B)を機械粉砕した
BET法による比表面積が0.10〜0.12m2/g
の合金粉末との混合粉末を含む負極を備えた構造を有す
る。
The above-described alkaline secondary battery according to the present invention is a rare earth-based battery having a large specific surface area by the BET method when subjected to hydrogenation and pulverization once at 2 to 30 ° C. and 5 to 10 atm (gauge pressure). B obtained by mechanically pulverizing the hydrogen storage alloy (A)
The specific surface area by the BET method obtained by mechanically pulverizing a rare earth hydrogen storage alloy (B) having a small specific surface area by the BET method when the same powder is alloyed with the specific surface area by the ET method of 0.05 to 0.07 m 2 / g and hydrogen-ground. Is 0.10 to 0.12 m 2 / g
With a negative electrode containing a mixed powder with an alloy powder of

【0028】このような構成の負極を備えたアルカリ二
次電池は、良好な充放電サイクル寿命を維持しつつ、低
温下の放電容量が著しく向上される。
In the alkaline secondary battery provided with the negative electrode having such a configuration, the discharge capacity at a low temperature is significantly improved while maintaining a good charge / discharge cycle life.

【0029】すなわち、負極に含まれる水素吸蔵合金粉
末の比表面積を増大させることによって、電解液との接
触面積が増大して低温下での電極反応が速やかになさ
れ、結果として低温下での放電容量を向上できる。しか
しながら、負極材料として比表面積が大きい水素吸蔵合
金粉末のみを用いると、腐食の進行が促進されて表面で
の電極反応が阻害され、結果としてサイクル寿命の低下
を招く。
That is, by increasing the specific surface area of the hydrogen-absorbing alloy powder contained in the negative electrode, the contact area with the electrolytic solution is increased and the electrode reaction at a low temperature is promptly performed. As a result, the discharge at a low temperature is performed. Capacity can be improved. However, when only the hydrogen storage alloy powder having a large specific surface area is used as the negative electrode material, the progress of corrosion is promoted and the electrode reaction on the surface is inhibited, resulting in a reduction in cycle life.

【0030】このようなことから本発明によれば、水素
化粉砕したときのBET法による比表面積の大きい希土
類系水素吸蔵合金(A)、つまり充放電の繰り返しによ
り微粉化が進んで比表面積が増大すると共に腐食が促進
され、サイクル特性が低下する性質を持つを水素吸蔵合
金、を機械粉砕することにより得られる合金粉末ではB
ET法による比表面積を0.05〜0.07m2/gと
小さくすることによって、充放電サイクル時の水素吸蔵
合金の微細化、腐食を抑制することができる。
From the above, according to the present invention, the rare earth-based hydrogen storage alloy (A) having a large specific surface area by the BET method at the time of hydropulverization, that is, pulverization proceeds due to repetition of charge and discharge, and the specific surface area An alloy powder obtained by mechanically pulverizing a hydrogen-absorbing alloy, which has the property of increasing the corrosion and accelerating the
By making the specific surface area by the ET method as small as 0.05 to 0.07 m 2 / g, miniaturization and corrosion of the hydrogen storage alloy during charge / discharge cycles can be suppressed.

【0031】一方、同水素粉砕したときのBET法によ
る比表面積が小さい希土類系水素吸蔵合金(B)は充放
電を繰り返しても、微細化が進み難く、比表面積がそれ
程増大しないため、この合金を機械粉砕することにより
得られた合金粉末ではBET法による比表面積を0.1
0〜0.12m2/gと大きくすることによって、電解
液との接触面積が増大して低温時の放電容量を改善する
ことができる。
On the other hand, the rare earth-based hydrogen storage alloy (B) having a small specific surface area by the BET method at the time of the hydrogen pulverization is difficult to be miniaturized even after repeated charging and discharging, and the specific surface area does not increase so much. The specific surface area of the alloy powder obtained by mechanically pulverizing
By making it as large as 0 to 0.12 m 2 / g, the contact area with the electrolytic solution increases, and the discharge capacity at low temperature can be improved.

【0032】したがって、前記2種の合金粉末の混合粉
末を含む負極を用いることによって、良好な充放電サイ
クル特性を維持しつつ、低温下での放電容量を増大した
アルカリ二次電池を得ることができる。
Therefore, by using a negative electrode containing a mixed powder of the two alloy powders, it is possible to obtain an alkaline secondary battery having an increased discharge capacity at a low temperature while maintaining good charge / discharge cycle characteristics. it can.

【0033】特に、前記水素吸蔵合金(A)として前記
水素化粉砕したときのBET法による比表面積が0.1
0〜0.12m2/gであるものを用い、前記水素吸蔵
合金(B)として同水素化粉砕したときのBET法によ
る比表面積は0.05〜0.07m2/gを用いること
によって、より一層良好な充放電サイクル特性を維持し
つつ、低温下での放電容量を増大したアルカリ二次電池
を得ることができる。
In particular, when the hydrogen storage alloy (A) is subjected to the hydrogenation pulverization, the specific surface area by the BET method is 0.1%.
Used as a 0~0.12m 2 / g, BET specific surface area upon grinding the hydride as the hydrogen storage alloy (B) by the use of 0.05~0.07m 2 / g, It is possible to obtain an alkaline secondary battery having an increased discharge capacity at a low temperature while maintaining better charge / discharge cycle characteristics.

【0034】[0034]

【実施例】以下、本発明の好ましい実施例を図面を参照
して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0035】(実施例1〜9、比較例1〜12) <ペースト式負極の作製>純度99.9%の希土類元素
(La:45.1%,Ce:4.6%,Pr:12.1
%,Nd:37.0%,その他の希土類元素:1.1
%)、Ni、Co、MnおよびAlの構成元素を高周波
炉によって、LmNi4.0 Co0.4 Mn0.3Al0.3
組成の合金(A)とLmNi4.0 Co0.4 Mn0.3 Al
0.3 の組成の合金(B)を作製した。
(Examples 1 to 9 and Comparative Examples 1 to 12) <Preparation of Paste Type Negative Electrode> A rare earth element having a purity of 99.9% (La: 45.1%, Ce: 4.6%, Pr: 12. 1
%, Nd: 37.0%, other rare earth elements: 1.1
%), Ni, Co, Mn and Al constituent elements in a high-frequency furnace with an alloy (A) having a composition of LmNi 4.0 Co 0.4 Mn 0.3 Al 0.3 and LmNi 4.0 Co 0.4 Mn 0.3 Al
An alloy (B) having a composition of 0.3 was produced.

【0036】前記合金(A)および合金(B)のインゴ
ットを約3cm角に破砕し、その500gを水素化粉砕
装置で粉砕した。粉砕条件は、60℃、0.8torr
の減圧下で3.5時間脱気し、15℃、9kg/cm2
の水素圧を2.5時間保持し、その後60℃、0.8t
orrの減圧下で7時間脱気して水素ガスを除去した。
水素化粉砕した前記合金(A)および合金(B)をBE
T法により比表面積を測定した。その結果、前記合金
(A)および合金(B)の比表面積は、それぞれ0.1
2m2/g,0.06m2/gであった。
The ingots of the alloys (A) and (B) were crushed into about 3 cm squares, and 500 g of the crushed pieces were crushed by a hydropulverizer. Grinding conditions are 60 ° C and 0.8 torr
Degassed under reduced pressure for 3.5 hours at 15 ° C., 9 kg / cm 2
Is maintained for 2.5 hours, then at 60 ° C. and 0.8 t
Degassing was performed for 7 hours under reduced pressure of orr to remove hydrogen gas.
The hydrogenated and pulverized alloy (A) and alloy (B) are BE
The specific surface area was measured by the T method. As a result, the specific surface area of each of the alloy (A) and the alloy (B) was 0.1
Was 2m 2 /g,0.06m 2 / g.

【0037】次いで、前記合金(A)および合金(B)
をそれぞれハンマーミルにより機械粉砕し、粉砕時間を
調節することによりBET法による比表面積が0.04
2/g,0.05m2/g,0.06m2/g,0.0
7m2/g,0.08m2/gの前記合金(A)の粉末
と、0.09m2/g,0.10m2/g,0.11m2
/g,0.12m2/g,0.13m2/gの前記合金
(B)の粉末を調製した。つづいて、前記合金(A)の
粉末と前記合金(B)の粉末とを下記表1に示すように
組み合わせると共に、それら粉末の混合比を50:50
で混合して21種の水素吸蔵合金混合粉末を用意した。
Next, the alloy (A) and the alloy (B)
Was mechanically pulverized by a hammer mill, and the pulverization time was adjusted so that the specific surface area by the BET method was 0.04.
m 2 /g,0.05m 2 /g,0.06m 2 /g,0.0
A powder of the alloy of 7m 2 /g,0.08m 2 / g (A ), 0.09m 2 /g,0.10m 2 /g,0.11m 2
Powder /g,0.12m 2 /g,0.13m 2 / g the alloy of (B) was prepared. Subsequently, the alloy (A) powder and the alloy (B) powder were combined as shown in Table 1 below, and the mixing ratio of the powders was 50:50.
And 21 kinds of hydrogen storage alloy mixed powders were prepared.

【0038】次いで、前記各水素吸蔵合金混合粉末10
0gに高分子結着剤としてポリアクリル酸ナトリウム
0.5g、カルボキシメチルセルロース(CMC)0.
05g、ポリテトラフルオロエチレンのディスパージョ
ン(比重1.5,固形分60wt%)1.6mlと、カ
ーボンブラック1gと、水60mlとを添加して混練す
ることによって、21種のペーストを調製した。これら
のペーストを導電性基板としてのパンチドメタルに塗
布、乾燥し、さらにプレスし、裁断することによって1
4種のペースト式負極を作製した。
Next, the hydrogen storage alloy mixed powder 10
0.5 g of sodium polyacrylate as a polymer binder and 0 g of carboxymethyl cellulose (CMC) in 0 g.
21 kinds of pastes were prepared by adding and kneading 05 g, 1.6 ml of a dispersion of polytetrafluoroethylene (specific gravity: 1.5, solid content: 60 wt%), 1 g of carbon black, and 60 ml of water. These pastes are applied to a punched metal as a conductive substrate, dried, pressed and cut to obtain 1
Four kinds of paste type negative electrodes were produced.

【0039】<ペースト式正極の作製>水酸化ニッケル
粉末90重量部および一酸化コバルト粉末10重量部か
らなる混合粉体に、前記水酸化ニッケル粉末に対してカ
ルボキシメチルセルロース0.3重量部、ポリテトラフ
ルオロエチレンのディスパージョン(比重1.5,固形
分60重量%)を固形分換算で0.5重量部添加し、こ
れらに純水を45重量部添加して混練することによりペ
ーストを調製した。つづいて、このペーストをニッケル
メッキ繊維基板内に充填した後、更にその両表面に前記
ペーストを塗布し、乾燥し、ローラプレスを行って圧延
することによりペースト式正極を作製した。
<Preparation of Paste-Type Positive Electrode> A mixed powder consisting of 90 parts by weight of nickel hydroxide powder and 10 parts by weight of cobalt monoxide powder was mixed with 0.3 parts by weight of carboxymethylcellulose and A paste was prepared by adding 0.5 parts by weight of a dispersion of fluoroethylene (specific gravity: 1.5, solid content: 60% by weight) in terms of solid content, adding 45 parts by weight of pure water thereto, and kneading. Subsequently, after this paste was filled in a nickel-plated fiber substrate, the paste was further applied to both surfaces thereof, dried, and rolled by roller pressing to produce a paste-type positive electrode.

【0040】次いで、前記各負極と前記正極との間にポ
リプロピレン繊維製不織布を介装し、渦巻状に捲回して
21種の電極群を作製した。このような各電極群を有底
円筒状容器に収納した後、7N−KOHおよび1N−L
iOHからなる電解液を前記容器内に注入し、封口等を
行うことにより前述した図1に示す構造を有するAAサ
イズの21種の円筒形ニッケル水素二次電池(容量14
00mAh)を組み立てた。
Next, a nonwoven fabric made of polypropylene fiber was interposed between each of the negative electrode and the positive electrode, and spirally wound to produce 21 kinds of electrode groups. After storing each such electrode group in a bottomed cylindrical container, 7N-KOH and 1N-L
An electrolytic solution composed of iOH was injected into the container, and the container was sealed and the like, whereby 21 kinds of AA-size cylindrical nickel-metal hydride secondary batteries having a structure shown in FIG.
00 mAh).

【0041】得られた実施例1〜9および比較例1〜1
2の二次電池各10個について、以下に説明する低温放
電特性およびサイクル特性を評価し、各二次電池10個
の平均値として下記表1に示す。
The obtained Examples 1 to 9 and Comparative Examples 1 to 1
The low-temperature discharge characteristics and the cycle characteristics described below were evaluated for each of the ten secondary batteries of No. 2 and shown in Table 1 below as an average value of the ten secondary batteries.

【0042】(1)低温放電特性 この低温放電特性は、20℃の雰囲気下で1400mA
(1C)の電流で90分間充電した後、1Cの電流で終
止電圧1Vまで放電して放電容量を測定した。また、1
Cの電流で90分間充電した後、−20℃の雰囲気下で
1Cの電流で終止電圧1Vまでに放電して放電容量を測
定した。後者の放電容量を前者の放電容量(20℃)を
100としたときの比率(%)で示した。
(1) Low-temperature discharge characteristics This low-temperature discharge characteristic is 1400 mA in an atmosphere of 20 ° C.
After charging at a current of (1C) for 90 minutes, the battery was discharged to a final voltage of 1 V at a current of 1C, and the discharge capacity was measured. Also, 1
After charging with a current of C for 90 minutes, the battery was discharged to a final voltage of 1 V at a current of 1 C in an atmosphere of -20 ° C, and the discharge capacity was measured. The latter discharge capacity was shown as a ratio (%) when the former discharge capacity (20 ° C.) was set to 100.

【0043】(2)サイクル特性 このサイクル特性は、温度20℃の雰囲気下で1Cの電
流で90分間充電し、1Cの電流で終止電圧1Vまで放
電を行なう充放電を繰り返し、放電容量が1サイクル目
の容量の1/2になるまでのサイクル数で示した。
(2) Cycle Characteristics The cycle characteristics are as follows: charge / discharge is repeated at a current of 1 C for 90 minutes in an atmosphere at a temperature of 20 ° C., and discharge is performed at a current of 1 C to a cutoff voltage of 1 V. The number of cycles until the volume of the eye became 1/2 was shown.

【0044】[0044]

【表1】 [Table 1]

【0045】前記表1から明らかなように水素化粉砕し
たときのBET法による比表面積の大きい希土類系水素
吸蔵合金(A)を機械粉砕したBET法による比表面積
が0.05〜0.07m2/gの合金粉末と、同水素粉
砕したときのBET法による比表面積が小さい希土類系
水素吸蔵合金(B)を機械粉砕したBET法による比表
面積が0.10〜0.12m2/gの合金粉末との混合
粉末を含む負極を備えた実施例1〜9の二次電池は、比
較例1〜12の二次電池に比べて低温下での放電容量お
よび充放電サイクル特性が優れていることがわかる。
As is apparent from Table 1, the specific surface area of the rare-earth hydrogen-absorbing alloy (A) having a large specific surface area by the BET method when subjected to hydrogenation and pulverization is 0.05 to 0.07 m 2 by the mechanically pulverized BET method. / G alloy powder and an alloy having a specific surface area of 0.10 to 0.12 m 2 / g by mechanically pulverizing a rare earth-based hydrogen storage alloy (B) having a small specific surface area by BET method when hydrogen pulverized. The secondary batteries of Examples 1 to 9 including the negative electrode including the mixed powder with the powder have excellent discharge capacity and charge / discharge cycle characteristics at low temperature compared to the secondary batteries of Comparative Examples 1 to 12. I understand.

【0046】なお、前記実施例では円筒形のニッケル水
素二次電池に適用した例を説明したが正極、セパレータ
および負極を積層して電極群を構成する角形の形状のニ
ッケル水素二次電池にも同様に適用することができる。
In the above embodiment, an example in which the present invention is applied to a cylindrical nickel-metal hydride secondary battery has been described. However, a square nickel-metal hydride secondary battery in which a positive electrode, a separator and a negative electrode are laminated to form an electrode group is also described. The same can be applied.

【0047】[0047]

【発明の効果】以上説明したように本発明によれば、良
好な充放電サイクル特性を維持しつつ、低温条件下での
放電容量の大きいアルカリ二次電池を提供することがで
きる。
As described above, according to the present invention, it is possible to provide an alkaline secondary battery having a large discharge capacity under a low temperature condition while maintaining good charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるアルカリ二次電池の一例である
ニッケル水素二次電池を示す斜視図。
FIG. 1 is a perspective view showing a nickel-metal hydride secondary battery which is an example of an alkaline secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…容器、 2…正極、 3…セパレータ、 4…負極、 5…電極群、 7…封口板、 8…絶縁ガスケット。 DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode, 5 ... Electrode group, 7 ... Sealing plate, 8 ... Insulating gasket.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2〜30℃、5〜10気圧(ゲージ圧)
の圧力下で1回水素化粉砕したときのBET法による比
表面積の大きい希土類系水素吸蔵合金(A)を機械粉砕
したBET法による比表面積が0.05〜0.07m2
/gの合金粉末と同水素粉砕したときのBET法による
比表面積が小さい希土類系水素吸蔵合金(B)を機械粉
砕したBET法による比表面積が0.10〜0.12m
2/gの合金粉末との混合粉末を含む負極を備えること
を特徴とするアルカリ二次電池。
1. 2-30 ° C., 5-10 atm (gauge pressure)
The rare-earth hydrogen-absorbing alloy (A) having a large specific surface area by the BET method when subjected to hydrogenation and pulverization once under the pressure of 0.05 to 0.07 m 2 by the BET method when mechanically pulverized.
/ G of alloy powder having a small specific surface area by the BET method when pulverized with hydrogen by the same hydrogen method. The specific surface area by the BET method obtained by mechanically pulverizing the rare earth hydrogen storage alloy (B) is 0.10 to 0.12 m.
An alkaline secondary battery comprising a negative electrode containing a mixed powder of 2 / g alloy powder.
【請求項2】 前記希土類系水素吸蔵合金は、一般式L
mNix y (ただし、LmはLaを含む少なくとも
1つの希土類元素、AはCo,Mn,Al,Cu,Z
r,VおよびBから選ばれる少なくとも一種の金属、原
子比x,yはその合計値が4.5≦x+y≦5.5を示
す、にて表わされることを特徴とする請求項1記載のア
ルカリ二次電池。
2. The rare earth hydrogen storage alloy has a general formula L
mNi x A y (where Lm is at least one rare earth element containing La, and A is Co, Mn, Al, Cu, Z
2. The alkali according to claim 1, wherein at least one kind of metal selected from r, V and B, and the atomic ratio x, y are represented by the following expression: a total value of 4.5 ≦ x + y ≦ 5.5. Rechargeable battery.
【請求項3】 前記水素吸蔵合金(A)は、2〜30
℃、5〜10気圧(ゲージ圧)の圧力下で1回水素化粉
砕したときのBET法による比表面積が0.10〜0.
12m2/gであり、前記水素吸蔵合金(B)は同水素
化粉砕したときのBET法による比表面積が0.05〜
0.07m2/gであることを特徴とする請求項1記載
のアルカリ二次電池。
3. The method according to claim 1, wherein the hydrogen storage alloy (A) is 2-30.
The specific surface area by the BET method when hydrogenated and pulverized once under a pressure of 5 to 10 atm (gauge pressure) is 0.10 to 0.
12 m 2 / g, and the hydrogen storage alloy (B) has a specific surface area by the BET method of 0.05 to 500 when subjected to the same hydrogenation and pulverization.
2. The alkaline secondary battery according to claim 1, wherein the content is 0.07 m 2 / g.
JP10259663A 1998-09-14 1998-09-14 Alkaline secondary battery Pending JP2000090921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10259663A JP2000090921A (en) 1998-09-14 1998-09-14 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10259663A JP2000090921A (en) 1998-09-14 1998-09-14 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JP2000090921A true JP2000090921A (en) 2000-03-31

Family

ID=17337182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10259663A Pending JP2000090921A (en) 1998-09-14 1998-09-14 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2000090921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026054A1 (en) * 2001-09-19 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Hybrid cell
JP2005032573A (en) * 2003-07-04 2005-02-03 Sanyo Electric Co Ltd Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using it
JP2010016005A (en) * 2003-08-21 2010-01-21 Samsung Sdi Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery containing it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026054A1 (en) * 2001-09-19 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Hybrid cell
EP1437789A2 (en) * 2001-09-19 2004-07-14 Kawasaki Jukogyo Kabushiki Kaisha Hybrid cell
EP1437789A4 (en) * 2001-09-19 2006-05-24 Kawasaki Heavy Ind Ltd Hybrid cell
US7799464B2 (en) 2001-09-19 2010-09-21 Kawasaki Jukogyo Kabushiki Kaisha Hybrid battery
JP2005032573A (en) * 2003-07-04 2005-02-03 Sanyo Electric Co Ltd Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using it
JP2010016005A (en) * 2003-08-21 2010-01-21 Samsung Sdi Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery containing it

Similar Documents

Publication Publication Date Title
JP2001316744A (en) Hydrogen storage alloy and alkali secondary battery
JP2001325957A (en) Alkaline secondary cell
JPH11162468A (en) Alkaline secondary battery
JP2000090921A (en) Alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JP2001118597A (en) Alkaline secondary cell
JP3415927B2 (en) Metal oxide / hydrogen secondary batteries
JP2001223000A (en) Alkaline secondary battery
JP3392700B2 (en) Alkaline secondary battery
JP2000021398A (en) Alkaline secondary battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JPH10172554A (en) Alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JP3742149B2 (en) Alkaline secondary battery
JPH0963635A (en) Alkaline secondary battery
JP3504350B2 (en) Manufacturing method of alkaline secondary battery
JP2000030698A (en) Alkaline secondary battery
JP2000188106A (en) Alkaline secondary battery
JP2000200601A (en) Alkaline secondary battery
JPH11149922A (en) Alkaline secondary battery
JPH11111283A (en) Sealed nickel hydrogen secondary battery
JPH11339789A (en) Metal-oxide/hydrogen storage battery
JPH10172548A (en) Alkaline secondary battery
JPH09102304A (en) Alkaline secondary battery
JPH11204103A (en) Alkali secondary battery