[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2551625B2 - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JP2551625B2
JP2551625B2 JP63086647A JP8664788A JP2551625B2 JP 2551625 B2 JP2551625 B2 JP 2551625B2 JP 63086647 A JP63086647 A JP 63086647A JP 8664788 A JP8664788 A JP 8664788A JP 2551625 B2 JP2551625 B2 JP 2551625B2
Authority
JP
Japan
Prior art keywords
gauge
acceleration sensor
resistance
portions
semiconductor acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63086647A
Other languages
Japanese (ja)
Other versions
JPH01259264A (en
Inventor
仁 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63086647A priority Critical patent/JP2551625B2/en
Publication of JPH01259264A publication Critical patent/JPH01259264A/en
Application granted granted Critical
Publication of JP2551625B2 publication Critical patent/JP2551625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、航空機、自動車等各種の分野において用
いられる半導体加速度センサにり、特に検出感度の向上
を図った半導体加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor acceleration sensor used in various fields such as aircraft and automobiles, and more particularly to a semiconductor acceleration sensor with improved detection sensitivity.

お[従来の技術] 第5図は従来の半導体加速度センサの構造を示す斜視
図、第6図は第5図のAA線断面図である。
[Prior Art] FIG. 5 is a perspective view showing the structure of a conventional semiconductor acceleration sensor, and FIG. 6 is a sectional view taken along the line AA of FIG.

これらの図において、1は方形状に形成されたシリコ
ン単結晶基板(以下、Si基板という)であり、このSi基
板1の周縁部に沿って略C字状の空隙部2が形成されて
いる。1aは片持梁部であり、空隙部2によって細く、か
つ薄く(第6図参照)形成されており、この片持梁部1a
の先端に方形状の重り部1bが形成されている。3a,3aは
各々片持梁部1aにボロン等の3族元素を熱拡散またはイ
オン注入により形成したゲージ抵抗である。3b,3bは各
々前記ゲージ抵抗3a,3aと同様にボロン等の3族元素を
熱拡散またはイオン注入により形成したゲージ抵抗であ
り、第1図に示すように、片持梁部1aとSi基板1の接続
部分のSi基板1側に設けられている。これらゲージ抵抗
3a,3a、3b、3bは、第7図に示すようにゲージ抵抗3a,3a
が対辺となるようにブリッジ接続されている。
In these figures, 1 is a silicon single crystal substrate formed in a rectangular shape (hereinafter referred to as Si substrate), and a substantially C-shaped void portion 2 is formed along the peripheral portion of the Si substrate 1. . Reference numeral 1a denotes a cantilever portion, which is thin and thin (see FIG. 6) formed by the void portion 2.
A square-shaped weight portion 1b is formed at the tip of the. Reference numerals 3a and 3a denote gauge resistors formed on the cantilever portion 1a by thermal diffusion or ion implantation of a Group 3 element such as boron. 3b and 3b are gauge resistors formed by thermal diffusion or ion implantation of a Group 3 element such as boron similarly to the gauge resistors 3a and 3a, and as shown in FIG. 1, the cantilever portion 1a and the Si substrate. It is provided on the Si substrate 1 side of the connection portion 1. These gauge resistance
3a, 3a, 3b, 3b are gauge resistors 3a, 3a as shown in FIG.
Are bridge-connected so that they are opposite sides.

このように構成された半導体加速度センサにおいて、
第6図に示すように、矢印B方向から加速度が加わる
と、この加わった方向に重り部1bが偏位し、片持梁部1a
は撓む。これにより、片持梁部1aに設けられたゲージ抵
抗3a,3aは各々引っ張りの歪を受け、この歪に応じた
分、抵抗値が変化する。しかして、ブリッジ回路の出力
端から加わった加速度の大きさに応じた出力Voが得られ
る。
In the semiconductor acceleration sensor configured in this way,
As shown in FIG. 6, when acceleration is applied in the direction of arrow B, the weight portion 1b is displaced in the applied direction, and the cantilever portion 1a
Bends. As a result, the gauge resistors 3a, 3a provided on the cantilever portion 1a are respectively subjected to tensile strain, and the resistance value changes by an amount corresponding to this strain. Thus, the output Vo corresponding to the magnitude of the acceleration applied from the output end of the bridge circuit can be obtained.

[発明が解決しようとする課題] ところで、上述した従来の半導体加速度センサにあっ
ては、片持梁部1aに設けられたゲージ抵抗3a,3aのみが
外部より加わる加速度によって変化するようになってい
るので(残りのゲージ抵抗3b,3bは単にブリッジを組む
ためのもの)、検出感度はこれらゲージ抵抗3a,3aの値
によって決まってしまう。すなわち、ゲージ抵抗3a,3a
の抵抗値の変化により決定される検出感度以上の検出感
度が得られないということになる。例えば、片持梁部1a
に設けたゲージ抵抗3a,3aに加え、残りのゲージ抵抗3b,
3bをも外部より加わる加速度によって変化させるように
した場合に比べて略半分の検出感度しか得られない。
[Problems to be Solved by the Invention] In the conventional semiconductor acceleration sensor described above, only the gauge resistors 3a and 3a provided on the cantilever portion 1a are changed by the acceleration applied from the outside. Since the remaining gauge resistors 3b and 3b are merely for forming a bridge, the detection sensitivity is determined by the values of these gauge resistors 3a and 3a. That is, the gauge resistance 3a, 3a
That is, it is not possible to obtain a detection sensitivity higher than the detection sensitivity determined by the change in the resistance value of. For example, cantilever 1a
In addition to the gauge resistors 3a and 3a provided in the
Only about half the detection sensitivity can be obtained compared with the case where 3b is also changed by the acceleration applied from the outside.

この発明は上述した事情に鑑みてなされたもので、片
持梁部に設けられたゲージ抵抗の抵抗値の変化によって
決定される検出感度以上の検出感度を得ることができる
半導体加速度センサを提供することを目的としている。
The present invention has been made in view of the above circumstances, and provides a semiconductor acceleration sensor capable of obtaining a detection sensitivity equal to or higher than the detection sensitivity determined by the change in the resistance value of the gauge resistance provided in the cantilever portion. Is intended.

[課題を解決するための手段] 上記目的を実現するために、本発明は、センサの周縁
部に形成される支持部と、複数の重り部と、該重り部
間、及び該重り部と該支持部との間を連結する複数の梁
部と、これら梁部の内の少なくとも一つの上に拡散形成
されるゲージ抵抗とを具備していることを特徴とするも
のである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a support portion formed on a peripheral portion of a sensor, a plurality of weight portions, between the weight portions, and the weight portion and the weight portion. It is characterized in that it is provided with a plurality of beam portions that connect with the support portion and a gauge resistance diffused and formed on at least one of these beam portions.

[作用] この発明によれば、例えば、外部より加速度が加わる
と、この加速度が加わった複数の梁部の内の第1の梁部
の面が圧縮される。これにより、第1の梁部に設けられ
た2個のゲージ抵抗各々が圧縮の歪を受け、この歪の
分、抵抗値が増加する。一方、複数の梁部の内の第2お
よび第3の梁部の加速度が加わった面が引っ張られる。
これにより、第2および第3の梁部に設けられたゲージ
抵抗各々が引っ張りの歪を受け、この歪の分、抵抗値が
減少する。しかして、上記各ゲージ抵抗の抵抗率が等し
ければ、これらを、連絡してブリッジ回路を作った場
合、そのブリッジ回路の出力は、片持梁に設けられた2
個のゲージ抵抗のみが外部より加わる加速度により変化
する従来の半導体加速度センサに比べて約2倍となる。
[Operation] According to the present invention, for example, when an acceleration is applied from the outside, the surface of the first beam portion of the plurality of beam portions to which the acceleration is applied is compressed. As a result, each of the two gauge resistors provided on the first beam portion is subjected to compression strain, and the resistance value increases by the amount of this strain. On the other hand, the acceleration-applied surfaces of the second and third beam portions of the plurality of beam portions are pulled.
As a result, each of the gauge resistors provided on the second and third beam portions receives tensile strain, and the resistance value decreases by the amount of this strain. Then, if the resistivity of each of the gauge resistors is equal, when these are connected to form a bridge circuit, the output of the bridge circuit is provided on the cantilever.
This is about twice as large as that of the conventional semiconductor acceleration sensor in which only one gauge resistance changes due to the acceleration applied from the outside.

[実施例] 以下、図面を参照してこの発明の実施例について説明
する。
Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例の構成を示す斜視図、第
2図は第1図のCC線断面図である。
FIG. 1 is a perspective view showing the construction of an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line CC of FIG.

これらの図において、5は方形状に形成されたSi基板
である。このSi基板5には、図面幅方向に対向してE字
状の空隙部6a,6bが形成されている。7a,7bは各々前記空
隙部6a,6bによって方形状に形成された重り部である。8
aは前記重り部7aと重り部7bとの間に形成された梁部、8
bは重り部7aとSi基板5の周縁部(以下、支持部とい
う)との間に形成された梁部、8cは重り部7bと支持部と
の間に形成された梁部である。これら梁部8a〜8cはいず
れも前記空隙部6a,6bによって細く、かつ薄く(第2図
参照)形成されている。上記した梁部8b,8cによって重
り部7a,7bを両側から支持することによって、所謂両持
梁構造となっている。9a〜9dは各々ゲージ抵抗であり、
これらのうちゲージ抵抗9a,9bは各々前記梁部8aに、ゲ
ージ抵抗9cは前記梁部8bに、ゲージ抵抗9dは前記梁部8c
にそれぞれ設けられている。これらゲージ抵抗9a〜9dは
各々ボロン等の3族元素を熱拡散またはイオン注入によ
り形成したものである。また、ゲージ抵抗9a〜9dは、第
3図に示すように、ゲージ抵抗9a,9bが対辺となるよう
にブリッジ接続されている。
In these figures, 5 is a Si substrate formed in a rectangular shape. E-shaped voids 6a and 6b are formed in the Si substrate 5 so as to face each other in the width direction of the drawing. Reference numerals 7a and 7b are weight portions formed in a square shape by the void portions 6a and 6b, respectively. 8
a is a beam portion formed between the weight portion 7a and the weight portion 7b, 8
Reference numeral b denotes a beam portion formed between the weight portion 7a and a peripheral portion of the Si substrate 5 (hereinafter referred to as a support portion), and reference numeral 8c denotes a beam portion formed between the weight portion 7b and the support portion. Each of the beam portions 8a to 8c is formed thin and thin (see FIG. 2) by the void portions 6a and 6b. The weight portions 7a and 7b are supported from both sides by the above-mentioned beam portions 8b and 8c to form a so-called double-supported beam structure. 9a to 9d are gauge resistors,
Of these, the gauge resistances 9a and 9b are respectively in the beam portion 8a, the gauge resistance 9c is in the beam portion 8b, and the gauge resistance 9d is in the beam portion 8c.
Are provided respectively. These gauge resistors 9a to 9d are formed by thermal diffusion or ion implantation of a Group 3 element such as boron. Further, the gauge resistors 9a to 9d are bridge-connected so that the gauge resistors 9a and 9b are on opposite sides, as shown in FIG.

このように構成された両持梁構造の半導体加速度セン
サにおいて、第4図に示すように、矢印D方向から加速
度が加わると、梁部8aの加速度の加わった面が圧縮され
る。これにより、梁部8aに設けられたゲージ抵抗9a,9b
各々が圧縮の歪を受け、この歪の分、抵抗値が増加す
る。一方、梁部8b,8cの加速度の加わった面が引っ張ら
れる。これにより、梁部8b,8cに設けられたゲージ抵抗9
c,9d各々が引っ張りの歪を受け、この歪の分、抵抗値が
減少する。しかして、各ゲージ抵抗9a〜9dの抵抗値の変
化分に応じた電圧がブリッジ回路から出力される。この
場合、各ゲージ抵抗9a〜9dの抵抗率を等しくすることに
よって、その出力は2個のゲージ抵抗のみを変化させる
ようにした従来の半導体加速度センサ(第5図参照)に
比べて略2倍(2Vo)となる。すなわち、検出感度が約
2倍となる。
In the double-supported beam structure semiconductor acceleration sensor thus configured, as shown in FIG. 4, when acceleration is applied in the direction of arrow D, the surface of the beam portion 8a to which the acceleration is applied is compressed. As a result, the gauge resistors 9a and 9b provided on the beam 8a are
Each is subjected to compression strain, and the resistance value increases by the amount of this strain. On the other hand, the surfaces of the beam portions 8b and 8c to which the acceleration is applied are pulled. As a result, the gauge resistance 9 provided on the beams 8b and 8c
Each of c and 9d receives tensile strain, and the resistance value decreases by the amount of this strain. Then, the voltage corresponding to the variation of the resistance value of each of the gauge resistors 9a to 9d is output from the bridge circuit. In this case, by making the resistivity of the gauge resistors 9a to 9d equal, the output is approximately twice as large as that of the conventional semiconductor acceleration sensor (see FIG. 5) in which only two gauge resistors are changed. (2Vo). That is, the detection sensitivity is doubled.

ところで、上記の実施例は、ゲージ抵抗をセンサ上で
ブリッジ配線した構成であり、その検出出力は非常に大
きなものが取り出せる。しかしながら、本発明の要旨
は、複数の重り部と、該重り部間、及び該重り部と該支
持部との間を連結する複数の梁部と、これら梁部の内の
少なくとも一つの上に拡散形成されるゲージ抵抗とを具
備したことにあるから、ゲージ抵抗の数、および位置に
ついては限定されず、配線構成もそれに応じて、第4図
の基本的な配線図以外に種々の変形例が存在するもので
ある。例えば、ゲージ抵抗を第1図の中央部のみに形成
しても良いし、片側のみに作っても良い。更には、基準
抵抗や温度補正用の抵抗を支持部に拡散形成した場合に
は、それらを含めた配線構成となる。
By the way, in the above embodiment, the gauge resistance is bridge-wired on the sensor, and a very large detection output can be taken out. However, the gist of the present invention is to provide a plurality of weight portions, a plurality of beam portions that connect between the weight portions and between the weight portion and the support portion, and at least one of these beam portions. Since the gauge resistance is formed by diffusion, the number and the position of the gauge resistance are not limited, and the wiring structure is also changed in accordance with various modifications other than the basic wiring diagram of FIG. Is the one that exists. For example, the gauge resistance may be formed only in the central portion of FIG. 1 or may be formed on only one side. Further, when the reference resistance and the resistance for temperature correction are diffused and formed on the support portion, the wiring configuration includes them.

なお、重り部、梁部の材質は任意である、本実施例で
は、梁部を形成する際には、支持部を同一の半導体単結
晶基板から一体的にエッチングする構成をとり、この梁
部上に拡散抵抗を形成しているが、この梁部を、ポリシ
リコンなどの異種の材料の単層、或は、複層にて構成さ
せても良い。この場合は、単結晶より抵抗変化率が小と
なるが、梁部の精度が出し易いという利点がある。
The weight portion and the beam portion may be made of any material. In this embodiment, when the beam portion is formed, the supporting portion is integrally etched from the same semiconductor single crystal substrate. Although the diffusion resistance is formed on the upper portion, the beam portion may be formed of a single layer or a plurality of layers of different materials such as polysilicon. In this case, the resistance change rate is smaller than that of the single crystal, but there is an advantage that the accuracy of the beam portion can be easily obtained.

[発明の効果] 以上説明したようにこの発明によれば、センサの周縁
部に形成される支持部と、複数の重り部と、該重り部
間、及び該重り部と該支持部との間を連結する複数の梁
部と、これら梁部の内の少なくとも一つの上に拡散形成
されるゲージ抵抗とを具備したので、従来の半導体加速
度センサに比較して、検出感度が約2倍となる。また、
両持梁構造としているので破壊強度が増大するという利
点も得られる。
[Effects of the Invention] As described above, according to the present invention, the support portion formed on the peripheral portion of the sensor, the plurality of weight portions, between the weight portions, and between the weight portion and the support portion. Since a plurality of beam portions that connect to each other and a gauge resistance that is diffused and formed on at least one of these beam portions are provided, the detection sensitivity is approximately double that of the conventional semiconductor acceleration sensor. . Also,
Since it has a double-supported beam structure, it also has the advantage of increased fracture strength.

【図面の簡単な説明】 第1図はこの発明の一実施例の構成を示す斜視図、 第2図は第1図のCC線断面図、 第3図は前記実施例の電気的接続を示す配線図、 第4図は前記実施例の動作を説明するための断面図、 第5図は従来の半導体加速度センサの構成を示す斜視
図、 第6図は第5図のAA線断面図、 第7図は第5図の電気的接続を示す配線図である。 5……シリコン単結晶基板(支持部)、 7a,7b……重り部、 8a〜8c……梁部、 9a〜9d……ゲージ抵抗。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing the structure of an embodiment of the present invention, FIG. 2 is a sectional view taken along the line CC of FIG. 1, and FIG. 3 shows the electrical connection of the embodiment. Wiring diagram, FIG. 4 is a sectional view for explaining the operation of the embodiment, FIG. 5 is a perspective view showing the configuration of a conventional semiconductor acceleration sensor, FIG. 6 is a sectional view taken along the line AA of FIG. FIG. 7 is a wiring diagram showing the electrical connection of FIG. 5: Silicon single crystal substrate (support), 7a, 7b ... Weight, 8a-8c ... Beam, 9a-9d ... Gauge resistance.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】センサの周縁部に形成される支持部と、複
数の重り部と、該重り部間、及び該重り部と該支持部と
の間を連結する複数の梁部と、これら梁部の内の少なく
とも一つの上に拡散形成されるゲージ抵抗とを具備して
いることを特徴とする半導体加速度センサ。
1. A support portion formed on a peripheral portion of a sensor, a plurality of weight portions, a plurality of beam portions connecting between the weight portions and between the weight portion and the support portion, and these beams. A semiconductor acceleration sensor, comprising: a gauge resistance diffused and formed on at least one of the parts.
JP63086647A 1988-04-08 1988-04-08 Semiconductor acceleration sensor Expired - Fee Related JP2551625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086647A JP2551625B2 (en) 1988-04-08 1988-04-08 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086647A JP2551625B2 (en) 1988-04-08 1988-04-08 Semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JPH01259264A JPH01259264A (en) 1989-10-16
JP2551625B2 true JP2551625B2 (en) 1996-11-06

Family

ID=13892823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086647A Expired - Fee Related JP2551625B2 (en) 1988-04-08 1988-04-08 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP2551625B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332359B1 (en) 1997-04-24 2001-12-25 Fuji Electric Co., Ltd. Semiconductor sensor chip and method for producing the chip, and semiconductor sensor and package for assembling the sensor
JP3187754B2 (en) * 1997-09-26 2001-07-11 富士電機株式会社 Semiconductor sensor and method of manufacturing the same
JP3284921B2 (en) * 1997-04-24 2002-05-27 富士電機株式会社 Acceleration sensor, angular acceleration sensor and method for manufacturing them
JP2007163244A (en) 2005-12-13 2007-06-28 Epson Toyocom Corp Acceleration sensor element and acceleration sensor
JP2008008820A (en) * 2006-06-30 2008-01-17 Hitachi Ltd Inertia sensor and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065970A (en) * 1976-05-17 1978-01-03 Becton, Dickinson Electronics Company Diffused semiconductor pressure gauge
JPS6199382A (en) * 1984-10-19 1986-05-17 Komatsu Ltd Manufacture of pressure sensor
JPS6340379A (en) * 1986-08-05 1988-02-20 Fujitsu Ltd Acceleration sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065970A (en) * 1976-05-17 1978-01-03 Becton, Dickinson Electronics Company Diffused semiconductor pressure gauge
JPS6199382A (en) * 1984-10-19 1986-05-17 Komatsu Ltd Manufacture of pressure sensor
JPS6340379A (en) * 1986-08-05 1988-02-20 Fujitsu Ltd Acceleration sensor

Also Published As

Publication number Publication date
JPH01259264A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
JP3457037B2 (en) Integrated accelerometer
US3858150A (en) Polycrystalline silicon pressure sensor
US5239870A (en) Semiconductor acceleration sensor with reduced cross axial sensitivity
EP0456190B1 (en) Piezoresistive accelerometer
US5539236A (en) Piezoresistive accelerometer with enhanced performance
US7222536B2 (en) Semiconductor acceleration sensor
EP0303875B1 (en) Si crystal force transducer
US5962792A (en) Beam strain gauge
US6763719B2 (en) Acceleration sensor
US20030057447A1 (en) Acceleration sensor
JP2551625B2 (en) Semiconductor acceleration sensor
US6318184B1 (en) Beam strain gauge
JPH109936A (en) Sensing element
JP3368344B2 (en) Semiconductor strain gauge and strain measurement method using the same
JPH05281251A (en) Acceleration sensor and manufacture thereof
JP2551625C (en)
JPH0821721B2 (en) Force detection device
JPH0648421Y2 (en) Semiconductor acceleration sensor
JPH05340956A (en) Acceleration sensor
JP2624311B2 (en) Semiconductor sensor
JPH0339569B2 (en)
JP2509848B2 (en) Rectangular thin load cell
JP2650623B2 (en) Semiconductor acceleration sensor
JPH0640037B2 (en) Force detector on two-dimensional plane
JPH01145574A (en) Semiconductor acceleration sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees