[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2541735B2 - Method and apparatus for diagnosing coating film deterioration - Google Patents

Method and apparatus for diagnosing coating film deterioration

Info

Publication number
JP2541735B2
JP2541735B2 JP27184792A JP27184792A JP2541735B2 JP 2541735 B2 JP2541735 B2 JP 2541735B2 JP 27184792 A JP27184792 A JP 27184792A JP 27184792 A JP27184792 A JP 27184792A JP 2541735 B2 JP2541735 B2 JP 2541735B2
Authority
JP
Japan
Prior art keywords
deterioration
area
image
deformed
deformed portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27184792A
Other languages
Japanese (ja)
Other versions
JPH06116914A (en
Inventor
博 藤原
定男 出川
幸弘 河野
照造 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP27184792A priority Critical patent/JP2541735B2/en
Publication of JPH06116914A publication Critical patent/JPH06116914A/en
Application granted granted Critical
Publication of JP2541735B2 publication Critical patent/JP2541735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼橋等の塗膜の錆や剥
れによる劣化を検査するシステムに係り、特に、劣化を
部分の特徴から定量検出する一方で全体の特徴から定量
検出し、これらの検出結果を総合して判定することによ
り、錆や剥れの部分的状態に左右されず且つ定量的に劣
化進行の度合いを判定する塗膜劣化診断システムに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for inspecting deterioration due to rust or peeling of a coating film on a steel bridge or the like, and in particular, quantitatively detecting deterioration from partial characteristics while quantitatively detecting deterioration from overall characteristics. However, the present invention relates to a coating film deterioration diagnosing system which judges the degree of deterioration progress quantitatively without being influenced by the partial state of rust or peeling by comprehensively judging these detection results.

【0002】[0002]

【従来の技術】主に鋼材を用いて屋外に建造され、その
表面に保護用塗膜を形成されてなる鋼橋等にあっては、
時間の経過に伴い塗膜が劣化する。塗膜の劣化には、割
れ、剥れ、鋼材の錆の侵出などがある。このような塗膜
の劣化により鋼材や錆が露出すると、鋼材自体の劣化を
早めることになる。また、塗膜の劣化は、鋼橋等の美観
を損ねる。このような塗膜の劣化は、長い時間をかけて
徐々に進行する。塗膜の劣化を発見するためには、ある
程度の期間を隔てて定期的に検査が行われる。検査の結
果、塗膜の劣化がある場合には、これを回復するために
補修塗装を行う必要がある。早期のうちに補修塗装を行
えば、塗膜はいつでも良好な状態を保てることになる。
反面、補修塗装には、大きな費用がかかるのでその回数
をできる限り少なくしたい。あまり劣化の大きくない時
に補修塗装を行うようにすると回数が増加し、費用が増
大してしまう。そこで、どの時点(塗膜の劣化の度合い
がどの程度か)で補修塗装を行うかを判断することが重
要になる。
2. Description of the Related Art A steel bridge constructed mainly of steel outdoors and having a protective coating formed on its surface,
The coating film deteriorates over time. The deterioration of the coating film includes cracking, peeling, and leaching of rust on the steel material. If the steel material or rust is exposed due to such deterioration of the coating film, the deterioration of the steel material itself is accelerated. Further, the deterioration of the coating film impairs the aesthetics of the steel bridge. Such deterioration of the coating film gradually progresses over a long time. In order to detect deterioration of the coating film, regular inspection is performed after a certain period of time. If there is deterioration of the coating film as a result of the inspection, it is necessary to carry out repair coating to recover it. If the repair coating is performed early, the coating will always be in good condition.
On the other hand, repair painting costs a lot of money, so we want to reduce the number of times as much as possible. If repair painting is performed when the deterioration is not so great, the number of times increases and the cost increases. Therefore, it is important to judge at which point (how much the coating film has deteriorated) to perform the repair coating.

【0003】従来一般に行われている、鋼橋等の塗膜の
劣化を検査する方法、及び補修塗装の実施を決断する方
法について述べる。
A method for inspecting deterioration of a coating film on a steel bridge or the like and a method for deciding whether to carry out repair coating, which are generally used in the past, will be described.

【0004】定期検査では、まず、検査員が現場に赴い
て、その場で或いは、写真等を撮影して持ち帰り、劣化
の進行具合を判定する。判定の根拠は、割れ、剥れ、鋼
材の錆の侵出(以下これらを総称して変状部と呼ぶ)の
個数、或いは面積などである。変状部の個数が多かった
り、面積が大きかったりすると劣化が進行しているとい
う判定が下される。この判定をできるだけ客観的に行う
ために、採点法により判断する。採点法は例えば、最良
状態を100点満点とし、劣化の進行に応じて60点、
40点というように採点する方法である。こうして採点
された点数に対して予め限度基準を設けておき、その点
数以下なら補修塗装の実施を決断する。
In the regular inspection, first, an inspector goes to the site, takes a photo or the like on the spot or takes it home, and determines the degree of deterioration. The basis of the judgment is the number of cracks, peeling, leaching of rust of the steel material (hereinafter collectively referred to as a deformed portion), the area, or the like. If the number of deformed portions is large or the area is large, it is determined that the deterioration is progressing. In order to make this judgment as objectively as possible, it is judged by the scoring method. In the scoring method, for example, the best condition is 100 points, and 60 points according to the progress of deterioration.
It is a method of scoring 40 points. A limit standard is set in advance for the points scored in this way, and if it is less than that score, it is decided to carry out repair painting.

【0005】[0005]

【発明が解決しようとする課題】従来の塗膜劣化の検査
は、人の判断に頼っているので、経験等による個人差が
表れてくる。例えば、変状部の大きさは、微細なものか
ら巨大なものまであり、形状も不定である。上記方法に
あっても、どの程度の変状部を変状部として認識するか
は、人によってまちまちであるので、個数や面積も一定
しない。従って、同じような検査対象に対する採点が人
によって異なることになる。
Since the conventional inspection for deterioration of coating film relies on the judgment of a person, individual differences due to experience or the like will appear. For example, the size of the deformed portion ranges from minute to huge, and the shape is also indefinite. Even in the above method, how many deformed portions are recognized as deformed portions varies from person to person, so the number and area are not constant. Therefore, the scoring for the same inspection target differs depending on the person.

【0006】また、鋼橋等は一本の道路に沿って多数設
けられることもあるので、補修塗装は計画的に実施する
のがよい。しかし、計画を立てるためには、どの鋼橋が
いつ劣化の限度基準に達するのかを前もって知る必要が
ある。従来の方法では、検査時の劣化の判定が曖昧であ
り、検査以後の劣化の進行を予測することは困難であ
る。
Further, since many steel bridges and the like may be provided along one road, it is preferable to carry out repair painting systematically. However, in order to make a plan, it is necessary to know in advance which steel bridge will reach the limit criterion of deterioration. In the conventional method, the determination of deterioration during inspection is ambiguous, and it is difficult to predict the progress of deterioration after inspection.

【0007】かかる不具合を解消するためには、変状部
の有無や大きさを定量的に検出する手段を必要とする。
このためには、一般的に知られる画像処理の技術を導入
するのがよい。例えば、被検査対象を濃淡画像情報とし
て撮像し、その局所的な濃淡の変化を塗膜の変化として
検出することにより変状部の有無や大きさを定量的に検
出することが考えられる。
In order to solve such a problem, a means for quantitatively detecting the presence or absence and the size of the deformed portion is required.
To this end, it is preferable to introduce a generally known image processing technique. For example, it is possible to quantitatively detect the presence or absence and the size of a deformed portion by capturing an image of an object to be inspected as grayscale image information and detecting a local change in grayscale as a change in the coating film.

【0008】一般に、被検査対象を濃淡画像情報として
撮像しようとすると、濃淡画像を撮像するときの光源か
らの光が被測定対象に一様に照射されていないとき、反
射光量がその影響を受けて濃淡画像にはシェーディング
が表れる。シェーディングが光源に基づく比較的緩やか
な濃淡変化である場合には、変状部の比較的急激な濃淡
変化のみを残すべく画像処理してシェーディングを取り
除くことができる。しかし、鋼橋等は屋外にあり、しか
も構造物の立体的な配置関係があることから、画像には
他の構造物の影が映ることが避けられない。この場合、
シェーディングは非常に強く表れる。このように急激な
濃淡の変化を示す他の物体の影を取り除くことは従来技
術では困難であった。また、変状部が画面の広範囲に亘
って一様に分布しているときは、濃淡の変化が単調にな
るので、上記のように局所的な画像の濃淡変化を調べた
だけでは変状部が検出できないことになる。
Generally, when an object to be inspected is imaged as grayscale image information, the amount of reflected light is affected when the light from the light source when the grayscale image is taken is not uniformly applied to the object to be measured. Shading appears in the grayscale image. When the shading is a relatively gradual change in shade based on the light source, the shading can be removed by performing image processing so as to leave only a relatively rapid change in shade of the deformed portion. However, since steel bridges and the like are outdoors and there is a three-dimensional layout of the structures, it is inevitable that the shadows of other structures will appear in the image. in this case,
Shading is very strong. It has been difficult in the prior art to remove the shadows of other objects that show such a rapid change in shading. Also, when the deformed portion is evenly distributed over a wide area of the screen, the change in shading becomes monotonous, so just by examining the local shade change of the image as described above, Will not be detected.

【0009】そこで、本発明の目的は、上記課題を解決
し、劣化を部分の特徴から定量検出する一方で全体の特
徴からも定量検出し、これらの検出結果を総合して判定
することにより、錆や剥れの部分的状態に左右されず且
つ定量的に劣化進行の度合いを判定する塗膜劣化診断方
法及び装置を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, to quantitatively detect deterioration from the characteristics of a part, and quantitatively to detect the characteristics of the whole, and to make a comprehensive determination of these detection results. It is an object of the present invention to provide a coating film deterioration diagnosing method and apparatus that quantitatively judge the degree of deterioration progress regardless of the partial state of rust or peeling.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、鋼橋等の鉄鋼建造物の塗膜の劣化を割れ、
剥れ、鋼材の錆の侵出からなる変状部に基づき検査する
べく、被検査対象を濃淡画像情報として撮像し、この濃
淡画像情報より変状部を検出する塗膜劣化診断方法にお
いて、上記濃淡画像情報より濃淡値が濃又は淡へ変化し
てもとへ戻るまでの幅が予め定めた閾値内の幅となる偏
り部分について濃淡値を均して形成したフィルタ画像を
原画像から差し引いた画像から所定の濃淡閾値以上の部
分を部分的変状部として検出すると共に変状部データと
して各部分的変状部の面積、所定面積以上の部分的変状
部の個数、及び画像全体の面積に対し部分的変状部全体
の面積が占める割合を求め、上記濃淡画像情報を所定の
間隔で小領域に区画すると共に小領域ごとに小領域内に
含まれる濃淡値の平均値と分散からなる統計量を求め、
この統計量からは分散の大きい小領域と分散は小さくて
も平均値が画像全体の平均値から大きく異なる小領域と
統計的変状部と判定し、この統計的変状部の個数が所
定値以上なら劣化ありと判定し、他方、変状部データか
らは面積が所定値以上の部分的変状部が存在するか、面
積が所定値以上の部分的変状部が所定個数以上存在する
か、又は、画像全体の面積に対し部分的変状部全体の面
積が占める割合が所定値を越えるとき劣化ありと判定
し、これら統計量からの劣化判定と変状部データからの
劣化判定とを総合して被検査対象の劣化進行の度合いを
判定するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention is directed to cracking deterioration of a coating film on a steel building such as a steel bridge ,
Peeling off, in order to check on the basis of the variable-shaped part consisting of leaching steel rust, imaging the inspection object as a gray-scale image, the dark
For coating film deterioration diagnosis method that detects a deformed portion from light image information
The gray value changes from dark or light to dark or light from the above gray image information.
The deviation until the return to the original is within the predetermined threshold.
The filtered image formed by averaging the gray values of the
The part of the image that is subtracted from the original image and that is greater than or equal to the specified gray level threshold
Minute is detected as a partial deformed portion and
Area of each partial deformation part, partial deformation over a certain area
The number of parts and the area of the entire image
The ratio of the area occupied by the area is calculated, and the grayscale image information is divided into small areas at predetermined intervals, and a statistic consisting of the average value and the variance of the gray values included in the small areas is calculated for each small area.
Average be smaller dispersion and dispersion of larger small region from this statistic is determined to statistically Henjo portion and a greatly different small regions from the average value of the entire image, the number of the statistical Henjo portion predetermined If the value is equal to or larger than the value, it is determined that there is deterioration, and on the other hand, from the deformed portion data, there is a partial deformed portion having an area equal to or larger than a predetermined value, or there is a predetermined number or more of partial deformed portions having an area equal to or larger than a predetermined value. Or, the surface of the partial deformation part with respect to the area of the entire image
When the ratio of the product exceeds a predetermined value, it is determined that there is deterioration, and the deterioration determination based on these statistics and the deterioration determination based on the deformed portion data are combined to determine the degree of deterioration progress of the inspection target. It was done.

【0011】[0011]

【作用】本発明に先立って本発明者らは、以下述べる濃
淡モフォロジィ処理について発表している。濃淡モフォ
ロジィ処理とは、濃淡画像情報より濃淡値の偏りがある
範囲内の広さに亘って存在しているときその部分を有意
の濃淡変化部として検出するものである。濃淡モフォロ
ジィ処理にあっては、濃淡の変化が濃側或いは淡側に表
れてから逆の変化によってもとの濃淡に戻るまでの幅、
即ち濃淡いずれかに偏った部分の幅に対して予め閾値を
設けておき、閾値内にある濃淡の偏り部分を濃側のみ、
或いは淡側のみを一旦平らに均し、この均しを画像全体
について施した画像をフィルタ画像とする。これらフィ
ルタ画像を原画像から差し引きする。こうすると原画像
からシェーディングを除去することができる。シェーデ
ィング除去後の画像から所定の濃淡閾値以上の部分を変
状部として検出する。このようにすれば有意の濃淡変化
部を錆や剥れなどを示す塗膜の変状部として検出するこ
とができる。なお、このようにして検出された変状部は
後述する統計的変状部と区別するために、以下、部分的
変状部と呼ぶことにする。
Prior to the present invention, the present inventors have announced the following grayscale morphology processing. The shading Moforojii process, there is a bias in the gray value from the gray-scale image
When it exists over a wide area within the range, that portion is detected as a significant gradation change portion. In the light and shade morphology processing, the width from when the change of light and shade appears on the dark side or the light side until it returns to the original shade by the opposite change,
That is, a threshold is provided in advance for the width of a portion that is biased to one of the shades, and the biased portion of the shade within the threshold is only on the dark side.
Alternatively, only the light side is flattened once, and this flattening is performed on the entire image.
The image applied to is used as a filtered image. These filtered images are subtracted from the original image. This allows shading to be removed from the original image. From the image after shading removal, a portion equal to or larger than a predetermined grayscale threshold value is detected as a deformed portion. By doing so, a significant shade change portion can be detected as a deformed portion of the coating film showing rust, peeling, or the like. The deformed portion detected in this way is
In order to distinguish it from the statistical deformation part described later,
I will call it a deformed part.

【0012】このようにして検出された部分的変状部に
対して、各部分的変状部の面積、所定面積以上の部分的
変状部の個数、及び画像全体の面積に対し部分的変状部
全体の面積が占める割合を求めて変状部データとする。
変状部データは画像の部分的な特徴を定量検出したもの
となる。
With respect to the partial deformed portion thus detected , the area of each partial deformed portion, which is equal to or larger than a predetermined area,
The number of deformed parts and the partial deformed part with respect to the area of the entire image
The ratio occupied by the entire area is obtained and used as the deformed portion data.
The deformed portion data is obtained by quantitatively detecting partial characteristics of the image.

【0013】次に、原画像を正規化した濃淡画像情報を
所定の間隔で小領域に区画すると共に小領域ごとに小領
域内に含まれる濃淡値の平均値と分散からなる統計量を
求める。また、これら小領域の平均値、分散の画像全体
での平均値、分散を求める。小領域内での統計量は、
淡の偏りの有無、大きさによって以下のような傾向を示
す。
Next, the grayscale image information obtained by normalizing the original image is divided into small regions at a predetermined interval, and a statistical amount consisting of an average value and a variance of the grayscale values contained in the small regions is obtained for each small region. Further, the average value of these small areas and the average value and dispersion of the entire image are calculated. Statistics in a small area, concentrated
The following tendencies are shown depending on the presence or absence of light bias and the size.

【0014】(1)全く濃淡の偏りがなく均一な画像で
あるとき、分散は0に近い。
(1) The variance is close to 0 when the image is uniform with no unevenness in shade .

【0015】(2)濃淡の偏りの存在により、濃淡が変
化しているとき、分散は大きい。
(2) The dispersion is large when the lightness changes due to the presence of the lightness unevenness .

【0016】(3)大きな濃淡の偏りが存在するとき、
その小領域では分散が小さいが、平均値は他の領域の平
均値と異なる。その小領域の平均値は全体の平均値との
差が大きい。
(3) When there is a large unevenness of shading ,
Although the variance is small in that small region, the average value is different from the average values in other regions. The average value of the small area has a large difference from the average value of the whole.

【0017】このように小領域ごとの統計量は、濃淡の
偏りの有無、大きさによって異なる傾向を示すので、
意の濃淡の偏りを持つ小領域としての変状部(以下、こ
れを統計的変状部と呼ぶことにする)の検出に利用でき
ることになる。統計量は、画像の全体的な特徴を定量検
出したものとなる。
The statistics of each in this manner small area is, of light and shade
The presence or absence of bias, exhibits different trends by size, chromatic
A deformed portion (hereinafter referred to as
This will be referred to as a statistically deformed portion) . The statistic is a quantitative detection of the overall characteristics of the image.

【0018】そこで、この統計量による統計的変状部
検出結果と上記変状部データによる部分的変状部の検出
結果とを併用して、劣化進行の度合いを判定する。これ
により、錆や剥れの部分的状態に左右されず且つ定量的
に劣化進行の度合いを判定することができる。
Therefore, the degree of progress of deterioration is determined by using the detection result of the statistical deformed portion based on this statistic and the detection result of the partial deformed portion based on the deformed portion data. This makes it possible to quantitatively determine the degree of deterioration progress without being affected by the partial state of rust or peeling.

【0019】[0019]

【実施例】図1に示されるように、鋼橋等の塗膜の劣化
を検査する塗膜劣化診断システム1は、被検査対象2に
臨ませて設けられたCCDカメラ3と、CCDカメラ3
の画像出力を入力とする変状部抽出手段4及び統計手段
5と、変状部抽出手段4及び統計手段5からの出力を入
力とする劣化度判定手段6とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a coating film deterioration diagnosis system 1 for inspecting the deterioration of a coating film on a steel bridge or the like has a CCD camera 3 provided facing an object 2 to be inspected, and a CCD camera 3.
The deformed part extraction means 4 and the statistical means 5 which receive the image output of the above, and the deterioration degree determination means 6 which receives the outputs from the deformed part extraction means 4 and the statistical means 5 are provided.

【0020】CCDカメラ3は、被検査対象2を濃淡画
像情報として撮像することができる撮像手段7である。
CCDカメラ3は、通常のテレビ画像程度の画素を有
し、各画素は256階調程度の濃淡解像度を有してい
る。
The CCD camera 3 is an image pickup means 7 capable of picking up an image of the object 2 to be inspected as grayscale image information.
The CCD camera 3 has pixels of the order of a normal television image, and each pixel has a grayscale resolution of about 256 gradations.

【0021】変状部抽出手段4は、上記濃淡モフォロジ
ィ処理に基づいてCCDカメラ3の撮像した濃淡画像情
報より濃淡値の偏りがある範囲内の広さに亘って存在し
ているときその部分を有意の濃淡の偏り部、即ち錆や剥
れなどを示す部分的変状部として検出することができ
る。また、各部分的変状部の面積、所定面積以上の部分
的変状部の個数、及び画像全体の面積に対し部分的変状
部全体の面積が占める割合を求め、これら各面積、個
数、割合からなる変状部データを劣化度判定手段6に送
るように構成される。
The deformed portion extracting means 4 is present over a range within a range in which the gray value is biased from the gray image information captured by the CCD camera 3 based on the gray morphology processing.
When that part is present, that part is significantly unevenly shaded, that is, rusted or peeled.
It can be detected as a partially deformed portion indicating such as . In addition, the area of each partially deformed portion, a portion of a predetermined area or more
Partial deformation with respect to the number of dynamic deformation parts and the area of the entire image
Calculate the ratio of the area of the entire part ,
It is configured to send the deformed portion data including the number and the ratio to the deterioration degree determination unit 6.

【0022】統計手段5は、CCDカメラ3の撮像した
濃淡画像情報を正規化し、所定の間隔で小領域に区画す
ると共に小領域ごとに小領域内に含まれる濃淡値の平均
値と分散からなる統計量を求め、劣化度判定手段6に送
ることができる。
The statistical means 5 normalizes the grayscale image information picked up by the CCD camera 3 and divides the grayscale image information into small areas at predetermined intervals, and also comprises, for each small area, an average value and a variance of the grayscale values contained in the small area. The statistic amount can be obtained and sent to the deterioration degree determination means 6.

【0023】劣化度判定手段6は、統計量と変状部デー
タとから、予め定められた判定基準、規則に従って被検
査対象の劣化進行の度合いを判定することができる。ま
た、劣化度判定手段6は、被検査対象2の時間を隔てて
得られた統計量や変状部データを基に、その後の統計量
や変状部データの予測値を出力することができる。
The deterioration degree judging means 6 can judge the degree of progress of deterioration of the object to be inspected from the statistic and the deformed portion data in accordance with a predetermined judgment standard and rule. In addition, the deterioration degree determining unit 6 can output a subsequent statistical amount or a predicted value of the deformed portion data based on the statistical amount or the deformed portion data of the inspection target 2 obtained over time. .

【0024】図1には、上記変状部抽出手段4、統計手
段5及び劣化度判定手段6を組み込んだ制御装置8が示
されている。制御装置8には、CCDカメラ3、VTR
装置9、通信回線を利用できる通信モデム10、判定基
準、規則を格納し統計手段51与える判断データベース
11、判定結果を被検査対象2毎に蓄積する履歴データ
ベース12、CRT等の表示器13、制御装置8を操作
するためのマウス14及びキーボード15、判定結果等
を印字出力するプリンタ16が接続されている。制御装
置8は、画像メモリ17をも内蔵している。画像メモリ
17は、CCDカメラ3からの濃淡画像情報を格納し、
VTR装置9からのビデオ画像を濃淡画像情報に変換し
て格納することができる。表示器13には、CCDカメ
ラ3或いはVTR装置9からの画像情報、変状部抽出手
段4や統計手段5で処理された画像情報、判定結果等を
表示することができる。
FIG. 1 shows a control device 8 incorporating the above-mentioned deformed portion extracting means 4, statistical means 5 and deterioration degree determining means 6. The control device 8 includes a CCD camera 3 and a VTR.
Device 9, communication modem 10 that can use communication line, judgment database 11 that stores judgment criteria and rules and provides statistical means 51, history database 12 that accumulates judgment results for each inspected object 2, display device 13 such as CRT, control A mouse 14 and a keyboard 15 for operating the device 8 and a printer 16 for printing out the determination result and the like are connected. The control device 8 also contains an image memory 17. The image memory 17 stores the grayscale image information from the CCD camera 3,
The video image from the VTR device 9 can be converted into grayscale image information and stored. The display 13 can display image information from the CCD camera 3 or the VTR device 9, image information processed by the deformed portion extracting means 4 and the statistical means 5, determination results, and the like.

【0025】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0026】鋼橋等の塗膜面の所定の位置を被検査対象
2とする。以後この検査位置は、履歴データベース12
を作成するために固定され、カメラアングルも指定され
るが、本発明では多少の変動を許容している。被検査対
象2には被検査対象2の寸法の比較基準となる寸法指標
18を添えて撮像する。寸法指標18には、寸法が既知
である物体、物差し或いはステッカー等が用いられる。
撮像は上記撮像手段7としてのCCDカメラ3を被検査
対象2に設置して行われる。なお、通常のビデオカメラ
で撮影されたVTRを持ち帰りこれを再生してもよい。
或いは、被検査対象2を写真撮影し、この写真をCCD
カメラ3で撮像する。或いは、通信モデム10を介して
遠隔的に伝送入力される。この結果、画像メモリ17に
は被検査対象2の濃淡画像情報が格納される。
A predetermined position on the coating film surface of a steel bridge or the like is set as the object 2 to be inspected. After that, this inspection position is stored in the history database 12
Is fixed and the camera angle is specified, but the present invention allows some variation. The object to be inspected 2 is imaged together with a size index 18 which serves as a comparison reference for the dimensions of the object to be inspected 2. As the dimension index 18, an object, a ruler, a sticker or the like having a known dimension is used.
The image pickup is performed by installing the CCD camera 3 as the image pickup means 7 on the inspection object 2. Alternatively, a VTR taken by an ordinary video camera may be brought back and reproduced.
Alternatively, the subject 2 to be inspected is photographed, and this photograph is taken by the CCD.
The image is taken by the camera 3. Alternatively, it is transmitted and input remotely via the communication modem 10. As a result, the image memory 17 stores the grayscale image information of the inspection object 2.

【0027】変状部抽出手段4は画像メモリ17内の濃
淡画像情報を、まず、濃淡モフォロジィ処理する。これ
を図に沿って説明すると、濃淡画像情報は縦横に濃淡情
報が並んだものであるから、縦或いは横方向に位置を移
動しつつ濃淡情報を見ていくと、図2のように横軸に位
置、縦軸に明るさをとったグラフには濃淡の変化曲線が
得られる。図2(a)に示される濃淡の変化曲線が原画
から得られる時、谷状の変化をしている部分は、谷の
幅が予め定めた範囲内の幅であるなら変状部候補として
認識される。図2(b)の破線で示される部分が変状部
候補である。変状部候補の谷状部分を均すことを画像全
体に対し行うことでフィルタ画像が得られる。このフィ
ルタ画像について図2(a)に対応する濃淡の変化曲線
は図2(c)のようになる。原画像からフィルタ画像を
差し引いて反転したものに対応する濃淡の変化曲線は
2(d)である。図2(d)には、原画像から得られる
濃淡の変化曲線の谷状の変状部候補のみが特徴的に表れ
る。これに所定の閾値を与えて比べれば谷状の部分的
状部の有無が検出される。山状の部分的変状部について
も同様である。このような処理を画像の全体に対して施
す。
The deformed portion extracting means 4 first processes the grayscale image information in the image memory 17 with grayscale morphology. By way along in figure, gray-scale image is gray information in a matrix
Since the information is lined up, the position can be moved vertically or horizontally.
Looking at the grayscale information while moving, the horizontal axis is displayed as shown in Fig. 2.
In the graph with brightness on the vertical axis and the vertical axis,
can get. When the gradation change curve shown in FIG. 2 (a) is obtained from the original image, the part having a valley change is a deformed portion candidate if the width of the valley is within a predetermined range. Be recognized. The portion indicated by the broken line in FIG. 2B is a deformed portion.
It is a candidate . Image of flattening the valleys of the deformation candidate
By doing it on the body, a filtered image is obtained. This file
For the image, the change curve of the light and shade corresponding to Fig. 2 (a)
Is as shown in FIG. FIG. 2D shows a gradation change curve corresponding to an inverted version of the original image after subtracting the filtered image. In FIG. 2D, it is obtained from the original image.
Only the valley-shaped deformed portion candidates of the gradation curve are characteristically shown. The presence or absence of a valley-shaped partially deformed portion is detected by comparing this with a predetermined threshold value. The same applies to the mountain-shaped partially deformed portion. Such processing is performed on the entire image.

【0028】次に、変状部抽出手段4は、画像内にある
寸法指標18の寸法が実際の寸法指標の寸法になるよう
にキャリブレーションを行う。キャリブレーションによ
り、検出された部分的変状部の縦横の寸法が実寸で得ら
れる。そこで変状部抽出手段4は、検出された各部分的
変状部の面積、所定面積以上の部分的変状部の個数、
画像全体の面積に対し部分的変状部全体の面積が占め
る割合を計算し、変状部データとして劣化度判定手段6
に送る。
Next, the deformed portion extracting means 4 performs calibration so that the dimension of the dimension index 18 in the image becomes the dimension of the actual dimension index. By the calibration, the vertical and horizontal dimensions of the detected partial deformed portion are obtained in actual size. Therefore, the deformed portion extraction means 4 is configured to detect each detected partial
The area of the deformed portion, the number of the partially deformed portions having a predetermined area or more, and the area of the entire partially deformed portion occupies the area of the entire image
The deterioration rate determining means 6 is calculated as the deformed portion data.
Send to

【0029】一方、統計手段5は、図3(a)に示され
る原画像内の濃淡のひらきが一定値になるように正規化
の前処理を施す。図3(a)では、図3(e)の凡例に
示される5段階の濃淡が分布しており、画像の下辺から
右辺にかけて広い領域に亘って濃い変状部が見られる。
座標J7、K1及びK2の位置に最も濃い変状部があ
る。正規化により、極端にコントラストの強い画像はコ
ントラストが弱くなる。図3(b)に示す正規化画像で
は、図3(a)の最も淡い部分はやや色が濃くなってい
る。その後、図3(c)に示されるように画面を縦横所
定の間隔で小領域に区画する。各小領域には、一定個数
の画素が含まれることになる。統計手段5は、各小領域
ごとに小領域内に含まれる画素の濃淡値の平均値、分散
を算出する。また、これら各小領域の統計量の平均値、
分散を算出する。統計量は劣化度判定手段6に送られ
る。
On the other hand, the statistic means 5 carries out a normalization pre-processing so that the gradation of light and shade in the original image shown in FIG. 3 (a) becomes a constant value. In FIG. 3A, the gradations of five levels shown in the legend of FIG. 3E are distributed, and a dark deformed portion is seen over a wide area from the lower side to the right side of the image.
There is a darkest deformed portion at the positions of coordinates J7, K1 and K2. Due to the normalization, an image with extremely high contrast has low contrast. In the normalized image shown in FIG. 3B, the lightest part in FIG. 3A has a slightly darker color. Then, as shown in FIG. 3C, the screen is divided into small regions at predetermined vertical and horizontal intervals. Each small area includes a fixed number of pixels. The statistical unit 5 calculates, for each small area, the average value and variance of the gray values of the pixels included in the small area. Also, the average value of the statistics of each of these small areas,
Calculate the variance. The statistical amount is sent to the deterioration degree determining means 6.

【0030】劣化度判定手段6は、変状部データから、
予め定められた判定基準、規則に従って被検査対象の劣
化進行の度合いを判定する。その判定基準、規則は、例
えば以下のようなものである。
Deterioration degree judging means 6 determines from the deformed portion data
The degree of progress of deterioration of the object to be inspected is determined according to predetermined determination criteria and rules. The criteria and rules are as follows, for example.

【0031】(1)面積が所定値以上の部分的変状部が
存在するとき劣化ありとする。
(1) When there is a partially deformed portion whose area is equal to or larger than a predetermined value, it is determined that there is deterioration.

【0032】(2)面積が所定値以上の部分的変状部が
所定個数以上存在するとき劣化ありとする。
(2) When there is a predetermined number or more of partially deformed portions having an area of a predetermined value or more, it is determined that there is deterioration.

【0033】(3)部分的変状部全体の面積が画像全体
に占める割合が所定値を越えるとき劣化ありとする。
(3) When the ratio of the area of the entire partially deformed portion to the entire image exceeds a predetermined value, it is determined that there is deterioration.

【0034】ここで、面積の所定値、個数の所定値、割
合の所定値等の判断基準は、劣化度判定手段6内に固定
されたものでもよいが、判断データベース11内にさま
ざまの値の判断基準値が格納されており、適宜に劣化度
判定手段6内に読みだすことができる。
Here, the judgment criteria such as the predetermined value of the area, the predetermined value of the number, the predetermined value of the ratio, etc. may be fixed in the deterioration degree judging means 6, but of various values in the judgment database 11. The judgment reference value is stored and can be read out in the deterioration degree judging means 6 as appropriate.

【0035】次に、劣化度判定手段6は、統計量から、
予め定められた判定基準、規則に従って被検査対象の劣
化進行の度合いを判定する。詳しく述べると、まず、各
小領域が統計的変状部であるかどうかを判定する。その
判定基準、規則は、例えば以下のようなものである。
Next, the deterioration degree judging means 6 calculates
The degree of progress of deterioration of the object to be inspected is determined according to predetermined determination criteria and rules. More specifically, first, it is determined whether each small area is a statistically deformed portion . The criteria and rules are as follows, for example.

【0036】(1)分散が大きい小領域は、小さな濃淡
の偏りがある統計的変状部である。
(1) Small areas with large variance are small shades
This is a statistically deformed part with a bias of.

【0037】(2)分散は小さいが、平均値が画像全体
での平均値と大きく異なる小領域は、濃淡の偏りが全体
を覆っている統計的変状部である。
(2) A small area whose variance is small but whose average value greatly differs from the average value in the entire image is a statistically deformed portion in which the unevenness of the shade covers the entire image.

【0038】(3)分散が小さく、平均値が画像全体で
の平均値に近い小領域は、統計的変状部でない。
(3) A small area having a small variance and an average value close to the average value of the entire image is not a statistically deformed portion .

【0039】図3(d)は、以上の判定の結果を示して
いる。図でハッチングを施された各小領域は、図3
(f)の凡例で示すように平均値が所定値より大きい、
分散が所定値より大きい、或いは平均値と分散とが所定
値より大きいという理由で統計的変状部であると判定さ
れる。この判定結果は、図3(a)に示される原画像を
目視検査した結果に略一致していると共に定量的なもの
である。
FIG. 3D shows the result of the above judgment. Each small area hatched in the figure is shown in FIG.
As shown in the legend of (f), the average value is larger than a predetermined value,
The variance is determined to be a statistically deformed portion because the variance is greater than a predetermined value or the average value and the variance are greater than the predetermined values. This determination result is substantially coincident with the result of visual inspection of the original image shown in FIG. 3 (a) and is quantitative.

【0040】そして、劣化度判定手段6は、統計的変状
の個数を数え例えば、その個数が所定値以上なら劣化
ありとする。ここで、分散の大きさの限度、平均値の相
違の限度、統計的変状部の個数の限度等の判断基準は、
劣化度判定手段6内に固定されたものでもよいが、判断
データベース11内にさまざまの値の判断基準値が格納
されており、適宜に劣化度判定手段6内に読みだすこと
ができる。
Then, the deterioration degree judging means 6 uses a statistical change.
The number of copies is counted. For example, if the number is equal to or larger than a predetermined value, it is determined that there is deterioration. Here, the judgment criteria such as the limit of the size of the variance, the limit of the difference of the average values, the limit of the number of statistically deformed parts , etc.
Although it may be fixed in the deterioration degree judging means 6, judgment reference values of various values are stored in the judgment database 11 and can be read out in the deterioration degree judging means 6 as appropriate.

【0041】以上、変状部データに基づく判定と統計量
に基づく判定とについて説明したが、さらに劣化度判定
手段6は、これらの判定を総合して被検査対象の劣化進
行の度合いを判定する。この判定結果は、表示器13に
表示されると共に必要に応じてプリンタ16に印字出力
される。また、同時に、判定結果、変状部データ、統計
量が履歴データとして履歴データベース12に送られ、
履歴データベース12は、履歴データを被検査対象2毎
に検査日付等と共に蓄積する。
Although the determination based on the deformed portion data and the determination based on the statistic have been described above, the deterioration degree determination means 6 further determines the degree of deterioration progress of the inspection object by integrating these determinations. . The determination result is displayed on the display unit 13 and is printed out on the printer 16 as necessary. At the same time, the determination result, the deformed portion data, and the statistic are sent to the history database 12 as history data,
The history database 12 accumulates history data for each inspection object 2 together with an inspection date and the like.

【0042】劣化度判定手段6は、履歴データベース1
2に蓄積された履歴データ、検査日付を読み出し、履歴
データの変化曲線を近似的に割り出し、今後の履歴デー
タの推移を予測する。或いは、実績、加速試験等の結果
から調べた変化曲線に履歴データを当てはめることによ
り、今後の履歴データの推移を予測する。これにより、
補修塗装が必要となる時期を前もって知ることができ
る。
The deterioration degree determining means 6 is the history database 1
The history data and inspection date accumulated in 2 are read out, the change curve of the history data is approximately determined, and the future transition of the history data is predicted. Alternatively, by applying the historical data to the change curve examined from the results of the actual results and the acceleration test, the future transition of the historical data is predicted. This allows
You can know in advance when the repair coating will be required.

【0043】なお、本実施例にあっては、塗膜劣化診断
システム1の変状部抽出手段4、統計手段5及び劣化度
判定手段6を個別のユニットで構成し、制御装置8内に
収容したが、制御装置8全体をマイクロコンピュータで
構成してもよく、或いはパーソナルコンピュータで構成
してもよい。また、マウス14、キーボード15からの
操作入力等を用いて対話操作により判定を進めることも
できる。
In the present embodiment, the deformed portion extracting means 4, the statistical means 5 and the deterioration degree judging means 6 of the coating film deterioration diagnosing system 1 are constituted by individual units and housed in the control device 8. However, the entire control device 8 may be configured by a microcomputer or a personal computer. Further, the determination can be advanced by an interactive operation using the operation input from the mouse 14 or the keyboard 15.

【0044】[0044]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0045】(1)劣化を定量的に検出できるので、従
来の目視検査の個人差がなくなる。
(1) Since the deterioration can be quantitatively detected, there is no individual difference in the conventional visual inspection.

【0046】(2)シェーディングの影響を受けず、変
状部が精度よく検出できる。
(2) The deformed portion can be accurately detected without being affected by shading.

【0047】(3)小領域に区画して統計量を求めるよ
うにしたので、変状部が広範囲に拡がっていても検出で
きる。
(3) Since the statistic amount is obtained by dividing into small areas, it is possible to detect even if the deformed portion spreads over a wide range.

【0048】(4)劣化が予測できるので、補修塗装の
時期を前もって知ることができる。
(4) Since deterioration can be predicted, the time for repair painting can be known in advance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す塗膜劣化診断システム
のブロック構成図である。
FIG. 1 is a block diagram of a coating film deterioration diagnosis system showing an embodiment of the present invention.

【図2】本発明に応用される濃淡モフォロジィ処理の説
明図である。
FIG. 2 is an explanatory diagram of a grayscale morphology process applied to the present invention.

【図3】本発明に係る統計手段及び劣化度判定手段の動
作説明図である。
FIG. 3 is an operation explanatory diagram of a statistical means and a deterioration degree determination means according to the present invention.

【符号の説明】[Explanation of symbols]

1 塗膜劣化診断システム 4 変状部抽出手段 5 統計手段 6 劣化度判定手段 7 撮像手段 1 Coating Film Degradation Diagnosis System 4 Deformation Part Extraction Means 5 Statistical Means 6 Degradation Degree Judging Means 7 Imaging Means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出川 定男 東京都江東区豊洲三丁目1番15号 石川 島播磨重工業株式会社 東二テクニカル センター内 (72)発明者 河野 幸弘 東京都江東区豊洲三丁目1番15号 石川 島播磨重工業株式会社 東二テクニカル センター内 (72)発明者 菅野 照造 千葉県松戸市小金原7丁目32−17 (56)参考文献 特開 平3−2649(JP,A) 実開 平3−125245(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Sadao Degawa Inventor Sadao Izumi 3-15-15 Toyosu, Koto-ku, Tokyo Ishikawa Shimaharima Heavy Industries Co., Ltd. Toni Technical Center (72) Inventor Yukihiro Kono 3-chome, Toyosu, Koto-ku, Tokyo No. 1-15 Ishikawa Shima-Harima Heavy Industries Co., Ltd. Toni Technical Center (72) Inventor Teruzou Sugano 7-32-17 Koganehara, Matsudo-shi, Chiba (56) Reference JP 3-2649 (JP, A) Actual Kaihei 3-125245 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼橋等の鉄鋼建造物の塗膜の劣化を
れ、剥れ、鋼材の錆の侵出からなる変状部に基づき検査
するべく、被検査対象を濃淡画像情報として撮像し、
の濃淡画像情報より変状部を検出する塗膜劣化診断方法
において、上記濃淡画像情報より濃淡値が濃又は淡へ変
化してもとへ戻るまでの幅が予め定めた閾値内の幅とな
る偏り部分について濃淡値を均して形成したフィルタ画
像を原画像から差し引いた画像から所定の濃淡閾値以上
の部分を部分的変状部として検出すると共に変状部デー
タとして各部分的変状部の面積、所定面積以上の部分的
変状部の個数、及び画像全体の面積に対し部分的変状部
全体の面積が占める割合を求め、上記濃淡画像情報を所
定の間隔で小領域に区画すると共に小領域ごとに小領域
内に含まれる濃淡値の平均値と分散からなる統計量を求
め、この統計量からは分散の大きい小領域と分散は小さ
くても平均値が画像全体の平均値から大きく異なる小領
域とを統計的変状部と判定し、この統計的変状部の個数
が所定値以上なら劣化ありと判定し、他方、変状部デー
タからは面積が所定値以上の部分的変状部が存在する
か、面積が所定値以上の部分的変状部が所定個数以上存
在するか、又は、画像全体の面積に対し部分的変状部全
体の面積が占める割合が所定値を越えるとき劣化ありと
判定し、これら統計量からの劣化判定と変状部データか
らの劣化判定とを総合して被検査対象の劣化進行の度合
いを判定することを特徴とする塗膜劣化診断方法。
1. A split deterioration of the coating steel building steel bridges etc.
It is, peeling, in order to test based on the Deformation portion consisting of leaching steel rust, imaging the inspection object as a gray-scale image, this
Method for Diagnosis of Degradation of Coating Film by Detecting Distorted Area from Image Information
, The gray value is changed to dark or light from the gray image information above.
Even if it is turned on, the width until returning to the original is within the predetermined threshold.
The filter image is formed by averaging the gray values in the biased area.
From the image obtained by subtracting the image from the original image, above the specified gray level threshold
Rutotomoni strange-shaped portion data to detect the part as a partial strange-shaped portion
The area of each partially deformed part as a
The number of deformed parts and the partial deformed part with respect to the area of the entire image
The ratio occupied by the entire area is obtained, the grayscale image information is divided into small areas at predetermined intervals, and a statistical amount consisting of the average value and variance of the grayscale values contained in the small area is obtained for each small area. average be smaller dispersion and dispersion of larger small region is determined to statistically Henjo portion and a greatly different small regions from the average value of the entire image from the amount, the number of the statistical Henjo unit is equal to or more than a predetermined value Then, it is determined that there is deterioration, and on the other hand, from the deformed portion data, there is a partial deformed portion whose area is equal to or larger than a predetermined value, or whether there are a predetermined number of partial deformed portions whose area is equal to or larger than a predetermined value Or, the area of the entire image is partially deformed
When the ratio of the body area exceeds a predetermined value, it is determined that there is deterioration, and the degree of progress of deterioration of the inspection target is determined by combining the deterioration determination from these statistics and the deterioration determination from the deformed portion data. A method for diagnosing coating film deterioration, which comprises:
【請求項2】 鋼橋等の鉄鋼建造物の塗膜の劣化を
れ、剥れ、鋼材の錆の侵出からなる変状部に基づき検査
するべく、被検査対象を濃淡画像情報として撮像する
像手段を備え、この濃淡画像情報より変状部を検出する
塗膜劣化診断装置において、上記濃淡画像情報より濃淡
値が濃又は淡へ変化してもとへ戻るまでの幅が予め定め
た閾値内の幅となる偏り部分について濃淡値を均して形
成したフィルタ画像を原画像から差し引いた画像から所
定の濃淡閾値以上の部分を部分的変状部として検出する
と共に変状部データとして各部分的変状部の面積、所定
面積以上の部分的変状部の個数、及び画像全体の面積に
対し部分的変状部全体の面積が占める割合を求める変状
部抽出手段と、上記濃淡画像情報を所定の間隔で小領域
に区画すると共に小領域ごとに小領域内に含まれる濃淡
値の平均値と分散からなる統計量を求める統計手段と、
この統計量からは分散の大きい小領域と分散は小さくて
も平均値が画像全体の平均値から大きく異なる小領域と
統計的変状部と判定し、この統計的変状部の個数が所
定値以上なら劣化ありと判定し、他方、変状部データか
らは面積が所定値以上の部分的変状部が存在するか、面
積が所定値以上の部分的変状部が所定個数以上存在する
か、又は、画像全体の面積に対し部分的変状部全体の面
積が占める割合が所定値を越えるとき劣化ありと判定
し、これら統計量からの劣化判定と変状部データからの
劣化判定とを総合して被検査対象の劣化進行の度合いを
判定する劣化度判定手段とを備えたことを特徴とする塗
膜劣化診断装置。
2. A split deterioration of the coating steel building steel bridges etc.
In order to inspect based on the deformed portion formed by peeling and rust leaching of the steel material, imaging means is provided for picking up an object to be inspected as grayscale image information. Detect
In the coating film deterioration diagnosing device, the gray scale is
Even if the value changes to dark or light, the width before returning to
The gray value is averaged for the biased portion with a width within the threshold.
From the image obtained by subtracting the created filtered image from the original image
Areas above a certain gray level threshold are detected as partial deformed portions, and the area of each partial deformed portion is determined as the deformed portion data.
The number of partially deformed areas that are larger than the area and the area of the entire image
On the other hand, a deformed portion extracting means for obtaining the ratio of the area of the entire partially deformed portion, and dividing the grayscale image information into small regions at a predetermined interval and averaging the grayscale values included in the small regions for each small region. Statistical means for obtaining a statistic consisting of values and variances,
Average be smaller dispersion and dispersion of larger small region from this statistic is determined to statistically Henjo portion and a greatly different small regions from the average value of the entire image, the number of the statistical Henjo portion predetermined If the value is equal to or larger than the value, it is determined that there is deterioration, and on the other hand, from the deformed portion data, there is a partial deformed portion whose area is equal to or larger than a predetermined value, or there is a predetermined number or more of partial deformed portions whose area is equal to or larger than the predetermined value. Or, the surface of the partial deformation part with respect to the area of the entire image
When the ratio of the product exceeds a predetermined value, it is determined that there is deterioration, and the degree of deterioration that determines the degree of deterioration progress of the inspection target by combining the deterioration determination from these statistics and the deterioration determination from the deformed part data An apparatus for diagnosing coating film deterioration, comprising: a determining unit.
JP27184792A 1992-10-09 1992-10-09 Method and apparatus for diagnosing coating film deterioration Expired - Lifetime JP2541735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27184792A JP2541735B2 (en) 1992-10-09 1992-10-09 Method and apparatus for diagnosing coating film deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27184792A JP2541735B2 (en) 1992-10-09 1992-10-09 Method and apparatus for diagnosing coating film deterioration

Publications (2)

Publication Number Publication Date
JPH06116914A JPH06116914A (en) 1994-04-26
JP2541735B2 true JP2541735B2 (en) 1996-10-09

Family

ID=17505709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27184792A Expired - Lifetime JP2541735B2 (en) 1992-10-09 1992-10-09 Method and apparatus for diagnosing coating film deterioration

Country Status (1)

Country Link
JP (1) JP2541735B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042965A (en) * 2001-05-11 2003-02-13 Byk Gardner Gmbh Device for determining characteristic of reflector, and method therefor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4379996B2 (en) * 2000-01-12 2009-12-09 株式会社Ihi Coating film deterioration diagnosis method and apparatus
JP2003021621A (en) * 2001-07-09 2003-01-24 Nkk Corp Corrosion diagnosing system
KR100891934B1 (en) * 2007-09-03 2009-04-08 한국도로공사 Steel bridge coating inspection system using image processing and the processing method for the same
JP5550058B2 (en) * 2008-03-26 2014-07-16 大日本塗料株式会社 Coating film diagnosis system
JP6000160B2 (en) * 2013-02-21 2016-09-28 アズビル株式会社 Peel inspection system, peel inspection apparatus, and peel inspection method
JP5725588B2 (en) * 2014-02-05 2015-05-27 大日本塗料株式会社 Coating film diagnosis system
JP6365799B2 (en) * 2016-06-17 2018-08-01 三菱電機株式会社 Deformation progress determination device and deformation progress determination method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2751410B2 (en) * 1989-05-31 1998-05-18 石川島播磨重工業株式会社 Formation measurement method and formation control method using the formation measurement method
JP3125245U (en) * 2006-06-30 2006-09-14 実 橋本 Quantitative discharge tap for powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042965A (en) * 2001-05-11 2003-02-13 Byk Gardner Gmbh Device for determining characteristic of reflector, and method therefor

Also Published As

Publication number Publication date
JPH06116914A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
US6531707B1 (en) Machine vision method for the inspection of a material for defects
JP3123587B2 (en) Moving object region extraction method using background subtraction
CN114881915A (en) Symmetry-based mobile phone glass cover plate window area defect detection method
JP2541735B2 (en) Method and apparatus for diagnosing coating film deterioration
JP3533722B2 (en) Failure inspection method and device
US6765224B1 (en) Machine vision method and system for the inspection of a material
JP2001184510A (en) Defect detecting method
KR101677070B1 (en) System and Method for Automatically Detecting a Mura Defect using Morphological Image Processing and Labeling
JP4320990B2 (en) Screen defect detection method and apparatus, and screen defect detection program
JPH08189904A (en) Surface defect detector
JP3396960B2 (en) Automatic coating deterioration diagnosis method
JPH11125514A (en) Bending angle detecting device
KR20010098460A (en) Appearance inspection method and appearance inspection apparatus having high inspection processing speed
JP3071956B2 (en) Vickers hardness automatic reading device
JP3342581B2 (en) Automatic coating film deterioration diagnosis method and apparatus
US5146311A (en) Method of indentifying and quantifying oxides on rolled metal strip
JP7469740B2 (en) Belt inspection system and belt inspection program
JP3127598B2 (en) Method for extracting density-varying constituent pixels in image and method for determining density-fluctuation block
JPH08145907A (en) Inspection equipment of defect
JP2004170374A (en) Apparatus and method for detecting surface defect
JP7564502B2 (en) Belt inspection system and belt inspection program
JP2638121B2 (en) Surface defect inspection equipment
JP2000180375A (en) Method and apparatus for inspecting flat panel display device
JPS6310379B2 (en)
JPH08189902A (en) Picture processing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 17