[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024102260A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2024102260A
JP2024102260A JP2024076114A JP2024076114A JP2024102260A JP 2024102260 A JP2024102260 A JP 2024102260A JP 2024076114 A JP2024076114 A JP 2024076114A JP 2024076114 A JP2024076114 A JP 2024076114A JP 2024102260 A JP2024102260 A JP 2024102260A
Authority
JP
Japan
Prior art keywords
insulating film
width
axis direction
region
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024076114A
Other languages
English (en)
Other versions
JP2024102260A5 (ja
Inventor
達也 内藤
Tatsuya Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2024076114A priority Critical patent/JP2024102260A/ja
Publication of JP2024102260A publication Critical patent/JP2024102260A/ja
Publication of JP2024102260A5 publication Critical patent/JP2024102260A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】半導体装置において、さらなる微細化を可能にする。【解決手段】導電材料で形成されるゲート導電部と前記ゲート導電部を半導体基板から絶縁するゲート絶縁膜とを有するゲートトレンチ部の上部に凹部を形成する工程と、前記凹部に充填されるように前記半導体基板の上に第1絶縁膜を形成する工程と、前記第1絶縁膜の上に第2絶縁膜を形成する工程と、を含む半導体装置の製造方法であって、前記半導体基板の上面よりも上側に形成されている部分の少なくとも一部を残して、前記第1絶縁膜をエッチングする工程と、テーパー状のテーパー側面を前記第2絶縁膜に形成する工程と、前記半導体基板の上面の上方に設けられ、前記テーパー側面に接触する第1電極を形成する工程と、を含み、前記第1電極を形成する工程の後において、前記テーパー側面の下端が前記第1絶縁膜に接する半導体装置の製造方法を提供する。【選択図】図18a

Description

本発明は、半導体装置の製造方法に関する。
従来、絶縁ゲート型バイポーラトランジスタ(IGBT)等の半導体装置が知られている。(例えば、特許文献1および2参照)。
特許文献1 特開2015-135982号公報
特許文献2 特開2015-070192号公報
半導体装置においては、さらに微細化することが好ましい。
本発明の第1の態様においては、導電材料で形成されるゲート導電部と前記ゲート導電部を半導体基板から絶縁するゲート絶縁膜とを有するゲートトレンチ部の上部に凹部を形成する工程と、前記凹部に充填されるように前記半導体基板の上に第1絶縁膜を形成する工程と、前記第1絶縁膜の上に第2絶縁膜を形成する工程と、を含む半導体装置の製造方法であって、前記半導体基板の上面よりも上側に形成されている部分の少なくとも一部を残して、前記第1絶縁膜をエッチングする工程と、テーパー状のテーパー側面を前記第2絶縁膜に形成する工程と、前記半導体基板の上面の上方に設けられ、前記テーパー側面に接触する第1電極を形成する工程と、を含み、前記第1電極を形成する工程の後において、前記テーパー側面の下端が前記第1絶縁膜に接する半導体装置の製造方法を提供する。
前記テーパー側面を前記第2絶縁膜に形成する工程では、前記第1絶縁膜をエッチングしなくてよい。
前記第1絶縁膜をエッチングする工程を、前記第1絶縁膜の上に前記第2絶縁膜を形成する工程の前にドライエッチングで行ってよい。
前記第2絶縁膜に前記テーパー側面を形成する工程の前に、前記第2絶縁膜のドライエッチングを行ってよい。
前記第1絶縁膜のドライエッチングと前記第2絶縁膜のドライエッチングとで、異なるエッチングガスを用いてよい。
前記第2絶縁膜のテーパー側面をウェットエッチングで形成してよい。
本発明の第2の態様においては、半導体基板と、導電材料で形成されるゲート導電部と前記ゲート導電部を前記半導体基板から絶縁するゲート絶縁膜とを有するゲートトレンチ部と、前記ゲートトレンチ部の上部に形成された凹部に少なくとも一部が配置されると共に、前記半導体基板の上面よりも上側に形成された部分を有する第1絶縁膜と、前記第1絶縁膜の上面と接し、前記第1絶縁膜とは材質の異なる第2絶縁膜と、を備え、前記第2絶縁膜は、テーパー状に形成されたテーパー側面を有し、前記テーパー側面の下端は、前記第1絶縁膜と接している半導体装置を提供する。
前記テーパー側面のテーパー角度は、前記第1絶縁膜の側面の角度と異なってよい。前記テーパー側面の前記下端は、前記第1絶縁膜の上面と接していてよい。前記第1絶縁膜は、上面および側面が交差する頂点を有し、前記テーパー側面の前記下端は、前記第1絶縁膜の前記頂点と接していてよい。前記第1絶縁膜は、前記ゲート導電部および前記ゲート絶縁膜の上面を覆っていてよい。
導電材料で形成されるダミー導電部と前記ダミー導電部を前記半導体基板から絶縁するダミー絶縁膜とを有するダミートレンチ部を備え、前記第1絶縁膜は、前記ダミートレンチ部の上部に形成された凹部に少なくとも一部が配置されると共に、前記半導体基板の上面よりも上側に形成された部分を有し、前記第2絶縁膜は、前記ダミートレンチ部の上部の前記凹部に配置された前記第1絶縁膜の上面と接していてよい。
前記第1絶縁膜は、前記半導体基板の上面と接していてよい。前記第2絶縁膜は窒化膜であってよい。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係る半導体装置100の上面の一例を部分的に示す図である。 図1におけるa-a'断面の一例を示す図である。 図2aにおける領域A1の拡大図である。 図1におけるa-a'断面の他の一例を示す図である。 図1におけるa-a'断面の他の一例を示す図である。 図3aにおける領域A2の拡大図である。 図1におけるa-a'断面の他の一例を示す図である。 図4aにおける領域A3の拡大図である。 図1におけるa-a'断面の他の一例を示す図である。 図5aにおける領域A4の拡大図である。 比較例の半導体装置150の上面を部分的に示す図である。 図6におけるz-z'断面の一例を示す図である。 図2aにおける領域Zの拡大図である。 図1におけるa-a'断面の他の一例を示す図である。 図8aにおける領域A4の拡大図である。 図1におけるa-a'断面の他の一例を示す図である。 図9aにおける領域A5の拡大図である。 図1におけるa-a'断面の他の一例を示す図である。 図10aにおける領域A6の拡大図である。 本実施形態に係る半導体装置100の上面の他の一例を部分的に示す図である。 図11におけるb-b'断面の一例を示す図である。 図12aにおける領域B1の拡大図である。 図11におけるb-b'断面の他の一例を示す図である。 図13aにおける領域B2の拡大図である。 図11におけるb-b'断面の他の一例を示す図である。 図14aにおける領域B3の拡大図である。 図11におけるb-b'断面の他の一例を示す図である。 図15aにおける領域B4の拡大図である。 図11におけるb-b'断面の他の一例を示す図である。 図16aにおける領域B5の拡大図である。 図11におけるb-b'断面の他の一例を示す図である。 図17aにおける領域B6の拡大図である。 本実施形態に係る半導体装置100の製造方法の一例を示す図である。 本実施形態に係る半導体装置100の製造方法の他の一例を示す図である。 本実施形態に係る半導体装置100の製造方法の他の一例を示す図である。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
本明細書においては半導体基板の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。基板、層またはその他の部材の2つの主面のうち、一方の面を上面、他方の面を下面と称する。「上」、「下」の方向は重力方向、または、半導体装置の実装時における基板等への取り付け方向に限定されない。
本明細書では、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。本明細書では、半導体基板の上面と平行な面をXY面とし、半導体基板の上面と垂直な深さ方向をZ軸とする。
各実施例においては、第1導電型をN型、第2導電型をP型とした例を示しているが、第1導電型をP型、第2導電型をN型としてもよい。この場合、各実施例における基板、層、領域等の導電型は、それぞれ逆の極性となる。また、本明細書においてP+型(またはN+型)と記載した場合、P型(またはN型)よりもドーピング濃度が高いことを意味し、P-型(またはN-型)と記載した場合、P型(またはN型)よりもドーピング濃度が低いことを意味する。
本明細書においてドーピング濃度とは、ドナーまたはアクセプタ化した不純物の濃度を指す。本明細書において、ドナーおよびアクセプタの濃度差をドーピング濃度とする場合がある。また、ドーピング領域におけるドーピング濃度分布のピーク値を、当該ドーピング領域におけるドーピング濃度とする場合がある。
図1は、本実施形態に係る半導体装置100の上面の一例を部分的に示す図である。本例の半導体装置100は、トランジスタ部70およびトランジスタ部70に隣接して設けられたダイオード部80を備える半導体チップである。トランジスタ部70は、IGBT等のトランジスタを含む。境界部90は、トランジスタ部70のうちダイオード部80に隣接する領域である。ダイオード部80は、半導体基板の上面においてFWD(Free Wheel Diode)等のダイオードを含む。図1においては、チップ端部周辺のチップ上面を示しており、他の領域を省略している。
また、図1においては、半導体装置100における半導体基板の活性領域を示すが、半導体装置100は、活性領域を囲んでエッジ終端構造部を有してよい。活性領域は、半導体装置100をオン状態に制御した場合に電流が流れる領域を指す。エッジ終端構造部は、半導体基板の上面側の電界集中を緩和する。エッジ終端構造部は、例えばガードリング、フィールドプレート、リサーフおよびこれらを組み合わせた構造を有する。
本例の半導体装置100は、半導体基板の内部に設けられ、且つ、半導体基板の上面に露出するゲートトレンチ部40、ダミートレンチ部30、ウェル領域11、エミッタ領域12、ベース領域14およびコンタクト領域15を備える。また、本例の半導体装置100は、半導体基板の上面の上方に設けられたエミッタ電極52およびゲート金属層50を備える。エミッタ電極52およびゲート金属層50は、互いに分離して設けられる。
エミッタ電極52およびゲート金属層50と、半導体基板の上面との間には層間絶縁膜が設けられるが、図1では省略している。本例の層間絶縁膜には、コンタクトホール56、コンタクトホール49およびコンタクトホール54が、当該層間絶縁膜を貫通して設けられる。
また、エミッタ電極52は、コンタクトホール56を通って、ダミートレンチ部30内のダミー導電部と接続される。エミッタ電極52とダミー導電部との間には、不純物がドープされたポリシリコン等の、導電性を有する材料で形成された接続部25が設けられてよい。接続部25と半導体基板の上面との間には、酸化膜等の絶縁膜が設けられる。
ゲート金属層50は、コンタクトホール49を通って、ゲートランナー48と接触する。ゲートランナー48は、不純物がドープされたポリシリコン等で形成される。ゲートランナー48は、半導体基板の上面において、ゲートトレンチ部40内のゲート導電部と接続される。ゲートランナー48は、ダミートレンチ部30内のダミー導電部とは接続されない。
本例のゲートランナー48は、コンタクトホール49の下方から、ゲートトレンチ部40の先端部まで形成される。ゲートランナー48と半導体基板の上面との間には、酸化膜等の絶縁膜が形成される。
ゲートトレンチ部40の先端部において、ゲート導電部は半導体基板の上面側が露出している。ゲートトレンチ部40は、ゲート導電部の当該露出した部分にて、ゲートランナー48と接触する。
エミッタ電極52およびゲート金属層50は、金属を含む材料で形成される。エミッタ電極52の少なくとも一部の領域は、アルミニウムまたはアルミニウム‐シリコン合金で形成されてよい。
ゲート金属層50の少なくとも一部の領域は、アルミニウムまたはアルミニウム‐シリコン合金で形成されてよい。エミッタ電極52およびゲート金属層50は、アルミニウム等で形成された領域の下層にチタンやチタン化合物等で形成されたバリアメタルを有してよい。また、エミッタ電極52およびゲート金属層50は、コンタクトホール内においてタングステン等で形成されたプラグを有してもよい。
1つ以上のゲートトレンチ部40および1つ以上のダミートレンチ部30は、所定の配列方向(本例ではY軸方向)に沿って所定の間隔で配列される。本例のゲートトレンチ部40は、半導体基板の上面に平行であって配列方向と垂直な延伸方向(本例ではX軸方向)に沿って延伸する2つの延伸部分39と、2つの延伸部分39を接続する接続部分41を有してよい。接続部分41の少なくとも一部は、曲線状に形成されることが好ましい。ゲートトレンチ部40の2つの延伸部分39の端部を接続することで、延伸部分39の端部における電界集中を緩和することができる。本明細書では、ゲートトレンチ部40のそれぞれの延伸部分39を、一つのゲートトレンチ部40として扱う場合がある。ゲートランナー48は、ゲートトレンチ部40の接続部分41において、ゲート導電部と接続してよい。
本例のダミートレンチ部30は、ゲートトレンチ部40と同様に、半導体基板の上面においてU字形状を有してよい。即ち、本例のダミートレンチ部30は、延伸方向に沿って延伸する2つの延伸部分29と、2つの延伸部分29を接続する接続部分31を有してよい。
エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、ウェル領域11、エミッタ領域12、ベース領域14およびコンタクト領域15の上方に形成される。ウェル領域11は第2導電型である。ウェル領域11は、一例としてP+型である。ウェル領域11は、ゲート金属層50が設けられる側の活性領域の端部から、予め定められた範囲で形成される。ウェル領域11の拡散深さは、ゲートトレンチ部40およびダミートレンチ部30の深さよりも深くてよい。ゲートトレンチ部40およびダミートレンチ部30の、ゲート金属層50側の一部の領域は、ウェル領域11に形成される。ゲートトレンチ部40およびダミートレンチ部30の延伸方向の端の底は、ウェル領域11に覆われてよい。
半導体基板の上面と平行な面内において、Y軸方向には各トレンチ部に隣接してメサ部が設けられる。メサ部とは、隣り合う2つのトレンチ部に挟まれた半導体基板の部分である。メサ部は、半導体基板の上面から、各トレンチ部の最も深い底部の深さまでの部分であってよい。隣り合う2つのトレンチ部の延伸部分に挟まれる領域をメサ部としてよい。
トランジスタ部70においては、各トレンチ部に隣接して第1メサ部60が設けられる。境界部90においては、隣り合うダミートレンチ部30に挟まれた領域に第2メサ部62が設けられる。ダイオード部80においては、隣り合うダミートレンチ部30に挟まれた領域に第3メサ部64が設けられる。
第1メサ部60、第2メサ部62および第3メサ部64のX軸方向における両端部には、一例として、半導体基板の上面に露出して、第2導電型のベース領域14が設けられる。本例のベース領域14は、一例としてP-型である。なお、図1は、当該ベース領域14のX軸方向の一方の端部のみを示している。
第1メサ部60の上面には、ゲートトレンチ部40と接してエミッタ領域12が設けられる。エミッタ領域12は、第1メサ部60を挟んでX軸方向に延伸する2本のトレンチ部の一方から他方まで、Y軸方向に設けられてよい。エミッタ領域12は、コンタクトホール54の下方にも設けられている。図1においては、半導体基板の上面視でコンタクトホール54と重なるエミッタ領域12の境界を、破線で示している。
エミッタ領域12は、ダミートレンチ部30と接してよく、接しなくてもよい。本例においては、エミッタ領域12がダミートレンチ部30と接して設けられる。本例のエミッタ領域12は第1導電型である。本例のエミッタ領域12は、一例としてN+型である。
第1メサ部60の上面には、ベース領域14よりもドーピング濃度の高い第2導電型のコンタクト領域15が設けられる。本例のコンタクト領域15は、一例としてP+型である。第1メサ部60において、エミッタ領域12およびコンタクト領域15は、ゲートトレンチ部40の延伸方向に交互に設けられてよい。コンタクト領域15は、第1メサ部60を挟んでX軸方向に延伸する2本のトレンチ部の一方から他方まで、Y軸方向に設けられてよい。コンタクト領域15は、コンタクトホール54の下方にも設けられている。図1においては、半導体基板の上面視でコンタクトホール54と重なるコンタクト領域15の境界を、破線で示している。
コンタクト領域15は、ゲートトレンチ部40と接してよく、接しなくてもよい。また、コンタクト領域15は、ダミートレンチ部30と接してよく、接しなくてもよい。本例においては、コンタクト領域15が、ダミートレンチ部30およびゲートトレンチ部40と接して設けられる。
第2メサ部62の上面には、コンタクト領域15が設けられる。一つの第2メサ部62の上面に設けられるコンタクト領域15の面積は、一つの第1メサ部60の上面に設けられるコンタクト領域15の面積よりも大きい。一つの第2メサ部62の上面に設けられるコンタクト領域15の面積は、一つの第3メサ部64の上面に設けられるコンタクト領域15の面積よりも大きくてよい。第2メサ部62において、コンタクト領域15はコンタクトホール54の下方にも設けられている。
第2メサ部62の上面におけるコンタクト領域15は、第2メサ部62のX軸方向における両端部に設けられるベース領域14に挟まれる領域全体に設けられてよい。第2メサ部62では、第1メサ部60と比べてターンオフ時のキャリアの引き抜きを効果的に行う。
第3メサ部64の上面には、X軸方向における両端部にコンタクト領域15が設けられる。また、第3メサ部64の上面において、第3メサ部64のX軸方向における両端部に設けられるコンタクト領域15に挟まれる領域には、ベース領域14が設けられる。ベース領域14は、X軸方向において当該コンタクト領域15に挟まれる領域全体に設けられてよい。第3メサ部64において、ベース領域14は、コンタクトホール54の下方にも設けられている。コンタクト領域15は、コンタクトホール54の下方にも設けられてよい。
第3メサ部64には、コンタクト領域15およびベース領域14が、第3メサ部64を挟む一方のダミートレンチ部30から、他方のダミートレンチ部30に渡って形成される。即ち、半導体基板の上面において、第3メサ部64のY軸方向の幅と、第3メサ部64に設けられたコンタクト領域15またはベース領域14のY軸方向の幅は、等しい。
第3メサ部64には、エミッタ領域12が形成されなくてよく、形成されてもよい。本例においては、第3メサ部64にエミッタ領域12が形成されない。
本例の半導体装置100は、ダイオード部80において、ダミートレンチ部30が設けられる。隣接するダミートレンチ部30のそれぞれの直線状の延伸部分29は、接続部分31で接続されてよい。第3メサ部64は、それぞれのダミートレンチ部30に挟まれる領域である。
ダイオード部80は、半導体基板の下面側において、第1導電型のカソード領域82を有する。本例のカソード領域82は、一例としてN+型である。図1に、半導体基板の上面視でカソード領域82が設けられる領域を一点鎖線部で示している。ダイオード部80は、カソード領域82を半導体基板の上面に投影した領域であってよい。また、カソード領域82が部分的に設けられた第3メサ部64全体と、当該第3メサ部64に隣接するダミートレンチ部30とをダイオード部80に含めてもよい。カソード領域82を半導体基板の上面に投影した領域は、コンタクト領域15からX軸方向正側に離れていてよい。
半導体基板の下面においてカソード領域82が形成されていない領域には、第2導電型のコレクタ領域が形成されてよい。本例のコレクタ領域は、一例としてP+型である。ダイオード部80におけるコンタクトホール54のX軸方向負側の端部を半導体基板の下面に投影した位置には、コレクタ領域が形成されてよい。
境界部90を除くトランジスタ部70において、コンタクトホール54は、コンタクト領域15およびエミッタ領域12の各領域の上方に形成される。境界部90に隣接する第1メサ部60を除く第1メサ部60において、コンタクトホール54は、図1の上面視で、X軸方向に延伸するゲートトレンチ部40およびダミートレンチ部30と重ならないように設けられてよい。コンタクトホール54のY軸方向の幅は、エミッタ領域12およびコンタクト領域15のY軸方向の幅よりも小さくてよい。
境界部90を除くトランジスタ部70において、コンタクトホール54は、図1の上面視で、第1メサ部60のX軸方向最も負側に設けられるコンタクト領域15の上方から、X軸方向の最も正側に設けられるコンタクト領域15の上方まで、連続して設けられてよい。コンタクトホール54は、図1の上面視で、第1メサ部60のX軸方向最も負側に設けられるコンタクト領域15の少なくとも一部と重なるように設けられてよい。コンタクトホール54は、図1の上面視で、第1メサ部60のX軸方向最も正側に設けられるコンタクト領域15の少なくとも一部と重なるように設けられてよい。
境界部90において、コンタクトホール54は、コンタクト領域15の上方に形成される。第2メサ部62において、コンタクトホール54は、図1の上面視で、X軸方向に延伸するダミートレンチ部30と重ならないように設けられてよい。コンタクトホール54のY軸方向の幅は、コンタクト領域15のY軸方向の幅よりも小さくてよい。
境界部90において、コンタクトホール54は、図1の上面視で、第2メサ部62に設けられるコンタクト領域15の上方に、X軸方向に連続して設けられてよい。コンタクトホール54は、図1の上面視で、第2メサ部62に設けられるコンタクト領域15の少なくとも一部と重なるように設けられてよい。
ダイオード部80において、コンタクトホール54は、ベース領域14およびコンタクト領域15の上方に形成される。第3メサ部64において、コンタクトホール54は、図1の上面視で、X軸方向に延伸するダミートレンチ部30と重ならないように設けられてよい。コンタクトホール54のY軸方向の幅は、ベース領域14およびコンタクト領域15のY軸方向の幅よりも小さくてよい。
ダイオード部80において、コンタクトホール54は、図1の上面視で、第3メサ部64のX軸方向最も負側に設けられるコンタクト領域15の上方から、X軸方向の最も正側に設けられるコンタクト領域15の上方まで、連続して設けられてよい。コンタクトホール54は、図1の上面視で、第3メサ部64のX軸方向負側に設けられるコンタクト領域15の少なくとも一部と重なるように設けられてよい。コンタクトホール54は、図1の上面視で、第3メサ部64のX軸方向正側に設けられるコンタクト領域15の少なくとも一部と重なるように設けられてよい。
本例の半導体装置100は、半導体基板の内部において、ベース領域14の下方に第1導電型の蓄積領域16が設けられる。本例の蓄積領域16は、一例としてN+型である。図1において、蓄積領域16が形成される範囲を破線で示している。蓄積領域16は、半導体基板の上面視で、-X軸方向の端のコンタクト領域15とコンタクトホール54とが重なる領域から、+X軸方向側に形成されてよい。
図2aは、図1におけるa-a'断面の一例を示す図である。a-a'断面は、トランジスタ部70およびダイオード部80において、エミッタ領域12およびコンタクト領域15を通過するYZ面である。本例の半導体装置100は、a-a'断面において、半導体基板10、層間絶縁膜38、保護絶縁膜36、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、半導体基板10の上面21、保護絶縁膜36の上面の一部および層間絶縁膜38の上面に設けられる。
コレクタ電極24は、半導体基板10の下面23に設けられる。エミッタ電極52およびコレクタ電極24は、金属等の導電材料で形成される。本明細書において、エミッタ電極52とコレクタ電極24とを結ぶ方向を深さ方向(Z軸方向)と称する。
半導体基板10は、シリコン基板であってよく、炭化シリコン基板であってよく、窒化ガリウム等の窒化物半導体基板等であってもよい。本例の半導体基板10はシリコン基板である。
半導体基板10は、第1導電型のドリフト領域18を備える。本例のドリフト領域18はN-型である。ドリフト領域18は、半導体基板10において、他のドーピング領域が設けられずに残存した領域であってよい。
半導体基板10の上面21には、1つ以上のゲートトレンチ部40および1つ以上のダミートレンチ部30が設けられる。各トレンチ部は、上面21から、ベース領域14を貫通して、ドリフト領域18に到達して設けられている。
ゲートトレンチ部40は、上面21に設けられたゲートトレンチ、並びにゲートトレンチ内に設けられたゲート絶縁膜42およびゲート導電部44を有する。ゲート絶縁膜42は、ゲートトレンチの内壁を覆って設けられる。ゲート絶縁膜42は、ゲートトレンチの内壁の半導体を酸化または窒化して形成してよい。ゲート導電部44は、ゲートトレンチの内部においてゲート絶縁膜42よりも内側に設けられる。即ち、ゲート絶縁膜42は、ゲート導電部44と半導体基板10とを絶縁する。ゲート導電部44は、ポリシリコン等の導電材料で形成される。
ゲート導電部44は、ゲートトレンチ部40の内部において、ゲート絶縁膜42に囲まれて設けられる。ゲート導電部44は、深さ方向において、ゲート絶縁膜42を挟んで、少なくとも隣接するベース領域14と対向する領域を含む。当該断面におけるゲートトレンチ部40は、上面21において層間絶縁膜38により覆われる。ゲート導電部44に所定の電圧が印加されると、ベース領域14のうちゲートトレンチに接する界面の表層に電子の反転層によるチャネルが形成される。
図2aにおいて、Y1およびY1'は、ゲートトレンチ部40の上端である。上端Y1および上端Y1'のZ軸方向における位置は、上面21のZ軸方向における位置と等しい。ゲートトレンチ部40は、Z軸方向において、上端Y1および上端Y1'の位置以下の領域であってよい。即ち、ゲートトレンチ部40は、Z軸方向において、上面21以下の領域であってよい。なお、上端Y1および上端Y1'は、第1メサ部60におけるコンタクト領域15を通過するYZ面等、a-a'断面以外の他のYZ面内におけるゲートトレンチ部40の上端であってもよい。
ダミートレンチ部30は、当該断面において、ゲートトレンチ部40と同一の構造を有してよい。ダミートレンチ部30は、上面21側に設けられたダミートレンチ、並びにダミートレンチ内に設けられたダミー絶縁膜32およびダミー導電部34を有する。ダミートレンチの上端は、Z軸方向において上面21と同じ位置であってよい。ダミー絶縁膜32は、ダミートレンチの内壁を覆って設けられる。ダミー導電部34は、ダミートレンチ部30の内部において、ダミー絶縁膜32に囲まれて設けられる。ダミー絶縁膜32は、ダミー導電部34と半導体基板10とを絶縁する。
ダミー導電部34は、ゲート導電部44と同一の材料で形成されてよい。例えば、ダミー導電部34は、ポリシリコン等の導電材料で形成される。ダミー導電部34は、深さ方向においてゲート導電部44と同一の長さを有してよい。なお、ダミートレンチ部30およびゲートトレンチ部40の底部は下方側に凸の曲面状(断面においては曲線状)であってよい。
Y1''は、ダミートレンチ部30の上端である。上端Y1''のZ軸方向における位置は、上面21のZ軸方向における位置と等しい。ダミートレンチ部30は、Z軸方向において、上端Y1''の位置以下の領域であってよい。即ち、ダミートレンチ部30は、Z軸方向において、上面21以下の領域であってよい。なお、上端Y1''は、第1メサ部60におけるコンタクト領域15を通過するYZ面等、a-a'断面以外の他のYZ面内におけるダミートレンチ部30の上端であってもよい。
第1メサ部60において、ドリフト領域18の上方には、ゲートトレンチ部40に接して一つ以上の蓄積領域16が設けられる。蓄積領域16は、ドリフト領域18よりもドーパント(この場合はドナー)が高濃度に蓄積した領域である。蓄積領域16が複数設けられる場合、それぞれの蓄積領域16はZ軸方向に並んで配置される。蓄積領域16は、一例としてN+型である。蓄積領域16のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。蓄積領域16を設けることで、キャリア注入促進効果(IE効果)を高めて、オン電圧を低減することができる。
一つ以上の蓄積領域16は、第1メサ部60において、ダミートレンチ部30に接していてよいが、離れていてもよい。図2aは、蓄積領域16がダミートレンチ部30と接して設けられる一例を示している。なお、第2メサ部62および第3メサ部64には、蓄積領域16が設けられてよいが、設けられなくてもよい。図2aは、第2メサ部62および第3メサ部64に、蓄積領域16が設けられる一例を示している。
第1メサ部60、第2メサ部62および第3メサ部64において、蓄積領域16は、Z軸方向に複数設けられてもよい。図2aは、蓄積領域16がZ軸方向に2つ設けられる一例を示している。Z軸方向において、蓄積領域16-1と蓄積領域16-2との間には、ドリフト領域18が設けられてよい。蓄積領域16を複数設けることで、電子電流が第1メサ部60の中央付近を流れやすくなる。このため、第1メサ部60の底部近傍における正孔分布を、第1メサ部60中央付近で分断することができる。このため、ゲートトレンチ部40の下端における正孔の蓄積を抑制することができる。その結果、トランジスタ部70の変位電流を小さくすることできる。
第1メサ部60において、蓄積領域16の上方には、ゲートトレンチ部40に接して第2導電型のベース領域14が設けられる。ベース領域14は、一例としてN-型である。第1メサ部60において、ベース領域14は、ダミートレンチ部30に接して設けられてよい。
境界部90の第2メサ部62において、ドリフト領域18の上方には、ダミートレンチ部30に接して第2導電型のベース領域14が設けられる。ダイオード部80の第3メサ部64において、ドリフト領域18の上方には、ダミートレンチ部30に接して第2導電型のベース領域14が設けられる。第3メサ部64において、ベース領域14は上面21に接して設けられる。
第1メサ部60には、a-a'断面において、上面21に接して、且つ、ゲートトレンチ部40と接してエミッタ領域12が設けられる。エミッタ領域12のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。第1メサ部60には、当該a-a'断面のX軸方向正側および負側に、上面21に接して、且つ、ゲートトレンチ部40と接してコンタクト領域15が設けられる。
第2メサ部62において、上面21にはダミートレンチ部30と隣接してコンタクト領域15が設けられる。コンタクト領域15は、ダミートレンチ部30と接していてよいが、離れていてもよい。図2aは、コンタクト領域15がダミートレンチ部30と接して設けられる一例を示している。
ドリフト領域18の下方には、第1導電型のバッファ領域20が設けられてよい。バッファ領域20は、一例としてN+型である。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。バッファ領域20は、ベース領域14の下面側から広がる空乏層が、P+型のコレクタ領域22およびN+型のカソード領域82に到達することを防ぐフィールドストップ層として機能してよい。
トランジスタ部70において、バッファ領域20の下方には、下面23に露出するP+型のコレクタ領域22が設けられる。ダイオード部80において、バッファ領域20の下方には、下面23に露出するN+型のカソード領域82が設けられる。境界部90において、バッファ領域20の下には、コレクタ領域22およびカソード領域82のいずれかが設けられる。本例の境界部90において、バッファ領域20の下は、コレクタ領域22が設けられる。
なお、ダイオード部80は、下面23に垂直な方向においてカソード領域82と重なる領域である。また、トランジスタ部70は、境界部90を除き、下面23に垂直な方向においてコレクタ領域22と重なる領域のうち、エミッタ領域12およびコンタクト領域15を含む所定の単位構成が規則的に配置された領域である。
層間絶縁膜38は、ゲートトレンチ部40およびダミートレンチ部30の上方に設けられる。層間絶縁膜38は、PSG、BPSG等のシリケートガラスであってよい。また、層間絶縁膜38は、酸化膜または窒化膜等であってもよい。
本例の半導体装置100は、半導体基板10の深さ方向(Z軸方向)において、層間絶縁膜38とゲートトレンチ部40との間に、層間絶縁膜38およびゲート絶縁膜42とは材質の異なる保護絶縁膜36を有する。本例において、保護絶縁膜36はゲートトレンチ部40の内部およびダミートレンチ部30の内部、即ち、上面21よりも下方にも設けられる。保護絶縁膜36は、ゲート絶縁膜42と接して設けられる。保護絶縁膜36の酸素含有比率は、ゲート絶縁膜42の酸素含有比率よりも少なくてよい。保護絶縁膜36の酸素含有比率は、ゲート絶縁膜42の酸素含有比率の1/10以下であってよい。
保護絶縁膜36は、一例としてSiN(窒化シリコン)である。保護絶縁膜36としては、他にHfO(酸化ハフニウム)、TiO(酸化チタン)、Ta(五酸化タンタル)、TiN(窒化チタン)およびHfSiO(ハフニウムシリケート)などの、高誘電率(high-k)絶縁膜を用いることができる。
図2bは、図2aにおける領域A1の拡大図である。図2bは、第1メサ部60の上面21近傍を拡大して示している。
本例において、TpおよびTp'は、ゲート導電部44の上端である。本例において、ゲート導電部44の上端Tpおよび上端Tp'は、上面21よりも下方に配置されている。上端Tpおよび上端Tp'のZ軸方向における位置は、等しくてよい。
本例の半導体装置100は、ゲートトレンチ部40の内部において、ゲート導電部44の少なくとも一部の上方に、保護絶縁膜36が設けられる。本例は、ゲートトレンチ部40の内部において、ゲート導電部44の全体の上方に、保護絶縁膜36が設けられる一例である。また、保護絶縁膜36は、ゲート導電部44と接してよい。
本例において、Tp''は、ダミー導電部34の上端である。本例において、ダミー導電部34の上端Tp''は、上面21よりも下方に配置されている。上端Tp''のZ軸方向における位置は、上端Tpおよび上端Tp'のZ軸方向における位置と等しくてよい。
また、本例において、上面21と平行な方向におけるダミー導電部34の少なくとも一部の上方には、保護絶縁膜36が設けられる。本例は、上面21と平行な方向において、ダミー導電部34の全体の上方に、保護絶縁膜36が設けられる一例である。また、保護絶縁膜36は、ダミー導電部34と接してよい。
深さDiは、保護絶縁膜36において、上面21のZ軸方向における位置から保護絶縁膜36の下端Z1までのZ軸方向における深さである。深さDeは、エミッタ領域12において、上面21のZ軸方向における位置からエミッタ領域12の下面までのZ軸方向における深さである。深さDiを大きくするほど、ゲート導電部44の上面が下方に配置されるので、エミッタ領域12を形成するために、ドーパントを上面21からより深い位置まで注入させる必要が生じる。ドーパントを上面21からより深い位置まで注入すると、エミッタ領域12を形成させる熱処理工程において、熱履歴が多くなる。このため、深さDiは、深さDeはの0.7倍以上0.9倍以下であることが好ましい。
深さDiは、0.2μm以上0.4μm以下であってよい。深さDiは、一例として0.3μmである。深さDeは、0.35μm以上0.45μm以下であってよい。深さDeは、一例として0.4μmである。
本例において、幅Wivは、上面21よりも上方における保護絶縁膜36の膜厚である。即ち、幅Wivは、上面21から保護絶縁膜36の上面までのZ軸方向における幅である。幅Wsivは、保護絶縁膜36の上面に設けられる層間絶縁膜38の膜厚である。即ち、幅Wsivは、保護絶縁膜36の上面から層間絶縁膜38の上面までのZ軸方向における幅である。
幅Wivは、幅Wsivよりも小さくてよい。幅Wivは、幅Wsivの1/20以上1/5以下であってよい。幅Wivを幅Wsivよりも小さくすることで、上面21と平行な方向において、保護絶縁膜36の位置決め精度を、層間絶縁膜38の位置決め精度よりも高くすることができる。
幅Wivは、0.05μm以上0.20μm以下であってよい。幅Wivは、一例として0.1μmである。幅Wsivは、0.6μm以上1.0μm以下であってよい。幅Wsivは、一例として0.8μmである。
本例の半導体装置100は、幅Wivが幅Wsivよりも小さいので、上面21と平行な方向において、保護絶縁膜36を層間絶縁膜38よりも精度高く位置決めすることができる。このため、第1メサ部60を狭小化しても、GE間ショートを防ぐことができる。このため、半導体装置100のさらなる微細化をしつつ、半導体装置100の特性を改善することができる。
本例において、幅Wtは、Y軸方向におけるゲートトレンチ部40の幅である。端部Eは、ゲートトレンチ部40の上方に設けられる保護絶縁膜36のY軸方向正側の端部である。端部E'は、当該保護絶縁膜36のY軸方向負側の端部である。また、端部E''は、ダミートレンチ部30の上方に設けられる保護絶縁膜36のY軸方向正側の端部である。
本例において、端部Eは、ゲートトレンチ部40のY軸方向正側の側壁から、Y軸方向に幅Witの幅を離間して配置される。端部E'は、ゲートトレンチ部40のY軸方向負側の側壁から、Y軸方向に幅Wit'の幅を離間して配置される。即ち、幅Wihは、幅Wtよりも大きい。また、端部E''は、ダミートレンチ部30のY軸方向正側の側壁から、Y軸方向に幅Wit''の幅を離間して配置される。
本例において、端部Fは、ゲートトレンチ部40の上方に設けられる層間絶縁膜38のY軸方向正側の端部である。端部F'は、当該層間絶縁膜38のY軸方向負側の端部である。端部F''は、ダミートレンチ部30の上方に設けられる層間絶縁膜38のY軸方向正側の端部である。
本例において、端部Fは、ゲート導電部44のY軸方向正側の側面から、Y軸方向に幅Wsitの幅を離間して配置される。端部F'は、ゲートトレンチ部40のY軸方向負側の側面から、Y軸方向に幅Wsit'の幅を離間して配置される。端部F''は、ダミー導電部34のY軸方向正側の側面から、Y軸方向に幅Wsit''の幅を離間して配置される。
本例において、保護絶縁膜36は第1メサ部60と接して設けられる。即ち、保護絶縁膜36は第1メサ部60における上面21の一部と接して設けられる。ゲートトレンチ部40の上方に設けられる保護絶縁膜36のY軸方向正側において、当該保護絶縁膜36と第1メサ部60とは、幅Witの幅で接する。当該保護絶縁膜36のY軸方向負側において、当該保護絶縁膜36と第1メサ部60とは、幅Wit'の幅で接する。ダミートレンチ部30の上方に設けられる保護絶縁膜36のY軸方向正側において、当該保護絶縁膜36と第1メサ部60とは、幅Wit''の幅で接する。
本例の半導体装置100は、保護絶縁膜36が第1メサ部60と接し、且つ、幅Wihが幅Wtよりも大きい。また、保護絶縁膜36を、層間絶縁膜38よりも高い精度で位置決めすることができる。このため、幅Wihを幅Wtよりも大きくしつつ、幅Witおよび幅Wit'を確保することができる。このため、プロセスばらつきにより、層間絶縁膜38がY軸方向正側に幅Wsit'以上またはY軸方向負側に幅Wsit以上ずれても、コンタクトホール54に設けられるコンタクトとゲート導電部44とのショートを、抑制することができる。即ち、本例の半導体装置100は、保護絶縁膜36がゲート絶縁膜42とゲート導電部44を保護するので、GE間ショート、即ちゲート金属層50とエミッタ電極52とのショートを防ぐことができる。このため、GE間ショートを防ぎつつ、メサ幅を狭小化し、IE効果を高めてトランジスタ部70のオン電圧を低くすることができる。
また、本例において、頂点Pは、ゲートトレンチ部40の上方に設けられる層間絶縁膜38のY軸方向正側の頂点である。頂点P'は、当該層間絶縁膜38のY軸方向負側の頂点である。また、頂点P ''は、ダミートレンチ部30の上方に設けられる層間絶縁膜38のY軸方向正側の頂点である。Z軸方向において、頂点P、頂点P'および頂点P''の位置は、層間絶縁膜38の上面の位置に等しい。
本例において、幅Wihは、Y軸方向における保護絶縁膜36の幅である。幅Wsihu1は、Y軸方向における層間絶縁膜38の頂点Pから頂点P'までの幅である。また、幅Wsihd1は、Z軸方向において層間絶縁膜38と保護絶縁膜36とが接する位置における、層間絶縁膜38のY軸方向の幅である。本例においては、層間絶縁膜38の側面はXZ面に等しいので、幅Wsihu1と幅Wsihd1とは等しい。また、幅Wsihu1および幅Wsihd1は、層間絶縁膜の幅に等しい。幅Wihは、幅Wsihu1および幅Wsihd1よりも大きくてよい。
また、本例において、幅Wcは、端部E'から端部E''までのY軸方向における幅である。即ち、幅Wcは、コンタクトホール54の上面21におけるY軸方向の幅である。幅Wmは、第1メサ部60のメサ幅である。また、幅Wss1は、頂点P'から頂点P''までのY軸方向における幅である。即ち、本例においては、幅Wss1は、ゲートトレンチ部40の上方に設けられる層間絶縁膜38のY軸方向負側の側面から、ダミートレンチ部30の上方に設けられる層間絶縁膜38のY軸方向正側の側面までの、Y軸方向における幅である。
本例の半導体装置100は、幅Wsihu1および幅Wsihd1が幅Wihよりも小さいので、幅Wss1を幅Wcよりも大きくすることができる。このため、幅Wss1と幅Wcとが等しい場合よりも、コンタクトホール54に充填されるコンタクトが、コンタクトホール54の下端まで充填されやすくなる。即ち、コンタクトが幅Wcにわたり、上面21と接触し易くなる。このため、第1メサ部60において、当該コンタクトとエミッタ領域12との接触抵抗を低減することができる。また、第1メサ部60において、当該コンタクトと、当該エミッタ領域12のX軸方向正側および負側に設けられるコンタクト領域15との接触抵抗を低減することができる。
図2cは、図1におけるa-a'断面の他の一例を示す図である。図2cに示す例は、図2aの例において、第1メサ部60、第2メサ部62および第3メサ部のそれぞれの上面、保護絶縁膜36の上面および側面、並びに層間絶縁膜38の上面および側面に、バリアメタル58が設けられる一例を示している。図2cに示すように、第1メサ部60、第2メサ部62および第3メサ部のそれぞれの上面、保護絶縁膜36の上面および側面、並びに層間絶縁膜38の上面および側面には、バリアメタル58が連続して設けられてよい。
コンタクトホール54に設けられるコンタクトは、一例としてアルミニウム(Al)を用いることができる。バリアメタル58は、アルミニウムの半導体基板10の内部への拡散を抑制する。バリアメタル58は、一例として窒化チタン(TiN)を用いることができる。
図3aは、図1におけるa-a'断面の他の一例を示す図である。本例の半導体装置100は、図2aに示す半導体装置100において、保護絶縁膜36が上面21よりも上方に設けられない点で、図2aに示す半導体装置100と異なる。本例においては、Z軸方向において、第1メサ部60、第2メサ部62および第3メサ部64の上面の位置と、保護絶縁膜36の上面の位置とが等しい。
図3bは、図3aにおける領域A2の拡大図である。図3bに示すように、本例の半導体装置100は、Z軸方向において、第1メサ部60の上面の位置と、保護絶縁膜36の上面の位置とが等しい。
本例における保護絶縁膜36のY軸方向の幅Wih'は、図2bに示す半導体装置100における幅Wihよりも小さい。本例において、幅Wih'は幅Wtと等しい。
本例における層間絶縁膜38の膜厚、即ち幅Wsiv'は、図2bに示す半導体装置100における幅Wsivよりも大きい。また、本例におけるコンタクトホール54の上面21におけるY軸方向の幅Wc'は、図2bに示す半導体装置100における幅Wcよりも大きい。
本例の半導体装置100は、幅Wsihu1および幅Wsihd1が幅Wih'よりも小さいので、幅Wss1を幅Wc'よりも大きくすることができる。また、本例においては、幅Wc'は幅Wmと等しい。また、幅Wc'は、図2bに示す半導体装置100における幅Wcよりも大きい。このため、コンタクトホール54に充填されるコンタクトが、図2bに示す例における幅Wcよりも大きい幅Wc'で、上面21と接触する。このため、第1メサ部60において、当該コンタクトとエミッタ領域12およびコンタクト領域15との接触抵抗を、図2bに示す半導体装置100よりも、さらに低減することができる。
図4aは、図1におけるa-a'断面の他の一例を示す図である。本例の半導体装置100は、図2aに示す半導体装置100において、保護絶縁膜36が上面21よりも下方に設けられない点で、図2aに示す半導体装置100と異なる。本例においては、Z軸方向において、第1メサ部60、第2メサ部62および第3メサ部64の上面の位置と、保護絶縁膜36の下面の位置とが等しい。
図4bは、図4aにおける領域A3の拡大図である。図4bに示すように、本例の半導体装置100は、ゲート導電部44の上面のZ軸方向における位置およびゲート絶縁膜42の上面のZ軸方向における位置が、上面21のZ軸方向における位置と等しい。保護絶縁膜36は、Z軸方向において上面21に位置にて、ゲート導電部44およびゲート絶縁膜42と接触する。
本例の半導体装置100は、幅Wivが幅Wsivよりも小さいので、上面21と平行な方向において、保護絶縁膜36を層間絶縁膜38よりも精度高く位置決めすることができる。このため、第1メサ部60をさらに狭小化しても、GE間ショートを防ぐことができる。このため、GE間ショートを防ぎつつ、メサ幅を狭小化し、IE効果を高めてトランジスタ部70のオン電圧を低くすることができる。
本例の半導体装置100は、保護絶縁膜36が第1メサ部60と接し、且つ、幅Wihが幅Wtよりも大きい。また、保護絶縁膜36を、層間絶縁膜38よりも高い精度で位置決めすることができる。このため、幅Wihを幅Wtよりも大きくしつつ、幅Witおよび幅Wit'を確保することができる。このため、プロセスばらつきにより、層間絶縁膜38がY軸方向正側に幅Wsit'以上またはY軸方向負側に幅Wsit以上ずれても、コンタクトホール54に設けられるコンタクトとゲート導電部44とのショートを、抑制することができる。即ち、本例の半導体装置100は、保護絶縁膜36がゲート絶縁膜42とゲート導電部44を保護するので、GE間ショート、即ちゲート金属層50とエミッタ電極52とのショートを防ぐことができる。このため、GE間ショートを防ぎつつ、メサ幅を狭小化し、IE効果を高めてトランジスタ部70のオン電圧を低くすることができる。
また、本例の半導体装置100は、幅Wsihu1および幅Wsihd1が幅Wihよりも小さいので、幅Wss1を幅Wcよりも大きくすることができる。このため、幅Wss1と幅Wcとが等しい場合よりも、コンタクトホール54に充填されるコンタクトが、コンタクトホール54の下端まで充填されやすくなる。即ち、コンタクトが幅Wcにわたり、上面21と接触し易くなる。このため、第1メサ部60において、当該コンタクトとエミッタ領域12との接触抵抗を低減することができる。また、第1メサ部60において、当該コンタクトと、当該エミッタ領域12のX軸方向正側および負側に設けられるコンタクト領域15との接触抵抗を低減することができる。
図5aは、図1におけるa-a'断面の他の一例を示す図である。本例の半導体装置100は、図2aに示す半導体装置100において、保護絶縁膜36がゲートトレンチ部40の内壁、ゲート絶縁膜42の上面およびゲート導電部44の上面、並びにダミートレンチ部30の内壁、ダミー絶縁膜32の上面およびダミー導電部34の上面を覆うように設けられ、層間絶縁膜38が上面21よりも下方にも設けられる点で、図2aに示す半導体装置100と異なる。本例においては、層間絶縁膜38が、ゲートトレンチ部40およびダミートレンチ部30の内部にも設けられる。
図5bは、図5aにおける領域A4の拡大図である。図5bに示すように、本例の半導体装置100は、保護絶縁膜36がゲートトレンチ部40の内壁、ゲート絶縁膜42の上面およびゲート導電部44の上面、並びにダミートレンチ部30の内壁、ダミー絶縁膜32の上面およびダミー導電部34の上面を覆うように設けられる。層間絶縁膜38は、上面21よりも上方から、ゲートトレンチ部40およびダミートレンチ部30の内部にわたって設けられる。
本例の半導体装置100は、幅Wivが幅Wsivよりも小さいので、上面21と平行な方向において、保護絶縁膜36を層間絶縁膜38よりも精度高く位置決めすることができる。このため、第1メサ部60をさらに狭小化しても、GE間ショートを防ぐことができる。このため、GE間ショートを防ぎつつ、メサ幅を狭小化し、IE効果を高めてトランジスタ部70のオン電圧を低くすることができる。
本例の半導体装置100は、保護絶縁膜36が第1メサ部60と接し、且つ、幅Wihが幅Wtよりも大きい。また、保護絶縁膜36を、層間絶縁膜38よりも高い精度で位置決めすることができる。このため、幅Wihを幅Wtよりも大きくしつつ、幅Witおよび幅Wit'を確保することができる。このため、プロセスばらつきにより、層間絶縁膜38がY軸方向正側に幅Wsit'以上またはY軸方向負側に幅Wsit以上ずれても、コンタクトホール54に設けられるコンタクトとゲート導電部44とのショートを、抑制することができる。即ち、本例の半導体装置100は、保護絶縁膜36がゲート絶縁膜42とゲート導電部44を保護するので、GE間ショート、即ちゲート金属層50とエミッタ電極52とのショートを防ぐことができる。このため、GE間ショートを防ぎつつ、メサ幅を狭小化し、IE効果を高めてトランジスタ部70のオン電圧を低くすることができる。
また、本例の半導体装置100は、幅Wsihu1および幅Wsihd1が幅Wihよりも小さいので、幅Wss1を幅Wcよりも大きくすることができる。このため、幅Wss1と幅Wcとが等しい場合よりも、コンタクトホール54に充填されるコンタクトが、コンタクトホール54の下端まで充填されやすくなる。即ち、コンタクトが幅Wcにわたり、上面21と接触し易くなる。このため、第1メサ部60において、当該コンタクトとエミッタ領域12との接触抵抗を低減することができる。また、第1メサ部60において、当該コンタクトと、当該エミッタ領域12のX軸方向正側および負側に設けられるコンタクト領域15との接触抵抗を低減することができる。
図6は、比較例の半導体装置150の上面を部分的に示す図である。比較例の半導体装置150は、図1に示す半導体装置100において、第1メサ部60、第2メサ部62および第3メサ部64の上方に、コンタクトホール254が設けられる点で、図1に示す半導体装置100と異なる。
図7aは、図6におけるz-z'断面を示す図である。図7aに示す通り、比較例の半導体装置150は、保護絶縁膜36が設けられない。比較例の半導体装置150においては、層間絶縁膜238が上面21上に設けられる。即ち、Z軸方向において、上面21の位置と、層間絶縁膜238の下面の位置とが等しい。
図7bは、図7aにおける領域Zの拡大図である。図7bに示す通り、比較例の半導体装置150は、保護絶縁膜36が設けられない。
幅Wsitは、ゲートトレンチ部40の上方に設けられる層間絶縁膜238のY軸方向正側の端部から、ゲート導電部44のY軸方向正側の端部までの、Y軸方向における幅である。また、幅Wsitは、ゲートトレンチ部40のY軸方向正側に設けられるコンタクトホール254のY軸方向負側の端部から、ゲート導電部44のY軸方向正側の端部までの、Y軸方向における幅である。
幅Wsit'は、ゲートトレンチ部40の上方に設けられる層間絶縁膜238のY軸方向負側の端部から、ゲート導電部44のY軸方向負側の端部までの、Y軸方向における幅である。また、幅Wsit'は、ゲートトレンチ部40のY軸方向負側に設けられるコンタクトホール254のY軸方向正側の端部から、ゲート導電部44のY軸方向正側の端部までの、Y軸方向における幅である。幅Wsitと幅Wsit'は、等しい。
幅Wsit''は、ダミートレンチ部30の上方に設けられる層間絶縁膜238のY軸方向正側の端部から、ダミー導電部34のY軸方向正側の端部までの、Y軸方向における幅である。また、幅Wsit''は、ダミートレンチ部30のY軸方向正側に設けられるコンタクトホール254のY軸方向負側の端部から、ダミー導電部34のY軸方向正側の端部までの、Y軸方向における幅である。
比較例の半導体装置150は、保護絶縁膜36が設けられない。このため、プロセスばらつきにより、層間絶縁膜238がY軸方向正側に幅Wsit'以上またはY軸方向負側に幅Wsit以上ずれると、コンタクトホール254に設けられるコンタクトとゲート導電部44がショートし、GE間ショートが発生してしまう。このため、比較例の半導体装置150は、GE間ショートを防ぎつつ、メサ幅を狭小化し、IE効果を高めてトランジスタ部70のオン電圧を低くすることが困難である。
層間絶縁膜238の膜厚、即ち幅Wsiv'は、図2bに示す半導体装置100における保護絶縁膜36の膜厚即ち幅Wivよりも大きい。このため、層間絶縁膜238は、保護絶縁膜36ほど精度高く位置決めをすることができない。このため、層間絶縁膜238は、保護絶縁膜36よりもY軸方向正側に幅Wsit'以上またはY軸方向負側に幅Wsit以上ずれ易く、GE間ショートが発生し易い。
図8aは、図1におけるa-a'断面の他の一例を示す図である。本例の半導体装置100は、図2aに示す半導体装置100において、層間絶縁膜38の側面がテーパー状に設けられる点で、図2aに示す半導体装置100と異なる。
図8bは、図8aにおける領域A4の拡大図である。図8bに示すように、本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられる。本例において、端部F、端部F'および端部F'''は、層間絶縁膜38のテーパー状の側面のうち、Z軸方向において保護絶縁膜36と接する位置における端部であってよい。
本例における頂点Pは、図2bに示す例における頂点Pよりも、Y軸方向負側に設けられる。本例における頂点P'は、図2bに示す例における頂点P'よりも、Y軸方向正側に設けられる。本例における頂点P''は、図2bに示す例における頂点P''よりも、Y軸方向負側に設けられる。
本例における頂点P'から頂点P''までのY軸方向における幅Wss1'は、ゲートトレンチ部40の上方に設けられる層間絶縁膜38の頂点P'から、ダミートレンチ部30の上方に設けられる層間絶縁膜38の頂点P''までの、Y軸方向における幅である。本例においては、図2bに示す例と比較して、頂点P'がY軸方向正側に設けられ、頂点P''がY軸方向負側に設けられるので、幅Wss1'は、図2bに示す例における幅Wss1よりも大きい。
本例における頂点Pから頂点P'までのY軸方向における幅Wsihu1'は、ゲートトレンチ部40の上方に設けられる層間絶縁膜38の頂点Pから頂点P'までのY軸方向における幅である。本例においては、図2bに示す例と比較して、頂点PがY軸方向負側に設けられ、頂点P'がY軸方向正側に設けられるので、幅Wsihu1'は、幅Wsihd1よりも小さい。
本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられるので、図2bに示す半導体装置100よりも、コンタクトホール54に設けられるコンタクトがコンタクトホール54の下端まで充填されやすくなる。このため、第1メサ部60においては、当該コンタクトとエミッタ領域12との接触抵抗を、図2bに示す半導体装置100よりもさらに低減することができる。また、第1メサ部60において、当該コンタクトと、当該エミッタ領域12のX軸方向正側および負側に設けられるコンタクト領域15との接触抵抗を、図2bに示す半導体装置100よりもさらに低減することができる。
図9aは、図1におけるa-a'断面の他の一例を示す図である。本例の半導体装置100は、図3aに示す半導体装置100において、層間絶縁膜38の側面がテーパー状に設けられる点で、図3aに示す半導体装置100と異なる。
図9bは、図9aにおける領域A5の拡大図である。図9bに示すように、本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられる。本例の半導体装置100における頂点P、頂点P'および頂点P''のY軸方向における位置は、図8bに示す例における頂点P、頂点P'および頂点P''のY軸方向における位置に、それぞれ等しい。
本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられるので、図3bに示す半導体装置100よりも、コンタクトホール54に設けられるコンタクトがコンタクトホール54の下端まで充填されやすくなる。このため、第1メサ部60においては、当該コンタクトとエミッタ領域12との接触抵抗を、図3bに示す半導体装置100よりもさらに低減することができる。また、第1メサ部60において、当該コンタクトと、当該エミッタ領域12のX軸方向正側および負側に設けられるコンタクト領域15との接触抵抗を、図3bに示す半導体装置100よりもさらに低減することができる。
図10aは、図1におけるa-a'断面の他の一例を示す図である。本例の半導体装置100は、図4aに示す半導体装置100において、層間絶縁膜38の側面がテーパー状に設けられる点で、図4aに示す半導体装置100と異なる。
図10bは、図10aにおける領域A6の拡大図である。図10bに示すように、本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられる。本例の半導体装置100における頂点P、頂点P'および頂点P''のY軸方向における位置は、図8bおよび図9bに示す例における頂点P、頂点P'および頂点P''のY軸方向における位置に、それぞれ等しい。
本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられるので、図4bに示す半導体装置100よりも、コンタクトホール54に設けられるコンタクトがコンタクトホール54の下端まで充填されやすくなる。このため、第1メサ部60においては、当該コンタクトとエミッタ領域12との接触抵抗を、図4bに示す半導体装置100よりもさらに低減することができる。また、第1メサ部60において、当該コンタクトと、当該エミッタ領域12のX軸方向正側および負側に設けられるコンタクト領域15との接触抵抗を、図4bに示す半導体装置100よりもさらに低減することができる。
図11は、本実施形態に係る半導体装置100の上面の他の一例を部分的に示す図である。図11に示す半導体装置100は、図1に示す半導体装置100よりも、コンタクトホール54のY軸方向における幅が小さい一例である。コンタクトホール54は、図11の上面視で、ゲートトレンチ部40およびダミートレンチ部30からY軸方向に離間して設けられてよい。
図12aは、図11におけるb-b'断面の一例を示す図である。図12aに示す半導体装置100は、図2aに示す半導体装置において、層間絶縁膜38のY軸方向の幅が、保護絶縁膜36のY軸方向の幅と等しく設けられる点で、図2aに示す半導体装置100と異なる。また、図12aに示す半導体装置100は、図2aに示す半導体装置において、コンタクトホール54のY軸方向の幅が、図2aに示す例よりも小さく設けられる点で、図2aに示す半導体装置100と異なる。
図12bは、図12aにおける領域B1の拡大図である。本例において、幅Wsihu2は、Y軸方向における層間絶縁膜38の頂点Pから頂点P'までの幅である。また、幅Wsihd2は、Z軸方向において層間絶縁膜38と保護絶縁膜36とが接する位置における、層間絶縁膜38のY軸方向の幅である。本例においては、層間絶縁膜38の側面はXZ面に等しいので、幅Wsihu2と幅Wsihd2とは等しい。また、幅Wsihu2および幅Wsihd2は、層間絶縁膜の幅に等しい。
本例の半導体装置100は、図12bに示すように、層間絶縁膜38と保護絶縁膜36とが接する境界において、Y軸方向における層間絶縁膜38の幅Wsihd2と、Y軸方向における保護絶縁膜36の幅Wihとが等しい。また、ゲートトレンチ部40の上方に設けられる層間絶縁膜38の頂点P'から、ダミートレンチ部30の上方に設けられる層間絶縁膜38の頂点P''までの、Y軸方向における幅Wss2は、コンタクトホール54の幅Wcと等しい。
本例の半導体装置100は、幅Wivが幅Wsivよりも小さいので、上面21と平行な方向において、保護絶縁膜36を層間絶縁膜38よりも精度高く位置決めすることができる。このため、第1メサ部60をさらに狭小化しても、GE間ショートを防ぐことができる。このため、GE間ショートを防ぎつつ、メサ幅を狭小化し、IE効果を高めてトランジスタ部70のオン電圧を低くすることができる。
本例の半導体装置100は、保護絶縁膜36が第1メサ部60と接し、且つ、幅Wihが幅Wtよりも大きいので、コンタクトホール54に設けられるコンタクトと、ゲート導電部44とがショートすることを抑制することができる。即ち、本例の半導体装置100は、保護絶縁膜36がゲート絶縁膜42とゲート導電部44を保護するので、GE間ショート、即ちゲート金属層50とエミッタ電極52とのショートを防ぐことができる。
図13aは、図11におけるb-b'断面の他の一例を示す図である。本例の半導体装置100は、図12aに示す半導体装置100において、保護絶縁膜36が上面21よりも上方に設けられない点で、図12aに示す半導体装置100と異なる。本例においては、Z軸方向において、第1メサ部60、第2メサ部62および第3メサ部64の上面の位置と、保護絶縁膜36の上面の位置とが等しい。
図13bは、図3aにおける領域B2の拡大図である。図13bに示すように、本例の半導体装置100は、Z軸方向において、第1メサ部60の上面の位置と、保護絶縁膜36の上面の位置とが等しい。本例においては、幅Wtと、保護絶縁膜36のY軸方向の幅Wih'と、Z軸方向において層間絶縁膜38と保護絶縁膜36とが接する位置における、層間絶縁膜38のY軸方向の幅Wsihd2'とは、等しい。また、幅Wsihu2は、幅Wt、幅Wih'および幅Wsihd2'よりも大きい。
本例の半導体装置100は、幅Wsihu2が幅Wtよりも大きいので、コンタクトホール54に設けられるコンタクトと、ゲート導電部44とがショートすることを抑制することができる。即ち、本例の半導体装置100は、保護絶縁膜36がゲート絶縁膜42とゲート導電部44を保護するので、GE間ショート、即ちゲート金属層50とエミッタ電極52とのショートを防ぐことができる。
図14aは、図11におけるb-b'断面の他の一例を示す図である。本例の半導体装置100は、図12aに示す半導体装置100において、保護絶縁膜36が上面21よりも下方に設けられない点で、図12aに示す半導体装置100と異なる。本例においては、Z軸方向において、第1メサ部60、第2メサ部62および第3メサ部64の上面の位置と、保護絶縁膜36の下面の位置とが等しい。
図14bは、図14aにおける領域B3の拡大図である。本例の半導体装置100は、ゲート導電部44の上面のZ軸方向における位置およびゲート絶縁膜42の上面のZ軸方向における位置が、上面21のZ軸方向における位置と等しい。保護絶縁膜36は、Z軸方向において上面21に位置にて、ゲート導電部44およびゲート絶縁膜42と接触する。
本例の半導体装置100は、層間絶縁膜38と保護絶縁膜36とが接する境界において、Y軸方向における層間絶縁膜38の幅Wsihd2と、Y軸方向における保護絶縁膜36の幅Wihとが等しい。また、ゲートトレンチ部40の上方に設けられる層間絶縁膜38の頂点P'から、ダミートレンチ部30の上方に設けられる層間絶縁膜38の頂点P''までの、Y軸方向における幅Wss2は、コンタクトホール54の幅Wcと等しい。
本例の半導体装置100は、幅Wivが幅Wsivよりも小さいので、上面21と平行な方向において、保護絶縁膜36を層間絶縁膜38よりも精度高く位置決めすることができる。このため、第1メサ部60をさらに狭小化しても、GE間ショートを防ぐことができる。このため、GE間ショートを防ぎつつ、メサ幅を狭小化し、IE効果を高めてトランジスタ部70のオン電圧を低くすることができる。
また、本例の半導体装置100は、保護絶縁膜36が第1メサ部60と接し、且つ、幅Wihが幅Wtよりも大きいので、コンタクトホール54に設けられるコンタクトと、ゲート導電部44とがショートすることを抑制することができる。即ち、本例の半導体装置100は、保護絶縁膜36がゲート絶縁膜42とゲート導電部44を保護するので、GE間ショート、即ちゲート金属層50とエミッタ電極52とのショートを防ぐことができる。
図15aは、図11におけるb-b'断面の他の一例を示す図である。本例の半導体装置100は、図12aに示す半導体装置100において、層間絶縁膜38の側面がテーパー状に設けられる点で、図12aに示す半導体装置100と異なる。
図15bは、図15aにおける領域B4の拡大図である。図15bに示すように、本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられる。
本例における頂点Pは、図12bに示す例における頂点Pよりも、Y軸方向負側に設けられる。本例における頂点P'は、図12bに示す例における頂点P'よりも、Y軸方向正側に設けられる。本例における頂点P''は、図12bに示す例における頂点P''よりも、Y軸方向負側に設けられる。
本例における頂点P'から頂点P''までのY軸方向における幅Wss2'は、ゲートトレンチ部40の上方に設けられる層間絶縁膜38の頂点P'から、ダミートレンチ部30の上方に設けられる層間絶縁膜38の頂点P''までの、Y軸方向における幅である。本例においては、図12bに示す例と比較して、頂点P'がY軸方向正側に設けられ、頂点P''がY軸方向負側に設けられるので、幅Wss2'は、図12bに示す例における幅Wss2よりも大きい。層間絶縁膜38と保護絶縁膜36とが接する境界においては、Y軸方向における層間絶縁膜38の下面の幅と、Y軸方向における保護絶縁膜36の幅Wihとが等しい。
本例における頂点Pから頂点P'までのY軸方向における幅Wsihu2'は、ゲートトレンチ部40の上方に設けられる層間絶縁膜38の頂点Pから頂点P'までのY軸方向における幅である。本例においては、図12bに示す例と比較して、頂点PがY軸方向負側に設けられ、頂点P'がY軸方向正側に設けられるので、幅Wsihu2'は、幅Wsihd2よりも小さい。
本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられるので、図12bに示す半導体装置100よりも、コンタクトホール54に設けられるコンタクトがコンタクトホール54の下端まで充填されやすくなる。このため、第1メサ部60においては、当該コンタクトとエミッタ領域12との接触抵抗を、図12bに示す半導体装置100よりもさらに低減することができる。また、第1メサ部60において、当該コンタクトと、当該エミッタ領域12のX軸方向正側および負側に設けられるコンタクト領域15との接触抵抗を、図12bに示す半導体装置100よりもさらに低減することができる。
図16aは、図11におけるb-b'断面の他の一例を示す図である。本例の半導体装置100は、図13aに示す半導体装置100において、層間絶縁膜38の側面がテーパー状に設けられる点で、図13aに示す半導体装置100と異なる。
図16bは、図16aにおける領域B5の拡大図である。図16bに示すように、本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられる。本例の半導体装置100における頂点P、頂点P'および頂点P''のY軸方向における位置は、図15bに示す例における頂点P、頂点P'および頂点P''のY軸方向における位置に、それぞれ等しい。
本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられるので、図13bに示す半導体装置100よりも、コンタクトホール54に設けられるコンタクトがコンタクトホール54の下端まで充填されやすくなる。このため、第1メサ部60においては、当該コンタクトとエミッタ領域12との接触抵抗を、図13bに示す半導体装置100よりもさらに低減することができる。また、第1メサ部60において、当該コンタクトと、当該エミッタ領域12のX軸方向正側および負側に設けられるコンタクト領域15との接触抵抗を、図13bに示す半導体装置100よりもさらに低減することができる。
図17aは、図11におけるb-b'断面の他の一例を示す図である。本例の半導体装置100は、図14aに示す半導体装置100において、層間絶縁膜38の側面がテーパー状に設けられる点で、図14aに示す半導体装置100と異なる。
図17bは、図17aにおける領域B6の拡大図である。図17bに示すように、本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられる。本例の半導体装置100における頂点P、頂点P'および頂点P''のY軸方向における位置は、図15bおよび図16bに示す例における頂点P、頂点P'および頂点P''のY軸方向における位置に、それぞれ等しい。また、層間絶縁膜38と保護絶縁膜36とが接する境界において、Y軸方向における層間絶縁膜38の下面の幅と、Y軸方向における保護絶縁膜36の幅Wihとが等しい。
本例の半導体装置100は、層間絶縁膜38の側面がテーパー状に設けられるので、図14bに示す半導体装置100よりも、コンタクトホール54に設けられるコンタクトがコンタクトホール54の下端まで充填されやすくなる。このため、第1メサ部60においては、当該コンタクトとエミッタ領域12との接触抵抗を、図14bに示す半導体装置100よりもさらに低減することができる。また、第1メサ部60において、当該コンタクトと、当該エミッタ領域12のX軸方向正側および負側に設けられるコンタクト領域15との接触抵抗を、図14bに示す半導体装置100よりもさらに低減することができる。
図18aは、本実施形態に係る半導体装置100の製造方法の一例を示す図である。図18aは、図2aおよび図2bに示す半導体装置100を製造する製造方法の一例である。
(a)において、ゲートトレンチ部40の上部のゲート絶縁膜42およびゲート導電部44を、上面21よりも下方に形成し、ゲートトレンチ部40の上部に凹部Sを形成する。続いて、(b)第1工程において、半導体基板10の上に保護絶縁膜36を形成する。本例においては、保護絶縁膜36を凹部Sに充填するように形成する。続いて、(c)第2工程において、保護絶縁膜36を第1マスク92でパターニングしエッチングして、半導体基板10の上面21を露出させる。続いて、(d)第3工程において、保護絶縁膜36の上に層間絶縁膜38を形成する。続いて、(e)第4工程において、層間絶縁膜38を第2マスク94でパターニングしエッチングして、半導体基板10の上面21および保護絶縁膜36を露出させる。第4工程により、保護絶縁膜36のうち、半導体基板10の上面視で層間絶縁膜38に覆われていない領域が露出する。続いて、(f)において、第2マスク94を除去し、図2aおよび図2bに示す半導体装置100が完成する。
本例の製造方法において、(c)第2工程および(e)第4工程を、ドライエッチングにより行ってよい。ドライエッチングにおけるエッチングガスは、CF、SF等を用いることができる。(c)第2工程および(e)第4工程を、ドライエッチングにより行う場合、(c)第2工程におけるエッチングガスと、(e)第4工程によるエッチングガスは、異なっていてもよい。
図18bは、本実施形態に係る半導体装置100の製造方法の他の一例を示す図である。図18bは、図8aおよび図8bに示す半導体装置100を製造する製造方法の一例である。
図18bにおいて、(e)第4工程および(f)は、図18aにおける(e)第4工程および(f)の再掲である。本例の半導体装置100の製造方法は、(f)の後、(g)第5工程において、層間絶縁膜38の側面および上面を、ウェットエッチングによりエッチングし、層間絶縁膜38の側面をテーパー状にする。(g)第5工程のウェットエッチングは、所定濃度に希釈した弗酸液により実施してよい。また、(g)第5工程のウェットエッチングは、エミッタ電極52のスパッタリング前の前処理として、実施してよい。
図19は、本実施形態に係る半導体装置100の製造方法の他の一例を示す図である。図19に示す半導体装置100の製造方法は、図18aに示す製造方法の一例における(b)第2工程において、エッチングに代わりにCMP(Chemical Mechanical Polishing、化学機械研磨)を用いる点で、図18aに示す半導体装置100の製造方法と異なる。図19は、図3aおよび図3bに示す半導体装置100を製造する製造方法の一例である。
本例の半導体装置100の製造方法は、(b')第2工程においてCMPによって保護絶縁膜36を研磨する。(b')第2工程により、保護絶縁膜36の上面は、上面21と同じ高さとなる。続いて、図18aと同様に第3工程および第4工程を実施し、図3aおよび図3bに示す半導体装置100が完成する。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・半導体基板、11・・・ウェル領域、12・・・エミッタ領域、14・・・ベース領域、15・・・コンタクト領域、16・・・蓄積領域、16-1・・・蓄積領域、16-2・・・蓄積領域、18・・・ドリフト領域、20・・・バッファ領域、21・・・上面、22・・・コレクタ領域、23・・・下面、24・・・コレクタ電極、29・・・延伸部分、30・・・ダミートレンチ部、31・・・接続部分、32・・・ダミー絶縁膜、34・・・ダミー導電部、36・・・保護絶縁膜、38・・・層間絶縁膜、39・・・延伸部分、40・・・ゲートトレンチ部、41・・・接続部分、42・・・ゲート絶縁膜、44・・・ゲート導電部、48・・・ゲートランナー、49・・・コンタクトホール、50・・・ゲート金属層、52・・・エミッタ電極、54・・・コンタクトホール、56・・・コンタクトホール、58・・・バリアメタル、60・・・第1メサ部、62・・・第2メサ部、64・・・第3メサ部、70・・・トランジスタ部、80・・・ダイオード部、82・・・カソード領域、90・・・境界部、92・・・第1マスク、94・・・第2マスク、100・・・半導体装置、150・・・半導体装置、238・・・層間絶縁膜、254・・・コンタクトホール

Claims (1)

  1. 導電材料で形成されるゲート導電部と前記ゲート導電部を半導体基板から絶縁するゲート絶縁膜とを有するゲートトレンチ部の上部に凹部を形成する工程と、前記凹部に充填されるように前記半導体基板の上に第1絶縁膜を形成する工程と、前記第1絶縁膜の上に第2絶縁膜を形成する工程と、を含む半導体装置の製造方法であって、
    前記半導体基板の上面よりも上側に形成されている部分の少なくとも一部を残して、前記第1絶縁膜をエッチングする工程と、
    テーパー状のテーパー側面を前記第2絶縁膜に形成する工程と、
    前記半導体基板の上面の上方に設けられ、前記テーパー側面に接触する第1電極を形成する工程と、
    を含み、
    前記第1電極を形成する工程の後において、前記テーパー側面の下端が前記第1絶縁膜に接する
    半導体装置の製造方法。
JP2024076114A 2018-03-16 2024-05-08 半導体装置の製造方法 Pending JP2024102260A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024076114A JP2024102260A (ja) 2018-03-16 2024-05-08 半導体装置の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018049601A JP7119449B2 (ja) 2018-03-16 2018-03-16 半導体装置および半導体装置の製造方法
JP2022123767A JP7487756B2 (ja) 2018-03-16 2022-08-03 半導体装置および半導体装置の製造方法
JP2024076114A JP2024102260A (ja) 2018-03-16 2024-05-08 半導体装置の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022123767A Division JP7487756B2 (ja) 2018-03-16 2022-08-03 半導体装置および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2024102260A true JP2024102260A (ja) 2024-07-30
JP2024102260A5 JP2024102260A5 (ja) 2024-08-06

Family

ID=67906146

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018049601A Active JP7119449B2 (ja) 2018-03-16 2018-03-16 半導体装置および半導体装置の製造方法
JP2022123767A Active JP7487756B2 (ja) 2018-03-16 2022-08-03 半導体装置および半導体装置の製造方法
JP2024076114A Pending JP2024102260A (ja) 2018-03-16 2024-05-08 半導体装置の製造方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2018049601A Active JP7119449B2 (ja) 2018-03-16 2018-03-16 半導体装置および半導体装置の製造方法
JP2022123767A Active JP7487756B2 (ja) 2018-03-16 2022-08-03 半導体装置および半導体装置の製造方法

Country Status (2)

Country Link
US (1) US11302805B2 (ja)
JP (3) JP7119449B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023105834A1 (ja) * 2021-12-08 2023-06-15
JP2024083693A (ja) * 2022-12-12 2024-06-24 株式会社 日立パワーデバイス 半導体装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345444A (ja) 1999-10-25 2001-12-14 Seiko Instruments Inc 半導体装置とその製造方法
JP4492009B2 (ja) 2001-08-31 2010-06-30 ソニー株式会社 半導体装置およびその製造方法
JP3819337B2 (ja) * 2002-07-25 2006-09-06 三菱電機株式会社 半導体装置の製造方法
TW583747B (en) 2003-03-06 2004-04-11 Advanced Power Electronics Cor High density trench power MOSFET structure and method thereof
JP2008098593A (ja) * 2006-09-15 2008-04-24 Ricoh Co Ltd 半導体装置及びその製造方法
KR101191281B1 (ko) 2008-03-31 2012-10-16 미쓰비시덴키 가부시키가이샤 반도체장치
JP2010098101A (ja) 2008-10-16 2010-04-30 Nec Electronics Corp 半導体装置の製造方法
JP5567087B2 (ja) 2012-09-20 2014-08-06 株式会社東芝 半導体装置の製造方法
JP5831526B2 (ja) 2013-01-17 2015-12-09 株式会社デンソー 半導体装置およびその製造方法
JP2014192351A (ja) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp 半導体装置の製造方法
JP2015070192A (ja) 2013-09-30 2015-04-13 サンケン電気株式会社 半導体装置の製造方法、半導体装置
JP2016115698A (ja) * 2014-12-11 2016-06-23 トヨタ自動車株式会社 半導体装置とその製造方法
JP6080883B2 (ja) 2015-03-11 2017-02-15 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP6448434B2 (ja) 2015-03-25 2019-01-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US11257944B2 (en) * 2015-04-27 2022-02-22 Rohm Co., Ltd. Semiconductor device and semiconductor device manufacturing method
JP6660611B2 (ja) * 2016-01-15 2020-03-11 ローム株式会社 半導体装置および半導体装置の製造方法
CN105547684A (zh) 2016-01-20 2016-05-04 山东科技大学 一种风流扰动作用下多喷嘴组合式雾化降尘实验装置
US20170345905A1 (en) 2016-05-24 2017-11-30 Infineon Technologies Ag Wide-Bandgap Semiconductor Device with Trench Gate Structures
JP6832645B2 (ja) * 2016-07-20 2021-02-24 ローム株式会社 半導体装置
US10210130B2 (en) 2016-11-01 2019-02-19 Psemi Corporation Serial-bus interface for multi-die module
DE102016124968B4 (de) * 2016-12-20 2024-01-18 Infineon Technologies Ag Ausbilden von Siliziumoxidschichten durch Oxidation mit Radikalen
JP2018117070A (ja) * 2017-01-19 2018-07-26 エイブリック株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
JP7119449B2 (ja) 2022-08-17
US11302805B2 (en) 2022-04-12
JP2022140659A (ja) 2022-09-26
JP2019161167A (ja) 2019-09-19
US20190288095A1 (en) 2019-09-19
JP7487756B2 (ja) 2024-05-21

Similar Documents

Publication Publication Date Title
US11043582B2 (en) Semiconductor device
JP2024102260A (ja) 半導体装置の製造方法
CN109390335B (zh) 半导体装置
US10622350B2 (en) Semiconductor device
US10847613B2 (en) Semiconductor device
US10439060B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6885101B2 (ja) 半導体装置
US10651301B2 (en) Semiconductor device and method of manufacturing the same
JP7497744B2 (ja) 半導体装置
US20170365708A1 (en) Trench power semiconductor device
JP2019145613A (ja) 半導体装置
JP2020025050A (ja) 半導体装置
US11430884B2 (en) Semiconductor device
JP2019021891A (ja) 半導体装置
JP7447995B2 (ja) 半導体装置
JP7085967B2 (ja) ピラー構造を有するトランジスタデバイス
JP7157719B2 (ja) 半導体装置の製造方法
JP2022047934A (ja) 半導体装置及びその製造方法
JP2022161688A (ja) 半導体装置
JP7417497B2 (ja) 半導体装置及びその製造方法
WO2024147230A1 (ja) 半導体装置及びその製造方法
US20230170399A1 (en) Method for manufacturing semiconductor device
JP7381425B2 (ja) 半導体装置及びその製造方法
WO2024014401A1 (ja) 半導体装置および半導体装置の製造方法
CN118693150A (zh) 半导体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240722