JP2024155771A - Electronics - Google Patents
Electronics Download PDFInfo
- Publication number
- JP2024155771A JP2024155771A JP2024062824A JP2024062824A JP2024155771A JP 2024155771 A JP2024155771 A JP 2024155771A JP 2024062824 A JP2024062824 A JP 2024062824A JP 2024062824 A JP2024062824 A JP 2024062824A JP 2024155771 A JP2024155771 A JP 2024155771A
- Authority
- JP
- Japan
- Prior art keywords
- user
- robot
- presentation
- behavior
- emotion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008451 emotion Effects 0.000 claims abstract description 283
- 230000009471 action Effects 0.000 claims abstract description 85
- 230000004044 response Effects 0.000 abstract description 7
- 230000006399 behavior Effects 0.000 description 186
- 238000006243 chemical reaction Methods 0.000 description 59
- 238000004891 communication Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 20
- 238000012545 processing Methods 0.000 description 20
- 230000015654 memory Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 230000008921 facial expression Effects 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 238000013528 artificial neural network Methods 0.000 description 12
- 230000003542 behavioural effect Effects 0.000 description 10
- 230000006872 improvement Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 239000000284 extract Substances 0.000 description 7
- 210000003128 head Anatomy 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000008909 emotion recognition Effects 0.000 description 4
- 230000002996 emotional effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000010365 information processing Effects 0.000 description 4
- 230000035807 sensation Effects 0.000 description 4
- 208000019901 Anxiety disease Diseases 0.000 description 3
- 230000036506 anxiety Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008450 motivation Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000006996 mental state Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035943 smell Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- User Interface Of Digital Computer (AREA)
Abstract
【課題】ユーザの行動に対して適切な行動を実行する電子機器を提供すること。【解決手段】電子機器であるロボット100は、プレゼンテーションを行うユーザの行動を認識し、認識したユーザの行動に対応する自身の行動を決定し、決定した自身の行動に基づいて制御対象を制御し、ユーザがプレゼンテーションとして発表の練習を行う場合は、ユーザのプレゼンテーションの内容を所定の完成度に高める行動を行い、ユーザによるプレゼンテーションとして発表の練習を認識した場合は、プレゼンテーションを行うユーザの感情を高める行動を決定し、かつ、プレゼンテーションの内容を特定し、特定したプレゼンテーションの内容に合わせた所定のフィードバックに関する行動を決定する。【選択図】図2[Problem] To provide an electronic device that executes appropriate actions in response to user actions. [Solution] A robot 100, which is an electronic device, recognizes the actions of a user giving a presentation, determines its own actions corresponding to the recognized user actions, controls a control target based on its own determined actions, and when the user practices a presentation, performs an action that improves the content of the user's presentation to a predetermined level of completion, and when it recognizes a practice presentation by the user, determines an action that improves the emotions of the user giving the presentation, identifies the content of the presentation, and determines a predetermined feedback-related action that matches the identified content of the presentation. [Selected Figure] Figure 2
Description
開示の実施形態は、電子機器に関する。 The disclosed embodiment relates to an electronic device.
従来、ユーザの状態に対してロボットの適切な行動を決定する技術が開示されている(例えば、特許文献1参照)。特許文献1には、ロボットが特定の行動を実行したときのユーザの反応を認識し、認識したユーザの反応に対するロボットの行動を決定できなかった場合、認識したユーザの状認に適した行動に関する情報をサーバから受信することで、ロボットの行動を更新する点が開示されている。
Conventionally, technology has been disclosed for determining an appropriate robot behavior in response to a user's state (see, for example, Patent Document 1).
しかしながら、従来の技術では、ユーザの行動に対して適切な行動を実行する点で改善の余地があった。 However, conventional technology leaves room for improvement in terms of executing appropriate actions in response to user actions.
本発明は、上記に鑑みてなされたものであって、適切な行動を実行することができる電子機器を提供することを目的とする。 The present invention has been made in consideration of the above, and aims to provide an electronic device that can perform appropriate actions.
実施形態の一態様に係る電子機器は、プレゼンテーションを行うユーザの行動を認識し、認識した前記ユーザの行動に対応する自身の行動を決定し、決定した前記自身の行動に基づいて制御対象を制御する、を備える。 An electronic device according to one aspect of the embodiment recognizes the behavior of a user giving a presentation, determines its own behavior corresponding to the recognized user behavior, and controls a control target based on the determined own behavior.
実施形態の一態様によれば、適切な行動を実行することができる。 According to one aspect of the embodiment, appropriate action can be taken.
以下、実施形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。また、本実施形態においては、電子機器として「ロボット」を一例に挙げて説明する。なお、当該電子機器は、ロボットの他に、ぬいぐるみ、スマートフォン等の携帯型端末装置、スマートスピーカ等の入力装置等であってよい。 The present invention will be described below through the embodiments, but the following embodiments do not limit the invention according to the claims. Furthermore, not all of the combinations of features described in the embodiments are necessarily essential to the solution of the invention. Furthermore, in this embodiment, a "robot" is used as an example of an electronic device. Note that the electronic device may be a stuffed toy, a portable terminal device such as a smartphone, an input device such as a smart speaker, etc., in addition to a robot.
図1は、本実施形態に係る制御システム1の一例を概略的に示す図である。図1に示すように、制御システム1は、複数のロボット100と、連携機器400と、サーバ300とを備える。複数のロボット100は、それぞれユーザによって管理される。
FIG. 1 is a diagram illustrating an example of a
ロボット100は、ユーザと会話を行ったり、ユーザに映像を提供したりする。このとき、ロボット100は、通信網20を介して通信可能なサーバ300等と連携して、ユーザとの会話や、ユーザへの映像等の提供を行う。例えば、ロボット100は、自身で適切な会話を学習するだけでなく、サーバ300と連携して、ユーザとより適切に会話を進められるように学習を行う。また、ロボット100は、撮影したユーザの映像データ等をサーバ300に記録させ、必要に応じて映像データ等をサーバ300に要求して、ユーザに提供する。
The
また、ロボット100は、自身の感情の種類を表す感情値を持つ。例えば、ロボット100は、「喜」、「怒」、「哀」、「楽」、「快」、「不快」、「安心」、「不安」、「悲しみ」、「興奮」、「心配」、「安堵」、「充実感」、「虚無感」及び「普通」のそれぞれの感情の強さを表す感情値を持つ。ロボット100は、例えば興奮の感情値が大きい状態でユーザと会話するときは、早いスピードで音声を発する。このように、ロボット100は、自己の感情を行動で表現することができる。
The
また、ロボット100は、文章生成モデル(いわゆる、AI(Artificial Intelligence)チャットエンジンと感情エンジンをマッチングさせることで、ユーザ10の感情に対応するロボット100の行動を決定するように構成してよい。具体的には、ロボット100は、ユーザ10の行動を認識して、当該ユーザの行動に対するユーザ10の感情を判定し、判定した感情に対応するロボット100の行動を決定するように構成してよい。
The
より具体的には、ロボット100は、ユーザ10の行動を認識した場合、予め設定された文章生成モデルを用いて、当該ユーザ10の行動に対してロボット100がとるべき行動内容を自動で生成する。文章生成モデルは、文字による自動対話処理のためのアルゴリズム及び演算と解釈してよい。文章生成モデルは、例えば特開2018-081444号公報やchatGPT(インターネット検索<URL:https://openai.com/blog/chatgpt>)に開示される通り公知であるため、その詳細な説明を省略する。このような、文章生成モデルは、大規模言語モデル(LLM:Large Language Model)により構成されている。以上、本実施形態は、大規模言語モデルと感情エンジンとを組み合わせることにより、ユーザ10やロボット100の感情と、様々な言語情報とをロボット100の行動に反映させるということができる。つまり、本実施形態によれば、文章生成モデルと感情エンジンとを組み合わせることにより、相乗効果を得ることができる。
More specifically, when the
また、ロボット100は、ユーザの行動を認識する機能を有する。ロボット100は、カメラ機能で取得したユーザの顔画像や、マイク機能で取得したユーザの音声を解析することによって、ユーザの行動を認識する。ロボット100は、認識したユーザの行動等に基づいて、ロボット100が実行する行動を決定する。
The
ロボット100は、ユーザの感情、ロボット100の感情、及びユーザの行動に基づいてロボット100が実行する行動を定めたルールを記憶しており、ルールに従って各種の行動を行う。
The
具体的には、ロボット100には、ユーザの感情、ロボット100の感情、及びユーザの行動に基づいてロボット100の行動を決定するための反応ルールを有している。反応ルールには、例えば、ユーザの行動が「笑う」である場合に対して、「笑う」という行動が、ロボット100の行動として定められている。また、反応ルールには、ユーザの行動が「怒る」である場合に対して、「謝る」という行動が、ロボット100の行動として定められている。また、反応ルールには、ユーザの行動が「質問する」である場合に対して、「回答する」という行動が、ロボット100の行動として定められている。反応ルールには、ユーザの行動が「悲しむ」である場合に対して、「声をかける」という行動が、ロボット100の行動として定められている。
Specifically, the
ロボット100は、反応ルールに基づいて、ユーザの行動が「怒る」であると認識した場合、反応ルールで定められた「謝る」という行動を、ロボット100が実行する行動として選択する。例えば、ロボット100は、「謝る」という行動を選択した場合に、「謝る」動作を行うと共に、「謝る」言葉を表す音声を出力する。
When the
また、ロボット100の感情が「普通」(すわなち、「喜」=0、「怒」=0、「哀」=0、「楽」=0)であり、ユーザの状態が「1人、寂しそう」という条件が満たされた場合に、ロボット100の感情が「心配になる」という感情の変化内容と、「声をかける」の行動を実行できることが定められている。 In addition, when the robot's 100 emotions are "normal" (i.e., "happy" = 0, "anger" = 0, "sad" = 0, "happy" = 0) and the condition that the user's state is "alone and looks lonely" is met, it is defined that the robot's 100 emotions will change to "worried" and that it will be able to execute the action of "calling out."
ロボット100は、反応ルールに基づいて、ロボット100の現在の感情が「普通」であり、かつ、ユーザが1人で寂しそうな状態にあると認識した場合、ロボット100の「哀」の感情値を増大させる。また、ロボット100は、反応ルールで定められた「声をかける」という行動を、ユーザに対して実行する行動として選択する。例えば、ロボット100は、「声をかける」という行動を選択した場合に、心配していることを表す「どうしたの?」という言葉を、心配そうな音声に変換して出力する。
When the
また、ロボット100は、この行動によって、ユーザからポジティブな反応が得られたことを示すユーザ反応情報を、サーバ300に送信する。ユーザ反応情報には、例えば、「怒る」というユーザ行動、「謝る」というロボット100の行動、ユーザの反応がポジティブであったこと、及びユーザの属性が含まれる。
The
サーバ300は、各ロボット100から受信したユーザ反応情報を記憶する。そして、サーバ300は、各ロボット100からのユーザ反応情報を解析して、反応ルールを更新する。
The
ロボット100は、更新された反応ルールをサーバ300に問い合わせることにより、更新された反応ルールをサーバ300から受信する。ロボット100は、更新された反応ルールを、ロボット100が記憶している反応ルールに組み込む。これにより、ロボット100は、他のロボット100が獲得した反応ルールを、自身の反応ルールに組み込むことができる。反応ルールが更新された場合、サーバ300から自動的にロボット100に送信されてもよい。
The
また、ロボット100は、連携機器400と連携した行動を実行することができる。連携機器400は、例えば、カラオケ機器、ワインセラー、冷蔵庫、端末機器(PC(Personal Computer)や、スマートフォン、タブレット等)、洗濯機、自動車、カメラ、トイレ設備、電動歯ブラシ、テレビ、ディスプレイ、家具(クローゼット等)、薬箱、楽器、照明機器、運動玩具(一輪車等)である。これら連携機器400は、通信網20を介してロボット100と通信可能に接続され、ロボット100との間で情報の送受信を行う。この構成により、連携機器400は、ロボット100の指示に従って、自身の制御や、ユーザとの会話等を行う。
The
本開示では、連携機器400である端末機器(PC(Personal Computer)400aや、スマートフォン400b、タブレット400c等)とロボット100との連携により、ユーザに対して各種行動を実行する例について説明する。
In this disclosure, we will explain examples of performing various actions for a user through collaboration between a linked
ロボット100は、プレゼンテーションを行うユーザの行動を認識し、認識したユーザの行動に対応する自身の行動を決定し、決定した自身の行動に基づいて制御対象を制御する。具体的には、ロボット100は、ユーザがプレゼンテーションとして発表の練習を行う場合に、ユーザのプレゼンテーションの内容の所定の完成度が高める行動を行う。
The
上記したように、ロボット100は、ユーザがプレゼンテーションとして発表の練習を行う際に、発表内容の聴講、反応、内容への指摘、改善提案等のプレゼンテーションの完成度を高める行動を実行する。例えば、ロボット100は、発表の練習におけるプレゼンテーションの内容を解析して、所定の完成度の指標が閾値未満の箇所を抽出し、抽出した箇所について所定のフィードバックに関する行動を決定する。具体的には、ロボット100は、プレゼンテーションの内容に含まれる誤字、脱字、内容の誤り、内容の充実度、ユーザの声量、発表速度、目線、ユーザの感情の変化のうちいずれか1つ又は複数の組み合わせを所定の完成度の指標として、完成度の指標が閾値未満の箇所を抽出する。例えば、ロボット100は、完成度を高める行動として、発表練習の聴講およびプレゼンテーションの内容の解析を行い、予め設定された指標が所定の閾値未満の場合に、係る箇所についてフィードバックを行う。なお、ここでいうフィードバックとはユーザのプレゼンテーションの完成度を高めるための指摘、指導、提案のことで、例えば、誤字の訂正、表現の変更、内容の削除又は追記、構成の変更、発表時の声量、姿勢、態度の改善等が含まれる。
As described above, when the user practices a presentation as a presentation, the
また、ロボット100は、ユーザによるプレゼンテーションとして発表の練習を認識した場合、プレゼンテーションを行うユーザの感情を高める行動を決定する。具体的には、ロボット100は、ユーザがプレゼンテーションとして発表の練習を行っていると認識した場合に、ユーザの感情を高める行動として「素晴らしい発表ですね!」、「声が大きくてわかりやすいです!」といったようなユーザに対する発話ができる。
In addition, when the
また、ロボット100は、ユーザが発表の練習が終わったタイミングで、プレゼンテーションの内容に関する発話を行うことができる。具体的には、ロボット100は、ユーザがプレゼンテーションとして発表の練習が終わった場合に、ユーザの感情を高める行動として「素晴らしい発表ですね!」、「声が大きくてわかりやすいです!」といったようなユーザに対する発話ができる。また、ロボット100は、ユーザがプレゼンテーションとして発表の練習が終わった場合に、プレゼンテーションの内容を改善するために「もう少しゆっくり説明するとなおよいです。」や、「〇〇の部分が間違っていたので直しましょう。」といったようなユーザに対する発話ができる。
Furthermore, the
また、ロボット100は、ユーザからプレゼンテーションの内容の完成度を高めることを要求する音声を受け付けた場合、プレゼンテーションの内容の完成度を高める行動を決定する。具体的には、ロボット100は、ユーザによる発表練習中、または発表練習終了後に、ユーザからの発話に基づいてプレゼンテーションの内容の完成度が高まるような行動を決定できる。例えば、ロボット100は、ユーザから「プレゼンテーションの内容で改善点はありますか?」という発話があった場合に、「もう少しゆっくり説明するとなおよいです。」、「〇〇の部分が間違っていたので直しましょう。」といったような提案を行うことができる。
Furthermore, when the
また、ロボット100は、プレゼンテーションの内容を特定し、特定したプレゼンテーションの内容に合わせた所定のフィードバックに関する行動を決定することができる。具体的には、ロボット100は、ユーザのプレゼンテーションの内容を解析し、プレゼンテーションの内容の完成度が高まるような行動を決定できる。例えば、ロボット100は、完成度を高める行動として、プレゼンテーションの内容を取得して解析を行い、予め設定された指標が所定の閾値未満の場合に、係る箇所について上記したフィードバックを行う。なお、本項目における「取得」は、ユーザによる発表練習といった発話形式ではなく、プレゼンテーションの内容にかかるデータを情報処理装置等が読み込んで解析を行ってもよい。
The
また、ロボット100は、ユーザの状態や行動に基づいて、ユーザがプレゼンテーションとして発表の練習を行う場合に、ユーザのプレゼンテーションの内容の所定の完成度が高める行動を行う。例えば、ロボット100は、ユーザが手に端末装置を持ち、かつ「ユーザが行うプレゼンテーションの発表練習での発表速度が速すぎます。」と認識した場合に、会話形式でユーザに話しかけて、プレゼンテーションの内容を改善するための提案を実施できる。
Furthermore, when the user practices a presentation, the
このように、本開示において、ロボット100は、端末機器(PCや、スマートフォン、タブレット等)と連携した行動を行うことで、ユーザに対して、プレゼンテーションの完成度を高める行動の実行、すなわちユーザと一緒にプレゼンテーションの発表練習を行うことができる。すなわち、本開示に係るロボット100によれば、ユーザに対して適切な行動を実行することができる。
In this manner, in the present disclosure, the
図2は、ロボット100の機能構成を概略的に示す図である。ロボット100は、センサ部200と、センサモジュール部210と、格納部220と、ユーザ状態認識部230と、感情決定部232と、行動認識部234と、行動決定部236と、記憶制御部238と、行動制御部250と、制御対象252と、通信処理部280と、を有する制御部によって構成される。
Figure 2 is a diagram showing a schematic functional configuration of the
制御対象252は、表示装置、スピーカ及び目部のLED、並びに、腕、手及び足等を駆動するモータ等を含む。ロボット100の姿勢や仕草は、腕、手及び足等のモータを制御することにより制御される。ロボット100の感情の一部は、これらのモータを制御することにより表現できる。また、ロボット100の目部のLEDの発光状態を制御することによっても、ロボット100の表情を表現できる。例えば、表示装置は、ロボット100の胸に設けられる。また、表示装置の表示を制御することによっても、ロボット100の表情を表現できる。表示装置は、ユーザとの会話内容を文字として表示してもよい。なお、ロボット100の姿勢、仕草及び表情は、ロボット100の態度の一例である。
The
センサ部200は、マイク201と、3D深度センサ202と、2Dカメラ203と、距離センサ204と、加速度センサ205と、サーモセンサ206と、タッチセンサ207とを含む。マイク201は、音声を連続的に検出して音声データを出力する。なお、マイク201は、ロボット100の頭部に設けられ、バイノーラル録音を行う機能を有してよい。3D深度センサ202は、赤外線パターンを連続的に照射して、赤外線カメラで連続的に撮影された赤外線画像から赤外線パターンを解析することによって、物体の輪郭を検出する。2Dカメラ203は、イメージセンサの一例である。2Dカメラ203は、可視光によって撮影して、可視光の映像情報を生成する。物体の輪郭は、2Dカメラ203によって生成された映像情報から検出されてもよい。距離センサ204は、例えばレーザや超音波等を照射して物体までの距離を検出する。加速度センサ205は、例えば、ジャイロセンサであり、ロボット100の加速度を検出する。サーモセンサ206は、ロボット100の周囲の温度を検出する。タッチセンサ207は、ユーザのタッチ操作を検出するセンサであり、例えば、ロボット100の頭部および手に配置される。なお、センサ部200は、この他にも、時計、モータフィードバック用のセンサ等を含んでよい。
The
なお、図2に示すロボット100の構成要素のうち、制御対象252及びセンサ部200を除く構成要素は、ロボット100が有する行動制御システムが有する構成要素の一例である。ロボット100の行動制御システムは、制御対象252を制御の対象とする。
Note that, among the components of the
格納部220は、反応ルール221及び履歴データ222を含む。履歴データ222は、ユーザの過去の感情値及び行動の履歴を含む。この感情値及び行動の履歴は、例えば、ユーザの識別情報に対応付けられることによって、ユーザ毎に記録される。格納部220の少なくとも一部は、メモリ等の記憶媒体によって実装される。ユーザの顔画像、ユーザの属性情報等を格納する人物DBを含んでもよい。なお、図2に示すロボット100の構成要素のうち、制御対象252、センサ部200及び格納部220を除く構成要素の機能は、CPUがプログラムに基づいて動作することによって実現できる。例えば、基本ソフトウエア(OS)及びOS上で動作するプログラムによって、これらの構成要素の機能をCPUの動作として実装できる。
The
センサモジュール部210は、音声感情認識部211と、発話理解部212と、表情認識部213と、顔認識部214とを含む。センサモジュール部210には、センサ部200で検出された情報が入力される。センサモジュール部210は、センサ部200で検出された情報を解析して、解析結果をユーザ状態認識部230に出力する。
The
センサモジュール部210の音声感情認識部211は、マイク201で検出されたユーザの音声を解析して、ユーザの感情を認識する。例えば、音声感情認識部211は、音声の周波数成分等の特徴量を抽出して、抽出した特徴量に基づいて、ユーザの感情を認識する。発話理解部212は、マイク201で検出されたユーザの音声を解析して、ユーザの発話内容を表す文字情報を出力する。例えば、発話理解部212は、「プレゼンテーションの内容で改善点はありますか?」といったロボット100への問いかけの内容を解析して、ユーザの発話内容を表す文字情報を出力できる。
The voice
表情認識部213は、2Dカメラ203で撮影されたユーザの画像から、ユーザの表情及びユーザの感情を認識する。例えば、表情認識部213は、目及び口の形状、位置関係等に基づいて、ユーザの表情及び感情を認識する。例えば、表情認識部213は、プレゼンテーションの発表を行う際や、ロボット100に対して問いかけを行っている際の表情及び感情を認識できる。
The facial
顔認識部214は、ユーザの顔を認識する。顔認識部214は、人物DB(図示省略)に格納されている顔画像と、2Dカメラ203によって撮影されたユーザの顔画像とをマッチングすることによって、ユーザを認識する。
The
ユーザ状態認識部230は、センサモジュール部210で解析された情報に基づいて、ユーザの状態を認識する。例えば、センサモジュール部210の解析結果を用いて、主として知覚に関する処理を行う。例えば、ユーザ状態認識部230は、「ユーザがプレゼンテーションの発表練習を行っています。」、「ユーザの発話速度が所定の閾値を超えています。」等の知覚情報を生成し、生成された知覚情報の意味を理解する処理を行う。例えば、ユーザ状態認識部230は、「ユーザが行うプレゼンテーションの発表練習での発表速度が速すぎます。」等の意味情報を生成する。
The user
感情決定部232は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザの状態に基づいて、ユーザの感情を示す感情値を決定する。例えば、センサモジュール部210で解析された情報、及び認識されたユーザの状態を、予め学習されたニューラルネットワークに入力し、ユーザの感情を示す感情値を取得する。
The
ここで、ユーザの感情を示す感情値とは、ユーザの感情の正負を示す値であり、例えば、ユーザの感情が、「喜」、「楽」、「快」、「安心」、「興奮」、「安堵」、及び「充実感」のように、快感や安らぎを伴う明るい感情であれば、正の値を示し、明るい感情であるほど、大きい値となる。ユーザの感情が、「怒」、「哀」、「不快」、「不安」、「悲しみ」、「心配」、及び「虚無感」のように、嫌な気持ちになってしまう感情であれば、負の値を示し、嫌な気持ちであるほど、負の値の絶対値が大きくなる。ユーザの感情が、上記の何れでもない場合(「普通」)、0の値を示す。 Here, the emotion value indicating the user's emotion is a value indicating the positive or negative state of the user's emotion. For example, if the user's emotion is a cheerful emotion accompanied by a sense of pleasure or comfort, such as "joy," "pleasure," "comfort," "relief," "excitement," "relief," and "fulfillment," it will show a positive value, and the more cheerful the emotion, the larger the value. If the user's emotion is an unpleasant emotion, such as "anger," "sorrow," "discomfort," "anxiety," "sorrow," "worry," and "emptiness," it will show a negative value, and the more unpleasant the emotion, the larger the absolute value of the negative value will be. If the user's emotion is none of the above ("normal"), it will show a value of 0.
また、感情決定部232は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザの状態に基づいて、ロボット100の感情を示す感情値を決定する。
In addition, the
ロボット100の感情値は、複数の感情分類の各々に対する感情値を含み、例えば、「喜」、「怒」、「哀」、「楽」それぞれの強さを示す値(0~5)である。
The emotion value of the
具体的には、感情決定部232は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザの状態に対応付けて定められた、ロボット100の感情値を更新するルールに従って、ロボット100の感情を示す感情値を決定する。
Specifically, the
例えば、感情決定部232は、ユーザ状態認識部230によってユーザが寂しそうと認識された場合、ロボット100の「哀」の感情値を増大させる。また、ユーザ状態認識部230によってユーザが笑顔になったと認識された場合、ロボット100の「喜」の感情値を増大させる。
For example, if the user
なお、感情決定部232は、ロボット100の状態を更に考慮して、ロボット100の感情を示す感情値を決定してもよい。例えば、ロボット100のバッテリー残量が少ない場合やロボット100の周辺環境が真っ暗な場合等に、ロボット100の「哀」の感情値を増大させてもよい。更にバッテリー残量が少ないにも関わらず継続して話しかけてくるユーザの場合は、「怒」の感情値を増大させても良い。
The
行動認識部234は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザの状態に基づいて、ユーザの行動を認識する。例えば、センサモジュール部210で解析された情報、及び認識されたユーザの状態を、予め学習されたニューラルネットワークに入力し、予め定められた複数の行動分類(例えば、「笑う」、「怒る」、「質問する」、「悲しむ」)の各々の確率を取得し、最も確率の高い行動分類を、ユーザの行動として認識する。例えば、行動認識部234は、ユーザの「端末装置を操作する」、「プレゼンテーションの内容を発話する」、「発表中に話す内容を考える」、「質問に回答する」等といったユーザの行動を認識する。
The
以上のように、本実施形態では、ロボット100は、ユーザを特定したうえでユーザの発話内容を取得するが、当該発話内容の取得と利用等に際してはユーザから法令に従った必要な同意を取得するほか、本実施形態に係るロボット100の行動制御システムは、ユーザの個人情報及びプライバシーの保護に配慮する。
As described above, in this embodiment, the
行動決定部236は、感情決定部232により決定されたユーザの現在の感情値と、ユーザの現在の感情値が決定されるよりも前に感情決定部232により決定された過去の感情値の履歴データ222と、ロボット100の感情値とに基づいて、行動認識部234によって認識されたユーザの行動に対応する行動を決定する。本実施形態では、行動決定部236は、ユーザの過去の感情値として、履歴データ222に含まれる直近の1つの感情値を用いる場合について説明するが、開示の技術はこの態様に限定されない。例えば、行動決定部236は、ユーザの過去の感情値として、直近の複数の感情値を用いてもよいし、一日前等の単位期間の分だけ前の感情値を用いてもよい。また、行動決定部236は、ロボット100の現在の感情値だけでなく、ロボット100の過去の感情値の履歴を更に考慮して、ユーザの行動に対応する行動を決定してもよい。行動決定部236が決定する行動は、ロボット100が行うジェスチャー又はロボット100の発話内容を含む。
The
なお、行動決定部236は、ロボット100の感情に基づいて、ユーザの行動に対応する行動を決定してもよい。例えば、ロボット100がユーザから暴言をかけられた場合や、ユーザに横柄な態度をとられている場合(すなわち、ユーザの反応が不良である場合)、周囲の騒音が騒がしくユーザの音声を検出できない場合、ロボット100のバッテリー残量が少ない場合などにおいて、ロボット100の「怒」や「哀」の感情値が増大した場合、行動決定部236は、「怒」や「哀」の感情値の増大に応じた行動を、ユーザの行動に対応する行動として決定してもよい。また、ユーザの反応が良好である場合や、ロボット100のバッテリー残量が多い場合などにおいて、ロボット100の「喜」や「楽」の感情値が増大した場合、行動決定部236は、「喜」や「楽」の感情値の増大に応じた行動を、ユーザの行動に対応する行動として決定してもよい。また、行動決定部236は、ロボット100の「怒」や「哀」の感情値を増大させたユーザに対する行動とは異なる行動を、ロボット100の「喜」や「楽」の感情値を増大させたユーザに対する行動として決定してもよい。このように、行動決定部236は、ロボット自身の感情そのものや、ユーザの行動によってユーザがロボット100の感情をどのように変化させたかに応じて、異なる行動を決定すればよい。
The
本実施形態に係る行動決定部236は、ユーザの行動に対応する行動として、ユーザの過去の感情値と現在の感情値の組み合わせと、ロボット100の感情値と、ユーザの行動と、反応ルール221とに基づいて、ロボット100の行動を決定する。例えば、行動決定部236は、ユーザの過去の感情値が正の値であり、かつ現在の感情値が負の値である場合、ユーザの行動に対応する行動として、ユーザの感情値を正に変化させるための行動を決定する。
The
反応ルール221には、ユーザの過去の感情値と現在の感情値の組み合わせと、ロボット100の感情値と、ユーザの行動とに応じたロボット100の行動が定められている。例えば、ユーザの過去の感情値が正の値であり、かつ現在の感情値が負の値であり、ユーザの行動が悲しむである場合、ロボット100の行動として、ジェスチャーを交えてユーザを励ます問いかけを行う際のジェスチャーと発話内容との組み合わせが定められている。
The reaction rules 221 define the behavior of the
例えば、反応ルール221には、ロボット100の感情値のパターン(「喜」、「怒」、「哀」、「楽」の値「0」~「5」の6値の4乗である1296パターン)、ユーザの過去の感情値と現在の感情値の組み合わせのパターン、ユーザの行動パターンの全組み合わせに対して、ロボット100の行動が定められる。すわなち、ロボット100の感情値のパターン毎に、ユーザの過去の感情値と現在の感情値の組み合わせが、負の値と負の値、負の値と正の値、正の値と負の値、正の値と正の値、負の値と普通、及び普通と普通等のように、複数の組み合わせのそれぞれに対して、ユーザの行動パターンに応じたロボット100の行動が定められる。なお、行動決定部236は、例えば、ユーザが「この前に話したあの話題について話したい」というような過去の話題から継続した会話を意図する発話を行った場合に、履歴データ222を用いてロボット100の行動を決定する動作モードに遷移してもよい。
For example, the reaction rules 221 define the behavior of the
なお、反応ルール221には、ロボット100の感情値のパターン(1296パターン)の各々に対して、最大で一つずつ、ロボット100の行動としてジェスチャー及び発言内容の少なくとも一方が定められていてもよい。あるいは、反応ルール221には、ロボット100の感情値のパターンのグループの各々に対して、ロボット100の行動としてジェスチャー及び発言内容の少なくとも一方が定められていてもよい。
The reaction rules 221 may define at least one of a gesture and a statement as the behavior of the
反応ルール221に定められているロボット100の行動に含まれる各ジェスチャーには、当該ジェスチャーの強度が予め定められている。反応ルール221に定められているロボット100の行動に含まれる各発話内容には、当該発話内容の強度が予め定められている。
For each gesture included in the behavior of the
例えば、反応ルール221には、端末装置を操作する場合、プレゼンテーションの内容を発話する場合、発表中に話す内容を考える場合、質問に回答する場合、ユーザの要望に関する発話等の行動パターンに対応するロボット100の行動が定められている。なお、ユーザの要望に関する発話の一例としては、「プレゼンテーションの内容で改善点はありますか?」といったロボット100への問いかけ等である。
For example, the reaction rules 221 define the behavior of the
記憶制御部238は、行動決定部236によって決定された行動に対して予め定められた行動の強度と、感情決定部232により決定されたロボット100の感情値とに基づいて、ユーザの行動を含むデータを履歴データ222に記憶するか否かを決定する。
The
具体的には、ロボット100の複数の感情分類の各々に対する感情値の総和と、行動決定部236によって決定された行動が含むジェスチャーに対して予め定められた強度と、行動決定部236によって決定された行動が含む発話内容に対して予め定められた強度との和である強度の総合値が、閾値以上である場合、ユーザの行動を含むデータを履歴データ222に記憶すると決定する。
Specifically, if the total intensity value, which is the sum of the emotion values for each of the multiple emotion classifications of the
記憶制御部238は、ユーザの行動を含むデータを履歴データ222に記憶すると決定した場合、行動決定部236によって決定された行動と、現時点から一定期間前までの、センサモジュール部210で解析された情報(例えば、その場の音声、画像、におい等のデータ等のあらゆる周辺情報)、及びユーザ状態認識部230によって認識されたユーザの状態(例えば、ユーザの表情、感情等)を、履歴データ222に記憶する。
When the
行動制御部250は、行動決定部236が決定した行動に基づいて、制御対象252を制御する。例えば、行動制御部250は、行動決定部236が発話することを含む行動を決定した場合に、制御対象252に含まれるスピーカから音声を出力させる。このとき、行動制御部250は、ロボット100の感情値に基づいて、音声の発声速度を決定してもよい。例えば、行動制御部250は、ロボット100の感情値が大きいほど、速い発声速度を決定する。このように、行動制御部250は、感情決定部232が決定した感情値に基づいて、行動決定部236が決定した行動の実行形態を決定する。具体的には、行動制御部250は、ユーザが行うプレゼンテーションとして発表の練習を行う際、発表内容の聴講、反応、内容への指摘、改善提案等のプレゼンテーションの完成度を高める行動を実行する。
The
例えば、行動制御部250は、発表の練習におけるプレゼンテーションの内容を解析して、所定の完成度の指標が閾値未満の箇所を抽出し、抽出した箇所について所定のフィードバックに関する行動を決定する。また、行動制御部250は、プレゼンテーションの内容に含まれる誤字、脱字、内容の誤り、内容の充実度、ユーザの声量、発表速度、目線、ユーザの感情の変化のうちいずれか1つ又は複数の組み合わせを所定の完成度の指標として、完成度の指標が閾値未満の箇所を抽出する。また、行動制御部250は、完成度を高める行動として、発表練習の聴講およびプレゼンテーションの内容の解析を行い、予め設定された指標が所定の閾値未満の場合に、係る箇所についてフィードバックを行う。なお、ここでいうフィードバックとはユーザのプレゼンテーションの完成度を高めるための指摘、指導、提案のことで、例えば、誤字の訂正、表現の変更、内容の削除又は追記、構成の変更、発表時の声量、姿勢、態度の改善等が含まれる。
For example, the
また、行動制御部250は、ユーザによる発表の練習を認識した場合、練習中や練習が終わったタイミングで、プレゼンテーションを行うユーザの感情を高める行動として「素晴らしい発表ですね!」、「声が大きくてわかりやすいです!」といったようなユーザに対する発話ができる。また、行動制御部250は、練習中や練習が終わったタイミングで、プレゼンテーションの内容を改善するために「もう少しゆっくり説明するとなおよいです。」や、「〇〇の部分が間違っていたので直しましょう。」といったようなユーザに対する発話ができる。
Furthermore, when the
また、行動制御部250は、ユーザのプレゼンテーションの内容を解析し、誤字、脱字、内容の誤り、内容の充実度、ユーザの声量、発表速度、目線、ユーザの感情の変化等の予め設定された指標が所定の閾値未満の場合に、係る箇所についてフィードバックを行う。なお、行動制御部250は、ユーザによる発表練習といった発話形式ではなく、プレゼンテーションの内容にかかるデータを読み込んで解析を行ってもよい。
The
また、行動制御部250は、ユーザによる発表練習中または発表練習終了後に、ユーザからプレゼンテーションの内容の完成度を高めることを要求する音声を受け付けた場合、プレゼンテーションの内容の完成度が高まるような行動を決定できる。例えば、行動制御部250は、ユーザから「プレゼンテーションの内容で改善点はありますか?」という発話があった場合に、「もう少しゆっくり説明するとなおよいです。」、「〇〇の部分が間違っていたので直しましょう。」といったような提案を行うことができる。
Furthermore, when the
行動制御部250は、行動決定部236が決定した行動を実行したことに対するユーザの感情の変化を認識してもよい。例えば、ユーザの音声や表情に基づいて感情の変化を認識してよい。その他、センサ部200に含まれるタッチセンサで衝撃が検出されたことに基づいて、ユーザの感情の変化を認識してよい。センサ部200に含まれるタッチセンサで衝撃が検出された場合に、ユーザの感情が悪くなったと認識したり、センサ部200に含まれるタッチセンサの検出結果から、ユーザの反応が笑っている、あるいは、喜んでいる等と判断される場合には、ユーザの感情が良くなったと認識したりしてもよい。ユーザの反応を示す情報は、通信処理部280に出力される。
The
また、行動制御部250は、行動決定部236が決定した行動をロボット100の感情に応じて決定した実行形態で実行した後、感情決定部232は、当該行動が実行されたことに対するユーザの反応に基づいて、ロボット100の感情値を更に変化させる。具体的には、感情決定部232は、行動決定部236が決定した行動を行動制御部250が決定した実行形態でユーザに対して行ったことに対するユーザの反応が不良でなかった場合に、ロボット100の「喜」の感情値を増大させるまた、感情決定部232は、行動決定部236が決定した行動を行動制御部250が決定した実行形態でユーザに対して行ったことに対するユーザの反応が不良であった場合に、ロボット100の「哀」の感情値を増大させる。
In addition, after the
更に、行動制御部250は、決定したロボット100の感情値に基づいて、ロボット100の感情を表現する。例えば、行動制御部250は、ロボット100の「喜」の感情値を増加させた場合、制御対象252を制御して、ロボット100に喜んだ仕草を行わせる。また、行動制御部250は、ロボット100の「哀」の感情値を増加させた場合、ロボット100の姿勢がうなだれた姿勢になるように、制御対象252を制御する。
Furthermore, the
更に、行動制御部250は、上記したロボット100の感情の変化に基づいて、ロボット100の行動を変化させる。例えば、行動制御部250は、ユーザによる発表練習を聴講したロボット100が「喜」の感情値を増加させた場合、「とても素晴らしい発表で、内容がよく分かるよ!」といったようにユーザの発表を積極的に褒める行動を取ることができる。他方で、例えば、制御対象252は、行動制御部250は、「哀」の感情値を増加させた場合、「発表がちょっとわかりにくいかな、でも一緒に改善していこう!」といったようにユーザを励ます行動をとることができる。
Furthermore, the
通信処理部280は、サーバ300との通信を担う。上述したように、通信処理部280は、ユーザ反応情報をサーバ300に送信する。また、通信処理部280は、更新された反応ルールをサーバ300から受信する。通信処理部280がサーバ300から、更新された反応ルールを受信すると、反応ルール221を更新する。通信処理部280は、連携機器400との間で情報を送受信できる。
The
サーバ300は、各ロボット100とサーバ300との間の通信を行い、ロボット100から送信されたユーザ反応情報を受信し、ポジティブな反応が得られた行動を含む反応ルールに基づいて、反応ルールを更新する。
The
図3は、ロボット100において行動を決定する動作に関する動作フローの一例を概略的に示す図である。図3に示す動作フローは、繰り返し実行される。このとき、センサモジュール部210で解析された情報が入力されているものとする。なお、動作フロー中の「S」は、実行されるステップを表す。
Figure 3 is a diagram that shows an example of an operation flow related to the operation of determining the behavior of the
まず、ステップS101において、ユーザ状態認識部230は、センサモジュール部210で解析された情報に基づいて、ユーザの状態を認識する。例えば、ユーザ状態認識部230は、「ユーザがプレゼンテーションの発表練習を行っています。」、「ユーザの発話速度が所定の閾値を超えています。」等の知覚情報を生成し、生成された知覚情報の意味を理解する処理を行う。例えば、ユーザ状態認識部230は、「ユーザが行うプレゼンテーションの発表練習での発表速度が速すぎます。」等の意味情報を生成する。
First, in step S101, the user
ステップS102において、感情決定部232は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザの状態に基づいて、ユーザの感情を示す感情値を決定する。
In step S102, the
ステップS103において、感情決定部232は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザの状態に基づいて、ロボット100の感情を示す感情値を決定する。感情決定部232は、決定したユーザの感情値を履歴データ222に追加する。
In step S103, the
ステップS104において、行動認識部234は、センサモジュール部210で解析された情報及びユーザ状態認識部230によって認識されたユーザの状態に基づいて、ユーザの行動分類を認識する。例えば、行動認識部234は、ユーザの「端末装置を操作する」、「プレゼンテーションの内容を発話する」、「発表中に話す内容を考える」、「質問に回答する」等といったユーザの行動を認識する。
In step S104, the
ステップS105において、行動決定部236は、ステップS102で決定されたユーザの現在の感情値及び履歴データ222に含まれる過去の感情値の組み合わせと、ロボット100の感情値と、行動認識部234によって認識されたユーザの行動と、反応ルール221とに基づいて、ロボット100の行動を決定する。
In step S105, the
ステップS106において、行動制御部250は、行動決定部236により決定された行動に基づいて、制御対象252を制御する。例えば、行動制御部250は、ユーザが行うプレゼンテーションとして発表の練習を行う際、発表内容の聴講、反応、内容への指摘、改善提案等のプレゼンテーションの完成度を高める行動を実行する。
In step S106, the
ステップS107において、記憶制御部238は、行動決定部236によって決定された行動に対して予め定められた行動の強度と、感情決定部232により決定されたロボット100の感情値とに基づいて、強度の総合値を算出する。
In step S107, the
ステップS108において、記憶制御部238は、強度の総合値が閾値以上であるか否かを判定する。強度の総合値が閾値未満である場合には、ユーザの行動を含むデータを履歴データ222に記憶せずに、当該処理を終了する。一方、強度の総合値が閾値以上である場合には、ステップS109へ移行する。
In step S108, the
ステップS109において、行動決定部236によって決定された行動と、現時点から一定期間前までの、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザの状態と、を、履歴データ222に記憶する。
In step S109, the behavior determined by the
以上説明したように、ロボット100は、プレゼンテーションを行うユーザの行動を認識し、認識したユーザの行動に対応する自身の行動を決定し、決定した自身の行動に基づいて制御対象を制御する制御部を備える。このように、ロボット100は、ユーザが行うプレゼンテーションの発表練習ごとに適切な行動を取ることで、ユーザのプレゼンテーションの内容の完成度を高める効果を実現する。
As described above, the
具体的には、ロボット100の制御部は、ユーザがプレゼンテーションとして発表の練習を行う場合に、ユーザのプレゼンテーションの内容の所定の完成度が高める行動を行う。例えば、ロボット100の制御部は、発表の練習におけるプレゼンテーションの内容を解析して、所定の完成度の指標が閾値未満の箇所を抽出し、抽出した箇所について所定のフィードバックに関する行動を決定する。具体例として、ロボット100は、プレゼンテーションの内容に含まれる誤字、脱字、内容の誤り、内容の充実度、ユーザの声量、発表速度、目線、ユーザの感情の変化のうちいずれか1つ又は複数の組み合わせを所定の完成度の指標として、完成度の指標が閾値未満の箇所を抽出する。これにより、ロボット100は、ユーザが行うプレゼンテーションとして発表の練習を行う際、発表内容の聴講、反応、内容への指摘、改善提案等のプレゼンテーションの完成度を高める行動を実行することができる。また、ロボット100は、ユーザによるプレゼンテーションの発表において、抽象的な改善点の指摘ではなく、具体的な箇所および内容を指摘することを可能とする。このようにして、ロボット100は、ユーザの発表練習に一緒に参加して、双方向のコミュニケーションを取りながらユーザのプレゼンテーションの内容の完成度を高める効果を実現する。
Specifically, when the user practices a presentation as a presentation, the control unit of the
また、ロボット100の制御部は、ユーザによるプレゼンテーションとして発表の練習を認識した場合、プレゼンテーションを行うユーザの感情を高める行動を決定する。これにより、ロボット100は、プレゼンテーションとして発表の練習を行うユーザに対して「素晴らしい発表ですね!」、「声が大きくてわかりやすいです!」といったようなユーザの感情を高める発話を可能とする。これにより、ロボット100は、ユーザの発表練習に一緒に参加して、双方向のコミュニケーションを取りながらユーザの感情やプレゼンテーションに対するモチベーションを高めることで、プレゼンテーションの完成度を高める効果を実現する。
Furthermore, when the control unit of the
また、ロボット100の制御部は、ユーザが発表の練習が終わったタイミングで、プレゼンテーションの内容に関する発話を行う。これにより、ロボット100は、プレゼンテーションとして発表の練習が終わった場合にユーザに対して「素晴らしい発表ですね!」、「声が大きくてわかりやすいです!」といったユーザの感情を高める発話を行うことができる。他方、ロボット100は、プレゼンテーションとして発表の練習が終わった場合にユーザに対して「もう少しゆっくり説明するとなおよいです。」や「〇〇の部分が間違っていたので直しましょう。」といったような完成度を高めるための提案をユーザに対する発話できる。これにより、ロボット100は、ユーザの発表練習に一緒に参加して、双方向のコミュニケーションを取りながらユーザの感情やプレゼンテーションに対するモチベーションを高めつつ、改善の提案を行うことでプレゼンテーションの完成度を高める効果を実現する。
Furthermore, the control unit of the
また、ロボット100の制御部は、ユーザからプレゼンテーションの内容の完成度を高めることを要求する音声を受け付けた場合、プレゼンテーションの内容の完成度を高める行動を決定する。このように、ロボット100は、ユーザから「プレゼンテーションの内容で改善点はありますか?」という発話があった場合に、「もう少しゆっくり説明するとなおよいです。」、「〇〇の部分が間違っていたので直しましょう。」といった提案を行うことができる。このようにして、ロボット100は、ユーザの発表練習に一緒に参加して、双方向のコミュニケーションを取りながらユーザのプレゼンテーションの内容の完成度を高める効果を実現する。
Furthermore, when the control unit of the
また、ロボット100の制御部は、プレゼンテーションの内容を特定し、特定したプレゼンテーションの内容に合わせた所定のフィードバックに関する行動を決定する。これにより、ロボット100は、プレゼンテーションの内容を取得して解析を行い、予め設定された指標が所定の閾値未満の場合に、係る箇所についてフィードバックを可能とする。従って、ロボット100は、発表練習の実施が難しいユーザに対しても、当該ユーザが準備したプレゼンテーションにかかるデータを用いることで、的確な改善の提案が可能となる。このようにして、ロボット100は、ユーザの属性によらずプレゼンテーションの完成度を高める効果を実現する。
The control unit of the
上記実施形態では、ロボット100は、ユーザの顔画像を用いてユーザを認識する場合について説明したが、開示の技術はこの態様に限定されない。例えば、ロボット100は、ユーザが発する音声、ユーザのメールアドレス、ユーザのSNSのID又はユーザが所持する無線ICタグが内蔵されたIDカード等を用いてユーザを認識してもよい。
In the above embodiment, the
なお、ロボット100は、行動制御システムを備える電子機器の一例である。行動制御システムの適用対象は、ロボット100に限られず、様々な電子機器に行動制御システムを適用できる。また、サーバ300の機能は、1以上のコンピュータによって実装されてよい。サーバ300の少なくとも一部の機能は、仮想マシンによって実装されてよい。また、サーバ300の機能の少なくとも一部は、クラウドで実装されてよい。
The
図4は、ロボット100及びサーバ300として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す図である。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、本実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、および/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャートおよびブロック図のブロックのうちのいくつか又は全てに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
Figure 4 is a diagram showing an example of a hardware configuration of a
本実施形態によるコンピュータ1200は、CPU1212、RAM1214、およびグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ、およびICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。DVDドライブは、DVD-ROMドライブおよびDVD-RAMドライブ等であってよい。記憶装置1224は、ハードディスクドライブおよびソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230およびキーボードのような入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。
The
CPU1212は、ROM1230およびRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。
The CPU 1212 operates according to the programs stored in the
通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラムおよびデータを格納する。DVDドライブは、プログラム又はデータをDVD-ROM等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラムおよびデータをICカードから読み取り、および/又はプログラムおよびデータをICカードに書き込む。
The
ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、および/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
プログラムは、DVD-ROM又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
The programs are provided by a computer-readable storage medium such as a DVD-ROM or an IC card. The programs are read from the computer-readable storage medium, installed in storage device 1224, RAM 1214, or
例えば、通信がコンピュータ1200および外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
For example, when communication is performed between
また、CPU1212は、記憶装置1224、DVDドライブ(DVD-ROM)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。 The CPU 1212 may also cause all or a necessary portion of a file or database stored in an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc. to be read into the RAM 1214, and perform various types of processing on the data on the RAM 1214. The CPU 1212 may then write back the processed data to the external recording medium.
様々なタイプのプログラム、データ、テーブル、およびデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。 Various types of information, such as various types of programs, data, tables, and databases, may be stored in the recording medium and undergo information processing. The CPU 1212 may perform various types of processing on the data read from the RAM 1214, including various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, information search/replacement, etc., as described throughout this disclosure and specified by the instruction sequence of the program, and write back the results to the RAM 1214. The CPU 1212 may also search for information in a file, database, etc. in the recording medium. For example, when multiple entries each having an attribute value of a first attribute associated with an attribute value of a second attribute are stored in the recording medium, the CPU 1212 may search for an entry whose attribute value of the first attribute matches a specified condition from among the multiple entries, read the attribute value of the second attribute stored in the entry, and thereby obtain the attribute value of the second attribute associated with the first attribute that satisfies a predetermined condition.
上記したプログラム又はソフトウエアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。
The above-mentioned programs or software modules may be stored in a computer-readable storage medium on the
本実施形態におけるフローチャートおよびブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表してよい。特定の段階および「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、および/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/又はアナログハードウェア回路を含んでよく、集積回路(IC)および/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、およびプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、および他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。 The blocks in the flowcharts and block diagrams in this embodiment may represent stages of a process in which an operation is performed or "parts" of a device responsible for performing the operation. Particular stages and "parts" may be implemented by dedicated circuitry, programmable circuitry provided with computer-readable instructions stored on a computer-readable storage medium, and/or a processor provided with computer-readable instructions stored on a computer-readable storage medium. Dedicated circuitry may include digital and/or analog hardware circuitry, and may include integrated circuits (ICs) and/or discrete circuits. Programmable circuitry may include reconfigurable hardware circuitry including AND, OR, XOR, NAND, NOR, and other logical operations, flip-flops, registers, and memory elements, such as, for example, field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), and the like.
コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。 A computer-readable storage medium may include any tangible device capable of storing instructions that are executed by a suitable device, such that a computer-readable storage medium having instructions stored thereon comprises an article of manufacture that includes instructions that can be executed to create means for performing the operations specified in the flowchart or block diagram. Examples of computer-readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like. More specific examples of computer-readable storage media may include floppy disks, diskettes, hard disks, random access memories (RAMs), read-only memories (ROMs), erasable programmable read-only memories (EPROMs or flash memories), electrically erasable programmable read-only memories (EEPROMs), static random access memories (SRAMs), compact disk read-only memories (CD-ROMs), digital versatile disks (DVDs), Blu-ray disks, memory sticks, integrated circuit cards, and the like.
コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでもよい。 The computer readable instructions may include either assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or source or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk (registered trademark), JAVA (registered trademark), C++, etc., and conventional procedural programming languages such as the "C" programming language or similar programming languages.
コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。 The computer-readable instructions may be provided to a processor of a general-purpose computer, special-purpose computer, or other programmable data processing apparatus, or a programmable circuit, either locally or over a local area network (LAN), a wide area network (WAN), such as the Internet, so that the processor of the general-purpose computer, special-purpose computer, or other programmable data processing apparatus, or the programmable circuit, executes the computer-readable instructions to generate means for performing the operations specified in the flowcharts or block diagrams. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, etc.
(その他の実施形態)
なお、上述したロボット100は、ぬいぐるみに搭載してもよく、あるいは、ぬいぐるみに搭載された制御対象機器(スピーカやカメラ)に無線又は有線で接続された制御装置に適用してもよい。
(Other embodiments)
The
感情決定部232は、特定のマッピングに従い、ユーザの感情を決定してよい。具体的には、感情決定部232は、特定のマッピングである感情マップ(図5参照)に従い、ユーザの感情を決定してよい。
The
図5は、複数の感情がマッピングされる感情マップ700を示す図である。感情マップ700において、感情は、中心から放射状に同心円に配置されている。同心円の中心に近いほど、原始的状態の感情が配置されている。同心円のより外側には、心境から生まれる状態や行動を表す感情が配置されている。感情とは、情動や心的状態も含む概念である。同心円の左側には、概して脳内で起きる反応から生成される感情が配置されている。同心円の右側には概して、状況判断で誘導される感情が配置されている。同心円の上方向及び下方向には、概して脳内で起きる反応から生成され、かつ、状況判断で誘導される感情が配置されている。また、同心円の上側には、「快」の感情が配置され、下側には、「不快」の感情が配置されている。このように、感情マップ700では、感情が生まれる構造に基づいて複数の感情がマッピングされており、同時に生じやすい感情が、近くにマッピングされている。
5 is a diagram showing an
(1)例えばロボット100の感情決定部232である感情エンジンが、100msec程度で感情を検知している場合、ロボット100の反応動作(例えば相槌)の決定は、頻度が少なくとも、感情エンジンの検知頻度(100msec)と同様のタイミングに設定してよく、これよりも早いタイミングに設定してもよい。感情エンジンの検知頻度はサンプリングレートと解釈してよい。
(1) For example, if the emotion engine, which is the
100msec程度で感情を検知し、即時に連動して反動動作(例えば相槌)を行うことで、不自然な相槌ではなくなり、自然な空気を読んだ対話を実現できる。ロボット100感情マップ700の曼荼羅の方向性とその度合い(強さ)に応じて、反動動作(相槌等)を行う。なお、感情エンジンの検知頻度(サンプリングレート)は、100msに限定されず、シチュエーション(スポーツをしている場合等)、ユーザの年齢等に応じて、変更してもよい。
By detecting emotions in about 100 msec and immediately performing a corresponding reaction (e.g., a backchannel), unnatural backchannels can be avoided, resulting in a natural dialogue that reads the atmosphere. The reaction (backchannel, etc.) is performed according to the directionality and degree (strength) of the mandala in the robot's 100
(2)感情マップ700と照らし合わせ、感情の方向性とその度合いの強さを予め設定しておき、相槌の動き及び相槌の強弱を設定してよい。例えば、ロボット100が安定感、安心等を感じている場合、ロボット100は、頷いて話を聞き続ける。ロボット100が不安、迷い、怪しい感じを覚えている場合、ロボット100は、首をかしげてもよく、首振りを止めてもよい。
(2) The directionality of emotions and the strength of their intensity may be set in advance in reference to the
これらの感情は、感情マップ700の3時の方向に分布しており、普段は安心と不安のあたりを行き来する。感情マップ700の右半分では、内部的な感覚よりも状況認識の方が優位に立つため、落ち着いた印象になる。
These emotions are distributed in the three o'clock direction of
(3)ロボット100が褒められて快感を覚えた場合、「あー」というフィラーが台詞の前に入り、きつい言葉をもらって痛感を覚えた場合、「うっ!」というフィラーが台詞の前に入ってよい。また、ロボット100が「うっ!」と言いつつうずくまる仕草等の身体的な反応を含めてよい。これらの感情は、感情マップ700の9時あたりに分布している。
(3) If the
(4)感情マップ700の左半分では、状況認識よりも内部的な感覚(反応)の方が優位に立つ。よって、思わず反応してしまった印象を与え得る。
(4) In the left half of the
ロボット100が納得感という内部的な感覚(反応)を覚えながら状況認識においても好感を覚える場合、ロボット100は、相手を見ながら深く頷いてよく、また「うんうん」と発してよい。このように、ロボット100は、相手へのバランスのとれた好感、すなわち、相手への許容や寛容といった行動を生成してよい。このような感情は、感情マップ700の12時あたりに分布している。
When the
逆に、ロボット100が不快感という内部的な感覚(反応)を覚えながら状況認識においても、ロボット100は、嫌悪を覚えるときには首を横に振る、憎しみを覚えるくらいになると、目のLEDを赤くして相手を睨んでもよい。このような感情は、感情マップ700の6時あたりに分布している。
Conversely, even when the
(5)感情マップ700の内側は心の中、感情マップ700の外側は行動を表すため、感情マップ700の外側に行くほど、感情が目に見える(行動に表れる)ようになる。
(5) The inside of
(6)感情マップ700の3時付近に分布する安心を覚えながら、人の話を聞く場合、ロボット100は、軽く首を縦に振って「ふんふん」と発する程度であるが、12時付近の愛の方になると、首を深く縦に振るような力強い頷きをしてよい。
(6) When listening to someone with a sense of relief, which is distributed around the 3 o'clock area of the
感情決定部232は、センサモジュール部210で解析された情報、及び認識されたユーザ10の状態を、予め学習されたニューラルネットワークに入力し、感情マップ700に示す各感情を示す感情値を取得し、ユーザ10の感情を決定する。このニューラルネットワークは、センサモジュール部210で解析された情報、及び認識されたユーザ10の状態と、感情マップ700に示す各感情を示す感情値との組み合わせである複数の学習データに基づいて予め学習されたものである。また、このニューラルネットワークは、図6に示す感情マップ900のように、近くに配置されている感情同士は、近い値を持つように学習される。図6は、感情マップの他の例を示す図である。図6では、「安心」、「安穏」、「心強い」という複数の感情が、近い感情値となる例を示している。
The
また、感情決定部232は、特定のマッピングに従い、ロボット100の感情を決定してよい。具体的には、感情決定部232は、センサモジュール部210で解析された情報、ユーザ状態認識部230によって認識されたユーザ10の状態、及びロボット100の状態を、予め学習されたニューラルネットワークに入力し、感情マップ700に示す各感情を示す感情値を取得し、ロボット100の感情を決定する。このニューラルネットワークは、センサモジュール部210で解析された情報、認識されたユーザ10の状態、及びロボット100の状態と、感情マップ700に示す各感情を示す感情値との組み合わせである複数の学習データに基づいて予め学習されたものである。例えば、タッチセンサ207の出力から、ロボット100がユーザ10になでられていると認識される場合に、「嬉しい」の感情値「3」となることを表す学習データや、加速度センサ205の出力から、ロボット100がユーザ10に叩かれていると認識される場合に、「怒」の感情値「3」となることを表す学習データに基づいて、ニューラルネットワークが学習される。また、このニューラルネットワークは、図6に示す感情マップ900のように、近くに配置されている感情同士は、近い値を持つように学習される。
Furthermore, the
また、感情決定部232は、文章生成モデルによって生成されたロボット100の行動内容に基づいて、ロボット100の感情を決定してもよい。具体的には、感情決定部232は、文章生成モデルによって生成されたロボット100の行動内容を、予め学習されたニューラルネットワークに入力し、感情マップ700に示す各感情を示す感情値を取得し、取得した各感情を示す感情値と、現在のロボット100の各感情を示す感情値とを統合し、ロボット100の感情を更新する。例えば、取得した各感情を示す感情値と、現在のロボット100の各感情を示す感情値とをそれぞれ平均して、統合する。このニューラルネットワークは、文章生成モデルによって生成されたロボット100の行動内容を表すテキストと、感情マップ700に示す各感情を示す感情値との組み合わせである複数の学習データに基づいて予め学習されたものである。
The
例えば、文章生成モデルによって生成されたロボット100の行動内容として、ロボット100の発話内容「それはよかったね。ラッキーだったね。」が得られた場合には、この発話内容を表すテキストをニューラルネットワークに入力すると、感情「嬉しい」の感情値として高い値が得られ、感情「嬉しい」の感情値が高くなるように、ロボット100の感情が更新される。
For example, if the speech content of the
行動決定部236は、ユーザの行動と、ユーザの感情、ロボットの感情とを表すテキストに、ユーザの行動に対応するロボットの行動内容を質問するための固定文を追加して、対話機能を有する文章生成モデルに入力することにより、ロボットの行動内容を生成する。
The
例えば、行動決定部236は、感情決定部232によって決定されたロボット100の感情から、図7に示すような感情テーブルを用いて、ロボット100の状態を表すテキストを取得する。図7は、感情テーブルの一例を示す図である。ここで、感情テーブルには、感情の種類毎に、各感情値に対してインデックス番号が付与されており、インデックス番号毎に、ロボット100の状態を表すテキストが格納されている。
For example, the
感情決定部232によって決定されたロボット100の感情が、インデックス番号「2」に対応する場合、「とても楽しい状態」というテキストが得られる。なお、ロボット100の感情が、複数のインデックス番号に対応する場合、ロボット100の状態を表すテキストが複数得られる。
When the emotion of the
また、ユーザ10の感情に対しても、図8に示すような感情テーブルを用意しておく。図8は、感情テーブルの一例を示す図である。ここで、ユーザの行動が、「AAAと話しかける」であり、ロボット100の感情が、インデックス番号「2」であり、ユーザ10の感情が、インデックス番号「3」である場合には、「ロボットはとても楽しい状態です。ユーザは普通に楽しい状態です。ユーザに「AAA」と話しかけられました。ロボットとして、どのように返事をしますか?」と文章生成モデルに入力し、ロボットの行動内容を取得する。行動決定部236は、この行動内容から、ロボットの行動を決定する。なお、「AAA」は、ユーザがロボット100に付けた名称(呼び名)である。
Also, for the emotions of the
このように、ロボット100は、ロボットの感情に応じたインデックス番号に応じて、ロボットの行動を変えることができるため、ユーザは、ロボット100に心があるような印象を持ち、ロボットに対して話しかける等の行動をとることが促進される。
In this way, the
また、行動決定部236は、ユーザの行動と、ユーザの感情、ロボットの感情とを表すテキストだけでなく、履歴データ222の内容を表すテキストも追加した上で、ユーザの行動に対応するロボットの行動内容を質問するための固定文を追加して、対話機能を有する文章生成モデルに入力することにより、ロボットの行動内容を生成するようにしてもよい。これにより、ロボット100は、ユーザの感情や行動を表す履歴データに応じて、ロボットの行動を変えることができるため、ユーザは、ロボットに個性があるような印象を持ち、ロボットに対して話しかける等の行動をとることが促進される。また、履歴データに、ロボットの感情や行動を更に含めるようにしてもよい。
The
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 The present invention has been described above using an embodiment, but the technical scope of the present invention is not limited to the scope described in the above embodiment. It is clear to those skilled in the art that various modifications and improvements can be made to the above embodiment. It is clear from the claims that forms with such modifications or improvements can also be included in the technical scope of the present invention.
特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process, such as operations, procedures, steps, and stages, in the devices, systems, programs, and methods shown in the claims, specifications, and drawings is not specifically stated as "before" or "prior to," and it should be noted that the processes may be performed in any order, unless the output of a previous process is used in a later process. Even if the operational flow in the claims, specifications, and drawings is explained using "first," "next," etc. for convenience, it does not mean that it is necessary to perform the processes in this order.
1 制御システム
20 通信網
100 ロボット
200 センサ部
201 マイク
202 3D深度センサ
203 2Dカメラ
204 距離センサ
205 加速度センサ
206 サーモセンサ
207 タッチセンサ
210 センサモジュール部
211 音声感情認識部
212 発話理解部
213 表情認識部
214 顔認識部
220 格納部
221 反応ルール
222 履歴データ
230 ユーザ状態認識部
232 感情決定部
234 行動認識部
236 行動決定部
238 記憶制御部
250 行動制御部
252 制御対象
280 通信処理部
300 サーバ
400 連携機器
1
Claims (9)
を備える電子機器。 a control unit that recognizes a behavior of a user who is giving a presentation, determines its own behavior corresponding to the recognized behavior of the user, and controls a control target based on the determined own behavior;
An electronic device comprising:
前記ユーザが前記プレゼンテーションとして発表の練習を行う場合に、該ユーザのプレゼンテーションの内容の所定の完成度が高める行動を行う、
請求項1に記載の電子機器。 The control unit is
performing an action that enhances a predetermined level of completion of the content of the user's presentation when the user practices the presentation;
2. The electronic device according to claim 1.
前記ユーザによる前記プレゼンテーションとして前記発表の練習を認識した場合、プレゼンテーションを行う前記ユーザの感情を高める行動を決定する、
請求項2に記載の電子機器。 The control unit is
When the presentation practice is recognized as the presentation by the user, determining an action to enhance the emotion of the user giving the presentation;
3. The electronic device according to claim 2.
前記プレゼンテーションの内容を特定し、特定した前記プレゼンテーションの内容に合わせた所定のフィードバックに関する行動を決定する、
請求項2に記載の電子機器。 The control unit is
identifying content of the presentation and determining a predetermined feedback action tailored to the identified content of the presentation;
3. The electronic device according to claim 2.
前記ユーザが前記発表の練習が終わったタイミングで、前記プレゼンテーションの内容に関する発話を行う、
請求項2に記載の電子機器。 The control unit is
When the user has finished practicing the presentation, he or she speaks about the content of the presentation.
3. The electronic device according to claim 2.
前記発表の練習における前記プレゼンテーションの内容を解析して、所定の完成度の指標が閾値未満の箇所を抽出し、抽出した前記箇所について所定のフィードバックに関する行動を決定する、
請求項2に記載の電子機器。 The control unit is
Analyzing the content of the presentation in the presentation practice, extracting a portion where a predetermined indicator of completion is less than a threshold, and determining an action regarding a predetermined feedback for the extracted portion;
3. The electronic device according to claim 2.
前記ユーザから前記プレゼンテーションの内容の完成度を高めることを要求する音声を受け付けた場合、前記プレゼンテーションの内容の完成度を高める行動を決定する、
請求項2に記載の電子機器。 The control unit is
when receiving a voice from the user requesting that the content of the presentation be improved, determining an action to improve the content of the presentation;
3. The electronic device according to claim 2.
前記プレゼンテーションの内容に含まれる誤字、脱字、内容の誤り、内容の充実度、前記ユーザの声量、発表速度、目線、前記ユーザの感情の変化のうちいずれか1つまたは複数の組み合わせを前記所定の完成度の指標として、該完成度の指標が閾値未満の箇所を抽出する、
請求項2または6に記載の電子機器。 The control unit is
extracting portions where the completion index is less than a threshold value using one or more combinations of typos, omissions, errors in content, completeness of content, the volume of the user's voice, the speed of the presentation, line of sight, and changes in the user's emotions as the predetermined completion index;
7. The electronic device according to claim 2 or 6.
ぬいぐるみに搭載され、またはぬいぐるみに搭載された制御対象機器に無線または有線で接続される
請求項1に記載の電子機器。 The electronic device includes:
The electronic device according to claim 1 , which is mounted on a stuffed toy or connected wirelessly or by wire to a control target device mounted on the stuffed toy.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023069244 | 2023-04-20 | ||
JP2023069244 | 2023-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024155771A true JP2024155771A (en) | 2024-10-31 |
Family
ID=93259781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024062824A Pending JP2024155771A (en) | 2023-04-20 | 2024-04-09 | Electronics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024155771A (en) |
-
2024
- 2024-04-09 JP JP2024062824A patent/JP2024155771A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024155771A (en) | Electronics | |
JP2024155774A (en) | Electronics | |
JP2024155854A (en) | Electronics | |
JP2024154394A (en) | Electronics | |
JP2024155769A (en) | Electronics | |
JP2024155782A (en) | Electronics | |
JP2024155861A (en) | Electronics | |
JP2024155805A (en) | Electronics | |
JP2024155785A (en) | Electronics | |
JP2024157528A (en) | Electronics | |
JP2024154396A (en) | Electronics | |
JP2024155775A (en) | Electronics | |
JP2024155850A (en) | Electronics | |
JP2024155852A (en) | Electronics | |
JP2024155804A (en) | Electronics | |
JP2024153578A (en) | Electronics | |
JP2024155786A (en) | Electronics | |
JP2024159591A (en) | Electronics | |
JP2024155851A (en) | Electronics | |
JP2024155821A (en) | Electronics | |
JP2024154400A (en) | Behavior Control System | |
JP2024159575A (en) | Electronics | |
JP2024154395A (en) | Electronics | |
JP2024153581A (en) | Behavior Control System | |
JP2024159573A (en) | Electronics |