JP2024142436A - Method for producing styrene-based resin composition and method for producing expandable styrene-based resin particles - Google Patents
Method for producing styrene-based resin composition and method for producing expandable styrene-based resin particles Download PDFInfo
- Publication number
- JP2024142436A JP2024142436A JP2023054573A JP2023054573A JP2024142436A JP 2024142436 A JP2024142436 A JP 2024142436A JP 2023054573 A JP2023054573 A JP 2023054573A JP 2023054573 A JP2023054573 A JP 2023054573A JP 2024142436 A JP2024142436 A JP 2024142436A
- Authority
- JP
- Japan
- Prior art keywords
- styrene
- based resin
- carbon
- screw extruder
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 93
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 76
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 title claims description 590
- 229920005989 resin Polymers 0.000 title claims description 214
- 239000011347 resin Substances 0.000 title claims description 214
- 239000002245 particle Substances 0.000 title claims description 148
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 163
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 80
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000003381 stabilizer Substances 0.000 claims abstract description 58
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 42
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000003063 flame retardant Substances 0.000 claims abstract description 40
- 238000004898 kneading Methods 0.000 claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 15
- 229910002804 graphite Inorganic materials 0.000 claims description 57
- 239000010439 graphite Substances 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 22
- 239000004604 Blowing Agent Substances 0.000 claims description 13
- 238000001125 extrusion Methods 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 8
- 239000006229 carbon black Substances 0.000 claims description 5
- 239000002041 carbon nanotube Substances 0.000 claims description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 5
- 229910021389 graphene Inorganic materials 0.000 claims description 5
- 238000009413 insulation Methods 0.000 abstract description 21
- 229920001890 Novodur Polymers 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 5
- 238000007796 conventional method Methods 0.000 abstract description 4
- 238000010097 foam moulding Methods 0.000 abstract description 3
- 238000002844 melting Methods 0.000 abstract 1
- 230000008018 melting Effects 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 27
- 239000006260 foam Substances 0.000 description 26
- 239000000523 sample Substances 0.000 description 25
- 239000004088 foaming agent Substances 0.000 description 21
- 239000004594 Masterbatch (MB) Substances 0.000 description 20
- 238000005259 measurement Methods 0.000 description 20
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 16
- 239000002994 raw material Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 14
- 239000006185 dispersion Substances 0.000 description 12
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 11
- 238000005187 foaming Methods 0.000 description 10
- 239000012760 heat stabilizer Substances 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 8
- 239000012488 sample solution Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 7
- 239000001282 iso-butane Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- -1 diene compounds Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920001519 homopolymer Polymers 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000003796 beauty Effects 0.000 description 3
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000000790 scattering method Methods 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- IYOVSGHZOIZSDC-UHFFFAOYSA-N 1,3-dibromo-5-[2-[3,5-dibromo-4-(2,3-dibromo-2-methylpropoxy)phenyl]propan-2-yl]-2-(2,3-dibromo-2-methylpropoxy)benzene Chemical compound C1=C(Br)C(OCC(Br)(CBr)C)=C(Br)C=C1C(C)(C)C1=CC(Br)=C(OCC(C)(Br)CBr)C(Br)=C1 IYOVSGHZOIZSDC-UHFFFAOYSA-N 0.000 description 2
- LXIZRZRTWSDLKK-UHFFFAOYSA-N 1,3-dibromo-5-[2-[3,5-dibromo-4-(2,3-dibromopropoxy)phenyl]propan-2-yl]-2-(2,3-dibromopropoxy)benzene Chemical compound C=1C(Br)=C(OCC(Br)CBr)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(OCC(Br)CBr)C(Br)=C1 LXIZRZRTWSDLKK-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- SCQQCFTYKYZSMZ-UHFFFAOYSA-N CC1(N(C(CCC1)(C)C)OC(=O)C(C(C)(C(=O)ON1C(CCCC1(C)C)(C)C)C(=O)ON1C(CCCC1(C)C)(C)C)(C)C(=O)ON1C(CCCC1(C)C)(C)C)C Chemical compound CC1(N(C(CCC1)(C)C)OC(=O)C(C(C)(C(=O)ON1C(CCCC1(C)C)(C)C)C(=O)ON1C(CCCC1(C)C)(C)C)(C)C(=O)ON1C(CCCC1(C)C)(C)C)C SCQQCFTYKYZSMZ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- FDBMBOYIVUGUSL-UHFFFAOYSA-N OP(O)OP(O)O.C(C)(C)(C)C1=C(C(=CC(=C1)C)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1C(C)(C)C)C)C(C)(C)C Chemical compound OP(O)OP(O)O.C(C)(C)(C)C1=C(C(=CC(=C1)C)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1C(C)(C)C)C)C(C)(C)C FDBMBOYIVUGUSL-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- ZJOLCKGSXLIVAA-UHFFFAOYSA-N ethene;octadecanamide Chemical compound C=C.CCCCCCCCCCCCCCCCCC(N)=O.CCCCCCCCCCCCCCCCCC(N)=O ZJOLCKGSXLIVAA-UHFFFAOYSA-N 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N sec-butylidene Natural products CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- HGTUJZTUQFXBIH-UHFFFAOYSA-N (2,3-dimethyl-3-phenylbutan-2-yl)benzene Chemical compound C=1C=CC=CC=1C(C)(C)C(C)(C)C1=CC=CC=C1 HGTUJZTUQFXBIH-UHFFFAOYSA-N 0.000 description 1
- OXDXXMDEEFOVHR-CLFAGFIQSA-N (z)-n-[2-[[(z)-octadec-9-enoyl]amino]ethyl]octadec-9-enamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)NCCNC(=O)CCCCCCC\C=C/CCCCCCCC OXDXXMDEEFOVHR-CLFAGFIQSA-N 0.000 description 1
- JVPKLOPETWVKQD-UHFFFAOYSA-N 1,2,2-tribromoethenylbenzene Chemical compound BrC(Br)=C(Br)C1=CC=CC=C1 JVPKLOPETWVKQD-UHFFFAOYSA-N 0.000 description 1
- SVHAMPNLOLKSFU-UHFFFAOYSA-N 1,2,2-trichloroethenylbenzene Chemical compound ClC(Cl)=C(Cl)C1=CC=CC=C1 SVHAMPNLOLKSFU-UHFFFAOYSA-N 0.000 description 1
- XUMFBUWGVLTWTH-UHFFFAOYSA-N 1,2-dibromo-3-(2,3-dibromo-2-methylpropoxy)-2-methylpropane Chemical compound BrCC(Br)(C)COCC(C)(Br)CBr XUMFBUWGVLTWTH-UHFFFAOYSA-N 0.000 description 1
- NZUPFZNVGSWLQC-UHFFFAOYSA-N 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione Chemical compound BrCC(Br)CN1C(=O)N(CC(Br)CBr)C(=O)N(CC(Br)CBr)C1=O NZUPFZNVGSWLQC-UHFFFAOYSA-N 0.000 description 1
- SPPWGCYEYAMHDT-UHFFFAOYSA-N 1,4-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=C(C(C)C)C=C1 SPPWGCYEYAMHDT-UHFFFAOYSA-N 0.000 description 1
- KPQOXMCRYWDRSB-UHFFFAOYSA-N 1-(2-chlorophenyl)pyrrole-2,5-dione Chemical compound ClC1=CC=CC=C1N1C(=O)C=CC1=O KPQOXMCRYWDRSB-UHFFFAOYSA-N 0.000 description 1
- FECSFBYOMHWJQG-UHFFFAOYSA-N 1-(4-bromophenyl)pyrrole-2,5-dione Chemical compound C1=CC(Br)=CC=C1N1C(=O)C=CC1=O FECSFBYOMHWJQG-UHFFFAOYSA-N 0.000 description 1
- JNPCNDJVEUEFBO-UHFFFAOYSA-N 1-butylpyrrole-2,5-dione Chemical compound CCCCN1C(=O)C=CC1=O JNPCNDJVEUEFBO-UHFFFAOYSA-N 0.000 description 1
- BQTPKSBXMONSJI-UHFFFAOYSA-N 1-cyclohexylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1CCCCC1 BQTPKSBXMONSJI-UHFFFAOYSA-N 0.000 description 1
- BAWHYOHVWHQWFQ-UHFFFAOYSA-N 1-naphthalen-1-ylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC2=CC=CC=C12 BAWHYOHVWHQWFQ-UHFFFAOYSA-N 0.000 description 1
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 1
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 1
- CYLVUSZHVURAOY-UHFFFAOYSA-N 2,2-dibromoethenylbenzene Chemical compound BrC(Br)=CC1=CC=CC=C1 CYLVUSZHVURAOY-UHFFFAOYSA-N 0.000 description 1
- CISIJYCKDJSTMX-UHFFFAOYSA-N 2,2-dichloroethenylbenzene Chemical compound ClC(Cl)=CC1=CC=CC=C1 CISIJYCKDJSTMX-UHFFFAOYSA-N 0.000 description 1
- CMQUQOHNANGDOR-UHFFFAOYSA-N 2,3-dibromo-4-(2,4-dibromo-5-hydroxyphenyl)phenol Chemical compound BrC1=C(Br)C(O)=CC=C1C1=CC(O)=C(Br)C=C1Br CMQUQOHNANGDOR-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-Hydroxyoctadecanoic acid Natural products CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- DDBYLRWHHCWVID-UHFFFAOYSA-N 2-ethylbut-1-enylbenzene Chemical compound CCC(CC)=CC1=CC=CC=C1 DDBYLRWHHCWVID-UHFFFAOYSA-N 0.000 description 1
- BTOVVHWKPVSLBI-UHFFFAOYSA-N 2-methylprop-1-enylbenzene Chemical compound CC(C)=CC1=CC=CC=C1 BTOVVHWKPVSLBI-UHFFFAOYSA-N 0.000 description 1
- SSADPHQCUURWSW-UHFFFAOYSA-N 3,9-bis(2,6-ditert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C)=CC(C(C)(C)C)=C1OP1OCC2(COP(OC=3C(=CC(C)=CC=3C(C)(C)C)C(C)(C)C)OC2)CO1 SSADPHQCUURWSW-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- CEBRPXLXYCFYGU-UHFFFAOYSA-N 3-methylbut-1-enylbenzene Chemical compound CC(C)C=CC1=CC=CC=C1 CEBRPXLXYCFYGU-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000011489 building insulation material Substances 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- FTQWRYSLUYAIRQ-UHFFFAOYSA-N n-[(octadecanoylamino)methyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCNC(=O)CCCCCCCCCCCCCCCCC FTQWRYSLUYAIRQ-UHFFFAOYSA-N 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- KQMBDYBKUGRQNQ-UHFFFAOYSA-N n-[6-(hexadecanoylamino)hexyl]hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(=O)NCCCCCCNC(=O)CCCCCCCCCCCCCCC KQMBDYBKUGRQNQ-UHFFFAOYSA-N 0.000 description 1
- SEEYREPSKCQBBF-UHFFFAOYSA-N n-methylmaleimide Chemical compound CN1C(=O)C=CC1=O SEEYREPSKCQBBF-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000010947 wet-dispersion method Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、スチレン系樹脂組成物の製造方法及び発泡性スチレン系樹脂粒子の製造方法に関する。 The present invention relates to a method for producing a styrene-based resin composition and a method for producing expandable styrene-based resin particles.
スチレン系樹脂発泡体は、軽量性、断熱性、及び緩衝性等を有するバランスに優れた発泡体であり、従来から食品容器箱、保冷箱、緩衝材、及び住宅等の断熱材として広く利用されている。 Styrene-based resin foam is a well-balanced foam that has light weight, insulating properties, and cushioning properties, and has been widely used in food containers, cooler boxes, cushioning materials, and insulating materials for housing, etc.
中でも、近年、地球温暖化等の諸問題に関連し、住宅等建築物の断熱性向上による省エネルギー化が志向されつつあり、発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡成形体の需要拡大が期待される。このため、当該スチレン系樹脂発泡体の高発泡倍率による軽量化や断熱性の向上について種々の検討がなされている。 In particular, in recent years, in relation to various issues such as global warming, there has been a trend toward energy conservation through improved insulation of buildings such as homes, and it is expected that the demand for styrene resin foamed molded products obtained using expandable styrene resin particles will increase. For this reason, various studies are being conducted on reducing the weight and improving the insulation properties of the styrene resin foamed products by increasing the expansion ratio.
例えば特許文献1には、グラファイトを含むスチレン系樹脂組成物及び発泡剤からなる発泡性スチレン系樹脂粒子であって、前記グラファイトの含有量が前記スチレン系樹脂組成物100重量%において2~10重量%であり、前記発泡性スチレン系樹脂粒子中の長軸直径に対する垂直二等分面の中心点から半径300μmの範囲内に存在する気泡数が単位平方ミリメートル当たりで550以下である発泡性スチレン系樹脂粒子が開示されている。 For example, Patent Document 1 discloses expandable styrene-based resin particles made of a styrene-based resin composition containing graphite and a foaming agent, the graphite content being 2 to 10% by weight based on 100% by weight of the styrene-based resin composition, and the number of bubbles present within a radius of 300 μm from the center point of the perpendicular bisecting plane relative to the major axis diameter in the expandable styrene-based resin particles being 550 or less per square millimeter.
特許文献1に開示された発泡性スチレン系樹脂粒子は、高倍率発泡時においても、得られる予備発泡粒子において予備発泡直後の収縮が抑制されうること、高発泡倍率で、かつ、高断熱性を両立したスチレン系樹脂発泡成形体を得ることができることが開示されている。特許文献1では、発泡性ポリスチレン樹脂粒子の製造方法として、スチレン系樹脂及びグラファイトを含むマスターバッチを作製する工程を有する製造方法が開示されていた。 It is disclosed in Patent Document 1 that the expandable styrene resin particles disclosed can suppress shrinkage immediately after pre-expansion in the resulting pre-expanded particles even during high expansion ratios, and that it is possible to obtain a styrene resin foamed molded article that has both a high expansion ratio and high thermal insulation properties. Patent Document 1 also discloses a manufacturing method for expandable polystyrene resin particles, which includes a step of preparing a master batch containing a styrene resin and graphite.
本発明者らは、断熱性能に優れたスチレン系樹脂発泡成形体を得ることが可能であり、且つ従来よりもコストの改善が可能な方法について鋭意検討を行った結果、特定の材料を、特定の状態で、特定の量で多軸押出機に供給するスチレン系樹脂組成物を製造する方法を見出し、本発明を完成させた。 The inventors of the present invention conducted extensive research into a method that can produce a styrene resin foam molded article with excellent heat insulating properties and that can reduce costs compared to conventional methods. As a result, they discovered a method for producing a styrene resin composition in which specific materials are supplied to a multi-screw extruder in specific conditions and in specific amounts, and completed the present invention.
本実施形態の態様例は、以下の通りに記載される。 An example of this embodiment is described as follows:
[1] スチレン系樹脂、炭素、臭素系難燃剤及び安定剤を多軸押出機に供給し溶融混練する工程Aを含み、
前記炭素、前記臭素系難燃剤及び前記安定剤が粉体で多軸押出機に供給され、
前記炭素と、前記臭素系難燃剤及び前記安定剤の合計量との重量比である、炭素/(臭素系難燃剤+安定剤)が1.4以下である、スチレン系樹脂組成物の製造方法。
[2] 前記多軸押出機が二軸押出機であり、
前記二軸押出機のQ/Nを以下の式の範囲とする、[1]に記載のスチレン系樹脂組成物の製造方法。
Q/N ≦ 8.0×10-6×D3
(上記式において、Qは二軸押出機押出量(kg/hr)、Nはスクリュ回転数(rpm)、Dは二軸押出機バレル内径(mm)を示す。)
[3] 前記炭素が、グラファイト、グラフェン、カーボンブラック、カーボンナノチューブ、活性炭、及び膨張黒鉛からなる群から選ばれる少なくとも1種である、[1]又は[2]に記載のスチレン系樹脂組成物の製造方法。
[4] スチレン系樹脂、炭素、臭素系難燃剤及び安定剤を多軸押出機に供給し溶融混練する工程Aを含み、
前記炭素、前記臭素系難燃剤及び前記安定剤が粉体で多軸押出機に供給され、
前記炭素と、前記臭素系難燃剤及び前記安定剤の合計量との重量比である、炭素/(臭素系難燃剤+安定剤)が1.4以下である、発泡性スチレン系樹脂粒子の製造方法。
[5] 前記多軸押出機が二軸押出機であり、
前記二軸押出機のQ/Nを以下の式の範囲とする、[4]に記載の発泡性スチレン系樹脂粒子の製造方法。
Q/N ≦ 8.0×10-6×D3
(上記式において、Qは二軸押出機押出量(kg/hr)、Nはスクリュ回転数(rpm)、Dは二軸押出機バレル内径(mm)を示す。)
[6] 前記炭素が、グラファイト、グラフェン、カーボンブラック、カーボンナノチューブ、活性炭、及び膨張黒鉛からなる群から選ばれる少なくとも1種である、[4]又は[5]に記載の発泡性スチレン系樹脂粒子の製造方法。
[7] 工程Aで得られたスチレン系樹脂組成物にさらに発泡剤を添加し、発泡性スチレン系樹脂組成物を得る工程B及び、発泡性スチレン系樹脂組成物を粒子状にし、発泡性スチレン系樹脂粒子を得る工程Cを有する、[4]~[6]のいずれかに記載の発泡性スチレン系樹脂粒子の製造方法。
[8] 工程Aで得られたスチレン系樹脂組成物を粒子状にし、スチレン系樹脂粒子を得る工程D及び、スチレン系樹脂粒子に発泡剤を含浸させ、発泡性スチレン系樹脂粒子を得る工程Eを有する、[4]~[6]のいずれかに記載の発泡性スチレン系樹脂粒子の製造方法。
[9] [4]~[8]のいずれかに記載の発泡性スチレン系樹脂粒子の製造方法で得られた発泡性スチレン系樹脂粒子を発泡させる、スチレン系樹脂予備発泡粒子の製造方法。
[10] [9]に記載のスチレン系樹脂予備発泡粒子の製造方法で得られたスチレン系樹脂予備発泡粒子を成形する、スチレン系樹脂発泡成形体の製造方法。
[1] A process A includes supplying a styrene-based resin, carbon, a bromine-based flame retardant, and a stabilizer to a multi-screw extruder and melt-kneading the mixture;
The carbon, the brominated flame retardant, and the stabilizer are fed in powder form to a multi-screw extruder;
A method for producing a styrene-based resin composition, wherein a weight ratio of the carbon to the total amount of the brominated flame retardant and the stabilizer, carbon/(brominated flame retardant+stabilizer), is 1.4 or less.
[2] The multi-screw extruder is a twin-screw extruder,
The method for producing a styrene-based resin composition according to [1], wherein the Q/N of the twin-screw extruder is within the range of the following formula.
Q/N ≦ 8.0×10 -6 ×D 3
(In the above formula, Q represents the twin-screw extruder extrusion rate (kg/hr), N represents the screw rotation speed (rpm), and D represents the twin-screw extruder barrel inner diameter (mm).)
[3] The method for producing a styrene-based resin composition according to [1] or [2], wherein the carbon is at least one selected from the group consisting of graphite, graphene, carbon black, carbon nanotubes, activated carbon, and expanded graphite.
[4] A process A includes supplying a styrene-based resin, carbon, a bromine-based flame retardant, and a stabilizer to a multi-screw extruder and melt-kneading the mixture;
The carbon, the brominated flame retardant, and the stabilizer are fed in powder form to a multi-screw extruder;
A method for producing expandable styrene-based resin particles, wherein a weight ratio of the carbon to the total amount of the brominated flame retardant and the stabilizer, carbon/(brominated flame retardant+stabilizer), is 1.4 or less.
[5] The multi-screw extruder is a twin-screw extruder,
The method for producing expandable styrene-based resin particles according to [4], wherein the Q/N of the twin-screw extruder is within the range of the following formula:
Q/N ≦ 8.0×10 -6 ×D 3
(In the above formula, Q represents the twin-screw extruder extrusion rate (kg/hr), N represents the screw rotation speed (rpm), and D represents the twin-screw extruder barrel inner diameter (mm).)
[6] The method for producing expandable styrene-based resin particles according to [4] or [5], wherein the carbon is at least one selected from the group consisting of graphite, graphene, carbon black, carbon nanotubes, activated carbon, and expanded graphite.
[7] A method for producing expandable styrene-based resin particles according to any one of [4] to [6], comprising: a step B of further adding a blowing agent to the styrene-based resin composition obtained in the step A to obtain an expandable styrene-based resin composition; and a step C of granulating the expandable styrene-based resin composition to obtain expandable styrene-based resin particles.
[8] A method for producing expandable styrene-based resin particles according to any one of [4] to [6], comprising: a step D of granulating the styrene-based resin composition obtained in the step A to obtain styrene-based resin particles; and a step E of impregnating the styrene-based resin particles with a blowing agent to obtain expandable styrene-based resin particles.
[9] A method for producing pre-expanded styrene-based resin particles, comprising expanding the expandable styrene-based resin particles obtained by the method for producing expandable styrene-based resin particles according to any one of [4] to [8].
[10] A method for producing a styrene-based resin foamed molded article, comprising molding the styrene-based resin pre-expanded particles obtained by the method for producing the styrene-based resin pre-expanded particles according to [9].
本開示の製造方法では、マスターバッチを作製するような追加の工程を含むことなくスチレン系樹脂組成物中に炭素を良好に分散させることができる。本開示の製造方法で得られるスチレン系樹脂組成物、発泡性スチレン系樹脂組成物、又は発泡性スチレン系樹脂粒子を用いることにより、断熱性能に優れたスチレン系樹脂発泡成形体を得ることが可能である。加えて、マスターバッチを作製する必要がなく、製造コストが改善されている。 In the manufacturing method of the present disclosure, carbon can be well dispersed in the styrene-based resin composition without including an additional step such as preparing a masterbatch. By using the styrene-based resin composition, expandable styrene-based resin composition, or expandable styrene-based resin particles obtained by the manufacturing method of the present disclosure, it is possible to obtain a styrene-based resin foamed molded article with excellent heat insulating performance. In addition, there is no need to prepare a masterbatch, and manufacturing costs are improved.
以下、本発明を詳細に説明する。本実施形態に係るスチレン系樹脂組成物の製造方法は、スチレン系樹脂、炭素、臭素系難燃剤及び安定剤を多軸押出機に供給し溶融混練する工程Aを含み、前記炭素、前記臭素系難燃剤及び前記安定剤が粉体で多軸押出機に供給され、前記炭素と、前記臭素系難燃剤及び前記安定剤の合計量との重量比である、炭素/(臭素系難燃剤+安定剤)が1.4以下である。また、本実施形態に係る発泡性スチレン系樹脂粒子の製造方法は、スチレン系樹脂、炭素、臭素系難燃剤及び安定剤を多軸押出機に供給し溶融混練する工程Aを含み、前記炭素、前記臭素系難燃剤及び前記安定剤が粉体で多軸押出機に供給され、前記炭素と、前記臭素系難燃剤及び前記安定剤の合計量との重量比である、炭素/(臭素系難燃剤+安定剤)が1.4以下である。 The present invention will be described in detail below. The method for producing a styrene-based resin composition according to this embodiment includes a step A of supplying a styrene-based resin, carbon, a bromine-based flame retardant, and a stabilizer to a multi-screw extruder and melt-kneading the mixture, and the carbon, the bromine-based flame retardant, and the stabilizer are supplied to the multi-screw extruder in powder form, and the weight ratio of the carbon to the total amount of the bromine-based flame retardant and the stabilizer, carbon/(bromine-based flame retardant+stabilizer), is 1.4 or less. The method for producing expandable styrene-based resin particles according to this embodiment includes a step A of supplying a styrene-based resin, carbon, a bromine-based flame retardant, and a stabilizer to a multi-screw extruder and melt-kneading the mixture, and the carbon, the bromine-based flame retardant, and the stabilizer are supplied to the multi-screw extruder in powder form, and the weight ratio of the carbon to the total amount of the bromine-based flame retardant and the stabilizer, carbon/(bromine-based flame retardant+stabilizer), is 1.4 or less.
(スチレン系樹脂)
前記スチレン系樹脂は、スチレン単独重合体(スチレンホモポリマー)であっても、スチレン共重合体(スチレンコポリマー)であってもよい。スチレン共重合体としては、スチレンと、スチレンと共重合可能な他の単量体又はその誘導体とが共重合したスチレン共重合体を用いることができる。スチレン系樹脂としては、1種単独で用いても、2種以上を用いてもよい。但し、本実施形態においては、スチレン系樹脂としては、後述する臭素化スチレン・ブタジエン共重合体は通常除かれる。
(styrene resin)
The styrene-based resin may be a styrene homopolymer or a styrene copolymer. As the styrene copolymer, a styrene copolymer obtained by copolymerizing styrene with another monomer copolymerizable with styrene or a derivative thereof can be used. As the styrene-based resin, one type may be used alone, or two or more types may be used. However, in the present embodiment, the styrene-based resin generally excludes a brominated styrene-butadiene copolymer described later.
スチレンと共重合可能な他の単量体又はその誘導体(以下、「他の単量体又はその誘導体」と称することがある。)としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、及びトリクロロスチレン等のスチレン誘導体;ジビニルベンゼン等の多官能性ビニル化合物;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、及びメタクリル酸ブチル等の(メタ)アクリル酸エステル化合物;(メタ)アクリロニトリル等のシアン化ビニル化合物;ブタジエン等のジエン系化合物又はその誘導体;無水マレイン酸、及び無水イタコン酸等の不飽和カルボン酸無水物;N-メチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-(2-クロロフェニル)マレイミド、N-(4-ブロモフェニル)マレイミド、及びN-(1-ナフチル)マレイミド等のN-アルキル置換マレイミド化合物等があげられる。他の単量体又はその誘導体は単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of other monomers or derivatives thereof that can be copolymerized with styrene (hereinafter sometimes referred to as "other monomers or derivatives thereof") include styrene derivatives such as methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, and trichlorostyrene; polyfunctional vinyl compounds such as divinylbenzene; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, and butyl acrylate. and (meth)acrylic acid ester compounds such as butyl methacrylate; vinyl cyanide compounds such as (meth)acrylonitrile; diene compounds or derivatives thereof such as butadiene; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride; and N-alkyl-substituted maleimide compounds such as N-methylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-(2-chlorophenyl)maleimide, N-(4-bromophenyl)maleimide, and N-(1-naphthyl)maleimide. The other monomers or derivatives thereof may be used alone or in combination of two or more.
前記スチレン系樹脂は、本発明に係る効果を損なわない範囲で、他の単量体又はその誘導体の単独重合体若しくはそれらの共重合体がブレンドされていてもよい。 The styrene-based resin may be blended with homopolymers or copolymers of other monomers or their derivatives, as long as the effect of the present invention is not impaired.
前記スチレン系樹脂には、耐衝撃吸収性や耐熱性の観点から、例えば、ジエン系ゴム強化ポリスチレン、アクリル系ゴム強化ポリスチレン、及び/又は、ポリフェニレンエーテル系樹脂等がブレンドされていてもよい。 From the viewpoint of impact resistance, heat resistance, etc., the styrene resin may be blended with, for example, diene rubber-reinforced polystyrene, acrylic rubber-reinforced polystyrene, and/or polyphenylene ether resin.
前記スチレン系樹脂としては、比較的安価で、特殊な方法を用いずに低圧の水蒸気等で発泡成形ができ、断熱性、難燃性、緩衝性のバランスに優れることから、スチレンホモポリマー、スチレン-アクリロニトリル共重合体、及びスチレン-アクリル酸ブチル共重合体から選択される少なくとも1種を含むことが好ましく、スチレンホモポリマーを含むことがより好ましい。 The styrene-based resin is preferably at least one selected from styrene homopolymer, styrene-acrylonitrile copolymer, and styrene-butyl acrylate copolymer, and more preferably contains styrene homopolymer, because it is relatively inexpensive, can be foamed using low-pressure steam without using special methods, and has an excellent balance of heat insulation, flame retardancy, and cushioning properties.
前記スチレン系樹脂のメルトフローレート(以下、「MFR」と称する。)は、1~15g/10分のものを用いることが好ましい。MFRがこの範囲にあると、発泡性(高倍率、高独気率)、表面美麗性に優れた発泡性スチレン系樹脂粒子、スチレン系樹脂予備発泡粒子及びスチレン系樹脂発泡成形体を得やすい傾向にある。そして、得られるスチレン系樹脂発泡成形体は、圧縮強度、曲げ強度又は曲げたわみ量といった機械的強度や、靱性などの特性のバランスがとれたものとなる。MFRのより好ましい範囲は、2~10g/10分である。なお、本発明におけるMFRは、JIS K7210に準拠し測定される値である。 The melt flow rate (hereinafter referred to as "MFR") of the styrene resin is preferably 1 to 15 g/10 min. When the MFR is in this range, it is easy to obtain expandable styrene resin particles, pre-expanded styrene resin particles, and styrene resin foam molded articles that are excellent in expandability (high expansion ratio, high air ratio) and surface beauty. The obtained styrene resin foam molded articles have a good balance of mechanical strength such as compressive strength, bending strength, or bending deflection, and properties such as toughness. A more preferable range for the MFR is 2 to 10 g/10 min. The MFR in the present invention is a value measured in accordance with JIS K7210.
また、本発明の効果を損なわない範囲であれば、スチレン系樹脂を主成分としながら、他の樹脂を併用してもよい。他の樹脂としては、上述の他の単量体又はその誘導体の単独重合体若しくはそれらの共重合体、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリル系樹脂等が挙げられる。 In addition, as long as the effects of the present invention are not impaired, other resins may be used in combination with the styrene-based resin as the main component. Examples of other resins include homopolymers of the above-mentioned other monomers or their derivatives, or copolymers thereof, polyolefin-based resins, polyester-based resins, polycarbonate-based resins, acrylic-based resins, etc.
(炭素)
前記炭素は、本実施形態において輻射伝熱抑制剤として作用する。スチレン系樹脂と共に炭素を用いることにより、高い断熱性を有するスチレン系樹脂発泡成形体を得ることができる。なお、本開示において輻射伝熱抑制剤とは、近赤外又は赤外領域の光を反射、散乱又は吸収する特性を有する物質をいう。
(carbon)
The carbon acts as a radiation heat transfer inhibitor in this embodiment. By using carbon together with a styrene resin, a styrene resin foam molded article having high thermal insulation properties can be obtained. In this disclosure, the radiation heat transfer inhibitor refers to a substance having the property of reflecting, scattering, or absorbing light in the near infrared or infrared region.
前記炭素としては、前記炭素が、グラファイト、グラフェン、カーボンブラック、カーボンナノチューブ、活性炭、及び膨張黒鉛からなる群から選ばれる少なくとも1種であることが好ましい。前記炭素は1種を単独で又は2種以上を組み合わせて使用できる。炭素の中でも、コストに対する輻射伝熱抑制効果の高さから、グラファイトが好ましい。グラファイトとしては、例えば、鱗片状黒鉛、土状黒鉛、球状黒鉛、又は人造黒鉛等が挙げられ、これらのうち、鱗片状黒鉛が高い輻射伝熱抑制効果を発揮することから好ましい。なお、本開示において、「鱗片状」という用語は、鱗状、薄片状又は板状のものをも包含する。前記黒鉛は1種を単独で又は2種以上を組み合わせて使用できる。 The carbon is preferably at least one selected from the group consisting of graphite, graphene, carbon black, carbon nanotubes, activated carbon, and expanded graphite. The carbon may be used alone or in combination of two or more. Among carbons, graphite is preferred because of its high radiation heat transfer suppression effect relative to cost. Examples of graphite include flake graphite, earthy graphite, spherical graphite, and artificial graphite, and of these, flake graphite is preferred because it exhibits a high radiation heat transfer suppression effect. In this disclosure, the term "flake" also includes scaly, thin, or plate-like graphite. The graphite may be used alone or in combination of two or more.
前記グラファイトは平均粒径が0.5~9.0μmであることが好ましく、2.5~9.0μmがより好ましく、2.5~6.0μmがさらに好ましい。本開示において、グラファイトの平均粒径は、ISO13320:2009,JIS Z8825-1に準拠したMie理論に基づくレーザー回折散乱法により粒度分布を測定・解析し、全粒子の体積に対する累積体積が50%になる時の粒径(D50)(レーザー回折散乱法による体積平均粒径)を意味する。 The graphite preferably has an average particle size of 0.5 to 9.0 μm, more preferably 2.5 to 9.0 μm, and even more preferably 2.5 to 6.0 μm. In this disclosure, the average particle size of the graphite refers to the particle size (D50) (volume average particle size measured by the laser diffraction scattering method) at which the cumulative volume of the total particle volume is 50% when the particle size distribution is measured and analyzed by a laser diffraction scattering method based on the Mie theory in accordance with ISO13320:2009 and JIS Z8825-1.
グラファイトは平均粒径が大きいほど製造コストが低くなる。特に平均粒径が2.5μm以上であるグラファイトは、粉砕のコストを含む製造コストが低いため、非常に安価であり、コストを下げることができる。平均粒径が9.0μm以下であると、発泡性スチレン系樹脂粒子から予備発泡粒子及びスチレン系樹脂発泡成形体を製造する際に、セル膜が破れにくくなるため、高発泡化が容易であったり、成形容易性が増加したり、スチレン系樹脂発泡成形体の圧縮強度が増加したりする傾向がある。 The larger the average particle size of graphite, the lower the manufacturing cost. In particular, graphite with an average particle size of 2.5 μm or more is very inexpensive and can reduce costs due to its low manufacturing cost, including the cost of crushing. If the average particle size is 9.0 μm or less, the cell membrane is less likely to break when producing pre-expanded particles and styrene-based resin foamed molded products from expandable styrene-based resin particles, which tends to make it easier to achieve high expansion, increase ease of molding, and increase the compressive strength of styrene-based resin foamed molded products.
また、グラファイトの平均粒径が6.0μm以下であれば、成形体の表面美麗性に優れ、より低い熱伝導率、即ちより高い断熱性を得ることができる。 Furthermore, if the average particle size of the graphite is 6.0 μm or less, the surface of the molded body will be excellent in appearance and will have a lower thermal conductivity, i.e., higher thermal insulation.
本発明において、炭素の含有量は特に限定されないが、スチレン系樹脂組成物100重量%において0.1~20重量%であることが好ましく、2~10重量%がより好ましい。 In the present invention, the carbon content is not particularly limited, but is preferably 0.1 to 20% by weight, and more preferably 2 to 10% by weight, based on 100% by weight of the styrene-based resin composition.
炭素としてグラファイトを使用することは、熱伝導率低減効果とスチレン系樹脂組成物中のグラファイトの分散性等のバランス等の観点から好ましい。グラファイトの量としては、グラファイト含有量がスチレン系樹脂組成物100重量%において2重量%以上10重量%以下であることが好ましい。グラファイト含有量が2重量%以上では、熱伝導率低減効果が十分となる傾向があり、10重量%以下では、グラファイトとスチレン系樹脂から、予備発泡粒子及びスチレン系樹脂発泡成形体を製造する際に、セル膜が破れにくくなるため、高発泡化が容易であり、発泡倍率の制御が容易になる傾向がある。さらに、グラファイト含有量は、3重量%以上8重量%以下であることがより好ましい。グラファイトの含有量が3重量%以上であることにより、熱伝導率がより低くなり、即ちより高い断熱性を得ることができる。また、グラファイトの含有量が8重量%以下であることにより、発泡性、成形体の表面美麗性が良好となる。 The use of graphite as carbon is preferable from the viewpoint of the balance between the thermal conductivity reduction effect and the dispersibility of graphite in the styrene resin composition. As for the amount of graphite, the graphite content is preferably 2% by weight or more and 10% by weight or less in 100% by weight of the styrene resin composition. When the graphite content is 2% by weight or more, the thermal conductivity reduction effect tends to be sufficient, and when the graphite content is 10% by weight or less, when the cell membrane is not easily broken when producing pre-expanded particles and styrene resin foamed molded bodies from graphite and styrene resin, it is easy to achieve high expansion and easy to control the expansion ratio. Furthermore, the graphite content is more preferably 3% by weight or more and 8% by weight or less. When the graphite content is 3% by weight or more, the thermal conductivity becomes lower, that is, higher insulation can be obtained. In addition, when the graphite content is 8% by weight or less, the expandability and the surface beauty of the molded body become good.
本開示の発泡性スチレン系樹脂粒子については、炭素の含有量が発泡性スチレン系樹脂粒子100重量%において2~10重量%であることが好ましい。本開示の発泡性スチレン系樹脂粒子の一実施態様としてグラファイトを含有する場合においても、グラファイト含有量は発泡性スチレン系樹脂粒子の樹脂組成物において2重量%以上10重量%以下であることが好ましく、上記より好ましい範囲が同様に適用できる。 The expandable styrene-based resin particles of the present disclosure preferably have a carbon content of 2 to 10% by weight based on 100% by weight of the expandable styrene-based resin particles. Even when graphite is contained as an embodiment of the expandable styrene-based resin particles of the present disclosure, the graphite content is preferably 2% by weight or more and 10% by weight or less in the resin composition of the expandable styrene-based resin particles, and the above more preferred ranges are similarly applicable.
(臭素系難燃剤)
前記臭素系難燃剤としては、特に限定されず、従来からスチレン系樹脂発泡成形体に用いられる、臭素を構成原子として含む難燃剤をいずれも使用できる。前記臭素系難燃剤としては、例えば、2,2-ビス[4-(2,3-ジブロモ-2-メチルプロポキシ)-3,5-ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル))、又は2,2-ビス[4-(2,3-ジブロモプロポキシ)-3,5-ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル))等の臭素化ビスフェノール系化合物、テトラブロモシクロオクタン、トリス(2,3-ジブロモプロピル)イソシアヌレート、臭素化スチレン・ブタジエンブロック共重合体、臭素化ランダムスチレン・ブタジエン共重合体、又は臭素化スチレン・ブタジエングラフト共重合体等の臭素化スチレン・ブタジエン共重合体等が挙げられる。臭素系難燃剤としては、例えば、特表2009-516019号公報に開示されている熱安定性臭素化共重合体を用いてもよい。臭素系難燃剤は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(Brominated flame retardants)
The bromine-based flame retardant is not particularly limited, and any flame retardant containing bromine as a constituent atom that has been conventionally used for styrene-based resin foam molded articles can be used. Examples of the brominated flame retardant include brominated bisphenol compounds such as 2,2-bis[4-(2,3-dibromo-2-methylpropoxy)-3,5-dibromophenyl]propane (also known as tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether)) or 2,2-bis[4-(2,3-dibromopropoxy)-3,5-dibromophenyl]propane (also known as tetrabromobisphenol A-bis(2,3-dibromopropyl ether)), tetrabromocyclooctane, tris(2,3-dibromopropyl)isocyanurate, brominated styrene-butadiene block copolymers, brominated random styrene-butadiene copolymers, and brominated styrene-butadiene graft copolymers. As the brominated flame retardant, for example, the thermally stable brominated copolymer disclosed in JP-A-2009-516019 may be used. The brominated flame retardant may be used alone or in combination of two or more kinds.
使用される臭素系難燃剤の量は、臭素系難燃剤を構成する臭素の量(臭素含有量)を規準に規定することができる。例えば、スチレン系樹脂組成物等に含まれる臭素系難燃剤の量は、該組成物に含まれる臭素系難燃剤の量(重量%)及び臭素系難燃剤の臭素含有量(重量%)の積で規定することができる。臭素系難燃剤は、目的とする発泡倍率に制御しやすいと共に、炭素添加時の難燃性等のバランスの点から、スチレン系樹脂組成物100重量%において、臭素含有量が0.8重量%以上であることが好ましく、8.0重量%以下であることが好ましい。臭素含有量が0.8重量%以上であると、難燃性付与効果が大きくなる傾向にあり、8.0重量%以下であると、得られるスチレン系樹脂発泡成形体の強度が増加しやすい。スチレン系樹脂組成物や発泡性スチレン系樹脂粒子中の臭素含有量は、より好ましくは1.0~7.0重量%である。 The amount of bromine-based flame retardant used can be determined based on the amount of bromine (bromine content) constituting the bromine-based flame retardant. For example, the amount of bromine-based flame retardant contained in a styrene-based resin composition can be determined by the product of the amount of bromine-based flame retardant (wt%) contained in the composition and the bromine content (wt%) of the bromine-based flame retardant. The bromine-based flame retardant is preferably 0.8 wt% or more and 8.0 wt% or less in 100 wt% of the styrene-based resin composition, because it is easy to control the expansion ratio to the desired value, and from the viewpoint of the balance of flame retardancy when carbon is added, etc. If the bromine content is 0.8 wt% or more, the effect of imparting flame retardancy tends to be large, and if it is 8.0 wt% or less, the strength of the resulting styrene-based resin foam molding is likely to increase. The bromine content in the styrene-based resin composition or the expandable styrene-based resin particles is more preferably 1.0 to 7.0 wt%.
(安定剤)
前記安定剤としては特に制限はないが、臭素系難燃剤の分解による難燃性の悪化及びスチレン系樹脂の劣化を抑制することができる、熱安定剤を用いることが好ましい。安定剤は、用いられるスチレン系樹脂の種類、炭素の種類及び含有量、臭素系難燃剤の種類及び含有量、後述の発泡剤の種類及び含有量等に応じて、適宜組み合わせて用いることができる。
(Stabilizer)
The stabilizer is not particularly limited, but it is preferable to use a heat stabilizer that can suppress the deterioration of flame retardancy due to the decomposition of the bromine-based flame retardant and the deterioration of the styrene-based resin. The stabilizers can be used in appropriate combinations depending on the type of styrene-based resin used, the type and content of carbon, the type and content of the bromine-based flame retardant, the type and content of the foaming agent described below, and the like.
前記熱安定剤としては、臭素系難燃剤含有混合物の熱重量分析における重量減少温度を任意に制御できる点から、ヒンダードアミン化合物、リン系化合物、フェノール系安定剤、又はエポキシ化合物が望ましい。熱安定剤は1種を単独で又は2種以上を組み合わせて使用できる。前記ヒンダードアミン化合物としては例えば、テトラキス(2,2,6,6-テトラメチルピペリジルオキシカルボニル)ブタンが挙げられ、前記リン系化合物としては例えば、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトが挙げられる。 As the heat stabilizer, a hindered amine compound, a phosphorus-based compound, a phenol-based stabilizer, or an epoxy compound is preferable because it allows the weight loss temperature of a mixture containing a bromine-based flame retardant to be arbitrarily controlled in thermogravimetric analysis. The heat stabilizers can be used alone or in combination of two or more. An example of the hindered amine compound is tetrakis(2,2,6,6-tetramethylpiperidyloxycarbonyl)butane, and an example of the phosphorus-based compound is bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite.
本発明において、安定剤の含有量は特に限定されないが、スチレン系樹脂組成物100重量%において0.01~5重量%であることが好ましく、0.03~3重量%がより好ましい。また、本発明において、安定剤の含有量は特に限定されないが、臭素系難燃剤中の臭素と安定剤の重量比が99:1~80:20であることが好ましく、95:5~90:10であることがより好ましい。 In the present invention, the content of the stabilizer is not particularly limited, but is preferably 0.01 to 5% by weight, and more preferably 0.03 to 3% by weight, based on 100% by weight of the styrene-based resin composition. In addition, in the present invention, the content of the stabilizer is not particularly limited, but the weight ratio of bromine to stabilizer in the bromine-based flame retardant is preferably 99:1 to 80:20, and more preferably 95:5 to 90:10.
(発泡剤)
本開示においては、スチレン系樹脂組成物にさらに発泡剤を添加し、発泡性スチレン系樹脂組成物にしてもよい。発泡性スチレン系樹脂組成物は、後述の発泡性スチレン系樹脂粒子や型内発泡成形体に成形したり、押出発泡体に成形したりすることができる。発泡剤としては、特に限定されないが、発泡性と製品ライフのバランスがよく、実際に使用する際に高倍率化しやすい観点から、炭素数3~6の炭化水素が望ましく、更に望ましくは炭素数4~5の炭化水素である。発泡剤の炭素数が3以上であると揮発性が低くなり、発泡性スチレン系樹脂粒子にした場合に発泡剤が逸散しにくくなるため、実際に使用する際に発泡工程で発泡剤が十分に残り、十分な発泡力を得ることが可能となり、高倍率化が容易となるため好ましい。また、炭素数が6以下であると、発泡剤の沸点が高すぎないため、予備発泡時の加熱で十分な発泡力を得やすく、高発泡化が易しい傾向となる。炭素数3~6の炭化水素としては、例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、ノルマルヘキサン、又はシクロヘキサン等の炭化水素が挙げられる。これらは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。尚、高倍率化の容易性と製品ライフのバランスから、発泡剤として、イソブタン、ノルマルブタン、イソペンタン及びノルマルペンタンからなる群より選択される少なくとも1種を含有することが特に好ましい。また、発泡剤として、ノルマルペンタン、イソペンタン及びイソブタンからなる群より選択される少なくとも1種を含有することが特に好ましく、ノルマルペンタン、イソペンタン及びイソブタンを含有することが一層好ましい。
(Foaming Agent)
In the present disclosure, a foaming agent may be further added to the styrene resin composition to form an expandable styrene resin composition. The expandable styrene resin composition can be molded into expandable styrene resin particles or in-mold foamed molded bodies described below, or extruded foamed bodies. The foaming agent is not particularly limited, but from the viewpoint of a good balance between expandability and product life and easy high expansion ratio when actually used, a hydrocarbon having 3 to 6 carbon atoms is preferable, and a hydrocarbon having 4 to 5 carbon atoms is more preferable. When the carbon number of the foaming agent is 3 or more, the volatility is low and the foaming agent is less likely to dissipate when the foaming agent is made into expandable styrene resin particles, so that the foaming agent remains sufficiently in the foaming process when actually used, making it possible to obtain sufficient foaming power, and it is easy to increase the expansion ratio, which is preferable. In addition, when the carbon number is 6 or less, the boiling point of the foaming agent is not too high, so that sufficient foaming power is easily obtained by heating during pre-foaming, and there is a tendency for high foaming to be easy. Examples of the hydrocarbon having 3 to 6 carbon atoms include hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, cyclopentane, normal hexane, and cyclohexane. These may be used alone or in combination of two or more. From the perspective of the balance between the ease of achieving high expansion ratio and the product life, it is particularly preferable that the blowing agent contains at least one selected from the group consisting of isobutane, normal butane, isopentane, and normal pentane. It is particularly preferable that the blowing agent contains at least one selected from the group consisting of normal pentane, isopentane, and isobutane, and it is even more preferable that the blowing agent contains normal pentane, isopentane, and isobutane.
発泡剤の添加量は、スチレン系樹脂組成物100重量部に対して、2~10重量部であることが好ましく、より好ましくは4~10重量部である。前記範囲では、発泡性スチレン系樹脂粒子を得た場合に発泡速度と発泡力のバランスがよりよく、より安定して高倍率化しやすい、という効果を奏する。発泡剤の添加量が4重量部以上では、発泡に必要な発泡力が十分であるから、高発泡化が容易となり、50倍以上の高発泡倍率のスチレン系樹脂発泡成形体を製造し易くなる傾向がある。また、発泡剤の量が10重量部以下であると、難燃性能が良好となると共に、スチレン系樹脂発泡成形体を製造する際の製造時間(成形サイクル)が短くなるため、製造コストが低くなる傾向となる。なお、発泡剤の添加量は、スチレン系樹脂組成物100重量部に対して、4.5~9重量部であることがより好ましく、5~8.5重量部であることがさらに好ましい。 The amount of the foaming agent added is preferably 2 to 10 parts by weight, more preferably 4 to 10 parts by weight, relative to 100 parts by weight of the styrene resin composition. In the above range, when expandable styrene resin particles are obtained, the balance between the expansion speed and the expansion power is better, and it is easier to achieve a high expansion ratio more stably. When the amount of the foaming agent added is 4 parts by weight or more, the expansion power required for expansion is sufficient, making it easier to achieve high expansion and tends to make it easier to produce a styrene resin foam molded product with a high expansion ratio of 50 times or more. In addition, when the amount of the foaming agent is 10 parts by weight or less, the flame retardant performance is good and the production time (molding cycle) when producing a styrene resin foam molded product is shortened, so the production cost tends to be lower. In addition, the amount of the foaming agent added is more preferably 4.5 to 9 parts by weight, more preferably 5 to 8.5 parts by weight, relative to 100 parts by weight of the styrene resin composition.
(その他の添加剤)
本発明に係るスチレン系樹脂組成物、発泡性スチレン系樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、その他の添加剤、例えば、ラジカル発生剤、加工助剤、耐光性安定剤、造核剤、発泡助剤、帯電防止剤、及び顔料等の着色剤よりなる群から選ばれる1種以上のその他添加剤を含有していてもよい。
(Other additives)
The styrene-based resin composition and the expandable styrene-based resin composition according to the present invention may contain, as necessary, other additives, for example, one or more other additives selected from the group consisting of a radical generator, a processing aid, a light resistance stabilizer, a nucleating agent, a foaming aid, an antistatic agent, and a colorant such as a pigment, within a range that does not impair the effects of the present invention.
ラジカル発生剤を含有すると、臭素系難燃剤と併用することによって、高い難燃性能を発現することができる。 When a radical generator is included, high flame retardant performance can be achieved by using it in combination with a brominated flame retardant.
前記ラジカル発生剤は、用いるスチレン系樹脂の種類、炭素の種類及び含有量、臭素系難燃剤の種類及び含有量、発泡剤の種類及び含有量等に応じて適宜組み合わせて用いることができる。 The radical generators can be used in appropriate combinations depending on the type of styrene resin used, the type and content of carbon, the type and content of bromine-based flame retardant, the type and content of foaming agent, etc.
ラジカル発生剤としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、2,3-ジメチル-2,3-ジフェニルブタン、又はポリ-1,4-ジイソプロピルベンゼン等が挙げられる。 Examples of radical generators include cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and poly-1,4-diisopropylbenzene.
加工助剤としては、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、又は流動パラフィン等が挙げられる。 Processing aids include sodium stearate, magnesium stearate, calcium stearate, zinc stearate, barium stearate, liquid paraffin, etc.
耐光性安定剤としては、フェノール系抗酸化剤、窒素系安定剤、イオウ系安定剤、又はベンゾトリアゾール類等が挙げられる。なお、耐光性安定剤としては、熱安定剤としても作用するもの、例えばヒンダードアミン化合物、リン系化合物、フェノール系安定剤、又はエポキシ化合物があるが、本開示において、耐光性安定剤及び熱安定剤の両方に属するものは、熱安定剤と見なす。 Examples of light resistance stabilizers include phenol-based antioxidants, nitrogen-based stabilizers, sulfur-based stabilizers, and benzotriazoles. Note that light resistance stabilizers also include those that act as heat stabilizers, such as hindered amine compounds, phosphorus-based compounds, phenol-based stabilizers, and epoxy compounds, but in this disclosure, those that belong to both light resistance stabilizers and heat stabilizers are considered to be heat stabilizers.
造核剤としては、シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、炭酸カルシウム、炭酸水素ナトリウム、若しくはタルク等の無機化合物、メタクリル酸メチル系共重合体、若しくはエチレン-酢酸ビニル共重合体樹脂等の高分子化合物、ポリエチレンワックス等のオレフィン系ワックス、又はメチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、ヘキサメチレンビスパルミチン酸アミド、若しくはエチレンビスオレイン酸アミド等の脂肪酸ビスアミド等が挙げられる。 Examples of nucleating agents include inorganic compounds such as silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, calcium carbonate, sodium hydrogen carbonate, or talc; polymeric compounds such as methyl methacrylate copolymers or ethylene-vinyl acetate copolymer resins; olefin waxes such as polyethylene wax; and fatty acid bisamides such as methylene bisstearamide, ethylene bisstearamide, hexamethylene bispalmitamide, or ethylene bisoleamide.
発泡助剤としては、大気圧下での沸点が200℃以下である溶剤を望ましく使用でき、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素、シクロヘキサン、若しくはメチルシクロヘキサン等の脂環式炭化水素、又は酢酸エチル、若しくは酢酸ブチル等の酢酸エステル等が挙げられる。 As the foaming aid, a solvent with a boiling point of 200°C or less at atmospheric pressure can be preferably used, for example, aromatic hydrocarbons such as styrene, toluene, ethylbenzene, and xylene, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, and acetates such as ethyl acetate and butyl acetate.
帯電防止剤及び着色剤としては、各種樹脂組成物に用いられるものを特に限定なく使用できる。 As antistatic agents and colorants, those used in various resin compositions can be used without any particular limitations.
これらの他の添加剤は、1種を単独で又は2種以上を組み合わせて使用できる。 These other additives can be used alone or in combination of two or more.
(スチレン系樹脂組成物の製造方法)
本実施形態に係るスチレン系樹脂組成物の製造方法は、スチレン系樹脂、炭素、臭素系難燃剤及び安定剤を多軸押出機に供給し溶融混練する工程Aを含む。工程Aによりスチレン系樹脂組成物が得られる。本実施形態に係る発泡性スチレン系樹脂粒子の製造方法は、工程A、言い換えるとスチレン系樹脂組成物の製造方法を、その一部に含む。
(Method for producing styrene-based resin composition)
The method for producing a styrene-based resin composition according to the present embodiment includes a step A in which a styrene-based resin, carbon, a bromine-based flame retardant, and a stabilizer are supplied to a multi-screw extruder and melt-kneaded. A styrene-based resin composition is obtained by the step A. The method for producing expandable styrene-based resin particles according to the present embodiment includes the step A, in other words, the method for producing a styrene-based resin composition, as a part thereof.
工程Aでは、前記炭素、前記臭素系難燃剤及び前記安定剤が粉体で多軸押出機に供給される。粉体としては、炭素の粉体、臭素系難燃剤の粉体及び安定剤の粉体それぞれが多軸押出機に供給されてもよく、炭素の粉体、及び臭素系難燃剤と安定剤との混合物の粉体が、多軸押出機に供給されてもよい。即ち、工程Aでは、炭素とスチレン系樹脂とを予め混練して作製されたマスターバッチ、臭素系難燃剤とスチレン系樹脂とを予め混練して作製されたマスターバッチ、安定剤とスチレン系樹脂とを予め混練して作製されたマスターバッチ、及び臭素系難燃剤と安定剤とスチレン系樹脂とを予め混練して作製されたマスターバッチ等のマスターバッチを、多軸押出機に供給することはない。このため本実施形態の製造方法は、製造コストに優れ、かつ断熱性能に優れたスチレン系樹脂発泡成形体を与えうるスチレン系樹脂組成物を得ることができる。 In step A, the carbon, the brominated flame retardant, and the stabilizer are supplied to the multi-screw extruder in powder form. As the powder, each of the carbon powder, the brominated flame retardant powder, and the stabilizer powder may be supplied to the multi-screw extruder, or the carbon powder and the powder of a mixture of the brominated flame retardant and the stabilizer may be supplied to the multi-screw extruder. That is, in step A, a master batch such as a master batch prepared by pre-kneading carbon and a styrene-based resin, a master batch prepared by pre-kneading a brominated flame retardant and a styrene-based resin, a master batch prepared by pre-kneading a stabilizer and a styrene-based resin, and a master batch prepared by pre-kneading a brominated flame retardant, a stabilizer, and a styrene-based resin is not supplied to the multi-screw extruder. Therefore, the manufacturing method of this embodiment can obtain a styrene-based resin composition that can provide a styrene-based resin foam molded product with excellent manufacturing cost and heat insulation performance.
工程Aでは、前記炭素と、前記臭素系難燃剤及び前記安定剤の合計量との重量比である、炭素/(臭素系難燃剤+安定剤)が1.4以下である。一般にグラファイトの輻射伝熱抑制効果を十分に発揮させるためには、樹脂組成物中でグラファイトを良好に分散させる必要がある。グラファイトを良好に分散させるための方法として、事前にスチレン系樹脂とグラファイトをバンバリーミキサー等の撹拌機を備えた混錬装置により荷重をかけて混練してマスターバッチの形態で用いることが従来から行われていた。従来の方法により断熱性能に優れるスチレン系樹脂発泡成形体を得ることもできるが、スチレン系樹脂発泡成形体を製造する過程で、スチレン系樹脂とグラファイトとを含むマスターバッチを製造する工程が必要となる。本発明者らの検討によると、前記炭素、前記臭素系難燃剤及び前記安定剤を粉体で多軸押出機に供給するとともに、前記炭素と、前記臭素系難燃剤及び前記安定剤の合計量との重量比を前記範囲とすることにより、マスターバッチを用いなくても、断熱性能に優れたスチレン系樹脂発泡成形体を得ることが可能な、スチレン系樹脂組成物を得ることができる。前記重量比は1.2以下が好ましく、1.0以下がより好ましく、0.9以下が特に好ましい。また、前記重量比の下限としては特に制限はないが、例えば0.1以上であり、0.2以上が好ましく、0.3以上がより好ましく、0.4以上が特に好ましい。 In step A, the weight ratio of the carbon to the total amount of the brominated flame retardant and the stabilizer, carbon/(brominated flame retardant + stabilizer), is 1.4 or less. In general, in order to fully exert the radiation heat transfer suppression effect of graphite, it is necessary to disperse the graphite well in the resin composition. As a method for dispersing the graphite well, a styrene resin and graphite have been mixed in advance under load using a kneading device equipped with an agitator such as a Banbury mixer, and used in the form of a master batch. Although a styrene resin foam molded product with excellent heat insulation performance can be obtained by the conventional method, a process for producing a master batch containing a styrene resin and graphite is required in the process for producing a styrene resin foam molded product. According to the study by the present inventors, by supplying the carbon, the brominated flame retardant, and the stabilizer in powder form to a multi-screw extruder and setting the weight ratio of the carbon to the total amount of the brominated flame retardant and the stabilizer within the above range, a styrene-based resin composition can be obtained that can produce a styrene-based resin foam molded article with excellent heat insulation performance without using a master batch. The weight ratio is preferably 1.2 or less, more preferably 1.0 or less, and particularly preferably 0.9 or less. There is no particular limit to the lower limit of the weight ratio, but it is, for example, 0.1 or more, preferably 0.2 or more, more preferably 0.3 or more, and particularly preferably 0.4 or more.
工程Aにおいて、多軸押出機が二軸押出機である場合には、二軸押出機におけるQ/Nを以下の式の範囲とすることが好ましい。
Q/N ≦ 8.0×10-6×D3
(上記式において、Qは二軸押出機押出量(kg/hr)、Nはスクリュ回転数(rpm)、Dは二軸押出機バレル内径(mm)を示す。)
In step A, when the multi-screw extruder is a twin-screw extruder, it is preferable that Q/N in the twin-screw extruder is in the range of the following formula.
Q/N ≦ 8.0×10 -6 ×D 3
(In the above formula, Q represents the twin-screw extruder extrusion rate (kg/hr), N represents the screw rotation speed (rpm), and D represents the twin-screw extruder barrel inner diameter (mm).)
前記二軸押出機におけるQ/Nを上記特定範囲に確保することにより、スチレン系樹脂中の炭素の分散状態が良好となり、引いては高い断熱性能を有する高発泡可能なスチレン系樹脂発泡成形体を低コストで得ることができる傾向があり好ましい。 By ensuring that the Q/N ratio in the twin-screw extruder is within the above-mentioned specific range, the dispersion state of the carbon in the styrene-based resin becomes good, which in turn tends to make it possible to obtain a highly expandable styrene-based resin foamed molded article with high thermal insulation performance at low cost, which is preferable.
本発明で使用される多軸押出機は、公知の多軸押出機を使用できる。多軸押出機としては、例えば二軸押出機、四軸押出機が挙げられ、混練性、生産性等の観点から、二軸押出機が好ましく、同方向噛み合い二軸押出機がより好ましい。連続的にスチレン系樹脂組成物を得ることができる混練設備の中で単軸押出機は、多軸押出機と比較すると、炭素の分散性が劣る傾向にある。また、バッチ式のミキサー、ニーダー等の混練機は連続式である押出機と比較すると、炭素の分散性には優れる傾向にあるものの、生産性に乏しい傾向にある。以上のことから、本実施形態のスチレン系樹脂組成物の製造方法としては、多軸押出機が用いられ、好ましくは二軸押出機、より好ましくは連続式の二軸押出機が用いられる。 The multi-screw extruder used in the present invention can be a known multi-screw extruder. Examples of multi-screw extruders include twin-screw extruders and four-screw extruders. From the viewpoints of kneading properties and productivity, twin-screw extruders are preferred, and co-rotating intermeshing twin-screw extruders are more preferred. Among kneading equipment that can continuously obtain a styrene-based resin composition, single-screw extruders tend to have poor carbon dispersibility compared to multi-screw extruders. Also, kneaders such as batch-type mixers and kneaders tend to have excellent carbon dispersibility compared to continuous extruders, but tend to have poor productivity. For the above reasons, a multi-screw extruder is used as the method for producing a styrene-based resin composition in this embodiment, preferably a twin-screw extruder, and more preferably a continuous twin-screw extruder.
(溶融混練工程における各条件)
前記スチレン系樹脂組成物の製造工程におけるスチレン系樹脂と炭素との多軸押出機における溶融混練工程の各条件について、多軸押出機が二軸押出機である場合について説明する。
(Conditions in the melt-kneading process)
Regarding the conditions of the melt-kneading step of the styrene resin and carbon in a multi-screw extruder in the production process of the styrene resin composition, a description will be given of the case where the multi-screw extruder is a twin-screw extruder.
(Q/N)
二軸押出機におけるQ/Nは、工程A、後述の工程Bのいずれにおいても8.0×10-6×D3以下であることが好ましい。Q/Nが低いほど炭素の分散状態が優れる傾向にあり、結果として高い断熱性能を有するスチレン系樹脂発泡成形体を与えうるスチレン系樹脂組成物や発泡性スチレン系樹脂組成物を得ることができる。8.0×10-6×D3を超えると、炭素のスチレン系樹脂中における分散が不十分となり、断熱性能が悪化する傾向にある。高い断熱性能を確保するために、好ましい範囲としては、6.5×10-6×D3以下である。
(Q/N)
The Q/N in the twin-screw extruder is preferably 8.0×10 −6 ×D 3 or less in both step A and step B described below. The lower the Q/N, the better the dispersion state of carbon tends to be, and as a result, a styrene-based resin composition or an expandable styrene-based resin composition that can provide a styrene-based resin foamed molded article having high thermal insulation performance can be obtained. If it exceeds 8.0×10 −6 ×D 3 , the dispersion of carbon in the styrene-based resin becomes insufficient, and the thermal insulation performance tends to deteriorate. In order to ensure high thermal insulation performance, the preferred range is 6.5×10 −6 ×D 3 or less.
Q/Nとは、二軸押出機の単位時間当たりの押出量(kg/hr)を、二軸押出機のスクリュの回転数(rpm)で除した値を示し、Dは二軸押出機のバレル内径(mm)を示す。一般的に、押出量は二軸押出機のバレル内径によって大まかに決定され、Dが大きい程、より多くの押出量を処理することが可能である。本発明者らが鋭意検討を実施した結果、本発明において、Dの値に関わらず、即ち、押出機サイズ、生産スケールに関わらず、Q/Nを一定の範囲に制御することによって、炭素の高度な分散状態を実現し、結果として高い断熱性能を有するスチレン系樹脂発泡体を与えうるスチレン系樹脂組成物が容易に得られることを見出した。 Q/N indicates the extrusion rate per unit time (kg/hr) of the twin-screw extruder divided by the screw rotation speed (rpm) of the twin-screw extruder, and D indicates the barrel inner diameter (mm) of the twin-screw extruder. In general, the extrusion rate is roughly determined by the barrel inner diameter of the twin-screw extruder, and the larger D, the greater the extrusion rate that can be processed. As a result of intensive research by the inventors, in the present invention, it was found that by controlling Q/N within a certain range, regardless of the value of D, i.e., regardless of the extruder size and production scale, a highly dispersed state of carbon can be achieved in the present invention, and as a result, a styrene-based resin composition that can give a styrene-based resin foam with high thermal insulation performance can be easily obtained.
(発泡性スチレン系樹脂組成物の製造方法)
本実施形態に係る発泡性スチレン系樹脂組成物の製造方法は、スチレン系樹脂、炭素、臭素系難燃剤及び安定剤を多軸押出機に供給し溶融混練する工程A、及び工程Aで得られたスチレン系樹脂組成物にさらに発泡剤を添加し、発泡性スチレン系樹脂組成物を得る工程Bを含む。工程A及びBにより発泡性スチレン系樹脂組成物が得られる。本実施形態に係る発泡性スチレン系樹脂粒子の製造方法は、ある態様において、工程A及びB、言い換えると発泡性スチレン系樹脂組成物の製造方法を、その一部に含む。
(Method for producing expandable styrene-based resin composition)
The method for producing an expandable styrene-based resin composition according to this embodiment includes step A of supplying a styrene-based resin, carbon, a bromine-based flame retardant, and a stabilizer to a multi-screw extruder and melt-kneading them, and step B of obtaining an expandable styrene-based resin composition by further adding a blowing agent to the styrene-based resin composition obtained in step A. The expandable styrene-based resin composition is obtained by steps A and B. In one aspect, the method for producing expandable styrene-based resin particles according to this embodiment includes steps A and B, in other words, a method for producing an expandable styrene-based resin composition, as a part thereof.
工程Aは、前述のスチレン系樹脂組成物の製造方法の項で記載した方法により実施することができる。工程Bは、工程Aに続いて行われる工程である。工程Bは例えば、発泡剤を前記多軸押出機、若しくは多軸押出機以降の分散設備によってスチレン系樹脂に溶解分散させる工程であり、その方法としては特に制限はされない。工程Bは、例えば工程Aと同様の多軸押出機の途中、言い換えると工程Aで用いる原料の供給を行う地点よりも下流側でスチレン系樹脂組成物にさらに発泡剤を供給することにより、発泡性スチレン系樹脂組成物を得ることができる。 Step A can be carried out by the method described in the section on the method for producing a styrene-based resin composition above. Step B is a step carried out following step A. Step B is, for example, a step in which a foaming agent is dissolved and dispersed in a styrene-based resin by the multi-screw extruder or a dispersing facility following the multi-screw extruder, and the method is not particularly limited. In step B, for example, a foamable styrene-based resin composition can be obtained by further supplying a foaming agent to the styrene-based resin composition midway through a multi-screw extruder similar to step A, in other words, downstream of the point where the raw materials used in step A are supplied.
(発泡性スチレン系樹脂粒子の製造方法)
本実施形態に係る発泡性スチレン系樹脂粒子の製造方法は、スチレン系樹脂、炭素、臭素系難燃剤及び安定剤を多軸押出機に供給し溶融混練する工程Aを含む。工程Aは、前述のスチレン系樹脂組成物の製造方法の項で記載した方法により実施することができる。
(Method for producing expandable styrene-based resin particles)
The method for producing expandable styrene-based resin particles according to the present embodiment includes step A of supplying a styrene-based resin, carbon, a bromine-based flame retardant, and a stabilizer to a multi-screw extruder and melt-kneading the mixture. Step A can be carried out by the method described in the above section on the method for producing a styrene-based resin composition.
本実施形態に係る発泡性スチレン系樹脂粒子の製造方法は、大きく以下の態様1、態様2に分けることができる。態様1の発泡性スチレン系樹脂粒子の製造方法は、前記工程Aに加えて、工程Aで得られたスチレン系樹脂組成物にさらに発泡剤を添加し、発泡性スチレン系樹脂組成物を得る工程B及び、発泡性スチレン系樹脂組成物を粒子状にし、発泡性スチレン系樹脂粒子を得る工程Cを有する。態様2の発泡性スチレン系樹脂粒子の製造方法は、前記工程Aに加えて、工程Aで得られたスチレン系樹脂組成物を粒子状にし、スチレン系樹脂粒子を得る工程D及び、スチレン系樹脂粒子に発泡剤を含浸させ、発泡性スチレン系樹脂粒子を得る工程Eを有する。 The method for producing expandable styrene-based resin particles according to this embodiment can be roughly divided into the following aspects 1 and 2. The method for producing expandable styrene-based resin particles of aspect 1 includes, in addition to the step A, a step B of further adding a blowing agent to the styrene-based resin composition obtained in step A to obtain an expandable styrene-based resin composition, and a step C of granulating the expandable styrene-based resin composition to obtain expandable styrene-based resin particles. The method for producing expandable styrene-based resin particles of aspect 2 includes, in addition to the step A, a step D of granulating the styrene-based resin composition obtained in step A to obtain styrene-based resin particles, and a step E of impregnating the styrene-based resin particles with a blowing agent to obtain expandable styrene-based resin particles.
前記工程Cは、工程Bで得られた発泡性スチレン系樹脂組成物を粒子状に加工できればよく、その方法としては特に制限はない。工程Cとしては、例えば、多軸押出機以降に取り付けた小孔を複数有するダイスに、発泡性スチレン系樹脂組成物を供給し、加圧循環水で満たされたカッターチャンバー内に溶融状態の発泡性スチレン系樹脂組成物を押し出し、押し出し直後からダイスと接する回転カッターにより、溶融状態の発泡性スチレン系樹脂組成物を切断するとともに、冷却固化する工程が挙げられる。 In the step C, the expandable styrene resin composition obtained in the step B can be processed into particles, and there is no particular limitation on the method. An example of the step C is a step of supplying the expandable styrene resin composition to a die having a plurality of small holes attached after the multi-screw extruder, extruding the molten expandable styrene resin composition into a cutter chamber filled with pressurized circulating water, cutting the molten expandable styrene resin composition with a rotating cutter that comes into contact with the die immediately after extrusion, and cooling and solidifying it.
前記工程Dは、工程Aで得られたスチレン系樹脂組成物を粒子状に加工できればよく、その方法としては特に制限はない。工程Dとしては、発泡性スチレン系樹脂組成物をスチレン系樹脂組成物に変えた以外は、前述の工程Cと同様の方法で実施することができる。 In the step D, the styrene-based resin composition obtained in the step A can be processed into particles, and there are no particular limitations on the method used. Step D can be carried out in the same manner as the above-mentioned step C, except that the expandable styrene-based resin composition is replaced with a styrene-based resin composition.
前記工程Eは、工程Dで得られたスチレン系樹脂粒子に、発泡剤を含浸させることができればよく、その方法としては特に制限はない。工程Eとしては、例えばスチレン系樹脂粒子を水中に懸濁させると共に、発泡剤を供給し、発泡剤を含浸させる方法が挙げられる。 In step E, the styrene-based resin particles obtained in step D may be impregnated with a blowing agent, and there are no particular limitations on the method used. For example, step E may be a method in which the styrene-based resin particles are suspended in water, and a blowing agent is supplied to impregnate the particles.
設備の簡便性の観点から、発泡性スチレン系樹脂粒子の製造方法としては、態様1が好ましい。 From the viewpoint of simplicity of equipment, mode 1 is preferred as a method for producing expandable styrene-based resin particles.
(予備発泡粒子及びスチレン系樹脂発泡成形体)
前記製造方法で得られる、スチレン系樹脂組成物、発泡性スチレン系樹脂組成物は、発泡性スチレン系樹脂粒子の原材料として使用することができる。発泡性スチレン系樹脂粒子を用いて、スチレン系樹脂発泡成形体を得ることができる。スチレン系樹脂発泡成形体を得るために、発泡性スチレン系樹脂粒子は、予備発泡されたのち、型内発泡成形が行われてもよい。なお、予備発泡された粒子を、予備発泡粒子、又はスチレン系樹脂予備発泡粒子とも記す。すなわち、本開示には、前述の発泡性スチレン系樹脂粒子の製造方法で得られた発泡性スチレン系樹脂粒子を発泡させる、スチレン系樹脂予備発泡粒子の製造方法及び、前記スチレン系樹脂予備発泡粒子の製造方法で得られたスチレン系樹脂予備発泡粒子を成形する、スチレン系樹脂発泡成形体の製造方法が含まれる。
(Pre-expanded particles and styrene-based resin foamed molded products)
The styrene-based resin composition and the expandable styrene-based resin composition obtained by the above-mentioned manufacturing method can be used as raw materials for expandable styrene-based resin particles. A styrene-based resin foamed molded article can be obtained by using the expandable styrene-based resin particles. In order to obtain a styrene-based resin foamed molded article, the expandable styrene-based resin particles may be pre-expanded and then subjected to in-mold foaming. The pre-expanded particles are also referred to as pre-expanded particles or styrene-based resin pre-expanded particles. That is, the present disclosure includes a method for producing a styrene-based resin pre-expanded particle, which expands the expandable styrene-based resin particles obtained by the above-mentioned manufacturing method for expandable styrene-based resin particles, and a method for producing a styrene-based resin foamed molded article, which molds the styrene-based resin pre-expanded particles obtained by the manufacturing method for the styrene-based resin pre-expanded particles.
発泡性スチレン系樹脂粒子は、従来公知の予備発泡工程、例えば、加熱水蒸気によって10~110倍に発泡させて予備発泡粒子とし、必要に応じて一定時間養生させた後、成形に使用することができる。得られた予備発泡粒子は、例えば、従来公知の成形機を用い、水蒸気によって成形(例えば型内成形)されてスチレン系樹脂発泡成形体が作製される。使用される金型の形状により、複雑な形の型物成形体やブロック状の成形体を得ることができる。 The expandable styrene resin particles can be made into pre-expanded particles by a conventional pre-expanding process, for example, by expanding them 10 to 110 times with heated steam, and then cured for a certain period of time as necessary before being used for molding. The obtained pre-expanded particles can be molded (for example, molded in a mold) with steam using a conventional molding machine to produce a styrene resin foamed molded article. Depending on the shape of the mold used, it is possible to obtain molded articles with complex shapes or block-shaped molded articles.
前記発泡性スチレン系樹脂粒子は高発泡倍率のスチレン系樹脂発泡成形体に成形することができる。発泡成形体の発泡倍率は、40倍以上が好ましく、60倍以上がより好ましく、80倍以上が特に好ましい。前記製造方法で得られる、スチレン系樹脂組成物、発泡性スチレン系樹脂組成物、及び発泡性スチレン系樹脂粒子によれば、発泡倍率80倍以上のスチレン系樹脂発泡成形体とした場合でも低い熱伝導率を達成でき、且つ前記製造方法は、マスターバッチを作製する必要がないため、製造コストの観点からも優れている。 The expandable styrene resin particles can be molded into a styrene resin foamed molded article with a high expansion ratio. The expansion ratio of the foamed molded article is preferably 40 times or more, more preferably 60 times or more, and particularly preferably 80 times or more. The styrene resin composition, expandable styrene resin composition, and expandable styrene resin particles obtained by the above manufacturing method can achieve low thermal conductivity even when a styrene resin foamed molded article with an expansion ratio of 80 times or more is formed, and the above manufacturing method is also excellent in terms of manufacturing costs because it does not require the preparation of a master batch.
なお、本明細書において、発泡倍率を「倍」又は「cm3/g」という単位で示すがこれらは互いに同じ意味である。 In this specification, the expansion ratio is expressed in units of "times" or "cm 3 /g", but these have the same meaning.
予備発泡粒子及びそのスチレン系樹脂発泡成形体は、平均セル径が、好ましくは70~300μm、より好ましくは90~250μm、さらに好ましくは100~200μmである。平均セル径が前述の範囲にあることによって、断熱性のより高いスチレン系樹脂発泡成形体となる。平均セル径が70μm以上であると、発泡倍率の高倍化が容易となる傾向にあり、また、300μm以下であると、熱伝導率が増加、即ち断熱性能が悪化するのを避けることができる。 The pre-expanded particles and the resulting styrene-based resin foamed molded product preferably have an average cell diameter of 70 to 300 μm, more preferably 90 to 250 μm, and even more preferably 100 to 200 μm. By having an average cell diameter within the aforementioned range, the styrene-based resin foamed molded product will have higher thermal insulation properties. If the average cell diameter is 70 μm or more, it tends to be easier to increase the expansion ratio, and if it is 300 μm or less, an increase in thermal conductivity, i.e., a deterioration in thermal insulation performance, can be avoided.
(発泡成形体の用途)
前記製造方法で得られるスチレン系樹脂組成物、発泡性スチレン系樹脂組成物、及び発泡性スチレン系樹脂粒子を用いて成形される発泡成形体は、表面美麗性に優れるとともに、高発泡倍率及び高独立気泡率であり、低熱伝導率であり、熱伝導率の経時的な上昇が顕著に抑制され、かつ、断熱性が長期的に高い。従って、例えば、建築用断熱材、食品容器箱、保冷箱、緩衝材、農水産箱、浴室用断熱材及び貯湯タンク断熱材のような各種用途に好適である。
(Applications of foamed molded products)
The styrene resin composition obtained by the above-mentioned production method, the expandable styrene resin composition, and the foamed molded article molded using the expandable styrene resin particles have excellent surface beauty, high expansion ratio and high closed cell ratio, low thermal conductivity, the increase in thermal conductivity over time is significantly suppressed, and the heat insulation property is high for a long time. Therefore, they are suitable for various applications such as building insulation materials, food container boxes, cold storage boxes, cushioning materials, agricultural and fishery boxes, bathroom insulation materials, and hot water tank insulation materials.
なお、本開示のスチレン系樹脂組成物、発泡性スチレン系樹脂組成物、発泡性スチレン系樹脂粒子の製造方法の製造条件、得られた物の物性の測定方法は、本明細書に開示に加えて、特開2019-172828号公報を適宜参照して実施することができる。 The manufacturing conditions of the styrene-based resin composition, expandable styrene-based resin composition, and expandable styrene-based resin particles manufacturing method of the present disclosure, and the method for measuring the physical properties of the obtained products can be carried out by appropriately referring to JP 2019-172828 A in addition to the disclosures in this specification.
以下、実施例を挙げて本実施形態を説明するが、本開示はこれらの例によって限定されるものではない。 The present embodiment will be described below with reference to examples, but the present disclosure is not limited to these examples.
以下の実施例及び比較例における各物性の測定方法及び評価方法は、以下のとおりである。 The methods for measuring and evaluating the various physical properties in the following examples and comparative examples are as follows:
(炭素の平均粒径D50(μm)及びレーザー散乱強度(%)の測定)
(1)試料溶液調整条件
(a)測定対象が、発泡性スチレン系樹脂粒子の場合
発泡性スチレン系樹脂粒子(サンプル)500mgを、0.1%(w/w)スパン80トルエン溶液20mLに溶解・分散させて試料溶液を調製した。なお、スパン80は、非イオン性界面活性剤である。
(Measurement of average particle size D50 (μm) and laser scattering intensity (%) of carbon)
(1) Conditions for preparing sample solution (a) When the measurement target is expandable styrene resin particles, 500 mg of expandable styrene resin particles (sample) was dissolved and dispersed in 20 mL of 0.1% (w/w) toluene solution of Span 80. Span 80 is a nonionic surfactant, to prepare a sample solution.
(b)測定対象が、混練前の炭素、即ち原材料の炭素自体の場合
炭素20mg及びスチレン系樹脂(A)480mgを0.1%(w/w)スパン80トルエン溶液20mLに溶解・分散させて試料溶液を調製した。
(b) When the measurement target is carbon before kneading, i.e., the raw material carbon itself, a sample solution was prepared by dissolving and dispersing 20 mg of carbon and 480 mg of the styrene-based resin (A) in 20 mL of a 0.1% (w/w) Span 80 toluene solution.
なお、上記の溶解・分散とは、樹脂が溶解して、炭素が分散している状態のことをいう。 Note that the above dissolution and dispersion refers to a state in which the resin is dissolved and the carbon is dispersed.
(2)超音波照射
次いで、超音波洗浄器にて、前記試料溶液に以下の条件で超音波を照射し、炭素の凝集を緩和させた。
使用装置:アズワン株式会社製、超音波洗浄器、型番USM
発振周波数:42kHz
照射時間:10分
温度:室温
(2) Ultrasonic Irradiation Next, the sample solution was irradiated with ultrasonic waves under the following conditions in an ultrasonic cleaner to relax the aggregation of carbon.
Equipment used: Ultrasonic cleaner, model USM, manufactured by AS ONE Corporation
Oscillation frequency: 42kHz
Irradiation time: 10 minutes Temperature: Room temperature
(3)粒径測定条件
測定装置:マルバーン社製、レーザー回折式粒度分布測定装置、マスターサイザー3000
光源:632.8nm赤色He-Neレーザー及び470nm青色LED
分散ユニット:湿式分散ユニット、Hydro MV
以下の設定で分析を実施し、ISO13320:2009、JIS Z8825-1に準拠したMie理論に基づくレーザー回折・散乱法による測定・解析により、体積分布を求め、サンプル中の炭素のD50粒径を算出した。
粒子の種類:非球形
炭素屈折率:2.42
炭素吸収率:1.0
分散媒体:0.1%(w/w)スパン80トルエン溶液
分散媒体の屈折率:1.49
分散ユニット中の攪拌数:2500rpm
解析モデル:汎用、単一モードを維持
測定温度:室温
(3) Particle size measurement conditions Measuring device: Malvern Laser Diffraction Particle Size Distribution Measuring Device, Mastersizer 3000
Light source: 632.8 nm red He-Ne laser and 470 nm blue LED
Dispersion unit: Wet dispersion unit, Hydro MV
The analysis was performed with the following settings, and the volume distribution was determined by measurement and analysis using a laser diffraction and scattering method based on the Mie theory in accordance with ISO13320:2009 and JIS Z8825-1, and the D50 particle size of carbon in the sample was calculated.
Particle type: Aspherical carbon Refractive index: 2.42
Carbon absorption rate: 1.0
Dispersion medium: 0.1% (w/w) Span 80 in toluene Refractive index of dispersion medium: 1.49
Agitation speed in the dispersion unit: 2500 rpm
Analysis model: General purpose, maintains single mode Measurement temperature: Room temperature
(4)測定手順
0.1%(w/w)スパン80トルエン溶液120mLを分散ユニットに注入し、2500rpmで攪拌し、安定化させた。測定セルに試料溶液サンプルが存在せず、分散媒体のみの状態で632.8nm赤色He-Neレーザー光を照射した際の中央検出器で測定された光の強度を透過光の強度Lbとした。次いで、超音波処理した試料溶液を2mL採取し、分散ユニットに追加した。試料溶液を追加して1分後の632.8nm赤色He-Neレーザー光を照射した際の中央検出器で測定された光の強度を透過光の強度Lsとした。また、同時に粒径(D50)を測定した。得られたLs及びLbより、以下の式で試料溶液のレーザー散乱強度Obを算出した。
(4) Measurement procedure 120 mL of 0.1% (w/w) Span 80 toluene solution was poured into the dispersion unit, stirred at 2500 rpm, and stabilized. The light intensity measured by the central detector when irradiating 632.8 nm red He-Ne laser light in the state where there was no sample solution sample in the measurement cell and only the dispersion medium was used as the transmitted light intensity Lb. Next, 2 mL of the ultrasonically treated sample solution was collected and added to the dispersion unit. The light intensity measured by the central detector when irradiating 632.8 nm red He-Ne laser light 1 minute after adding the sample solution was used as the transmitted light intensity Ls. At the same time, the particle size (D50) was measured. From the obtained Ls and Lb, the laser scattering intensity Ob of the sample solution was calculated using the following formula.
Ob=(1-Ls/Lb)×100(%) Ob=(1-Ls/Lb)×100(%)
中央検出器はレーザー光の出力に対して対向した正面に位置する検出部であり、ここで検出される光が散乱に使用されなかった透過光の尺度である。レーザー散乱強度とは、解析装置のレーザーを試料に散乱させた際に失われるレーザー光の量の尺度である。 The central detector is a detector located in front of and facing the output of the laser light, and the light detected here is a measure of the transmitted light that was not used for scattering. Laser scattering intensity is a measure of the amount of laser light lost when the laser of the analytical device is scattered by the sample.
(5)発泡性スチレン系樹脂粒子の単位溶液濃度あたりのレーザー散乱強度の算出
以下の式にて、発泡性スチレン系樹脂粒子の単位溶液濃度あたりのレーザー散乱強度を算出した。
(5) Calculation of Laser Scattering Intensity per Unit Solution Concentration of Expandable Styrenic Resin Particles The laser scattering intensity per unit solution concentration of expandable styrene-based resin particles was calculated using the following formula.
発泡性スチレン系樹脂粒子(サンプル)の単位溶液濃度あたりのレーザー散乱強度(%/(mg/ml))=レーザー散乱強度(Ob)/{サンプル重量(500mg)/トルエン量(20mL)×試料注入量(2mL)/分散ユニット内の全トルエン量(120mL+2mL)}
単位溶液濃度あたりのレーザー散乱強度とは、測定したレーザー散乱強度をトルエン中のサンプル濃度で割った値である。この測定装置は溶液で測定する必要のある装置であるため、トルエン溶液中のサンプル濃度を一定とし、一定のサンプル量における測定値を得ている。
Laser scattering intensity per unit solution concentration of expandable styrene-based resin particles (sample) (%/(mg/ml))=laser scattering intensity (O b )/{sample weight (500 mg)/toluene amount (20 mL)×sample injection amount (2 mL)/total toluene amount in dispersion unit (120 mL+2 mL)}
The laser scattering intensity per unit solution concentration is the measured laser scattering intensity divided by the sample concentration in toluene. Because this measurement device requires measurement in solution, the sample concentration in the toluene solution is kept constant, and measurements are obtained for a constant sample amount.
(6)発泡性スチレン系樹脂粒子中の炭素単位重量あたりのレーザー散乱強度の算出
以下の式にて、発泡性スチレン系樹脂粒子(以下、「測定対象」と略す。)中に含有される炭素単位重量あたりのレーザー散乱強度を算出した。
(6) Calculation of laser scattering intensity per unit weight of carbon in expandable styrene-based resin particles The laser scattering intensity per unit weight of carbon contained in the expandable styrene-based resin particles (hereinafter abbreviated as "measurement subject") was calculated using the following formula.
測定対象中の炭素単位重量あたりのレーザー散乱強度{%/(mg/ml)}/重量%=測定対象の単位溶液濃度あたりのレーザー散乱強度(%/(mg/ml))/測定対象の炭素含有量(重量%) Laser scattering intensity per unit weight of carbon in the measurement target {%/(mg/ml)}/weight% = Laser scattering intensity per unit solution concentration of the measurement target (%/(mg/ml))/carbon content of the measurement target (weight%)
前記炭素単位溶液濃度あたりのレーザー散乱強度を用いることによって、炭素の分散状態を評価することができる。 The state of carbon dispersion can be evaluated by using the laser scattering intensity per unit solution concentration of carbon.
なお、発泡性スチレン系樹脂粒子におけるグラファイト分散状態は、スチレン系樹脂組成物におけるグラファイト分散状態で決まるため、発泡性スチレン系樹脂粒子の炭素単位溶液濃度あたりのレーザー散乱強度と、スチレン系樹脂組成物(発泡性スチレン系樹脂組成物)の炭素単位溶液濃度あたりのレーザー散乱強度とは実質的に同一である。 The graphite dispersion state in the expandable styrene resin particles is determined by the graphite dispersion state in the styrene resin composition, so the laser scattering intensity per carbon unit solution concentration of the expandable styrene resin particles is substantially the same as the laser scattering intensity per carbon unit solution concentration of the styrene resin composition (expandable styrene resin composition).
発泡性スチレン系樹脂組成物の炭素単位溶液濃度あたりのレーザー散乱強度が高いほど、得られるスチレン系樹脂発泡成形体の断熱性能も高くなる。 The higher the laser scattering intensity per unit carbon solution concentration of the expandable styrene-based resin composition, the higher the thermal insulation performance of the resulting styrene-based resin foamed molding.
(予備発泡粒子の発泡倍率測定方法)
予備発泡粒子を測定試料としてW(g)採取し、この測定試料をメスシリンダー内に自然落下させた後にメスシリンダーをたたき、試料の見掛け体積V(cm3)を一定とし、その重量(g)と体積(cm3)を測定し、以下の式に基づき、発泡倍率を測定した。
発泡倍率(cm3/g)=測定試料の体積(V)/測定試料の重量(W)
(Method of measuring the expansion ratio of pre-expanded particles)
A measurement sample of W (g) was taken from the pre-expanded particles, and this measurement sample was allowed to fall naturally into a measuring cylinder, and the measuring cylinder was then struck to keep the apparent volume V ( cm3 ) of the sample constant. The weight (g) and volume ( cm3 ) of the sample were then measured, and the expansion ratio was calculated based on the following formula:
Expansion ratio (cm 3 /g)=volume (V) of measurement sample/weight (W) of measurement sample
(発泡倍率の算出)
スチレン系樹脂発泡成形体から、後述の熱伝導率の測定の場合と同様に、長さ300mm×幅300mm×厚さ25mmのサンプルを切り出した。サンプルの重量(g)を測定すると共に、ノギスを用いて、縦寸法、横寸法、厚さ寸法を測定した。測定された各寸法からサンプルの体積(cm3)を計算し、下記計算式に従って発泡倍率を算出した。
(Calculation of foaming ratio)
A sample of 300 mm length x 300 mm width x 25 mm thickness was cut out from the styrene-based resin foam molded body in the same manner as in the case of measuring thermal conductivity described later. The weight (g) of the sample was measured, and the length, width and thickness were measured using a caliper. The volume (cm 3 ) of the sample was calculated from each measured dimension, and the expansion ratio was calculated according to the following formula.
発泡倍率(cm3/g)=サンプル体積(cm3)/サンプル重量(g)
なお、慣習的にスチレン系樹脂発泡成形体の発泡倍率の「倍」は「cm3/g」と同義である。
Expansion ratio (cm 3 /g)=sample volume (cm 3 )/sample weight (g)
Conventionally, the term "times" in the expansion ratio of a styrene-based resin foam molded product is synonymous with "cm 3 /g."
(スチレン系樹脂発泡成形体の熱伝導率の測定)
一般的に熱伝導率の測定平均温度が大きい方が熱伝導率の値は大きくなることが知られており、断熱性を比較するためには測定平均温度を定める必要がある。本明細書では発泡プラスチック保温材の規格であるJIS A9511:2006Rで定められた23℃を基準に採用した。スチレン系樹脂発泡成形体から熱伝導率測定サンプルを切り出し、当該サンプルを70℃温度下で4日間静置し、さらに23℃の温度下にて24時間静置した後、熱伝導率を測定した。
(Measurement of thermal conductivity of styrene-based resin foam molded body)
It is generally known that the higher the average temperature at which thermal conductivity is measured, the higher the thermal conductivity value, and it is necessary to determine the average temperature at which thermal conductivity is measured in order to compare thermal insulation. In this specification, 23°C, which is the standard for foamed plastic insulation materials, is used as the standard. A sample for measuring thermal conductivity was cut out from a styrene-based resin foam molded body, and the sample was left at 70°C for 4 days, and then left at 23°C for 24 hours, after which the thermal conductivity was measured.
より詳しくは、スチレン系樹脂発泡成形体から、長さ300mm×幅300mm×厚さ25mmのサンプルを切り出した。当該サンプルを70℃温度下にて4日間静置し、さらに、23℃温度下にて24時間静置した後、熱伝導率測定装置(英弘精機(株)製、HC-074)を用いて、JIS A1412-2:1999に準拠して熱流計法にて平均温度23℃、温度差20℃で熱伝導率を測定した。 More specifically, a sample measuring 300 mm in length, 300 mm in width, and 25 mm in thickness was cut out from the styrene-based resin foam molded body. The sample was left to stand at 70°C for 4 days, and then at 23°C for 24 hours. After that, the thermal conductivity was measured at an average temperature of 23°C and a temperature difference of 20°C using a thermal conductivity measuring device (HC-074, manufactured by Eiko Seiki Co., Ltd.) by the heat flow meter method in accordance with JIS A1412-2:1999.
以下に、実施例及び比較例で用いた原材料を示す。 The raw materials used in the examples and comparative examples are listed below.
(スチレン系樹脂)
(A)スチレンホモポリマー[PSジャパン(株)製、680]
(炭素)
(B)グラファイト[(株)丸豊鋳材製作所製、鱗片状黒鉛SGP-40B](粉体)
平均粒径D50=5.8μm
炭素(グラファイト)単位溶液濃度当りのレーザー散乱強度=3.7%
(styrene resin)
(A) Styrene homopolymer [manufactured by PS Japan Co., Ltd., 680]
(carbon)
(B) Graphite [flake graphite SGP-40B, manufactured by Marutoyo Foundry Co., Ltd.] (powder)
Average particle size D50 = 5.8 μm
Laser scattering intensity per unit solution concentration of carbon (graphite) = 3.7%
(臭素系難燃剤)
(C)2,2-ビス[4-(2,3-ジブロモ-2-メチルプロポキシ)-3,5-ジブロモフェニル]プロパン[第一工業製薬(株)製、SR-130、臭素含有量=66重量%]
(熱安定剤)
(D1)テトラキス(2,2,6,6-テトラメチルピペリジルオキシカルボニル)ブタン[(株)ADEKA製 LA-57]
(D2)ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト[(株)ADEKA製 PEP-36]
(臭素系難燃剤と安定剤との混合物)
(E)臭素系難燃剤(C)、安定剤(D1)及び(D2)を、ミキサーで混合し、臭素系難燃剤と安定剤との混合物(E)を粉体として得た。但し、各材料の重量比率(重量%)は、(C):(D1):(D2)=95:2:3((C)+(D1)+(D2)=100重量%)とした。
(Brominated flame retardants)
(C) 2,2-bis[4-(2,3-dibromo-2-methylpropoxy)-3,5-dibromophenyl]propane [manufactured by Daiichi Kogyo Seiyaku Co., Ltd., SR-130, bromine content = 66% by weight]
(Heat stabilizer)
(D1) Tetrakis(2,2,6,6-tetramethylpiperidyloxycarbonyl)butane [LA-57, manufactured by ADEKA Corporation]
(D2) Bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite [PEP-36, manufactured by ADEKA Corporation]
(Mixture of brominated flame retardants and stabilizers)
(E) The brominated flame retardant (C), the stabilizers (D1) and (D2) were mixed in a mixer to obtain a powder mixture (E) of the brominated flame retardant and the stabilizers, with the weight ratio (wt%) of each material being (C):(D1):(D2) = 95:2:3 ((C) + (D1) + (D2) = 100 wt%).
(発泡剤)
(F1)ノルマルペンタン[エスケイ産業(株)製]
(F2)イソペンタン[エスケイ産業(株)製]
(F3)イソブタン[三井化学(株)製]
(添加剤)
(G)エチレンビスステアリン酸アミド
(Foaming Agent)
(F1) Normal pentane [SK Sangyo Co., Ltd.]
(F2) Isopentane (SK Sangyo Co., Ltd.)
(F3) Isobutane [Mitsui Chemicals, Inc.]
(Additives)
(G) Ethylene bis stearic acid amide
(製造例1)(グラファイトマスターバッチ(H))
バンバリーミキサーに、スチレン系樹脂(A)49重量%、グラファイト(B)50重量%、エチレンビスステアリン酸アミド(G)1重量%の全重量(A+B+G)が100重量%となる様に原料投入して、5kgf/cm2の荷重をかけた状態で加温冷却を行わずに20分間混練した。この際、樹脂温度を測定したところ180℃であった。ルーダーに供給して先端に取り付けられた小穴を有するダイスを通して吐出250kg/hrで押出されたストランド状の樹脂を30℃の水槽で冷却固化させた後、切断してマスターバッチ(H)を得た。マスターバッチ(H)中のグラファイト含有量は50重量%であった。
(Production Example 1) (Graphite Masterbatch (H))
The raw materials were charged into a Banbury mixer so that the total weight (A+B+G) of 49% by weight of styrene resin (A), 50% by weight of graphite (B), and 1% by weight of ethylene bisstearic acid amide (G) was 100% by weight, and kneaded for 20 minutes without heating or cooling under a load of 5 kgf/ cm2 . At this time, the resin temperature was measured to be 180°C. The strand-shaped resin was fed to a ruder and extruded at 250 kg/hr through a die with small holes attached to the tip, cooled and solidified in a water tank at 30°C, and then cut to obtain a master batch (H). The graphite content in the master batch (H) was 50% by weight.
(実施例1)
[発泡性スチレン系樹脂粒子の作製]
スチレン系樹脂(A)、グラファイト(B)、臭素系難燃剤と熱安定剤との混合物(E)をそれぞれフィーダーにて、口径40mmの同方向2軸押出機(第1押出機)と口径90mmの単軸押出機(第2押出機)を直列に連結したタンデム型二段押出機へ供給し、口径40mm押出機の設定温度190℃、回転数167rpmにて溶融混練した。なお、原材料の割合及び使用量は、(A):(B):(E)=89.5:4.5:6.0の重量比率で、供給量を合計55.7kg/hとした。口径40mm押出機(第1押出機)の途中から、上記樹脂混合物の溶融物(スチレン系樹脂組成物)100重量部に対して、混合ペンタン[ノルマルペンタン(F1)80重量%とイソペンタン(F2)20重量%の混合物]を4.7重量部の割合で圧入し、上記スチレン系樹脂組成物100重量部に対して、イソブタン(F3)を2.3重量部圧入し、合計7.0重量部の発泡剤を添加し、樹脂混合物と発泡剤を合わせた総供給量を60kg/hとした。その後、200℃に設定された継続管を通じて、口径90mm押出機(第2押出機)に供給した。
Example 1
[Preparation of expandable styrene-based resin particles]
The styrene resin (A), graphite (B), and the mixture (E) of the bromine-based flame retardant and the heat stabilizer were fed by feeders to a tandem-type two-stage extruder in which a 40 mm diameter twin-screw extruder (first extruder) and a 90 mm diameter single-screw extruder (second extruder) were connected in series, and melt-kneaded at a set temperature of 190° C. and a rotation speed of 167 rpm for the 40 mm diameter extruder. The ratio and amount of the raw materials used were (A):(B):(E)=89.5:4.5:6.0 by weight, and the total feed amount was 55.7 kg/h. From the middle of the 40 mm diameter extruder (first extruder), mixed pentane [mixture of 80% by weight of normal pentane (F1) and 20% by weight of isopentane (F2)] was injected at a ratio of 4.7 parts by weight per 100 parts by weight of the melt of the resin mixture (styrene-based resin composition), and 2.3 parts by weight of isobutane (F3) was injected per 100 parts by weight of the styrene-based resin composition, and a total of 7.0 parts by weight of foaming agent was added, and the total supply amount of the resin mixture and the foaming agent was 60 kg/h. Then, it was supplied to a 90 mm diameter extruder (second extruder) through a continuation pipe set at 200 ° C.
なお、発泡性スチレン系樹脂組成物を調製する第1押出機においては、樹脂混合物と発泡剤を合わせた総供給量60kg/hが、二軸押出機押出量(kg/h)に相当するため、Q/Nは、約0.359(60/167)であり、8.0×10-6×D3は、0.512であり、Q/N ≦ 8.0×10-6×D3を満たしていた。 In the first extruder for preparing the expandable styrene-based resin composition, the total supply amount of the resin mixture and the blowing agent, 60 kg/h, corresponds to the twin-screw extruder extrusion amount (kg/h), so Q/N was approximately 0.359 (60/167), and 8.0× 10−6 × D3 was 0.512, satisfying Q/N≦8.0× 10−6 × D3 .
口径90mm押出機(第2押出機)にて樹脂温度を160℃まで溶融樹脂を冷却した後、250℃に設定した第2押出機の先端に取り付けられた直径0.65mm、ランド長5.0mmの小孔を60個有するダイスから、温度62℃及び1.1MPaの加圧循環水中に押出した。押出された溶融樹脂は、ダイスに接触する6枚の刃を有する回転カッターを用いて、切断・小粒化され、遠心脱水機に移送されて、発泡性スチレン系樹脂粒子を得た。 The molten resin was cooled to a resin temperature of 160°C using a 90 mm diameter extruder (second extruder), and then extruded from a die with 60 small holes, each with a diameter of 0.65 mm and a land length of 5.0 mm, attached to the tip of the second extruder set at 250°C into pressurized circulating water at a temperature of 62°C and a pressure of 1.1 MPa. The extruded molten resin was cut and granulated using a rotating cutter with six blades that contacted the die, and transferred to a centrifugal dehydrator to obtain expandable styrene-based resin particles.
[予備発泡粒子の作製]
得られた発泡性スチレン系樹脂粒子を、15℃で1週間以上保管した後に発泡性スチレン系樹脂粒子に外添剤であるステアリン酸亜鉛を0.04重量部、ヒドロキシステアリン酸トリグリセライドを0.1重量部ドライブレンドした。前記外添剤を含む発泡性スチレン系樹脂粒子250gを予備発泡機[大開工業株式会社製バッチ式予備発泡機]に投入し、缶内圧力設定を0.05kg/cm2~0.15kg/cm2とし、0.10MPaの水蒸気を予備発泡機に導入して、発泡倍率80倍に発泡させ、予備発泡粒子を得た。
[Preparation of pre-expanded particles]
The obtained expandable styrene resin particles were stored at 15° C. for one week or more, and then 0.04 parts by weight of zinc stearate and 0.1 parts by weight of hydroxystearic acid triglyceride, which are external additives, were dry-blended with the expandable styrene resin particles. 250 g of the expandable styrene resin particles containing the external additives were placed in a pre-expander [batch-type pre-expander manufactured by Daikai Kogyo Co., Ltd.], the pressure inside the can was set to 0.05 kg/cm 2 to 0.15 kg/cm 2 , and 0.10 MPa of water vapor was introduced into the pre-expander to expand to an expansion ratio of 80 times, thereby obtaining pre-expanded particles.
[スチレン系樹脂発泡成形体の作製]
得られた予備発泡粒子を30℃で24時間養生させた後に、発泡スチロール用成形機[ダイセン工業(株)製、KR-57]に取り付けた型内成形用金型(長さ400mm×幅400mm×厚み50mm)内に充填して、0.06MPaの水蒸気を導入して型内発泡させた後、金型に水を噴霧して冷却した。スチレン系樹脂発泡成形体が金型を押す圧力が0.01MPa(ゲージ圧力)になるまでスチレン系樹脂発泡成形体を金型内に保持した後に、スチレン系樹脂発泡成形体を取り出して、スチレン系樹脂発泡成形体を得た。得られたスチレン系樹脂発泡成形体の発泡倍率は80倍であり、70℃温度下で4日間静置した後の熱伝導率は29.9mW/mKであった。
[Preparation of styrene-based resin foam molded body]
The obtained pre-expanded particles were cured at 30°C for 24 hours, and then filled into a mold for in-mold molding (length 400mm x width 400mm x thickness 50mm) attached to a polystyrene foam molding machine [KR-57, manufactured by Daisen Kogyo Co., Ltd.], and 0.06MPa water vapor was introduced to cause in-mold foaming, and then water was sprayed onto the mold to cool it. The styrene-based resin foam molded body was held in the mold until the pressure of the styrene-based resin foam molded body pressing the mold reached 0.01MPa (gauge pressure), and then the styrene-based resin foam molded body was removed to obtain a styrene-based resin foam molded body. The expansion ratio of the obtained styrene-based resin foam molded body was 80 times, and the thermal conductivity after standing at 70°C for 4 days was 29.9mW/mK.
作製された発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体について、各種特性を上述の測定方法及び評価方法により測定及び評価した。 The various properties of the produced expandable styrene resin particles, pre-expanded particles, and styrene resin foam molded articles were measured and evaluated using the measurement and evaluation methods described above.
(実施例2)
原材料の割合を、(A):(B):(E)=89.5:4.5:6.0の重量比率から、(A):(B):(E)=86.5:4.5:9.0の重量比率へ変更した以外は実施例1と同様に行い、発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体を得た。
Example 2
The procedure was the same as in Example 1, except that the weight ratio of the raw materials was changed from (A):(B):(E) = 89.5:4.5:6.0 to (A):(B):(E) = 86.5:4.5:9.0, and expandable styrene-based resin particles, pre-expanded particles, and styrene-based resin foamed molded articles were obtained.
(比較例1)
原材料の割合を、(A):(B):(E)=89.5:4.5:6.0の重量比率から、(A):(B):(E)=93.0:4.5:2.5の重量比率へ変更した以外は実施例1と同様に行い、発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体を得た。
(Comparative Example 1)
The same procedure as in Example 1 was carried out except that the weight ratio of the raw materials was changed from (A):(B):(E)=89.5:4.5:6.0 to (A):(B):(E)=93.0:4.5:2.5, and expandable styrene-based resin particles, pre-expanded particles, and styrene-based resin foamed molded articles were obtained.
(比較例2)
原材料の割合を、(A):(B):(E)=89.5:4.5:6.0の重量比率から、(A):(B):(E)=93.5:4.5:2.0の重量比率へ変更した以外は実施例1と同様に行い、発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体を得た。
(Comparative Example 2)
The procedure was the same as in Example 1, except that the weight ratio of the raw materials was changed from (A):(B):(E) = 89.5:4.5:6.0 to (A):(B):(E) = 93.5:4.5:2.0, and expandable styrene-based resin particles, pre-expanded particles, and styrene-based resin foamed molded articles were obtained.
(比較例3)
原材料の割合を、(A):(B):(E)=89.5:4.5:6.0の重量比率から、(A):(B):(E)=94.0:4.5:1.5の重量比率へ変更した以外は実施例1と同様に行い、発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体を得た。
(Comparative Example 3)
The procedure was repeated in the same manner as in Example 1, except that the weight ratio of the raw materials was changed from (A):(B):(E)=89.5:4.5:6.0 to (A):(B):(E)=94.0:4.5:1.5, and expandable styrene-based resin particles, pre-expanded particles, and styrene-based resin foamed molded articles were obtained.
(比較例4)
原材料の割合を、(A):(B):(E)=89.5:4.5:6.0の重量比率から、(A):(B):(E)=94.5:4.5:1.0の重量比率へ変更した以外は実施例1と同様に行い、発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体を得た。
(Comparative Example 4)
The same procedure as in Example 1 was carried out except that the weight ratio of the raw materials was changed from (A):(B):(E)=89.5:4.5:6.0 to (A):(B):(E)=94.5:4.5:1.0, and expandable styrene-based resin particles, pre-expanded particles, and styrene-based resin foamed molded articles were obtained.
(参考例1)
スチレン系樹脂(A)、グラファイトマスターバッチ(H)、臭素系難燃剤と熱安定剤との混合物(E)をそれぞれフィーダーにて、口径40mmの同方向2軸押出機(第1押出機)と口径90mmの単軸押出機(第2押出機)を直列に連結したタンデム型二段押出機へ供給し、口径40mm押出機の設定温度190℃、回転数167rpmにて溶融混練した。なお、原材料の割合及び使用量は、(A):(H):(E)=88.5:9.0:2.5の重量比率で、供給量を合計55.7kg/hとした。口径40mm押出機(第1押出機)の途中から、上記樹脂混合物の溶融物(スチレン系樹脂組成物)100重量部に対して、混合ペンタン[ノルマルペンタン(F1)80重量%とイソペンタン(F2)20重量%の混合物]を4.7重量部の割合で圧入し、上記スチレン系樹脂組成物100重量部に対して、イソブタン(F3)を2.3重量部圧入し、合計7.0重量部の発泡剤を添加した。その後、200℃に設定された継続管を通じて、口径90mm押出機(第2押出機)に供給した。
(Reference Example 1)
The styrene resin (A), the graphite master batch (H), and the mixture of the bromine-based flame retardant and the heat stabilizer (E) were fed by feeders to a tandem-type two-stage extruder in which a 40 mm diameter twin-screw extruder (first extruder) and a 90 mm diameter single-screw extruder (second extruder) were connected in series, and melt-kneaded at a set temperature of 190° C. and a rotation speed of 167 rpm for the 40 mm diameter extruder. The ratio and amount of the raw materials used were (A):(H):(E)=88.5:9.0:2.5 by weight, and the total feed amount was 55.7 kg/h. From the middle of the 40 mm diameter extruder (first extruder), mixed pentane [mixture of 80% by weight of normal pentane (F1) and 20% by weight of isopentane (F2)] was injected at a ratio of 4.7 parts by weight per 100 parts by weight of the melt of the resin mixture (styrene-based resin composition), and 2.3 parts by weight of isobutane (F3) was injected per 100 parts by weight of the styrene-based resin composition, and a total of 7.0 parts by weight of a foaming agent was added. Then, the mixture was supplied to a 90 mm diameter extruder (second extruder) through a continuation pipe set at 200°C.
以降の操作は実施例1と同様に行い、発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体を得た。 The subsequent operations were carried out in the same manner as in Example 1 to obtain expandable styrene-based resin particles, pre-expanded particles, and a styrene-based resin foamed molded product.
(参考例2)
原材料の割合を、(A):(H):(E)=88.5:9.0:2.5の重量比率から、(A):(H):(E)=85.5:12.0:2.5の重量比率へ変更した以外は参考例1と同様に行い、発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体を得た。
(Reference Example 2)
The same procedure as in Reference Example 1 was repeated, except that the weight ratio of the raw materials was changed from (A):(H):(E) = 88.5:9.0:2.5 to (A):(H):(E) = 85.5:12.0:2.5, to obtain expandable styrene-based resin particles, pre-expanded particles, and styrene-based resin foamed molded articles.
(参考例3)
原材料の割合を、(A):(H):(E)=88.5:9.0:2.5の重量比率から、(A):(H):(E)=81.5:16.0:2.5の重量比率へ変更した以外は参考例1と同様に行い、発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体を得た。
(Reference Example 3)
The same procedure as in Reference Example 1 was repeated, except that the weight ratio of the raw materials was changed from (A):(H):(E) = 88.5:9.0:2.5 to (A):(H):(E) = 81.5:16.0:2.5, to obtain expandable styrene-based resin particles, pre-expanded particles, and styrene-based resin foamed molded articles.
(参考例4)
原材料の割合を、(A):(H):(E)=88.5:9.0:2.5の重量比率から、(A):(H):(E)=77.5:20.0:2.5の重量比率へ変更した以外は参考例1と同様に行い、発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体を得た。
(Reference Example 4)
The same procedure as in Reference Example 1 was repeated, except that the weight ratio of the raw materials was changed from (A):(H):(E) = 88.5:9.0:2.5 to (A):(H):(E) = 77.5:20.0:2.5, to obtain expandable styrene-based resin particles, pre-expanded particles, and styrene-based resin foamed molded articles.
各実施例、比較例及び参考例について、使用したグラファイト(B)の量、臭素系難燃剤と安定剤との混合物(E)の量、これらの重量比、グラファイトマスターバッチ(H)の量及び発泡性スチレン系樹脂粒子中の炭素単位重量あたりのレーザー散乱強度、スチレン系樹脂発泡成形体の発泡倍率および熱伝導率を表1に示す。なお、表1において、グラファイトマスターバッチ(H)を用いた参考例については、括弧書きでマスターバッチ(H)として使用したグラファイト(B)の量についても示した。また、表1において「発泡性スチレン系樹脂粒子中の炭素単位重量あたりのレーザー散乱強度」を、単に「炭素単位重量あたりのレーザー散乱強度」と記す。 For each Example, Comparative Example, and Reference Example, the amount of graphite (B) used, the amount of the mixture (E) of the bromine-based flame retardant and stabilizer, the weight ratio thereof, the amount of graphite master batch (H), the laser scattering intensity per unit weight of carbon in the expandable styrene-based resin particles, and the expansion ratio and thermal conductivity of the styrene-based resin foamed molded body are shown in Table 1. Note that in Table 1, for the Reference Examples that used the graphite master batch (H), the amount of graphite (B) used as the master batch (H) is also shown in parentheses. In addition, in Table 1, "laser scattering intensity per unit weight of carbon in the expandable styrene-based resin particles" is simply referred to as "laser scattering intensity per unit weight of carbon."
表1より、実施例に記載の方法はマスターバッチを用いていないにもかかわらず、マスターバッチを用いた参考例1~4と、同等あるいは同等以上の発泡性スチレン系樹脂粒子中の炭素単位重量あたりのレーザー散乱強度を有しており、十分に炭素が分散していることが示唆された。すなわち、本開示の製造方法は、従来と同等以上の品質のスチレン系樹脂組成物、発泡性スチレン系樹脂粒子等を、低コストで得ることが可能な方法であることが示唆された。 From Table 1, it is suggested that the method described in the Examples has a laser scattering intensity per unit weight of carbon in the expandable styrene-based resin particles that is equal to or greater than that of Reference Examples 1 to 4, which use masterbatches, even though the method does not use a masterbatch, and that the carbon is sufficiently dispersed. In other words, it is suggested that the manufacturing method disclosed herein is a method that can obtain styrene-based resin compositions, expandable styrene-based resin particles, etc., of equal or greater quality than conventional methods at a low cost.
本明細書中に記載した数値範囲の上限値及び/又は下限値は、それぞれ任意に組み合わせて好ましい範囲を規定することができる。例えば、数値範囲の上限値及び下限値を任意に組み合わせて好ましい範囲を規定することができ、数値範囲の上限値同士を任意に組み合わせて好ましい範囲を規定することができ、また、数値範囲の下限値同士を任意に組み合わせて好ましい範囲を規定することができる。また、本願において、記号「~」を用いて表される数値範囲は、記号「~」の前後に記載される数値のそれぞれを下限値及び上限値として含む。 The upper and/or lower limit values of the numerical ranges described in this specification can be arbitrarily combined to define a preferred range. For example, the upper and lower limit values of the numerical ranges can be arbitrarily combined to define a preferred range, the upper limit values of the numerical ranges can be arbitrarily combined to define a preferred range, and the lower limit values of the numerical ranges can be arbitrarily combined to define a preferred range. In this application, a numerical range expressed using the symbol "~" includes the numerical values before and after the symbol "~" as the lower and upper limits, respectively.
以上、本実施形態を詳述したが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更があっても、それらは本開示に含まれるものである。
Although the present embodiment has been described in detail above, the specific configuration is not limited to this embodiment, and even if there are design changes within the scope that does not deviate from the gist of this disclosure, they are included in this disclosure.
Claims (10)
前記炭素、前記臭素系難燃剤及び前記安定剤が粉体で多軸押出機に供給され、
前記炭素と、前記臭素系難燃剤及び前記安定剤の合計量との重量比である、炭素/(臭素系難燃剤+安定剤)が1.4以下である、スチレン系樹脂組成物の製造方法。 The process includes a step A of supplying a styrene-based resin, carbon, a bromine-based flame retardant, and a stabilizer to a multi-screw extruder and melt-kneading the mixture,
The carbon, the brominated flame retardant, and the stabilizer are fed in powder form to a multi-screw extruder;
A method for producing a styrene-based resin composition, wherein a weight ratio of the carbon to the total amount of the brominated flame retardant and the stabilizer, carbon/(brominated flame retardant+stabilizer), is 1.4 or less.
前記二軸押出機のQ/Nを以下の式の範囲とする、請求項1に記載のスチレン系樹脂組成物の製造方法。
Q/N ≦ 8.0×10-6×D3
(上記式において、Qは二軸押出機押出量(kg/hr)、Nはスクリュ回転数(rpm)、Dは二軸押出機バレル内径(mm)を示す。) The multi-screw extruder is a twin-screw extruder,
The method for producing a styrene-based resin composition according to claim 1, wherein the Q/N of the twin-screw extruder is within the range of the following formula:
Q/N ≦ 8.0×10 -6 ×D 3
(In the above formula, Q represents the twin-screw extruder extrusion rate (kg/hr), N represents the screw rotation speed (rpm), and D represents the twin-screw extruder barrel inner diameter (mm).)
前記炭素、前記臭素系難燃剤及び前記安定剤が粉体で多軸押出機に供給され、
前記炭素と、前記臭素系難燃剤及び前記安定剤の合計量との重量比である、炭素/(臭素系難燃剤+安定剤)が1.4以下である、発泡性スチレン系樹脂粒子の製造方法。 The process includes a step A of supplying a styrene-based resin, carbon, a bromine-based flame retardant, and a stabilizer to a multi-screw extruder and melt-kneading the mixture,
The carbon, the brominated flame retardant, and the stabilizer are fed in powder form to a multi-screw extruder;
A method for producing expandable styrene-based resin particles, wherein a weight ratio of the carbon to the total amount of the brominated flame retardant and the stabilizer, carbon/(brominated flame retardant+stabilizer), is 1.4 or less.
前記二軸押出機のQ/Nを以下の式の範囲とする、請求項4に記載の発泡性スチレン系樹脂粒子の製造方法。
Q/N ≦ 8.0×10-6×D3
(上記式において、Qは二軸押出機押出量(kg/hr)、Nはスクリュ回転数(rpm)、Dは二軸押出機バレル内径(mm)を示す。) The multi-screw extruder is a twin-screw extruder,
The method for producing expandable styrene-based resin particles according to claim 4, wherein the Q/N of the twin-screw extruder is within the range of the following formula:
Q/N ≦ 8.0×10 -6 ×D 3
(In the above formula, Q represents the twin-screw extruder extrusion rate (kg/hr), N represents the screw rotation speed (rpm), and D represents the twin-screw extruder barrel inner diameter (mm).)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023054573A JP2024142436A (en) | 2023-03-30 | 2023-03-30 | Method for producing styrene-based resin composition and method for producing expandable styrene-based resin particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023054573A JP2024142436A (en) | 2023-03-30 | 2023-03-30 | Method for producing styrene-based resin composition and method for producing expandable styrene-based resin particles |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024142436A true JP2024142436A (en) | 2024-10-11 |
Family
ID=92977121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023054573A Pending JP2024142436A (en) | 2023-03-30 | 2023-03-30 | Method for producing styrene-based resin composition and method for producing expandable styrene-based resin particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024142436A (en) |
-
2023
- 2023-03-30 JP JP2023054573A patent/JP2024142436A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6555251B2 (en) | Styrenic resin foam molding and method for producing the same | |
JP6216506B2 (en) | Expandable styrene resin particles and method for producing the same, styrene resin foam molded article | |
CN108026311B (en) | Expandable styrene resin particles, pre-expanded particles and molded body produced from the same, and method for producing the same | |
JP7591078B2 (en) | Styrenic resin composition and method for producing expandable styrenic resin particles | |
JP7005158B2 (en) | Method for manufacturing foamable thermoplastic resin particles | |
JP7144955B2 (en) | Method for producing styrenic resin composition and expandable styrenic resin particles | |
JP7227228B2 (en) | Expandable thermoplastic resin particles | |
JP2024142436A (en) | Method for producing styrene-based resin composition and method for producing expandable styrene-based resin particles | |
JP6962694B2 (en) | Method for manufacturing foamable thermoplastic resin particles | |
JP6854672B2 (en) | A masterbatch, a method for producing the same, and a method for producing foamable thermoplastic resin particles. | |
JP6854671B2 (en) | Foamable thermoplastic resin particles and their manufacturing method | |
JP6837820B2 (en) | Expandable polystyrene resin particles and their manufacturing method | |
JP6854669B2 (en) | Effervescent polystyrene resin particles, pre-expanded particles, molded article | |
JP6688658B2 (en) | Method for producing expandable styrene resin particles, method for producing styrene resin pre-expanded particles, and method for producing styrene resin in-mold foam molded article | |
JP2024140138A (en) | Expandable styrene resin particles | |
JP6692219B2 (en) | Method for producing expandable styrenic resin particles | |
JP2024153609A (en) | Insulation materials and their uses | |
JP7194535B2 (en) | Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding | |
JP6961440B2 (en) | Foamable polystyrene resin particles and manufacturing method | |
JP2023145171A (en) | Foamable polystyrenic resin particle and production method | |
JP2025011448A (en) | Expandable styrene resin particles, styrene resin foamed molded product, and method for producing expandable styrene resin particles | |
JP2022009145A (en) | Method for manufacturing foamable thermoplastic resin particles | |
JP2025020932A (en) | Expandable polystyrene resin particles, their production method, pre-expanded polystyrene resin particles, and foamed molded product | |
JP2018001637A (en) | Production method for foamable styrenic resin particle |