JP2024140138A - Expandable styrene resin particles - Google Patents
Expandable styrene resin particles Download PDFInfo
- Publication number
- JP2024140138A JP2024140138A JP2023051143A JP2023051143A JP2024140138A JP 2024140138 A JP2024140138 A JP 2024140138A JP 2023051143 A JP2023051143 A JP 2023051143A JP 2023051143 A JP2023051143 A JP 2023051143A JP 2024140138 A JP2024140138 A JP 2024140138A
- Authority
- JP
- Japan
- Prior art keywords
- styrene
- based resin
- weight
- resin particles
- expandable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 title claims abstract description 622
- 229920005989 resin Polymers 0.000 title claims abstract description 289
- 239000011347 resin Substances 0.000 title claims abstract description 289
- 239000002245 particle Substances 0.000 title claims abstract description 163
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 75
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000004604 Blowing Agent Substances 0.000 claims abstract description 42
- 230000005855 radiation Effects 0.000 claims abstract description 40
- 238000012546 transfer Methods 0.000 claims abstract description 40
- 239000003112 inhibitor Substances 0.000 claims abstract description 39
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 38
- 239000011342 resin composition Substances 0.000 claims abstract description 37
- 239000001282 iso-butane Substances 0.000 claims abstract description 29
- 239000000155 melt Substances 0.000 claims abstract description 12
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 33
- 239000004088 foaming agent Substances 0.000 claims description 23
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 21
- 229910002804 graphite Inorganic materials 0.000 claims description 21
- 239000010439 graphite Substances 0.000 claims description 21
- 239000003063 flame retardant Substances 0.000 claims description 19
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- 238000000465 moulding Methods 0.000 claims description 9
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 239000006260 foam Substances 0.000 description 39
- 238000000034 method Methods 0.000 description 24
- 239000008188 pellet Substances 0.000 description 24
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 18
- 239000012760 heat stabilizer Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000004594 Masterbatch (MB) Substances 0.000 description 12
- 238000009413 insulation Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 10
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 238000005187 foaming Methods 0.000 description 9
- 238000004898 kneading Methods 0.000 description 9
- 239000000654 additive Substances 0.000 description 8
- -1 diene compounds Chemical class 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229920001519 homopolymer Polymers 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 4
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 4
- 238000010097 foam moulding Methods 0.000 description 4
- 239000012774 insulation material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000012855 volatile organic compound Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- IYOVSGHZOIZSDC-UHFFFAOYSA-N 1,3-dibromo-5-[2-[3,5-dibromo-4-(2,3-dibromo-2-methylpropoxy)phenyl]propan-2-yl]-2-(2,3-dibromo-2-methylpropoxy)benzene Chemical compound C1=C(Br)C(OCC(Br)(CBr)C)=C(Br)C=C1C(C)(C)C1=CC(Br)=C(OCC(C)(Br)CBr)C(Br)=C1 IYOVSGHZOIZSDC-UHFFFAOYSA-N 0.000 description 2
- LXIZRZRTWSDLKK-UHFFFAOYSA-N 1,3-dibromo-5-[2-[3,5-dibromo-4-(2,3-dibromopropoxy)phenyl]propan-2-yl]-2-(2,3-dibromopropoxy)benzene Chemical compound C=1C(Br)=C(OCC(Br)CBr)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(OCC(Br)CBr)C(Br)=C1 LXIZRZRTWSDLKK-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- SCQQCFTYKYZSMZ-UHFFFAOYSA-N CC1(N(C(CCC1)(C)C)OC(=O)C(C(C)(C(=O)ON1C(CCCC1(C)C)(C)C)C(=O)ON1C(CCCC1(C)C)(C)C)(C)C(=O)ON1C(CCCC1(C)C)(C)C)C Chemical compound CC1(N(C(CCC1)(C)C)OC(=O)C(C(C)(C(=O)ON1C(CCCC1(C)C)(C)C)C(=O)ON1C(CCCC1(C)C)(C)C)(C)C(=O)ON1C(CCCC1(C)C)(C)C)C SCQQCFTYKYZSMZ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- FDBMBOYIVUGUSL-UHFFFAOYSA-N OP(O)OP(O)O.C(C)(C)(C)C1=C(C(=CC(=C1)C)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1C(C)(C)C)C)C(C)(C)C Chemical compound OP(O)OP(O)O.C(C)(C)(C)C1=C(C(=CC(=C1)C)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1C(C)(C)C)C)C(C)(C)C FDBMBOYIVUGUSL-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 230000003796 beauty Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- ZJOLCKGSXLIVAA-UHFFFAOYSA-N ethene;octadecanamide Chemical compound C=C.CCCCCCCCCCCCCCCCCC(N)=O.CCCCCCCCCCCCCCCCCC(N)=O ZJOLCKGSXLIVAA-UHFFFAOYSA-N 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- HGTUJZTUQFXBIH-UHFFFAOYSA-N (2,3-dimethyl-3-phenylbutan-2-yl)benzene Chemical compound C=1C=CC=CC=1C(C)(C)C(C)(C)C1=CC=CC=C1 HGTUJZTUQFXBIH-UHFFFAOYSA-N 0.000 description 1
- OXDXXMDEEFOVHR-CLFAGFIQSA-N (z)-n-[2-[[(z)-octadec-9-enoyl]amino]ethyl]octadec-9-enamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)NCCNC(=O)CCCCCCC\C=C/CCCCCCCC OXDXXMDEEFOVHR-CLFAGFIQSA-N 0.000 description 1
- JVPKLOPETWVKQD-UHFFFAOYSA-N 1,2,2-tribromoethenylbenzene Chemical compound BrC(Br)=C(Br)C1=CC=CC=C1 JVPKLOPETWVKQD-UHFFFAOYSA-N 0.000 description 1
- SVHAMPNLOLKSFU-UHFFFAOYSA-N 1,2,2-trichloroethenylbenzene Chemical compound ClC(Cl)=C(Cl)C1=CC=CC=C1 SVHAMPNLOLKSFU-UHFFFAOYSA-N 0.000 description 1
- XUMFBUWGVLTWTH-UHFFFAOYSA-N 1,2-dibromo-3-(2,3-dibromo-2-methylpropoxy)-2-methylpropane Chemical compound BrCC(Br)(C)COCC(C)(Br)CBr XUMFBUWGVLTWTH-UHFFFAOYSA-N 0.000 description 1
- KPQOXMCRYWDRSB-UHFFFAOYSA-N 1-(2-chlorophenyl)pyrrole-2,5-dione Chemical compound ClC1=CC=CC=C1N1C(=O)C=CC1=O KPQOXMCRYWDRSB-UHFFFAOYSA-N 0.000 description 1
- FECSFBYOMHWJQG-UHFFFAOYSA-N 1-(4-bromophenyl)pyrrole-2,5-dione Chemical compound C1=CC(Br)=CC=C1N1C(=O)C=CC1=O FECSFBYOMHWJQG-UHFFFAOYSA-N 0.000 description 1
- JNPCNDJVEUEFBO-UHFFFAOYSA-N 1-butylpyrrole-2,5-dione Chemical compound CCCCN1C(=O)C=CC1=O JNPCNDJVEUEFBO-UHFFFAOYSA-N 0.000 description 1
- BQTPKSBXMONSJI-UHFFFAOYSA-N 1-cyclohexylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1CCCCC1 BQTPKSBXMONSJI-UHFFFAOYSA-N 0.000 description 1
- BAWHYOHVWHQWFQ-UHFFFAOYSA-N 1-naphthalen-1-ylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC2=CC=CC=C12 BAWHYOHVWHQWFQ-UHFFFAOYSA-N 0.000 description 1
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 1
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 1
- CYLVUSZHVURAOY-UHFFFAOYSA-N 2,2-dibromoethenylbenzene Chemical compound BrC(Br)=CC1=CC=CC=C1 CYLVUSZHVURAOY-UHFFFAOYSA-N 0.000 description 1
- CISIJYCKDJSTMX-UHFFFAOYSA-N 2,2-dichloroethenylbenzene Chemical compound ClC(Cl)=CC1=CC=CC=C1 CISIJYCKDJSTMX-UHFFFAOYSA-N 0.000 description 1
- CMQUQOHNANGDOR-UHFFFAOYSA-N 2,3-dibromo-4-(2,4-dibromo-5-hydroxyphenyl)phenol Chemical compound BrC1=C(Br)C(O)=CC=C1C1=CC(O)=C(Br)C=C1Br CMQUQOHNANGDOR-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-Hydroxyoctadecanoic acid Natural products CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- DDBYLRWHHCWVID-UHFFFAOYSA-N 2-ethylbut-1-enylbenzene Chemical compound CCC(CC)=CC1=CC=CC=C1 DDBYLRWHHCWVID-UHFFFAOYSA-N 0.000 description 1
- BTOVVHWKPVSLBI-UHFFFAOYSA-N 2-methylprop-1-enylbenzene Chemical compound CC(C)=CC1=CC=CC=C1 BTOVVHWKPVSLBI-UHFFFAOYSA-N 0.000 description 1
- SSADPHQCUURWSW-UHFFFAOYSA-N 3,9-bis(2,6-ditert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C)=CC(C(C)(C)C)=C1OP1OCC2(COP(OC=3C(=CC(C)=CC=3C(C)(C)C)C(C)(C)C)OC2)CO1 SSADPHQCUURWSW-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- CEBRPXLXYCFYGU-UHFFFAOYSA-N 3-methylbut-1-enylbenzene Chemical compound CC(C)C=CC1=CC=CC=C1 CEBRPXLXYCFYGU-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011489 building insulation material Substances 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- FTQWRYSLUYAIRQ-UHFFFAOYSA-N n-[(octadecanoylamino)methyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCNC(=O)CCCCCCCCCCCCCCCCC FTQWRYSLUYAIRQ-UHFFFAOYSA-N 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- KQMBDYBKUGRQNQ-UHFFFAOYSA-N n-[6-(hexadecanoylamino)hexyl]hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(=O)NCCCCCCNC(=O)CCCCCCCCCCCCCCC KQMBDYBKUGRQNQ-UHFFFAOYSA-N 0.000 description 1
- SEEYREPSKCQBBF-UHFFFAOYSA-N n-methylmaleimide Chemical compound CN1C(=O)C=CC1=O SEEYREPSKCQBBF-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
【課題】耐熱性能に優れ、且つ高発泡倍率のスチレン系樹脂発泡成形体を得ることが可能な、発泡性スチレン系樹脂粒子を提供すること。【解決手段】本開示に係る発泡性スチレン系樹脂粒子は、スチレン系樹脂及び炭素系輻射伝熱抑制剤を含むスチレン系樹脂組成物並びに発泡剤を含む発泡性スチレン系樹脂粒子であって、前記スチレン系樹脂の200℃、荷重5.0kgにおけるメルトフローレートが7.5~15.5g/10分であり、前記発泡剤がイソブタンを含む。【選択図】なし[Problem] To provide expandable styrene-based resin particles that are excellent in heat resistance and capable of producing styrene-based resin foamed molded articles with a high expansion ratio. [Solution] The expandable styrene-based resin particles according to the present disclosure are expandable styrene-based resin particles that contain a styrene-based resin composition containing a styrene-based resin and a carbon-based radiation heat transfer inhibitor, and a blowing agent, wherein the styrene-based resin has a melt flow rate of 7.5 to 15.5 g/10 min at 200°C under a load of 5.0 kg, and the blowing agent contains isobutane. [Selected Figures] None
Description
本発明は、発泡性スチレン系樹脂粒子に関する。 The present invention relates to expandable styrene-based resin particles.
スチレン系樹脂発泡体は、軽量性、断熱性、及び緩衝性等を有するバランスに優れた発泡体であり、従来から食品容器箱、保冷箱、緩衝材、及び住宅等の断熱材として広く利用されている。 Styrene-based resin foam is a well-balanced foam that has light weight, insulating properties, and cushioning properties, and has been widely used in food containers, cooler boxes, cushioning materials, and insulating materials for housing, etc.
中でも、近年、地球温暖化等の諸問題に関連し、住宅等建築物の断熱性向上による省エネルギー化が志向されつつあり、発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡成形体の需要拡大が期待される。このため、当該スチレン系樹脂発泡体の高発泡倍率による軽量化や断熱性の向上について種々の検討がなされている。 In particular, in recent years, in relation to various issues such as global warming, there has been a trend toward energy conservation through improved insulation of buildings such as homes, and it is expected that the demand for styrene resin foamed molded products obtained using expandable styrene resin particles will increase. For this reason, various studies are being conducted on reducing the weight and improving the insulation properties of the styrene resin foamed products by increasing the expansion ratio.
例えば特許文献1には、ビーズ発泡成形体の形成に用いられ、スチレン系樹脂と発泡剤とを含有し、該発泡剤としてペンタンが含有されている発泡性スチレン系樹脂粒子であって、前記発泡剤として更にブタンが含有されており、該発泡剤が前記スチレン系樹脂100質量部に対して2質量部以上10質量部以下となる割合で含有され、前記ペンタンと前記ブタンとが20:80~80:20の質量割合で含有されており、且つ、発泡倍率が1.05倍以上1.25倍以下となるように内部に複数の気泡が形成されていることを特徴とする発泡性スチレン系樹脂粒子が開示されている。 For example, Patent Document 1 discloses expandable styrene resin particles used for forming bead foams, which contain a styrene resin and a foaming agent, with pentane as the foaming agent, and further contain butane as the foaming agent, the foaming agent being contained in a ratio of 2 parts by mass to 10 parts by mass to 100 parts by mass of the styrene resin, the pentane and butane being contained in a mass ratio of 20:80 to 80:20, and multiple bubbles being formed inside so that the expansion ratio is 1.05 times to 1.25 times.
特許文献1に開示された発泡性スチレン系樹脂粒子は、炭素系輻射伝熱抑制剤が配合されていなかった。また、本発明者らの検討によると炭素系輻射伝熱抑制剤を配合することにより断熱性が向上する一方で、発泡性能が低下することが確認されており、炭素系輻射伝熱抑制剤が配合されていない発泡性スチレン系樹脂粒子に炭素系輻射伝熱抑制剤を適用すると、高発泡倍率で発泡成形体を得ることが困難と考えられていた。 The expandable styrene resin particles disclosed in Patent Document 1 were not blended with a carbon-based radiation heat transfer inhibitor. Furthermore, according to the inventors' studies, it has been confirmed that while the incorporation of a carbon-based radiation heat transfer inhibitor improves the insulation properties, it also reduces the foaming performance. It was therefore thought that it would be difficult to obtain a foamed molded article with a high expansion ratio if a carbon-based radiation heat transfer inhibitor was applied to expandable styrene resin particles that did not contain the carbon-based radiation heat transfer inhibitor.
本発明者らは、耐熱性能に優れ、且つ高発泡倍率のスチレン系樹脂発泡成形体を得ることが可能な、発泡性スチレン系樹脂粒子を提供することを目的とする。 The present inventors aim to provide expandable styrene-based resin particles that have excellent heat resistance and can produce styrene-based resin foamed molded articles with a high expansion ratio.
本実施形態の態様例は、以下の通りに記載される。 An example of this embodiment is described as follows:
[1] スチレン系樹脂及び炭素系輻射伝熱抑制剤を含むスチレン系樹脂組成物並びに発泡剤を含む発泡性スチレン系樹脂粒子であって、
前記スチレン系樹脂の200℃、荷重5.0kgにおけるメルトフローレートが7.5~15.5g/10分であり、前記発泡剤がイソブタンを含む、発泡性スチレン系樹脂粒子。
[2] 前記発泡性スチレン系樹脂粒子の見かけ密度が950kg/m3超1200kg/m3以下である、[1]に記載の発泡性スチレン系樹脂粒子。
[3] 前記スチレン系樹脂組成物が難燃剤を含み、前記スチレン系樹脂組成物100重量%中、難燃剤が1.0重量%超6.0重量%以下である、[1]又は[2]に記載の発泡性スチレン系樹脂粒子。
[4] 前記スチレン系樹脂組成物100重量%中、炭素系輻射伝熱抑制剤が2重量%超20重量%以下である、[1]~[3]のいずれかに記載の発泡性スチレン系樹脂粒子。
[5] 前記炭素系輻射伝熱抑制剤がグラファイト、カーボンブラック、カーボンナノチューブ、グラフェン及び活性炭から選択される少なくとも1種の炭素系輻射伝熱抑制剤である、[1]~[4]のいずれかに記載の発泡性スチレン系樹脂粒子。
[6] 前記発泡性スチレン系樹脂粒子の発泡剤量が、前記スチレン系樹脂組成物100重量部に対して、1.0重量部超8.0重量部以下である、[1]~[5]のいずれかに記載の発泡性スチレン系樹脂粒子。
[7] 前記発泡剤100重量%中、イソブタンが15~90重量%である、[1]~[6]のいずれかに記載の発泡性スチレン系樹脂粒子。
[8] 前記発泡剤が炭素数5~6の飽和炭化水素を含む、[1]~[7]のいずれかに記載の発泡性スチレン系樹脂粒子
[9] 前記発泡剤がペンタンを含む、[1]~[8]のいずれかに記載の発泡性スチレン系樹脂粒子。
[10] [1]~[9]のいずれかに記載の発泡性スチレン系樹脂粒子を発泡してなるスチレン系樹脂の予備発泡粒子。
[11] [10]に記載のスチレン系樹脂の予備発泡粒子を成形してなるスチレン系樹脂の発泡成形体。
[1] Expandable styrene-based resin particles comprising a styrene-based resin composition containing a styrene-based resin and a carbon-based radiation heat transfer inhibitor, and a blowing agent,
The expandable styrene-based resin particles have a melt flow rate of 7.5 to 15.5 g/10 min at 200° C. under a load of 5.0 kg, and the foaming agent contains isobutane.
[2] The expandable styrene-based resin particles according to [1], wherein the expandable styrene-based resin particles have an apparent density of more than 950 kg/ m3 and not more than 1200 kg/ m3.
[3] The expandable styrene-based resin particles according to [1] or [2], wherein the styrene-based resin composition contains a flame retardant, and the flame retardant is more than 1.0% by weight and not more than 6.0% by weight in 100% by weight of the styrene-based resin composition.
[4] The expandable styrene-based resin particles according to any one of [1] to [3], wherein the carbon-based radiation heat transfer inhibitor is more than 2% by weight and not more than 20% by weight, based on 100% by weight of the styrene-based resin composition.
[5] The expandable styrene-based resin particles according to any one of [1] to [4], wherein the carbon-based radiation heat transfer inhibitor is at least one carbon-based radiation heat transfer inhibitor selected from graphite, carbon black, carbon nanotubes, graphene, and activated carbon.
[6] The amount of the foaming agent in the foamable styrene-based resin particles is more than 1.0 parts by weight and not more than 8.0 parts by weight per 100 parts by weight of the styrene-based resin composition. [1] to [5].
[7] The expandable styrene-based resin particles according to any one of [1] to [6], wherein the amount of isobutane is 15 to 90% by weight based on 100% by weight of the blowing agent.
[8] The expandable styrene-based resin particles according to any one of [1] to [7], wherein the blowing agent contains a saturated hydrocarbon having 5 to 6 carbon atoms. [9] The expandable styrene-based resin particles according to any one of [1] to [8], wherein the blowing agent contains pentane.
[10] Pre-expanded styrene-based resin particles obtained by expanding the expandable styrene-based resin particles according to any one of [1] to [9].
[11] A foamed molded product of a styrene-based resin obtained by molding the pre-expanded particles of the styrene-based resin according to [10].
本開示の発泡性スチレン系樹脂粒子は、耐熱性能に優れ、且つ高発泡倍率のスチレン系樹脂発泡成形体を得ることが可能である。 The expandable styrene-based resin particles disclosed herein have excellent heat resistance and can produce styrene-based resin foams with a high expansion ratio.
以下、本発明を詳細に説明する。本実施形態に係る発泡性スチレン系樹脂粒子は、スチレン系樹脂及び炭素系輻射伝熱抑制剤を含むスチレン系樹脂組成物並びに発泡剤を含む発泡性スチレン系樹脂粒子であって、前記スチレン系樹脂の200℃、荷重5.0kgにおけるメルトフローレートが7.5~15.5g/10分であり、前記発泡剤がイソブタンを含む。本開示の発泡性スチレン系樹脂粒子は、スチレン系樹脂のメルトフローレート(MFR)を上述の範囲に制御し、且つ発泡剤としてイソブタンを含むことにより、耐熱性能に優れ、且つ高発泡倍率のスチレン系樹脂発泡成形体を得ることができる。また、得られるスチレン系樹脂発泡成形体は、成形性に優れる。本実施形態に係る発泡性スチレン系樹脂粒子の一態様では、従来よりも相対的に発泡剤が少ない場合でも高発泡倍率のスチレン系樹脂発泡成形体を得ることができる。発泡剤量を減らすことは、VOC(揮発性有機化合物)(Volatile Organic Compounds)削減等の環境負荷低減効果、コスト削減効果をもたらす。 The present invention will be described in detail below. The expandable styrene-based resin particles according to this embodiment are expandable styrene-based resin particles containing a styrene-based resin composition containing a styrene-based resin and a carbon-based radiation heat transfer inhibitor, and a foaming agent, and the styrene-based resin has a melt flow rate of 7.5 to 15.5 g/10 min at 200° C. and a load of 5.0 kg, and the foaming agent contains isobutane. The expandable styrene-based resin particles of the present disclosure control the melt flow rate (MFR) of the styrene-based resin within the above-mentioned range, and contain isobutane as a foaming agent, thereby making it possible to obtain a styrene-based resin foamed molded product with excellent heat resistance and high expansion ratio. In addition, the obtained styrene-based resin foamed molded product has excellent moldability. In one aspect of the expandable styrene-based resin particles according to this embodiment, a styrene-based resin foamed molded product with a high expansion ratio can be obtained even when the amount of foaming agent is relatively less than that of the conventional product. Reducing the amount of foaming agent brings about an effect of reducing environmental load such as reducing VOCs (volatile organic compounds) and a cost reduction effect.
(スチレン系樹脂)
スチレン系樹脂としては、スチレン単独重合体(スチレンホモポリマー)であっても、スチレン共重合体(スチレンコポリマー)であってもよい。スチレン共重合体としては、スチレンと、スチレンと共重合可能な他の単量体又はその誘導体とが共重合したスチレン共重合体を用いることができる。スチレン系共重合体が有するスチレン由来の繰り返し単位は、スチレン系共重合体100重量%中、60重量%以上が好ましく、80重量%以上がより好ましい。スチレン系樹脂としては、1種単独で用いても、2種以上を用いてもよい。但し、本実施形態においては、スチレン系樹脂としては、後述する臭素化スチレン・ブタジエン共重合体は通常除かれる。
(styrene resin)
The styrene-based resin may be a styrene homopolymer or a styrene copolymer. As the styrene copolymer, a styrene copolymer obtained by copolymerizing styrene with another monomer or a derivative thereof that is copolymerizable with styrene can be used. The repeating unit derived from styrene contained in the styrene-based copolymer is preferably 60% by weight or more, more preferably 80% by weight or more, based on 100% by weight of the styrene-based copolymer. As the styrene-based resin, one type may be used alone, or two or more types may be used. However, in this embodiment, the styrene-based resin usually excludes the brominated styrene-butadiene copolymer described later.
スチレンと共重合可能な他の単量体又はその誘導体(以下、「他の単量体又はその誘導体」と称することがある。)としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、及びトリクロロスチレン等のスチレン誘導体;ジビニルベンゼン等の多官能性ビニル化合物;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、及びメタクリル酸ブチル等の(メタ)アクリル酸エステル化合物;(メタ)アクリロニトリル等のシアン化ビニル化合物;ブタジエン等のジエン系化合物又はその誘導体;無水マレイン酸、及び無水イタコン酸等の不飽和カルボン酸無水物;N-メチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-(2-クロロフェニル)マレイミド、N-(4-ブロモフェニル)マレイミド、及びN-(1-ナフチル)マレイミド等のN-アルキル置換マレイミド化合物等があげられる。他の単量体又はその誘導体は単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of other monomers or derivatives thereof that can be copolymerized with styrene (hereinafter sometimes referred to as "other monomers or derivatives thereof") include styrene derivatives such as methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, and trichlorostyrene; polyfunctional vinyl compounds such as divinylbenzene; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, and butyl acrylate. and (meth)acrylic acid ester compounds such as butyl methacrylate; vinyl cyanide compounds such as (meth)acrylonitrile; diene compounds or derivatives thereof such as butadiene; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride; and N-alkyl-substituted maleimide compounds such as N-methylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-(2-chlorophenyl)maleimide, N-(4-bromophenyl)maleimide, and N-(1-naphthyl)maleimide. The other monomers or derivatives thereof may be used alone or in combination of two or more.
前記スチレン系樹脂は、本発明に係る効果を損なわない範囲で、他の単量体又はその誘導体の単独重合体若しくはそれらの共重合体がブレンドされていてもよい。 The styrene-based resin may be blended with homopolymers or copolymers of other monomers or their derivatives, as long as the effect of the present invention is not impaired.
前記スチレン系樹脂には、耐衝撃吸収性や耐熱性の観点から、例えば、ジエン系ゴム強化ポリスチレン、アクリル系ゴム強化ポリスチレン、及び/又は、ポリフェニレンエーテル系樹脂等がブレンドされていてもよい。 From the viewpoint of impact resistance, heat resistance, etc., the styrene resin may be blended with, for example, diene rubber-reinforced polystyrene, acrylic rubber-reinforced polystyrene, and/or polyphenylene ether resin.
前記スチレン系樹脂としては、比較的安価で、特殊な方法を用いずに低圧の水蒸気等で発泡成形ができ、断熱性、難燃性、緩衝性のバランスに優れることから、スチレンホモポリマー、スチレン-アクリロニトリル共重合体、及びスチレン-アクリル酸ブチル共重合体から選択される少なくとも1種を含むことが好ましく、スチレンホモポリマーを含むことがより好ましい。 The styrene-based resin is preferably at least one selected from styrene homopolymer, styrene-acrylonitrile copolymer, and styrene-butyl acrylate copolymer, and more preferably contains styrene homopolymer, because it is relatively inexpensive, can be foamed using low-pressure steam without using special methods, and has an excellent balance of heat insulation, flame retardancy, and cushioning properties.
前記スチレン系樹脂は、200℃、荷重5.0kgにおけるメルトフローレートが7.5~15.5g/10分であり、好ましくは8.0~15.0g/10分であり、より好ましくは8.5~14.5g/10分である。なお、メルトフローレートはMFRとも記す。メルトフローレートが前記範囲内であると、優れた成形性を有する発泡性樹脂粒子を得ることが可能であり、耐熱性能に優れ、且つ高発泡倍率のスチレン系樹脂発泡成形体を得ることが可能である。本開示においてスチレン系樹脂が、2種以上の樹脂(重合体)である場合には、スチレン系樹脂のMFRとは、各樹脂のMFRではなく、スチレン系樹脂全体のMFRを意味する。すなわち2種以上の樹脂を用いる場合には、スチレン系樹脂組成物に含まれる樹脂を、スチレン系樹脂組成物に含まれる割合で溶融混練したペレットを調製し、該ペレットのMFRを測定することにより、スチレン系樹脂組成物に含まれるスチレン樹脂のMFRを知ることができる。なお、本発明におけるMFRは、JIS K7210に準拠し測定される値である。MFRは後述の実施例に記載の方法で測定することができる。 The styrene resin has a melt flow rate of 7.5 to 15.5 g/10 min at 200° C. and a load of 5.0 kg, preferably 8.0 to 15.0 g/10 min, and more preferably 8.5 to 14.5 g/10 min. The melt flow rate is also referred to as MFR. When the melt flow rate is within the above range, it is possible to obtain expandable resin particles having excellent moldability, and it is possible to obtain a styrene resin foamed molded product having excellent heat resistance and a high expansion ratio. In this disclosure, when the styrene resin is two or more types of resin (polymer), the MFR of the styrene resin does not mean the MFR of each resin, but the MFR of the entire styrene resin. In other words, when two or more types of resin are used, the resins contained in the styrene resin composition are melt-kneaded in the ratio contained in the styrene resin composition to prepare pellets, and the MFR of the pellets is measured to know the MFR of the styrene resin contained in the styrene resin composition. In the present invention, the MFR is a value measured in accordance with JIS K7210. The MFR can be measured by the method described in the examples below.
スチレン系樹脂としては、2種類のスチレン系樹脂を用いることが好ましい態様の一つである。ある態様においては、スチレン系樹脂として2種類のスチレン系樹脂を用い、少なくとも一方のスチレン系樹脂のMFRが7.5~15.5g/10分の範囲外である。ある好ましい態様としては、スチレン系樹脂として2種類のスチレン系樹脂を用い、一方のスチレン系樹脂のMFRが7.5g/10分未満であり、他方のスチレン系樹脂のMFRが15.5g/10分超である。スチレン系樹脂として、2種類のスチレン系樹脂を用いる場合には、一方のスチレン系樹脂と、他方のスチレン系樹脂とが、99:1~1:99(重量比)で含まれることが好ましい。 As the styrene resin, it is one of the preferred embodiments to use two types of styrene resins. In one embodiment, two types of styrene resins are used as the styrene resin, and the MFR of at least one of the styrene resins is outside the range of 7.5 to 15.5 g/10 min. In one preferred embodiment, two types of styrene resins are used as the styrene resin, and the MFR of one of the styrene resins is less than 7.5 g/10 min, and the MFR of the other styrene resin is more than 15.5 g/10 min. When two types of styrene resins are used as the styrene resin, it is preferable that one styrene resin and the other styrene resin are contained in a ratio of 99:1 to 1:99 (weight ratio).
ある好ましい態様においては、スチレン系樹脂が、MFRが7.5g/10分未満、好ましくは1.0~7.4g/10分、より好ましくは2.0~7.3g/10分、更に好ましくは3.0~7.2g/10分、特に好ましくは5.5~7.1g/10分のスチレン系樹脂と、MFRが15.5g/10分超、好ましくは15.6~25g/10分、より好ましくは16~22g/10分のスチレン系樹脂である。この時、MFRが7.5g/10分未満のスチレン系樹脂:MFRが15.5g/10分超のスチレン系樹脂が20:80~90:10(重量比)であることが好ましい。2種類のスチレン系樹脂を用いると、MFRの調整が容易であり、優れた成形性を有する発泡性樹脂粒子を容易に得ることが可能である。 In a preferred embodiment, the styrene resin is a styrene resin having an MFR of less than 7.5 g/10 min, preferably 1.0 to 7.4 g/10 min, more preferably 2.0 to 7.3 g/10 min, even more preferably 3.0 to 7.2 g/10 min, and particularly preferably 5.5 to 7.1 g/10 min, and a styrene resin having an MFR of more than 15.5 g/10 min, preferably 15.6 to 25 g/10 min, and more preferably 16 to 22 g/10 min. In this case, it is preferable that the styrene resin having an MFR of less than 7.5 g/10 min: the styrene resin having an MFR of more than 15.5 g/10 min is 20:80 to 90:10 (weight ratio). By using two types of styrene resin, it is easy to adjust the MFR and it is possible to easily obtain expandable resin particles having excellent moldability.
本発明において、スチレン系樹脂の含有量は特に限定されないが、スチレン系樹脂組成物100重量%において75~99.9重量%であることが好ましく、80~95重量%がより好ましい。 In the present invention, the content of the styrene-based resin is not particularly limited, but is preferably 75 to 99.9% by weight, and more preferably 80 to 95% by weight, based on 100% by weight of the styrene-based resin composition.
また、本発明の効果を損なわない範囲であれば、スチレン系樹脂を主成分としながら、他の樹脂を併用してもよい。他の樹脂としては、上述の他の単量体又はその誘導体の単独重合体若しくはそれらの共重合体、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリル系樹脂等が挙げられる。他の樹脂の含有量は特に限定されないが、スチレン系樹脂組成物100重量%において20重量%以下が好ましく、10重量%以下がより好ましい。 In addition, other resins may be used in combination with the styrene-based resin as the main component, so long as the effects of the present invention are not impaired. Examples of other resins include homopolymers of the above-mentioned other monomers or their derivatives, or copolymers thereof, polyolefin-based resins, polyester-based resins, polycarbonate-based resins, acrylic-based resins, and the like. The content of the other resins is not particularly limited, but is preferably 20% by weight or less, and more preferably 10% by weight or less, based on 100% by weight of the styrene-based resin composition.
(炭素系輻射伝熱抑制剤)
発泡性スチレン系樹脂粒子は、スチレン系樹脂組成物が炭素系輻射伝熱抑制剤を含むため、高い断熱性を有するスチレン系樹脂発泡成形体が得られる。ここで、炭素系輻射伝熱抑制剤とは、近赤外又は赤外領域(例えば、800~3000nm程度の波長域)の光を反射、散乱又は吸収する特性を有する炭素材料をいう。炭素系輻射伝熱抑制剤としては、例えば、黒鉛(グラファイト)、グラフェン、カーボンブラック、膨張黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー等が挙げられる。前記炭素系輻射伝熱抑制剤は、1種を単独で又は2種以上を組み合わせて使用できる。前記炭素系輻射伝熱抑制剤としては、スチレン系樹脂中への分散性とコストの点から、グラファイト、カーボンブラック、カーボンナノチューブ、グラフェン及び活性炭から選択される少なくとも1種の炭素系輻射伝熱抑制剤であることが好ましく、グラファイトであることがより好ましい。
(Carbon-based radiation heat transfer inhibitor)
The expandable styrene resin particles are obtained by forming a styrene resin foamed molded article having high thermal insulation properties because the styrene resin composition contains a carbon-based radiation heat transfer inhibitor. Here, the carbon-based radiation heat transfer inhibitor refers to a carbon material having the property of reflecting, scattering, or absorbing light in the near infrared or infrared region (for example, a wavelength region of about 800 to 3000 nm). Examples of the carbon-based radiation heat transfer inhibitor include graphite, graphene, carbon black, expanded graphite, activated carbon, carbon nanotubes, and carbon nanofibers. The carbon-based radiation heat transfer inhibitor can be used alone or in combination of two or more. The carbon-based radiation heat transfer inhibitor is preferably at least one carbon-based radiation heat transfer inhibitor selected from graphite, carbon black, carbon nanotubes, graphene, and activated carbon, from the viewpoints of dispersibility in the styrene resin and cost, and more preferably graphite.
グラファイトとしては、例えば、鱗片状黒鉛、土状黒鉛、球状黒鉛、人造黒鉛等が挙げられる。なお、本明細書において、「鱗片状」という用語は、鱗状、薄片状又は板状のものをも包含する。前記黒鉛は1種を単独で又は2種以上を組み合わせて使用できる。これらの中でも、輻射伝熱抑制効果が高い点から、鱗片状黒鉛又は鱗片状黒鉛を主成分とする黒鉛混合物が好ましく、鱗片状黒鉛がより好ましい。 Examples of graphite include flake graphite, earthy graphite, spherical graphite, and artificial graphite. In this specification, the term "flake" also includes scaly, flaky, or plate-like. The graphite may be used alone or in combination of two or more. Among these, flake graphite or a graphite mixture mainly composed of flake graphite is preferred, and flake graphite is more preferred, in terms of its high radiation heat transfer suppression effect.
炭素系輻射伝熱抑制剤の平均粒径は1~9μmであることが好ましく、1.5~8μmであることがより好ましく、2~7μmであることが更に好ましい。炭素系輻射伝熱抑制剤は平均粒径が小さいほど製造コストが高くなる。平均粒径1μm未満の炭素系輻射伝熱抑制剤は粉砕のコストを含む製造コストが高いため、非常に高価であり、発泡性スチレン系樹脂粒子のコストが高くなる傾向がある。一方、平均粒径が9μmを超えると、発泡性スチレン系樹脂粒子から予備発泡粒子及びスチレン系樹脂発泡成形体を製造する際にセル膜が破れやすくなるため、高発泡倍率化が難しくなったり、成形容易性が低下したり、スチレン系樹脂発泡成形体の圧縮強度が低下したりする傾向がある。本開示において、炭素系輻射伝熱抑制剤の平均粒径は、JIS Z8825-1に準拠したMie理論に基づくレーザー回折散乱法により粒度分布を測定・解析し、全粒子の体積に対する累積体積が50%になる時の粒径(D50)(レーザー回折散乱法による体積平均粒径)を意味する。 The average particle size of the carbon-based radiation heat transfer inhibitor is preferably 1 to 9 μm, more preferably 1.5 to 8 μm, and even more preferably 2 to 7 μm. The smaller the average particle size of the carbon-based radiation heat transfer inhibitor, the higher the manufacturing cost. Carbon-based radiation heat transfer inhibitors with an average particle size of less than 1 μm are very expensive due to the high manufacturing cost, including the cost of crushing, and the cost of the expandable styrene-based resin particles tends to be high. On the other hand, if the average particle size exceeds 9 μm, the cell membrane tends to break easily when producing pre-expanded particles and styrene-based resin foamed molded bodies from the expandable styrene-based resin particles, making it difficult to achieve a high expansion ratio, reducing ease of molding, and tending to reduce the compressive strength of the styrene-based resin foamed molded body. In this disclosure, the average particle size of the carbon-based radiation heat transfer inhibitor means the particle size (D50) (volume average particle size measured by the laser diffraction scattering method) when the particle size distribution is measured and analyzed by the laser diffraction scattering method based on the Mie theory in accordance with JIS Z8825-1 and the cumulative volume of the total volume of the particles is 50%.
また、炭素系輻射伝熱抑制剤の平均粒径が6.0μm以下であれば、成形体の表面美麗性に優れ、より低い熱伝導率、即ちより高い断熱性を得ることができる。 In addition, if the average particle size of the carbon-based radiation heat transfer inhibitor is 6.0 μm or less, the molded body will have excellent surface beauty and a lower thermal conductivity, i.e., higher insulation.
炭素系輻射伝熱抑制剤の含有量は特に限定されないが、スチレン系樹脂組成物100重量%において2重量%超20重量%以下であることが好ましく、3~18重量%であることがより好ましく、4~16重量%であることが更に好ましく、4.5~14重量%であることが特に好ましい。前記範囲内では目的とする発泡倍率に制御しやすいと共に、熱伝導率低減効果等のバランスに優れる傾向があるため好ましい。 The content of the carbon-based radiation heat transfer inhibitor is not particularly limited, but is preferably more than 2% by weight and not more than 20% by weight, more preferably 3 to 18% by weight, even more preferably 4 to 16% by weight, and particularly preferably 4.5 to 14% by weight, based on 100% by weight of the styrene-based resin composition. This range is preferable because it is easy to control the expansion ratio to the desired level and tends to have a good balance of thermal conductivity reduction effects, etc.
本発明の効果を損なわない範囲であれば、炭素系輻射伝熱抑制剤の他に、他の輻射伝熱抑制剤を使用してもよい。他の輻射伝熱抑制剤としては、炭素系以外の輻射伝熱抑制剤であれば特に限定されないが、例えば、アルミニウム系化合物、亜鉛系化合物、マグネシウム系化合物、チタン系化合物、熱線反射剤、硫酸金属塩、アンチモン系化合物、金属酸化物、熱線吸収剤、金属粒子等が挙げられる。 In addition to the carbon-based radiation heat transfer inhibitor, other radiation heat transfer inhibitors may be used as long as they do not impair the effects of the present invention. The other radiation heat transfer inhibitors are not particularly limited as long as they are non-carbon-based radiation heat transfer inhibitors, but examples include aluminum-based compounds, zinc-based compounds, magnesium-based compounds, titanium-based compounds, heat ray reflectors, metal sulfates, antimony-based compounds, metal oxides, heat ray absorbers, metal particles, etc.
(発泡剤)
本開示の発泡性スチレン系樹脂粒子は発泡剤を含む。また、発泡剤はイソブタンを含む。前述の特定のスチレン系樹脂を用い、発泡剤の少なくとも一部にイソブタンを含むことにより、耐熱性能に優れ、且つ高発泡倍率のスチレン系樹脂発泡成形体を得ることが可能である。
(Foaming Agent)
The expandable styrene-based resin particles of the present disclosure contain a foaming agent. The foaming agent also contains isobutane. By using the specific styrene-based resin described above and containing isobutane as at least a part of the foaming agent, it is possible to obtain a styrene-based resin foamed molded product having excellent heat resistance and a high expansion ratio.
発泡剤としては、イソブタン以外の発泡剤を含んでいてもよい。イソブタン以外の発泡剤としては、特に限定されないが、発泡性と製品ライフのバランスがよく、実際に使用する際に高倍率化しやすい観点から、炭素数3~6の炭化水素(但し、イソブタンを除く)が好ましく、炭素数4~6の炭化水素(但し、イソブタンを除く)がより好ましく、炭素数5~6の炭化水素が更に好ましい。である。発泡剤の炭素数が3以上であると揮発性が低くなり、発泡性スチレン系樹脂粒子にした場合に発泡剤が逸散しにくくなるため、実際に使用する際に発泡工程で発泡剤が十分に残り、十分な発泡力を得ることが可能となり、高倍率化が容易となるため好ましい。また、炭素数が6以下であると、発泡剤の沸点が高すぎないため、予備発泡時の加熱で十分な発泡力を得やすく、高発泡化し易い傾向となる。また、炭化水素としては、飽和炭化水素であることが、発泡力の観点から好ましい。発泡剤としては、炭素数3~6の飽和炭化水素(但し、イソブタンを除く)が好ましく、炭素数4~6の飽和炭化水素(但し、イソブタンを除く)がより好ましく、炭素数5~6の飽和炭化水素が更に好ましい。炭素数3~6の炭化水素(但し、イソブタンを除く)としては、例えばプロパン、ノルマルブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、ノルマルヘキサン、又はシクロヘキサン等の炭化水素が挙げられる。これらは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。尚、高倍率化の容易性と製品ライフのバランスから、発泡剤としては、イソブタンとイソブタン以外の発泡剤とを用いることが好ましい。発泡剤はペンタンを含むことが好ましい。また、発泡剤はイソブタンと、ノルマルブタン、イソペンタン及びノルマルペンタンからなる群より選択される少なくとも1種の発泡剤とを含有することも好ましい。発泡剤として、イソブタンと、ノルマルペンタン及びイソペンタンからなる群より選択される少なくとも1種の発泡剤とを含有することが特に好ましく、イソブタン、ノルマルペンタン、及びイソペンタンを含有することが一層好ましい。 The blowing agent may contain a blowing agent other than isobutane. The blowing agent other than isobutane is not particularly limited, but from the viewpoint of a good balance between foaming property and product life and easy high expansion when actually used, a hydrocarbon having 3 to 6 carbon atoms (excluding isobutane) is preferable, a hydrocarbon having 4 to 6 carbon atoms (excluding isobutane) is more preferable, and a hydrocarbon having 5 to 6 carbon atoms is even more preferable. If the number of carbon atoms of the blowing agent is 3 or more, the volatility is low and the blowing agent is less likely to dissipate when made into expandable styrene-based resin particles, so that when actually used, the blowing agent remains sufficiently in the expansion process, making it possible to obtain sufficient foaming power, and it is easy to increase the expansion ratio, which is preferable. In addition, if the number of carbon atoms is 6 or less, the boiling point of the blowing agent is not too high, so it is easy to obtain sufficient foaming power by heating during pre-expansion, and there is a tendency for it to be easy to increase the foaming ratio. In addition, it is preferable for the hydrocarbon to be a saturated hydrocarbon from the viewpoint of foaming power. As the blowing agent, saturated hydrocarbons having 3 to 6 carbon atoms (excluding isobutane) are preferred, saturated hydrocarbons having 4 to 6 carbon atoms (excluding isobutane) are more preferred, and saturated hydrocarbons having 5 to 6 carbon atoms are even more preferred. Examples of the hydrocarbons having 3 to 6 carbon atoms (excluding isobutane) include hydrocarbons such as propane, normal butane, normal pentane, isopentane, neopentane, cyclopentane, normal hexane, and cyclohexane. These may be used alone or in combination of two or more. From the perspective of the balance between the ease of achieving a high blowing ratio and the product life, it is preferred to use isobutane and a blowing agent other than isobutane as the blowing agent. It is preferred that the blowing agent contains pentane. It is also preferred that the blowing agent contains isobutane and at least one blowing agent selected from the group consisting of normal butane, isopentane, and normal pentane. It is particularly preferable that the blowing agent contains isobutane and at least one blowing agent selected from the group consisting of normal pentane and isopentane, and it is even more preferable that the blowing agent contains isobutane, normal pentane, and isopentane.
発泡剤中のイソブタン量としては、発泡剤100重量%中、通常は15~90重量%、好ましくは20~80重量%、より好ましくは25~70重量%である。発泡剤としてイソブタン、ノルマルペンタン、及びイソペンタンを用いることが好ましい態様であり、該態様ではイソブタンと、ペンタン(ノルマルペンタン、及びイソペンタン)との重量比(イソブタン/ペンタン)が、通常は20/80~90/10であり、好ましくは40/60~70/30であり、より好ましくは50/50~60/40である。また、ノルマルペンタンと、イソペンタンとの重量比(ノルマルペンタン/イソペンタン)としては、例えば30/70~90/10であり、好ましくは50/50~85/15である。前記範囲では発泡性スチレン系樹脂粒子の高発泡性が優れる傾向がある。 The amount of isobutane in the blowing agent is usually 15 to 90% by weight, preferably 20 to 80% by weight, and more preferably 25 to 70% by weight, based on 100% by weight of the blowing agent. In a preferred embodiment, isobutane, normal pentane, and isopentane are used as the blowing agent, and in this embodiment, the weight ratio of isobutane to pentane (normal pentane and isopentane) (isobutane/pentane) is usually 20/80 to 90/10, preferably 40/60 to 70/30, and more preferably 50/50 to 60/40. In addition, the weight ratio of normal pentane to isopentane (normal pentane/isopentane) is, for example, 30/70 to 90/10, and preferably 50/50 to 85/15. Within the above range, the expandable styrene-based resin particles tend to have excellent high expandability.
発泡剤の添加量は、スチレン系樹脂組成物100重量部に対して、1.0重量部超8.0重量部以下であることが好ましく、2.0~7.0重量部であることがより好ましく、3.0~6.0重量部であることが更に好ましく、3.5~5.5重量部であることが特に好ましい。本開示の発泡性スチレン系樹脂粒子は、スチレン系樹脂のMFRを上述の範囲に制御し、且つ発泡剤としてイソブタンを含むことにより、従来よりも相対的に発泡剤が少ない場合でも高発泡倍率のスチレン系樹脂発泡成形体を得ることができる。このためVOC削減等の環境負荷低減効果、コスト削減効果を有する。また、得られるスチレン系樹脂発泡成形体は、成形性に優れるにもかかわらず、耐熱性にも優れる。 The amount of the blowing agent added is preferably more than 1.0 part by weight and not more than 8.0 parts by weight, more preferably 2.0 to 7.0 parts by weight, even more preferably 3.0 to 6.0 parts by weight, and particularly preferably 3.5 to 5.5 parts by weight, relative to 100 parts by weight of the styrene-based resin composition. The expandable styrene-based resin particles of the present disclosure control the MFR of the styrene-based resin within the above-mentioned range and contain isobutane as a blowing agent, so that a styrene-based resin foamed molded product with a high expansion ratio can be obtained even with a relatively small amount of blowing agent compared to conventional products. This has the effect of reducing the environmental load, such as reducing VOCs, and the effect of reducing costs. In addition, the obtained styrene-based resin foamed molded product has excellent moldability and also excellent heat resistance.
(難燃剤)
難燃剤としては、特に限定されず、従来からスチレン系樹脂発泡成形体に用いられる難燃剤をいずれも使用できるが、その中でも、難燃性付与効果が高い臭素系難燃剤が好ましい。
(Flame retardant)
The flame retardant is not particularly limited, and any flame retardant conventionally used in styrene resin foam moldings can be used. Among them, bromine-based flame retardants, which have a high flame retardancy-imparting effect, are preferred.
前記臭素系難燃剤としては、例えば、2,2-ビス[4-(2,3-ジブロモ-2-メチルプロポキシ)-3,5-ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル))、又は2,2-ビス[4-(2,3-ジブロモプロポキシ)-3,5-ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル))等の臭素化ビスフェノール系化合物、臭素化スチレン・ブタジエンブロック共重合体、臭素化ランダムスチレン・ブタジエン共重合体、又は臭素化スチレン・ブタジエングラフト共重合体等の臭素化スチレン・ブタジエン共重合体が挙げられる。臭素系難燃剤としては、例えば、特表2009-516019号公報に開示されている熱安定性臭素化共重合体を用いてもよい。臭素系難燃剤は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the brominated flame retardant include brominated bisphenol compounds such as 2,2-bis[4-(2,3-dibromo-2-methylpropoxy)-3,5-dibromophenyl]propane (also known as tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether)) or 2,2-bis[4-(2,3-dibromopropoxy)-3,5-dibromophenyl]propane (also known as tetrabromobisphenol A-bis(2,3-dibromopropyl ether)), brominated styrene-butadiene copolymers such as brominated styrene-butadiene block copolymers, brominated random styrene-butadiene copolymers, and brominated styrene-butadiene graft copolymers. Examples of the brominated flame retardant include the heat-stable brominated copolymers disclosed in JP-T-2009-516019. Brominated flame retardants may be used alone or in combination of two or more.
難燃剤は、目的とする発泡倍率に制御しやすいと共に、炭素添加時の難燃性等のバランスの点から、スチレン系樹脂組成物100重量%中、難燃剤が1.0重量%超6.0重量%以下であることが好ましく、1~4重量%であることがより好ましい。含有量が1重量%超であると、難燃性付与効果が小さくならず、6.0重量%以下であると、得られるスチレン系樹脂発泡成形体の強度が低下し難い。 The flame retardant is preferably more than 1.0% by weight and not more than 6.0% by weight, more preferably 1 to 4% by weight, of 100% by weight of the styrene-based resin composition, because it is easy to control the expansion ratio to the desired value, and in terms of the balance of flame retardancy when carbon is added, etc. If the content is more than 1% by weight, the flame retardant effect is not reduced, and if it is 6.0% by weight or less, the strength of the resulting styrene-based resin foam molding is less likely to decrease.
(熱安定剤)
発泡性スチレン系樹脂粒子は、更に熱安定剤を含んでいてもよい。熱安定剤はスチレン系樹脂組成物に含まれていることが好ましい。熱安定剤を用いることにより、製造工程における難燃剤の分解による難燃性の悪化及び発泡性スチレン系樹脂粒子の劣化を抑制することができる。
(Heat stabilizer)
The expandable styrene resin particles may further contain a heat stabilizer. The heat stabilizer is preferably contained in the styrene resin composition. By using the heat stabilizer, it is possible to suppress deterioration of the flame retardancy and deterioration of the expandable styrene resin particles due to decomposition of the flame retardant during the production process.
熱安定剤は、用いられるスチレン系樹脂の種類、炭素系輻射伝熱抑制剤の種類及び含有量、難燃剤の種類及び含有量、発泡剤の種類及び含有量等に応じて、適宜組み合わせて用いることができる。 Thermal stabilizers can be used in appropriate combinations depending on the type of styrene-based resin used, the type and content of the carbon-based radiation heat transfer inhibitor, the type and content of the flame retardant, the type and content of the foaming agent, etc.
本発明で用いられる熱安定剤としては、スチレン系樹脂組成物の熱重量分析における1%重量減少温度を任意に制御できる点から、ヒンダードアミン化合物、リン系化合物、エポキシ化合物が望ましい。熱安定剤は1種を単独で又は2種以上を組み合わせて使用できる。前記ヒンダードアミン化合物としては例えば、テトラキス(2,2,6,6-テトラメチルピペリジルオキシカルボニル)ブタンが挙げられ、前記リン系化合物としては例えば、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトが挙げられる。 As the heat stabilizer used in the present invention, a hindered amine compound, a phosphorus-based compound, or an epoxy compound is preferable because it allows the 1% weight loss temperature of the styrene-based resin composition to be arbitrarily controlled in thermogravimetric analysis. The heat stabilizers can be used alone or in combination of two or more. An example of the hindered amine compound is tetrakis(2,2,6,6-tetramethylpiperidyloxycarbonyl)butane, and an example of the phosphorus-based compound is bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite.
熱安定剤は、目的とする発泡倍率に制御しやすいと共に、炭素系輻射伝熱抑制剤添加時の難燃性等のバランスの点から、スチレン系樹脂組成物100重量%中に熱安定剤は0.05~3重量%であることが好ましく、0.1~2.8重量%であることがより好ましく、0.11~2.5重量%であることが更に好ましい。0.05重量%以上であると難燃剤の分解が生じ難く、難燃性付与効果が小さくならず、3重量%以下であると得られるスチレン系樹脂発泡成形体の強度が低下し難い。 The heat stabilizer is preferably 0.05 to 3 wt %, more preferably 0.1 to 2.8 wt %, and even more preferably 0.11 to 2.5 wt % per 100 wt % styrene resin composition, because it is easy to control the expansion ratio to the desired value, and because it balances flame retardancy when a carbon-based radiation heat transfer inhibitor is added. If it is 0.05 wt % or more, the flame retardant is less likely to decompose, and the flame retardant effect is not reduced, and if it is 3 wt % or less, the strength of the resulting styrene resin foam molding is less likely to decrease.
(その他の添加剤)
前記発泡性スチレン系樹脂粒子、スチレン系樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、その他の添加剤、例えば、ラジカル発生剤、加工助剤、耐光性安定剤、造核剤、発泡助剤、帯電防止剤、顔料等の着色剤よりなる群から選ばれる1種以上のその他添加剤を含有していてもよい。
(Other additives)
The expandable styrene-based resin particles and the styrene-based resin composition may contain, as necessary, other additives, for example, one or more other additives selected from the group consisting of radical generators, processing aids, light resistance stabilizers, nucleating agents, foaming aids, antistatic agents, and colorants such as pigments, within the scope not impairing the effects of the present invention.
ラジカル発生剤としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、2,3-ジメチル-2,3-ジフェニルブタン、又はポリ-1,4-イソプロピルベンゼン等が挙げられる。 Examples of radical generators include cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and poly-1,4-isopropylbenzene.
加工助剤としては、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、又は流動パラフィン等が挙げられる。 Processing aids include sodium stearate, magnesium stearate, calcium stearate, zinc stearate, barium stearate, liquid paraffin, etc.
耐光性安定剤としては、フェノール系抗酸化剤、窒素系安定剤、イオウ系安定剤、又はベンゾトリアゾール類等が挙げられる。なお、耐光性安定剤としては、熱安定剤としても作用するもの、例えばヒンダードアミン化合物、リン系化合物、フェノール系安定剤、又はエポキシ化合物があるが、本開示において、耐光性安定剤及び熱安定剤の両方に属するものは、熱安定剤と見なす。 Examples of light resistance stabilizers include phenol-based antioxidants, nitrogen-based stabilizers, sulfur-based stabilizers, and benzotriazoles. Note that light resistance stabilizers also include those that act as heat stabilizers, such as hindered amine compounds, phosphorus-based compounds, phenol-based stabilizers, and epoxy compounds, but in this disclosure, those that belong to both light resistance stabilizers and heat stabilizers are considered to be heat stabilizers.
造核剤としては、シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、炭酸カルシウム、炭酸水素ナトリウム、若しくはタルク等の無機化合物、メタクリル酸メチル系共重合体、若しくはエチレン-酢酸ビニル共重合体樹脂等の高分子化合物、ポリエチレンワックス等のオレフィン系ワックス、又はメチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、ヘキサメチレンビスパルミチン酸アミド、若しくはエチレンビスオレイン酸アミド等の脂肪酸ビスアミド等が挙げられる。 Examples of nucleating agents include inorganic compounds such as silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, calcium carbonate, sodium hydrogen carbonate, or talc; polymeric compounds such as methyl methacrylate copolymers or ethylene-vinyl acetate copolymer resins; olefin waxes such as polyethylene wax; and fatty acid bisamides such as methylene bisstearamide, ethylene bisstearamide, hexamethylene bispalmitamide, or ethylene bisoleamide.
発泡助剤としては、大気圧下での沸点が200℃以下である溶剤を望ましく使用でき、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素、シクロヘキサン、若しくはメチルシクロヘキサン等の脂環式炭化水素、又は酢酸エチル、若しくは酢酸ブチル等の酢酸エステル等が挙げられる。 As the foaming aid, a solvent with a boiling point of 200°C or less at atmospheric pressure can be preferably used, for example, aromatic hydrocarbons such as styrene, toluene, ethylbenzene, and xylene, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, and acetates such as ethyl acetate and butyl acetate.
帯電防止剤及び着色剤としては、各種樹脂組成物に用いられるものを特に限定なく使用できる。 As antistatic agents and colorants, those used in various resin compositions can be used without any particular limitations.
これらの他の添加剤は、1種を単独で又は2種以上を組み合わせて使用できる。 These other additives can be used alone or in combination of two or more.
本発明の発泡性スチレン系樹脂粒子は、見かけ密度が950kg/m3超1200kg/m3以下であることが好ましい。発泡性の観点から、950kg/m3超であることが好ましく、1000kg/m3以上であることがより好ましい。一方、断熱性能の観点から、1170kg/m3以下であることが好ましく、1150kg/m3以下であることがより好ましく、1140kg/m3以下が特に好ましい。発泡性スチレン系樹脂粒子の見かけ密度が前記範囲内であるとスチレン系樹脂組成物及び発泡剤を含むスチレン系樹脂溶融物は押出時の発泡が抑制されていると考えられる。押出時の発泡を抑制した発泡性スチレン系樹脂粒子を得ることで、予備発泡粒子中の独立気泡率が高くなり、セル構造の強度が高くなるために、予備発泡直後の収縮を抑制することが可能となり好ましい。 The expandable styrene-based resin particles of the present invention preferably have an apparent density of more than 950 kg/m 3 and not more than 1200 kg/m 3. From the viewpoint of expandability, it is preferably more than 950 kg/m 3 , and more preferably 1000 kg/m 3 or more. On the other hand, from the viewpoint of heat insulating performance, it is preferably 1170 kg/m 3 or less, more preferably 1150 kg/m 3 or less, and particularly preferably 1140 kg/m 3 or less. When the apparent density of the expandable styrene-based resin particles is within the above range, it is considered that the expansion of the styrene-based resin melt containing the styrene-based resin composition and the foaming agent during extrusion is suppressed. By obtaining expandable styrene-based resin particles in which expansion during extrusion is suppressed, the closed cell rate in the pre-expanded particles is increased, and the strength of the cell structure is increased, which is preferable because it is possible to suppress shrinkage immediately after pre-expansion.
また、発泡性スチレン系樹脂粒子の見かけ密度が低ければ、予備発泡粒子は収縮しやすく、予備発泡直後の収縮が大きければ予備発泡粒子のセルが挫屈してしまい、高温で養生しても倍率は回復しなくなるところ、本発明の発泡性スチレン系樹脂粒子は収縮が抑制されるため、予備発泡粒子を高温で養生する必要がなくなり、養生後の倍率管理が容易となる。更に、発泡性スチレン系樹脂粒子の見かけ密度を高くすることで、発泡性スチレン系樹脂粒子のかさ密度も低くならないため、充填しやすくなるために保管時のスペースを小さくすることができる。 In addition, if the apparent density of the expandable styrene resin particles is low, the pre-expanded particles are prone to shrinkage, and if the shrinkage immediately after pre-expansion is large, the cells of the pre-expanded particles will buckle and the expansion rate will not recover even if cured at high temperatures. However, since the expandable styrene resin particles of the present invention are inhibited from shrinking, there is no need to cure the pre-expanded particles at high temperatures, and it is easy to manage the expansion rate after curing. Furthermore, by increasing the apparent density of the expandable styrene resin particles, the bulk density of the expandable styrene resin particles does not decrease, making them easier to pack and reducing the space required for storage.
本発明の発泡性スチレン系樹脂粒子において、上記発泡性スチレン系樹脂粒子を予備発泡させた予備発泡粒子のかさ倍率は70倍以上であることが好ましく、かさ倍率80倍以上がより好ましい。上記予備発泡粒子のかさ倍率が70倍以上であることで、上記予備発泡粒子を成形してなるスチレン系樹脂発泡成形体の密度が低下し、より軽量化されたスチレン系樹脂発泡成形体の作製が可能となる。また、かさ倍率を高くすることで使用する樹脂量を削減できるためコストダウンにも繋がる。 In the expandable styrene-based resin particles of the present invention, the bulk ratio of the pre-expanded particles obtained by pre-expanding the expandable styrene-based resin particles is preferably 70 times or more, and more preferably 80 times or more. When the pre-expanded particles have a bulk ratio of 70 times or more, the density of the styrene-based resin foam molded product obtained by molding the pre-expanded particles is reduced, making it possible to produce a lighter styrene-based resin foam molded product. In addition, increasing the bulk ratio allows the amount of resin used to be reduced, which also leads to cost reduction.
(発泡性スチレン系樹脂粒子の製造方法)
前記発泡性スチレン系樹脂粒子は、公知の溶融混練法で得ることができ、具体的には、スチレン系樹脂、炭素系輻射伝熱抑制剤及び発泡剤を押出機で溶融混練し(溶融混練工程)、溶融混練物を押出機先端に取り付けられた小孔を有するダイスを通じて加圧循環水で満たされたチャンバー内に押出し(押出工程)、押出直後の溶融混練物を回転カッターにより切断すると共に、加圧循環水により冷却固化する(冷却工程)ことにより製造することができる。
(Method for producing expandable styrene-based resin particles)
The expandable styrene-based resin particles can be obtained by a known melt-kneading method. Specifically, the particles can be produced by melt-kneading a styrene-based resin, a carbon-based radiation heat transfer inhibitor, and a foaming agent in an extruder (melt-kneading step), extruding the molten mixture through a die having small holes attached to the tip of the extruder into a chamber filled with pressurized circulating water (extrusion step), cutting the molten mixture immediately after extrusion with a rotating cutter, and cooling and solidifying it with pressurized circulating water (cooling step).
発泡性スチレン系樹脂粒子の製造方法としては例えば、スチレン系樹脂及び炭素系輻射伝熱抑制剤を含むスチレン系樹脂組成物を溶融混練により調製し、溶融状態のスチレン系樹脂組成物に発泡剤を添加し、更に混練を行い、スチレン系樹脂組成物及び発泡剤を含む溶融物を複数の小孔を有するダイスから加圧循環水中に押出し、回転カッターで切断して粒子化する発泡性スチレン系樹脂粒子の製造方法が挙げられる。スチレン系樹脂の種類や量、炭素系輻射伝熱抑制剤の種類や量、発泡剤の種類や量、その他添加剤については上述の記載に基づき、適宜設定することができる。 One example of a method for producing expandable styrene-based resin particles is a method for producing expandable styrene-based resin particles, which comprises preparing a styrene-based resin composition containing a styrene-based resin and a carbon-based radiation heat transfer inhibitor by melt kneading, adding a blowing agent to the molten styrene-based resin composition, further kneading, extruding the molten material containing the styrene-based resin composition and the blowing agent through a die having multiple small holes into pressurized circulating water, and cutting the material into particles with a rotary cutter. The type and amount of the styrene-based resin, the type and amount of the carbon-based radiation heat transfer inhibitor, the type and amount of the blowing agent, and other additives can be appropriately set based on the above description.
前記製造方法においては、スチレン系樹脂と各種成分との分散性の観点から、予め、二軸の攪拌機を備えた(例えばバンバリーミキサー等)混練装置等を用いて、スチレン系樹脂の一部と各種成分とを荷重をかけて混練し、マスターバッチ等の混練物を作製し、得られた混練物と、新たなスチレン系樹脂及び他の成分とを押出機に投入して溶融混練した後、粒子状に切断することが好ましい態様の一つである。 In the above-mentioned manufacturing method, from the viewpoint of dispersibility between the styrene resin and the various components, a preferred embodiment is to first use a kneading device equipped with a twin-shaft agitator (such as a Banbury mixer) to knead a portion of the styrene resin with the various components under load to produce a kneaded product such as a master batch, and then feed the resulting kneaded product together with new styrene resin and other components into an extruder to melt-knead and then cut into particles.
前記製造製法の好ましい一形態としては、スチレン系樹脂及び炭素系輻射伝熱抑制剤を、例えばバンバリーミキサー等の二軸の攪拌機を備えた混練装置等により混練してマスターバッチを作製し、作製したマスターバッチと、新たなスチレン系樹脂と、必要に応じて難燃剤等のその他の成分とを押出機で溶融混練し、次いで発泡剤を加え、得られた樹脂溶融物を押出機先端に取り付けられた小孔を有するダイスを通して加圧循環水で満たされたカッターチャンバー内に押出し、押出直後から回転カッターにより切断すると共に、加圧循環水により冷却固化する。 In one preferred embodiment of the above manufacturing method, a styrene-based resin and a carbon-based radiation heat transfer inhibitor are kneaded in a kneading device equipped with a two-shaft agitator such as a Banbury mixer to prepare a master batch, and the master batch thus prepared is melt-kneaded with new styrene-based resin and, if necessary, other components such as a flame retardant in an extruder, and then a foaming agent is added. The resulting molten resin is extruded through a die with small holes attached to the tip of the extruder into a cutter chamber filled with pressurized circulating water, and immediately after extrusion, it is cut with a rotating cutter and cooled and solidified by the pressurized circulating water.
前記製造製法の別の好ましい一形態としては、スチレン系樹脂及び炭素系輻射伝熱抑制剤を、例えばバンバリーミキサー等の二軸の攪拌機を備えた混練装置等により混練してマスターバッチを作製し、更にスチレン系樹脂、難燃剤、及び熱安定剤を、例えばバンバリーミキサー等の二軸の攪拌機を備えた混練装置等により混練して別のマスターバッチを作製し、作製した二種のマスターバッチと、新たなスチレン系樹脂と、必要に応じてその他の成分とを押出機で溶融混練し、次いで発泡剤を加え、得られた樹脂溶融物を押出機先端に取り付けられた小孔を有するダイスを通して加圧循環水で満たされたカッターチャンバー内に押出し、押出直後から回転カッターにより切断すると共に、加圧循環水により冷却固化する。 In another preferred embodiment of the above manufacturing method, a styrene-based resin and a carbon-based radiation heat transfer inhibitor are mixed in a mixer equipped with a twin-shaft agitator such as a Banbury mixer to prepare a master batch, and a styrene-based resin, a flame retardant, and a heat stabilizer are mixed in a mixer equipped with a twin-shaft agitator such as a Banbury mixer to prepare another master batch. The two master batches prepared are melt-mixed in an extruder with a new styrene-based resin and, if necessary, other components. A foaming agent is then added, and the resulting resin melt is extruded through a die with small holes attached to the tip of the extruder into a cutter chamber filled with pressurized circulating water, and immediately after extrusion, it is cut with a rotating cutter and cooled and solidified by the pressurized circulating water.
前記製造製法では、押出機での溶融混練は単独の押出機を使用する場合、押出機を複数連結する場合、押出機とスタティックミキサーやスクリューを有さない攪拌機など第二の混練装置とを併用する場合があり、適宜選択することができる。 In the above manufacturing method, the melt kneading in the extruder may be performed using a single extruder, multiple extruders may be connected, or an extruder may be used in combination with a second kneading device such as a static mixer or a stirrer without a screw, and can be selected as appropriate.
二種以上の発泡剤を併用する場合、各発泡剤が添加されればその添加方法は特に限定されず、添加は同時に添加してもよいし、二回以上に分けて添加してもよい。 When two or more types of blowing agents are used in combination, the method of addition is not particularly limited as long as each blowing agent is added, and the agents may be added simultaneously or in two or more portions.
(予備発泡粒子及びスチレン系樹脂発泡成形体)
発泡性スチレン系樹脂粒子を用いて、スチレン系樹脂発泡成形体を得ることができる。スチレン系樹脂発泡成形体を得るために、発泡性スチレン系樹脂粒子は、予備発泡されたのち、型内発泡成形が行われてもよい。なお、予備発泡された粒子を、予備発泡粒子とも記す。すなわち、本開示には、前述の発泡性スチレン系樹脂粒子を発泡してなるスチレン系樹脂の予備発泡粒子及び、前記スチレン系樹脂の予備発泡粒子を成形してなるスチレン系樹脂の発泡成形体が含まれる。
(Pre-expanded particles and styrene-based resin foamed molded products)
A styrene-based resin foamed molded article can be obtained by using the expandable styrene-based resin particles. In order to obtain a styrene-based resin foamed molded article, the expandable styrene-based resin particles may be pre-expanded and then foamed in a mold. The pre-expanded particles are also referred to as pre-expanded particles. That is, the present disclosure includes pre-expanded particles of a styrene-based resin obtained by expanding the expandable styrene-based resin particles described above, and a foamed molded article of a styrene-based resin obtained by molding the pre-expanded particles of a styrene-based resin.
発泡性スチレン系樹脂粒子は、従来公知の予備発泡工程、例えば、加熱水蒸気によって10~110倍に発泡させて予備発泡粒子とし、必要に応じて一定時間養生させた後、成形に使用することができる。発泡倍率は50倍以上が好ましく、70倍以上がより好ましい。得られた予備発泡粒子は、例えば、従来公知の成形機を用い、水蒸気によって成形(例えば型内成形)されてスチレン系樹脂発泡成形体が作製される。使用される金型の形状により、複雑な形の型物成形体やブロック状の成形体を得ることができる。 The expandable styrene resin particles can be expanded 10 to 110 times using a conventional pre-expanding process, for example, with heated steam to form pre-expanded particles, which can then be used for molding after being cured for a certain period of time as necessary. The expansion ratio is preferably 50 times or more, and more preferably 70 times or more. The obtained pre-expanded particles can be molded (for example, molded in a mold) with steam using a conventional molding machine to produce a styrene resin foam molded article. Depending on the shape of the mold used, it is possible to obtain molded articles with complex shapes or block-shaped molded articles.
前記発泡性スチレン系樹脂粒子は高発泡倍率のスチレン系樹脂発泡成形体に成形することができる。発泡成形体の発泡倍率は、40倍以上が好ましく、60倍以上がより好ましく、70倍以上が更に好ましく、80倍以上が特に好ましい。前記発泡性スチレン系樹脂粒子によれば、発泡剤量が従来よりも少ない場合でも発泡成形体の高発泡化が可能である。 The expandable styrene resin particles can be molded into a styrene resin foamed molded article with a high expansion ratio. The expansion ratio of the foamed molded article is preferably 40 times or more, more preferably 60 times or more, even more preferably 70 times or more, and particularly preferably 80 times or more. The expandable styrene resin particles make it possible to achieve high expansion of the foamed molded article even when the amount of blowing agent is less than that of the conventional method.
断熱材については、長期間使用されるため、長期間経過後の断熱性能の維持が重要な課題である。本発明に係るスチレン系樹脂組成物及び発泡性スチレン系樹脂粒子で成形されるスチレン系樹脂発泡成形体については、スチレン系樹脂発泡成形体から熱伝導率測定サンプルを切り出し、サンプルを70℃条件で35日間アニーリングし、更に23℃条件下にて24時間静置した後においても、低い熱伝導率を達成できる。70℃で35日間アニーリングすることにより、スチレン系樹脂発泡成形体中に含有されるブタン、ペンタン等の炭化水素系発泡剤の含有量は1.0%以下となっており、当該発泡剤が熱伝導率に与える影響は軽微となり、スチレン系樹脂発泡成形体を常温で長期間使用した場合の熱伝導率として評価することができる。 For insulation materials, since they are used for a long period of time, maintaining the insulation performance after a long period of time is an important issue. For the styrene-based resin foam molded body molded with the styrene-based resin composition and expandable styrene-based resin particles according to the present invention, a sample for measuring thermal conductivity is cut out from the styrene-based resin foam molded body, the sample is annealed at 70°C for 35 days, and even after being left to stand for 24 hours at 23°C, a low thermal conductivity can be achieved. By annealing at 70°C for 35 days, the content of hydrocarbon-based blowing agents such as butane and pentane contained in the styrene-based resin foam molded body is 1.0% or less, and the effect of the blowing agent on the thermal conductivity is negligible, and the thermal conductivity of the styrene-based resin foam molded body when used for a long period of time at room temperature can be evaluated.
前記発泡性スチレン系樹脂粒子を発泡倍率80倍の発泡成形体とした時に、前記80倍発泡成形体を70℃温度下で35日間静置し、更に23℃の温度下にて24時間静置した後、JIS A9511:2006R準拠で測定した23℃での熱伝導率が、0.034W/mK以下であることが好ましい。即ち、0.034W/mK以下であれば、長期にわたって非常に低い熱伝導率ひいては高い断熱性を維持することができると言える。より好ましくは0.033W/mK以下であり、更に好ましくは0.032W/mK以下である。 When the expandable styrene resin particles are used to produce an expanded molded product with an expansion ratio of 80 times, the 80-fold expanded molded product is allowed to stand at 70°C for 35 days, and then allowed to stand at 23°C for 24 hours. The thermal conductivity at 23°C measured according to JIS A9511:2006R is preferably 0.034 W/mK or less. In other words, if the thermal conductivity is 0.034 W/mK or less, it can be said that a very low thermal conductivity and therefore high thermal insulation can be maintained for a long period of time. It is more preferably 0.033 W/mK or less, and even more preferably 0.032 W/mK or less.
なお、本明細書において、発泡倍率を「倍」又は「cm3/g」という単位で示すがこれらは互いに同じ意味である。 In this specification, the expansion ratio is expressed in units of "times" or "cm 3 /g", but these have the same meaning.
予備発泡粒子及びそのスチレン系樹脂発泡成形体は、平均セル径が、好ましくは70~300μm、より好ましくは90~250μm、更に好ましくは100~200μmである。平均セル径が前述の範囲にあることによって、断熱性のより高いスチレン系樹脂発泡成形体となる。平均セル径が70μm以上であると、発泡倍率の高倍化が容易となる傾向にあり、また、300μm以下であると、熱伝導率が増加、即ち断熱性能が悪化するのを避けることができる。 The pre-expanded particles and the resulting styrene-based resin foamed molded product preferably have an average cell diameter of 70 to 300 μm, more preferably 90 to 250 μm, and even more preferably 100 to 200 μm. By having an average cell diameter within the aforementioned range, a styrene-based resin foamed molded product with higher thermal insulation properties is obtained. If the average cell diameter is 70 μm or more, it tends to be easier to increase the expansion ratio, and if it is 300 μm or less, an increase in thermal conductivity, i.e., a deterioration in thermal insulation performance, can be avoided.
(発泡成形体の用途)
発泡性スチレン系樹脂粒子を用いて成形される発泡成形体は、表面美麗性に優れるとともに、高発泡倍率及び高独立気泡率であり、低熱伝導率であり、熱伝導率の経時的な上昇が顕著に抑制され、かつ、断熱性が長期的に高い。従って、例えば、建築用断熱材、食品容器箱、保冷箱、緩衝材、農水産箱、浴室用断熱材及び貯湯タンク断熱材のような各種用途に好適である。
(Applications of foamed molded products)
The foamed molded article made by using the expandable styrene-based resin particles has excellent surface beauty, a high expansion ratio, a high closed cell ratio, low thermal conductivity, a significant suppression of the increase in thermal conductivity over time, and high long-term heat insulation, and is therefore suitable for various applications such as building insulation materials, food container boxes, cold storage boxes, cushioning materials, agricultural and fishery boxes, bathroom insulation materials, and hot water tank insulation materials.
なお、本開示の発泡性スチレン系樹脂粒子の製造条件、得られた物の物性の測定方法は、本明細書に開示に加えて、特開2019-65073号公報を適宜参照して実施することができる。 The manufacturing conditions for the expandable styrene-based resin particles disclosed herein and the method for measuring the physical properties of the resulting product can be carried out by appropriately referring to JP 2019-65073 A in addition to those disclosed in this specification.
以下、実施例を挙げて本実施形態を説明するが、本開示はこれらの例によって限定されるものではない。 The present embodiment will be described below with reference to examples, but the present disclosure is not limited to these examples.
以下の実施例及び比較例における各物性の測定方法及び評価方法は、以下のとおりである。 The methods for measuring and evaluating the various physical properties in the following examples and comparative examples are as follows:
(スチレン系樹脂のメルトフローレート(MFR)の測定方法)
スチレン系樹脂のメルトフローレートは、JIS K7210「プラスチック-熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の求め方」B法記載の方法に準拠し測定した。より詳しくは、安田精機製作所の「半自動メルトフローインデックステスター」を用い、試験温度200℃、荷重5.0kgの測定条件下でスチレン系樹脂(スチレン系樹脂ペレット)のメルトフローレートを測定した。
(Method of measuring melt flow rate (MFR) of styrene-based resin)
The melt flow rate of the styrene resin was measured in accordance with the method described in JIS K7210 "Plastics - Determination of melt mass flow rate (MFR) and melt volume flow rate (MVR) of thermoplastics" Method B. More specifically, the melt flow rate of the styrene resin (styrene resin pellets) was measured using a "semi-automatic melt flow index tester" manufactured by Yasuda Seiki Seisakusho under the measurement conditions of a test temperature of 200°C and a load of 5.0 kg.
(発泡性スチレン系樹脂粒子の見かけ密度測定方法)
発泡性スチレン系樹脂粒子を測定試料としてW(kg)採取し、この測定試料をエタノールが入ったメスシリンダー内に自然落下させ、その質量(kg)と体積(m3)を測定し、以下の式に基づき、見かけ密度を測定した。
見かけ密度(kg/m3)=測定試料の重量(W)/測定試料の体積(V)
(Method for measuring apparent density of expandable styrene-based resin particles)
The expandable styrene-based resin particles were collected as a measurement sample of W (kg), and the measurement sample was allowed to fall naturally into a measuring cylinder containing ethanol. The mass (kg) and volume (m 3 ) of the measurement sample were measured, and the apparent density was calculated based on the following formula:
Apparent density (kg/m 3 )=weight of measurement sample (W)/volume of measurement sample (V)
(予備発泡粒子のかさ倍率測定方法)
予備発泡粒子を測定試料としてW(g)採取し、この測定試料をメスシリンダー内に自然落下させた後にメスシリンダーを叩き、試料の見掛け体積V(cm3)を一定とし、その質量(g)と体積(cm3)を測定し、以下の式に基づき、かさ倍率を測定した。
かさ倍率(cm3/g)=測定試料の体積(V)/測定試料の重量(W)
(Method for measuring bulk magnification of pre-expanded particles)
A measurement sample of W (g) was taken from the pre-expanded particles, and this measurement sample was allowed to fall naturally into a measuring cylinder, and the measuring cylinder was then tapped to keep the apparent volume V ( cm3 ) of the sample constant. The mass (g) and volume ( cm3 ) of the sample were then measured, and the bulk ratio was calculated based on the following formula:
Bulk ratio (cm 3 /g)=volume of measurement sample (V)/weight of measurement sample (W)
(スチレン系樹脂発泡成形体の発泡倍率)
成型金型から取り出したスチレン系樹脂発泡成形体を30℃で24時間乾燥させた後、発泡成形体の重量(g)を測定すると共に、ノギスを用いて、縦寸法、横寸法、厚さ寸法を測定した。測定された各寸法からスチレン系樹脂発泡成形体の体積(cm3)を計算し、下記計算式に従って発泡倍率を算出した。
発泡倍率(cm3/g)=試験片体積(cm3)/試験片重量(g)
なお、スチレン系樹脂発泡成形体の発泡倍率「倍」は慣習的に「cm3/g」でも表されている。
(Expansion ratio of styrene-based resin foamed molding)
The styrene-based resin foam molded article was removed from the mold and dried at 30° C. for 24 hours, after which the weight (g) of the foam molded article was measured, and the length, width, and thickness were measured using a vernier caliper. The volume (cm 3 ) of the styrene-based resin foam molded article was calculated from each of the measured dimensions, and the expansion ratio was calculated according to the following formula.
Expansion ratio (cm 3 /g)=test piece volume (cm 3 )/test piece weight (g)
The expansion ratio "times" of the styrene-based resin foamed molded article is customarily expressed in "cm 3 /g".
(スチレン系樹脂発泡成形体の熱伝導率の測定方法)
一般的に熱伝導率の測定平均温度が大きい方が熱伝導率の値は大きくなることが知られており、断熱性を比較するためには測定平均温度を定める必要がある。本明細書では発泡プラスチック保温材の規格であるJIS A9511:2006Rで定められた23℃を基準に採用した。熱伝導率は、スチレン系樹脂発泡成形体を70℃温度下で35日間静置した後に、熱伝導率測定用サンプルを切り出し、更に23℃の温度下にて24時間静置した後に測定した。
(Method of measuring thermal conductivity of styrene-based resin foam molded products)
It is generally known that the higher the average temperature at which thermal conductivity is measured, the higher the thermal conductivity value, and it is necessary to determine the average temperature at which thermal conductivity is measured in order to compare thermal insulation. In this specification, the standard temperature of 23°C, which is set by JIS A9511:2006R, which is a standard for foamed plastic insulation materials, is adopted. The thermal conductivity was measured after leaving the styrene-based resin foamed molded body at 70°C for 35 days, cutting out a sample for measuring thermal conductivity, and leaving it at 23°C for 24 hours.
より詳しくは、スチレン系樹脂発泡成形体を70℃温度下にて35日間静置した後、長さ300mm×幅300mm×25mmのサンプルを切り出した。更に、サンプルを23℃温度下にて24時間静置した後、熱伝導率測定装置(英弘精機(株)製、HC-074)を用いて、JIS A1412-2:1999に準拠して熱流計法にて平均温度23℃、温度差20℃で熱伝導率を測定した。 More specifically, the styrene-based resin foam molded body was left to stand at 70°C for 35 days, and then a sample of 300 mm length x 300 mm width x 25 mm was cut out. The sample was then left to stand at 23°C for 24 hours, and the thermal conductivity was measured using a thermal conductivity measuring device (HC-074, manufactured by Eiko Seiki Co., Ltd.) at an average temperature of 23°C and a temperature difference of 20°C by the heat flow meter method in accordance with JIS A1412-2:1999.
(スチレン系樹脂発泡成形体の表面性評価)
得られたスチレン系樹脂発泡成形体の表面性を目視で300mm×300mmの視野を観察し、下記判断指標で評価した。
AA:成形体表面に陥没が見られる発泡粒子が100個以下である。
BB:成形体表面に陥没が見られる発泡粒子が100個超である。
(Evaluation of surface properties of styrene-based resin foam molded articles)
The surface properties of the obtained styrene-based resin foam molded articles were visually observed in a field of 300 mm×300 mm and evaluated according to the following criteria.
AA: The number of foamed beads with depressions on the surface of the molded article is 100 or less.
BB: More than 100 foamed beads have depressions on the surface of the molded article.
(スチレン系樹脂発泡成形体の高温時の寸法変化率評価)
本明細書での高温時の寸法変化率は、JIS K6767で定められた高温時の寸法安定性のB法に準拠し測定した値である。より詳しくは、縦150mm×横150mm×25mmのサンプルを切り出し、サンプルを23℃温度下にて24時間静置した後、縦及び横方向にそれぞれ互いに平行に3本の直線を50mm間隔でサンプルに記入した。縦及び横方向について、それぞれ3本の線の長さを測定し、その平均値を初めの寸法(L1)とした。そのサンプルを80℃温度下にて22時間加熱した後に、取り出し、23℃温度下にて1時間静置後に、縦及び横方向について、それぞれ3本の線の長さを測定し、その平均値を加熱後の寸法(L2)とした。下記計算式に従って寸法変化率を算出した。
寸法変化率(%)=(L2(mm)-L1(mm))/(L1(mm))×100
(Evaluation of dimensional change rate of styrene-based resin foam molded body at high temperatures)
The dimensional change rate at high temperature in this specification is a value measured in accordance with the B method of dimensional stability at high temperature specified in JIS K6767. More specifically, a sample of 150 mm length x 150 mm width x 25 mm length was cut out, and the sample was left at 23°C for 24 hours, and then three straight lines were drawn on the sample in parallel in the vertical and horizontal directions at 50 mm intervals. The lengths of the three lines were measured in the vertical and horizontal directions, and the average value was taken as the initial dimension (L1). The sample was heated at 80°C for 22 hours, removed, and left at 23°C for 1 hour, and then the lengths of the three lines were measured in the vertical and horizontal directions, and the average value was taken as the dimension after heating (L2). The dimensional change rate was calculated according to the following calculation formula.
Dimensional change rate (%) = (L2 (mm) - L1 (mm)) / (L1 (mm)) x 100
(スチレン系樹脂発泡成形体の耐熱性能評価)
前述の高温時の寸法変化率の評価から、以下の判断基準に基づき、スチレン系樹脂発泡成形体の耐熱性能を評価した。
AA:寸法変化率が-3.0%超+3.0%以下
BB:寸法変化率が-3.0%以下若しくは+3.0%超
(Evaluation of heat resistance of styrene-based resin foam molded bodies)
From the above-mentioned evaluation of the dimensional change rate at high temperatures, the heat resistance performance of the styrene-based resin foam molded article was evaluated based on the following criteria.
AA: Dimensional change rate is more than -3.0% and less than +3.0% BB: Dimensional change rate is less than -3.0% or more than +3.0%
以下に、実施例及び比較例で用いた原材料を示す。 The raw materials used in the examples and comparative examples are listed below.
(スチレン系樹脂)
(A1)スチレンホモポリマー[PSジャパン(株)製、680](MFR:7.0g/10分)
(A2)スチレンホモポリマー[PSジャパン(株)製、679](MFR:18.0g/10分)
(炭素系輻射伝熱抑制剤)
(B)グラファイト[(株)丸豊鋳材製作所製、鱗片状黒鉛SGP-40B]
(styrene resin)
(A1) Styrene homopolymer [manufactured by PS Japan Co., Ltd., 680] (MFR: 7.0 g/10 min)
(A2) Styrene homopolymer [manufactured by PS Japan Co., Ltd., 679] (MFR: 18.0 g/10 min)
(Carbon-based radiation heat transfer inhibitor)
(B) Graphite [flake graphite SGP-40B, manufactured by Marutoyo Foundry Co., Ltd.]
(臭素系難燃剤)
(C)2,2-ビス[4-(2,3-ジブロモ-2-メチルプロポキシ)-3,5-ジブロモフェニル]プロパン[第一工業製薬(株)製、SR-130、臭素含有量=66重量%]
(熱安定剤)
(D1)テトラキス(2,2,6,6-テトラメチルピペリジルオキシカルボニル)ブタン[(株)ADEKA製 LA-57]
(D2)ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト[(株)ADEKA製 PEP-36]
(Brominated flame retardants)
(C) 2,2-bis[4-(2,3-dibromo-2-methylpropoxy)-3,5-dibromophenyl]propane [manufactured by Daiichi Kogyo Seiyaku Co., Ltd., SR-130, bromine content = 66% by weight]
(Heat stabilizer)
(D1) Tetrakis(2,2,6,6-tetramethylpiperidyloxycarbonyl)butane [LA-57, manufactured by ADEKA Corporation]
(D2) Bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite [PEP-36, manufactured by ADEKA Corporation]
(発泡剤)
(E1)ノルマルペンタン[富士フイルム和光純薬(株)製、試薬品]
(E2)イソペンタン[富士フイルム和光純薬(株)製、試薬品]
(E3)イソブタン[三井化学(株)製]
(その他添加剤)
(F)エチレンビスステアリン酸アミド[日油(株)製、アルフローH-50S]
(Foaming Agent)
(E1) Normal pentane [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., reagent product]
(E2) Isopentane [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., reagent product]
(E3) Isobutane [manufactured by Mitsui Chemicals, Inc.]
(Other additives)
(F) Ethylene bis stearic acid amide [NOF Corporation, Alflow H-50S]
(製造例1)(グラファイトマスターバッチ(G))
バンバリーミキサーに、スチレン系樹脂(A1)49重量%、グラファイト(B)50重量%、エチレンビスステアリン酸アミド(F)1重量%の全重量(A1+B+F)が100重量%となる様に原料投入して、5kgf/cm2の荷重をかけた状態で加温冷却を行わずに20分間混練した。この際、樹脂温度を測定したところ180℃であった。ルーダーに供給して先端に取り付けられた小穴を有するダイスを通して吐出250kg/hrで押出されたストランド状の樹脂を30℃の水槽で冷却固化させた後、切断してマスターバッチ(G)を得た。マスターバッチ(G)中のグラファイト含有量は50重量%であった。
(Production Example 1) (Graphite Masterbatch (G))
The raw materials were charged into a Banbury mixer so that the total weight (A1+B+F) of 49% by weight of styrene resin (A1), 50% by weight of graphite (B), and 1% by weight of ethylene bisstearic acid amide (F) was 100% by weight, and kneaded for 20 minutes without heating or cooling under a load of 5 kgf/ cm2 . At this time, the resin temperature was measured to be 180°C. The strand-shaped resin was fed to a ruder and extruded at 250 kg/hr through a die with small holes attached to the tip, cooled and solidified in a water tank at 30°C, and then cut to obtain a master batch (G). The graphite content in the master batch (G) was 50% by weight.
(製造例2)(臭素系難燃剤と熱安定剤との混合物のマスターバッチ(H))
二軸押出機に、スチレン系樹脂(A1)を供給して溶融混練した後、押出機途中より臭素系難燃剤(C)、熱安定剤(D1)及び(D2)の混合物を供給して、更に溶融混練した。ただし、各材料の重量比率は、(A1):(C):(D1):(D2)=70:28.5:0.6:0.9、(A1)+(C)+(D1)+(D2)=100重量%とした。押出機先端に取り付けられた小穴を有するダイスを通して、吐出300kg/hrで押出されたストランド状の樹脂を20℃の水槽で冷却固化させた後、切断して臭素系難燃剤と熱安定剤との混合物のマスターバッチ(H)を得た。このとき押出機の設定温度は170℃で実施した。
(Production Example 2) (Masterbatch (H) of a mixture of a brominated flame retardant and a heat stabilizer)
A styrene-based resin (A1) was fed into a twin-screw extruder and melt-kneaded, and then a mixture of a brominated flame retardant (C), a heat stabilizer (D1) and (D2) was fed from the middle of the extruder and further melt-kneaded. However, the weight ratio of each material was (A1): (C): (D1): (D2) = 70: 28.5: 0.6: 0.9, (A1) + (C) + (D1) + (D2) = 100 wt%. A strand-shaped resin extruded at 300 kg/hr through a die with small holes attached to the tip of the extruder was cooled and solidified in a water tank at 20 ° C., and then cut to obtain a master batch (H) of a mixture of a brominated flame retardant and a heat stabilizer. The extruder was set at a temperature of 170 ° C.
(実施例1)
[スチレン系樹脂ペレットの作製]
スチレン系樹脂(A1)、スチレン系樹脂(A2)をミキサーで均一にブレンドし、口径26mmの同方向2軸押出機にて溶融混練し、押出機先端に取り付けられたダイスを通じてストランド状とし、水槽で冷却固化させた後、ストランドカッターで裁断し、スチレン系樹脂ペレットを得た。尚、(A1):(A2)=80:20の重量比率で、供給量を合計5kg/hとした。得られたスチレン系樹脂ペレットのMFRは9.2(g/10分)であった。
Example 1
[Preparation of styrene-based resin pellets]
The styrene resin (A1) and the styrene resin (A2) were uniformly blended in a mixer, melt-kneaded in a 26 mm diameter unidirectional twin-screw extruder, and then extruded into strands through a die attached to the extruder tip, cooled and solidified in a water tank, and then cut with a strand cutter to obtain styrene resin pellets. The weight ratio of (A1):(A2) was 80:20, and the total supply amount was 5 kg/h. The MFR of the obtained styrene resin pellets was 9.2 (g/10 min).
[発泡性スチレン系樹脂粒子の作製]
スチレン系樹脂(A1)とスチレン系樹脂(A2)をミキサーで均一にブレンドした混合物、グラファイトマスターバッチ(G)、臭素系難燃剤と熱安定剤との混合物のマスターバッチ(H)をそれぞれフィーダーにて、口径40mmの同方向2軸押出機(第1押出機)と口径90mmの単軸押出機(第2押出機)を直列に連結したタンデム型二段押出機へ供給し、口径40mm押出機の設定温度190℃、回転数167rpmにて溶融混練した。尚、(A1):(A2):(G):(H)=54.2:17.5:20:8.3の重量比率で、供給量を合計55.7kg/hとした。口径40mm押出機(第1押出機)の途中から、上記樹脂混合物の溶融物(樹脂組成物)100重量部に対して、混合ペンタン[ノルマルペンタン(E1)80重量%とイソペンタン(E2)20重量%の混合物]を1.8重量部の割合で圧入し、上記樹脂組成物100重量部に対して、イソブタン(E3)を2.4重量部圧入し、合計4.2重量部の発泡剤を添加した。その後、200℃に設定された継続管を通じて、口径90mm押出機(第2押出機)に供給した。
[Preparation of expandable styrene-based resin particles]
A mixture of styrene-based resin (A1) and styrene-based resin (A2) uniformly blended with a mixer, a graphite masterbatch (G), and a masterbatch (H) of a mixture of a bromine-based flame retardant and a heat stabilizer were fed to a tandem-type two-stage extruder in which a 40 mm diameter twin-screw extruder (first extruder) and a 90 mm diameter single-screw extruder (second extruder) were connected in series, and melt-kneaded at a set temperature of 190° C. and a rotation speed of 167 rpm for the 40 mm diameter extruder. The weight ratio of (A1):(A2):(G):(H)=54.2:17.5:20:8.3, and the total feed amount was 55.7 kg/h. From the middle of the 40 mm diameter extruder (first extruder), mixed pentane [a mixture of 80% by weight of normal pentane (E1) and 20% by weight of isopentane (E2)] was injected at a ratio of 1.8 parts by weight per 100 parts by weight of the melt of the resin mixture (resin composition), and 2.4 parts by weight of isobutane (E3) was injected per 100 parts by weight of the resin composition, adding a total of 4.2 parts by weight of a foaming agent. Then, the mixture was supplied to a 90 mm diameter extruder (second extruder) through a continuation pipe set at 200°C.
口径90mm押出機(第2押出機)にて樹脂温度を170℃まで溶融樹脂を冷却した後、260℃に設定した第2押出機の先端に取り付けられた直径0.75mm、ランド長5.0mmの小孔を40個有するダイスから、温度70℃及び1.3MPaの加圧循環水中に押出した。押出された溶融樹脂は、ダイスに接触する6枚の刃を有する回転カッターを用いて、切断・小粒化され、遠心脱水機に移送されて、発泡性スチレン系樹脂粒子を得た。このとき、第1押出機の滞留時間は2分、第2押出機の滞留時間は5分であった。 The molten resin was cooled to a resin temperature of 170°C using a 90 mm diameter extruder (second extruder), and then extruded from a die with 40 small holes, each with a diameter of 0.75 mm and a land length of 5.0 mm, attached to the tip of the second extruder set at 260°C into pressurized circulating water at a temperature of 70°C and a pressure of 1.3 MPa. The extruded molten resin was cut and granulated using a rotating cutter with six blades that contacted the die, and transferred to a centrifugal dehydrator to obtain expandable styrene-based resin particles. At this time, the residence time in the first extruder was 2 minutes, and the residence time in the second extruder was 5 minutes.
前記樹脂組成物中の(A1):(A2)の重量比率は、マスターバッチ(G)及び(H)に含まれるスチレン系樹脂(A1)を考慮すると54.2+20×0.49+8.3×0.7:17.5≒80:20である。このため、前記スチレン系樹脂ペレットのMFRは、樹脂組成物中のスチレン系樹脂のMFRと同様と見なすことができる。同様に、他の実施例、比較例におけるスチレン系樹脂ペレットのMFRは、各樹脂組成物中のスチレン系樹脂のMFRと同様と見なすことができる。 The weight ratio of (A1):(A2) in the resin composition is 54.2 + 20 x 0.49 + 8.3 x 0.7:17.5 ≒ 80:20, taking into account the styrene-based resin (A1) contained in masterbatches (G) and (H). Therefore, the MFR of the styrene-based resin pellets can be considered to be the same as the MFR of the styrene-based resin in the resin composition. Similarly, the MFR of the styrene-based resin pellets in the other examples and comparative examples can be considered to be the same as the MFR of the styrene-based resin in each resin composition.
[予備発泡粒子の作製]
得られた発泡性スチレン系樹脂粒子を、15℃で1週間以上保管した後に発泡性スチレン系樹脂粒子に外添剤であるステアリン酸亜鉛を0.04重量部、ヒドロキシステアリン酸トリグリセライドを0.1重量部ドライブレンドした。前記外添剤を含む発泡性スチレン系樹脂粒子270gを予備発泡機[大開工業株式会社製バッチ式予備発泡機]に投入し、缶内圧力設定を0.015MPa~0.025MPaとし、0.12MPaの水蒸気を予備発泡機に導入して、かさ倍率80倍に発泡させ、予備発泡粒子を得た。得られた予備発泡粒子の発泡倍率は、82倍であった。
[Preparation of pre-expanded particles]
The obtained expandable styrene resin particles were stored at 15°C for one week or more, and then 0.04 parts by weight of zinc stearate and 0.1 parts by weight of hydroxystearic acid triglyceride, which are external additives, were dry-blended with the expandable styrene resin particles. 270 g of the expandable styrene resin particles containing the external additives were placed in a pre-expander [batch-type pre-expander manufactured by Daikai Kogyo Co., Ltd.], the pressure inside the can was set to 0.015 MPa to 0.025 MPa, and 0.12 MPa of steam was introduced into the pre-expander to expand the particles to a bulk ratio of 80 times, thereby obtaining pre-expanded particles. The expansion ratio of the obtained pre-expanded particles was 82 times.
[スチレン系樹脂発泡成形体の作製]
得られた予備発泡粒子を30℃で24時間養生させた後に、発泡スチロール用成形機[ダイセン工業(株)製、KR-57]に取り付けた型内成形用金型(長さ400mm×幅400mm×厚み25mm)内に充填して、0.05MPaの水蒸気を導入して型内発泡させた後、金型に水を噴霧して冷却した。スチレン系樹脂発泡成形体が金型を押す圧力が0.01MPa(ゲージ圧力)になるまでスチレン系樹脂発泡成形体を金型内に保持した後に、スチレン系樹脂発泡成形体を取り出して、スチレン系樹脂発泡成形体を得た。得られたスチレン系樹脂発泡成形体の発泡倍率は82倍であり、前記スチレン系樹脂発泡成形体の熱伝導率を上述の測定方法で測定した結果、0.02980W/mKであった。
[Preparation of styrene-based resin foam molded body]
The obtained pre-expanded particles were cured at 30°C for 24 hours, and then filled into a mold for in-mold molding (length 400 mm x width 400 mm x thickness 25 mm) attached to a polystyrene foam molding machine [KR-57, manufactured by Daisen Kogyo Co., Ltd.], and 0.05 MPa of water vapor was introduced to cause in-mold foaming, and then water was sprayed onto the mold to cool it. The styrene-based resin foam molded body was held in the mold until the pressure of the styrene-based resin foam molded body pressing the mold reached 0.01 MPa (gauge pressure), and then the styrene-based resin foam molded body was removed to obtain a styrene-based resin foam molded body. The expansion ratio of the obtained styrene-based resin foam molded body was 82 times, and the thermal conductivity of the styrene-based resin foam molded body was measured by the above-mentioned measurement method, and was 0.02980 W/mK.
得られた発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体について、各種特性を上述の測定方法および評価方法により測定および評価した。 The various properties of the resulting expandable styrene resin particles, pre-expanded particles, and styrene resin foam molded articles were measured and evaluated using the measurement and evaluation methods described above.
(実施例2)
[スチレン系樹脂ペレットの作製]において、(A1):(A2)の重量比率を80:20から60:40に変更した以外は、実施例1と同様の処理により、スチレン系樹脂ペレットを作製した。得られたスチレン系樹脂ペレットのMFRは11.4(g/10分)であった。
Example 2
In the preparation of styrene-based resin pellets, except that the weight ratio of (A1):(A2) was changed from 80:20 to 60:40, styrene-based resin pellets were prepared in the same manner as in Example 1. The MFR of the obtained styrene-based resin pellets was 11.4 (g/10 min).
[発泡性スチレン系樹脂粒子の作製]において、(A1):(A2):(G):(H)の重量比率を54.2:17.5:20:8.3から36.7:35:20:8.3に変更した以外は実施例1と同様の処理により、発泡性スチレン系樹脂粒子を作製した。作製した発泡性スチレン系樹脂粒子を用いて、実施例1と同様の方法により予備発泡粒子及びスチレン系樹脂発泡成形体を得た。 In [Preparation of expandable styrene-based resin particles], expandable styrene-based resin particles were prepared by the same process as in Example 1, except that the weight ratio of (A1):(A2):(G):(H) was changed from 54.2:17.5:20:8.3 to 36.7:35:20:8.3. Using the prepared expandable styrene-based resin particles, pre-expanded particles and styrene-based resin foamed molded products were obtained by the same method as in Example 1.
得られた発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体について、各種特性を上述の測定方法および評価方法により測定および評価した。 The various properties of the resulting expandable styrene resin particles, pre-expanded particles, and styrene resin foam molded articles were measured and evaluated using the measurement and evaluation methods described above.
(実施例3)
[スチレン系樹脂ペレットの作製]において、(A1):(A2)の重量比率を80:20から40:60に変更した以外は、実施例1と同様の処理により、スチレン系樹脂ペレットを作製した。得られたスチレン系樹脂ペレットのMFRは13.6(g/10分)であった。
Example 3
In the preparation of styrene-based resin pellets, except that the weight ratio of (A1):(A2) was changed from 80:20 to 40:60, styrene-based resin pellets were prepared in the same manner as in Example 1. The MFR of the obtained styrene-based resin pellets was 13.6 (g/10 min).
[発泡性スチレン系樹脂粒子の作製]において、(A1):(A2):(G):(H)の重量比率を54.2:17.5:20:8.3から19.2:52.5:20:8.3に変更した以外は実施例1と同様の処理により、発泡性スチレン系樹脂粒子を作製した。 In [Preparation of expandable styrene-based resin particles], expandable styrene-based resin particles were prepared by the same process as in Example 1, except that the weight ratio of (A1):(A2):(G):(H) was changed from 54.2:17.5:20:8.3 to 19.2:52.5:20:8.3.
[予備発泡粒子の作製]において、缶内圧力設定を0.015MPa~0.025MPaから、0.005MPa~0.015MPaに変更した以外は実施例1と同様の処理により、予備発泡粒子を作製した。作製した予備発泡粒子を用いて、実施例1と同様の方法によりスチレン系樹脂発泡成形体を得た。 [Preparation of pre-expanded particles] Pre-expanded particles were prepared in the same manner as in Example 1, except that the pressure setting in the can was changed from 0.015 MPa to 0.025 MPa to 0.005 MPa to 0.015 MPa. Using the prepared pre-expanded particles, a styrene-based resin foam molded article was obtained in the same manner as in Example 1.
得られた発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体について、各種特性を上述の測定方法および評価方法により測定および評価した。 The various properties of the resulting expandable styrene resin particles, pre-expanded particles, and styrene resin foam molded articles were measured and evaluated using the measurement and evaluation methods described above.
(比較例1)
[スチレン系樹脂ペレットの作製]において、(A1):(A2)の重量比率を80:20から100:0に変更した以外は、実施例1と同様の処理により、スチレン系樹脂ペレットを作製した。得られたスチレン系樹脂ペレットのMFRは7.0(g/10分)であった。
(Comparative Example 1)
In the preparation of styrene-based resin pellets, except that the weight ratio of (A1):(A2) was changed from 80:20 to 100:0, styrene-based resin pellets were prepared in the same manner as in Example 1. The MFR of the obtained styrene-based resin pellets was 7.0 (g/10 min).
[発泡性スチレン系樹脂粒子の作製]において、(A1):(A2):(G):(H)の重量比率を54.2:17.5:20:8.3から71.7:0:20:8.3に変更した以外は実施例1と同様の処理により、発泡性スチレン系樹脂粒子を作製した。作製した発泡性スチレン系樹脂粒子を用いて、実施例1と同様の方法により予備発泡粒子及びスチレン系樹脂発泡成形体を得た。 In [Preparation of expandable styrene-based resin particles], expandable styrene-based resin particles were prepared by the same process as in Example 1, except that the weight ratio of (A1):(A2):(G):(H) was changed from 54.2:17.5:20:8.3 to 71.7:0:20:8.3. Using the prepared expandable styrene-based resin particles, pre-expanded particles and styrene-based resin foamed molded products were obtained by the same method as in Example 1.
得られたスチレン系樹脂発泡成形体は成形体の表面に陥没した発泡粒子が散見され、寸法測定が不可能であったため、成形体倍率測定、高温時の寸法変化率は評価不可であった。成形体倍率、高温時の寸法変化率及び耐熱性能以外に関して、得られた発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体について、各種特性を上述の測定方法および評価方法により測定および評価した。 The obtained styrene resin foam molded body had scattered sunken foam particles on the surface of the molded body, making it impossible to measure its dimensions, so it was impossible to measure the molded body's magnification and evaluate its dimensional change rate at high temperatures. With regard to the molded body's magnification, dimensional change rate at high temperatures, and heat resistance, various properties were measured and evaluated for the obtained expandable styrene resin particles, pre-expanded particles, and styrene resin foam molded body using the measurement and evaluation methods described above.
(比較例2)
[スチレン系樹脂ペレットの作製]において、(A1):(A2)の重量比率を80:20から100:0に変更した以外は、実施例1と同様の処理により、スチレン系樹脂ペレットを作製した。得られたスチレン系樹脂ペレットのMFRは7.0(g/10分)であった。
(Comparative Example 2)
In the preparation of styrene-based resin pellets, except that the weight ratio of (A1):(A2) was changed from 80:20 to 100:0, styrene-based resin pellets were prepared in the same manner as in Example 1. The MFR of the obtained styrene-based resin pellets was 7.0 (g/10 min).
[発泡性スチレン系樹脂粒子の作製]において、(A1):(A2):(G):(H)の重量比率を54.2:17.5:20:8.3から71.7:0:20:8.3に変更し、混合ペンタンを1.8重量部から4.2重量部に変更し、イソブタン(E3)を2.4重量部から0重量部に変更した以外は実施例1と同様の処理により、発泡性スチレン系樹脂粒子を作製した。 In [Preparation of expandable styrene-based resin particles], expandable styrene-based resin particles were prepared by the same process as in Example 1, except that the weight ratio of (A1):(A2):(G):(H) was changed from 54.2:17.5:20:8.3 to 71.7:0:20:8.3, the mixed pentane was changed from 1.8 parts by weight to 4.2 parts by weight, and the isobutane (E3) was changed from 2.4 parts by weight to 0 parts by weight.
[予備発泡粒子の作製]において、実施例1と同様の処理を行い、予備発泡粒子を作製したが、得られた発泡粒子の発泡倍率は60倍であり、80倍までの発泡が不可能であった。作製した予備発泡粒子を用いて、実施例1と同様の方法によりスチレン系樹脂発泡成形体を得た。 [Preparation of pre-expanded particles] In the preparation of pre-expanded particles, the same process as in Example 1 was carried out, but the expansion ratio of the resulting expanded particles was 60 times, and it was not possible to expand the particles to 80 times. Using the prepared pre-expanded particles, a styrene-based resin foam molded product was obtained by the same method as in Example 1.
得られた発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体について、各種特性を上述の測定方法および評価方法により測定および評価した。 The various properties of the resulting expandable styrene resin particles, pre-expanded particles, and styrene resin foam molded articles were measured and evaluated using the measurement and evaluation methods described above.
(比較例3)
[スチレン系樹脂ペレットの作製]において、(A1):(A2)の重量比率を80:20から18:82に変更した以外は、実施例1と同様の処理により、スチレン系樹脂ペレットを作製した。得られたスチレン系樹脂ペレットのMFRは16.0(g/10分)であった。
(Comparative Example 3)
In the preparation of styrene-based resin pellets, except that the weight ratio of (A1):(A2) was changed from 80:20 to 18:82, styrene-based resin pellets were prepared in the same manner as in Example 1. The MFR of the obtained styrene-based resin pellets was 16.0 (g/10 min).
[発泡性スチレン系樹脂粒子の作製]において、(A1):(A2):(G):(H)の重量比率を54.2:17.5:20:8.3から0:71.7:20:8.3の重量比率に変更した以外は実施例1と同様の処理により、発泡性スチレン系樹脂粒子を作製した。 In the [Preparation of expandable styrene-based resin particles], expandable styrene-based resin particles were prepared by the same process as in Example 1, except that the weight ratio of (A1):(A2):(G):(H) was changed from 54.2:17.5:20:8.3 to 0:71.7:20:8.3.
[予備発泡粒子の作製]において、缶内圧力設定を0.015MPa~0.025MPaから、0.005MPa~0.015MPaに変更した以外は実施例1と同様の処理により、予備発泡粒子を作製した。作製した予備発泡粒子を用いて、実施例1と同様の方法によりスチレン系樹脂発泡成形体を得た。 [Preparation of pre-expanded particles] Pre-expanded particles were prepared in the same manner as in Example 1, except that the pressure setting in the can was changed from 0.015 MPa to 0.025 MPa to 0.005 MPa to 0.015 MPa. Using the prepared pre-expanded particles, a styrene-based resin foam molded article was obtained in the same manner as in Example 1.
得られた発泡性スチレン系樹脂粒子、予備発泡粒子及びスチレン系樹脂発泡成形体について、各種特性を上述の測定方法および評価方法により測定および評価した。 The various properties of the resulting expandable styrene resin particles, pre-expanded particles, and styrene resin foam molded articles were measured and evaluated using the measurement and evaluation methods described above.
各実施例及び比較例について、スチレン系樹脂ペレットの組成、MFR、スチレン系樹脂組成物中の各成分の量、各発泡剤の量、発泡性スチレン系樹脂粒子の見かけ密度、予備発泡粒子のかさ倍率、スチレン系樹脂発泡成形体の発泡倍率(成形体倍率)、成形体表面性、高温時寸法変化率、耐熱性能を表1に示す。 For each example and comparative example, the composition of the styrene resin pellets, MFR, the amount of each component in the styrene resin composition, the amount of each blowing agent, the apparent density of the expandable styrene resin particles, the bulk magnification of the pre-expanded particles, the expansion magnification (molded product magnification) of the styrene resin foamed molded product, the surface properties of the molded product, the dimensional change rate at high temperatures, and the heat resistance performance are shown in Table 1.
表1より、本開示の発泡性スチレン系樹脂粒子を用いることにより、耐熱性能に優れ、且つ高発泡倍率であるスチレン系樹脂発泡成形体を得ることができる。 As can be seen from Table 1, by using the expandable styrene-based resin particles of the present disclosure, it is possible to obtain a styrene-based resin foamed molded product with excellent heat resistance and a high expansion ratio.
本明細書中に記載した数値範囲の上限値及び/又は下限値は、それぞれ任意に組み合わせて好ましい範囲を規定することができる。例えば、数値範囲の上限値及び下限値を任意に組み合わせて好ましい範囲を規定することができ、数値範囲の上限値同士を任意に組み合わせて好ましい範囲を規定することができ、また、数値範囲の下限値同士を任意に組み合わせて好ましい範囲を規定することができる。また、本願において、記号「~」を用いて表される数値範囲は、記号「~」の前後に記載される数値のそれぞれを下限値及び上限値として含む。 The upper and/or lower limit values of the numerical ranges described in this specification can be arbitrarily combined to define a preferred range. For example, the upper and lower limit values of the numerical ranges can be arbitrarily combined to define a preferred range, the upper limit values of the numerical ranges can be arbitrarily combined to define a preferred range, and the lower limit values of the numerical ranges can be arbitrarily combined to define a preferred range. In this application, a numerical range expressed using the symbol "~" includes the numerical values written before and after the symbol "~" as the lower and upper limits, respectively.
以上、本実施形態を詳述したが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更があっても、それらは本開示に含まれるものである。
Although the present embodiment has been described in detail above, the specific configuration is not limited to this embodiment, and even if there are design changes within the scope that does not deviate from the gist of this disclosure, they are included in this disclosure.
Claims (11)
前記スチレン系樹脂の200℃、荷重5.0kgにおけるメルトフローレートが7.5~15.5g/10分であり、前記発泡剤がイソブタンを含む、発泡性スチレン系樹脂粒子。 A styrene-based resin composition containing a styrene-based resin and a carbon-based radiation heat transfer inhibitor, and an expandable styrene-based resin particle containing a blowing agent,
The expandable styrene-based resin particles have a melt flow rate of 7.5 to 15.5 g/10 min at 200° C. under a load of 5.0 kg, and the foaming agent contains isobutane.
A foamed molded article of a styrene-based resin obtained by molding the pre-expanded particles of the styrene-based resin according to claim 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023051143A JP2024140138A (en) | 2023-03-28 | 2023-03-28 | Expandable styrene resin particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023051143A JP2024140138A (en) | 2023-03-28 | 2023-03-28 | Expandable styrene resin particles |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024140138A true JP2024140138A (en) | 2024-10-10 |
Family
ID=92976469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023051143A Pending JP2024140138A (en) | 2023-03-28 | 2023-03-28 | Expandable styrene resin particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024140138A (en) |
-
2023
- 2023-03-28 JP JP2023051143A patent/JP2024140138A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6555251B2 (en) | Styrenic resin foam molding and method for producing the same | |
JP6216506B2 (en) | Expandable styrene resin particles and method for producing the same, styrene resin foam molded article | |
CN108026311B (en) | Expandable styrene resin particles, pre-expanded particles and molded body produced from the same, and method for producing the same | |
JP2023063388A (en) | Styrenic resin composition, and method for producing foamable styrenic resin particle | |
KR100902786B1 (en) | Expandable Polystyrene Using Recycled Styrene Resin and Method of Preparing the Same | |
JP2024140138A (en) | Expandable styrene resin particles | |
JP7144955B2 (en) | Method for producing styrenic resin composition and expandable styrenic resin particles | |
JP7227228B2 (en) | Expandable thermoplastic resin particles | |
JP6854669B2 (en) | Effervescent polystyrene resin particles, pre-expanded particles, molded article | |
JP6837820B2 (en) | Expandable polystyrene resin particles and their manufacturing method | |
KR20140085261A (en) | Expandable resin composition, method for preparing the same and foam using the same | |
JP6854672B2 (en) | A masterbatch, a method for producing the same, and a method for producing foamable thermoplastic resin particles. | |
JP6854671B2 (en) | Foamable thermoplastic resin particles and their manufacturing method | |
JP7100995B2 (en) | Expandable polystyrene-based resin particles, polystyrene-based expanded particles and polystyrene-based expanded molded products | |
JP6961440B2 (en) | Foamable polystyrene resin particles and manufacturing method | |
JP7194535B2 (en) | Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding | |
JP6688658B2 (en) | Method for producing expandable styrene resin particles, method for producing styrene resin pre-expanded particles, and method for producing styrene resin in-mold foam molded article | |
JP2024142436A (en) | Method for producing styrene-based resin composition and method for producing expandable styrene-based resin particles | |
JP2024153609A (en) | Insulation materials and their uses | |
JP5909903B2 (en) | Method for producing flame retardant foamable styrene resin particles | |
JP7094758B2 (en) | Impact absorber | |
JP2017222772A (en) | Method for producing expandable styrene-based resin particles | |
JP2018001637A (en) | Production method for foamable styrenic resin particle | |
JP6135791B2 (en) | Method for producing flame retardant foamable styrene resin particles | |
JP2023144509A (en) | Expandable polystyrenic resin particle, pre-expanded particle of the same, and expanded molding |