JP2023135383A - Twisted wire, insulated wire, coil and transformer - Google Patents
Twisted wire, insulated wire, coil and transformer Download PDFInfo
- Publication number
- JP2023135383A JP2023135383A JP2022040555A JP2022040555A JP2023135383A JP 2023135383 A JP2023135383 A JP 2023135383A JP 2022040555 A JP2022040555 A JP 2022040555A JP 2022040555 A JP2022040555 A JP 2022040555A JP 2023135383 A JP2023135383 A JP 2023135383A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- coil
- conductor
- strands
- stranded wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004020 conductor Substances 0.000 claims abstract description 65
- 210000003298 dental enamel Anatomy 0.000 claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 230000005540 biological transmission Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 98
- 229920005989 resin Polymers 0.000 description 22
- 239000011347 resin Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 14
- -1 polyhydantoin Polymers 0.000 description 10
- 229920005992 thermoplastic resin Polymers 0.000 description 10
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000002966 varnish Substances 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 229920001955 polyphenylene ether Polymers 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 4
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 4
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 4
- 239000004697 Polyetherimide Substances 0.000 description 4
- 229920001601 polyetherimide Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 229920006351 engineering plastic Polymers 0.000 description 3
- 229920002312 polyamide-imide Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 2
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 2
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 2
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- DFGKGUXTPFWHIX-UHFFFAOYSA-N 6-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]acetyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)C1=CC2=C(NC(O2)=O)C=C1 DFGKGUXTPFWHIX-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 238000007765 extrusion coating Methods 0.000 description 2
- 229920003055 poly(ester-imide) Polymers 0.000 description 2
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920006260 polyaryletherketone Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 229920006259 thermoplastic polyimide Polymers 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000002902 ferrimagnetic material Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
Images
Landscapes
- Insulated Conductors (AREA)
- Coils Of Transformers For General Uses (AREA)
Abstract
Description
本発明は、撚り線、絶縁電線、コイル及びトランスに関する。 The present invention relates to stranded wires, insulated wires, coils, and transformers.
電気・電子機器においては、通常、インバータとトランス(変圧器)とを備えたスイッチング電源が用いられる。例えば、日本における商用電源は、50Hz又は60Hzの低周波電源である。このような低周波電源の周波数を変更せずに変圧する場合、所要の出力を得るために大型電源が必要になる。そこで、トランスでの変圧前に、スイッチング素子を用いて、商用電源の周波数を数十kHz以上に高周波化して、1秒当たりの電力送信量を増やすことで、実用的なサイズにまで小型化したスイッチング電源が汎用される。
スイッチング電源に搭載されるトランスは、高周波数の交流電圧を変圧する場合には、表皮効果による抵抗の上昇が生じ、コイルによる伝送損失(導体損失)が大きくなる。この伝送損失を抑えるために、高周波で使用されるトランスは、一般的には、周波数によって決まる表皮深さよりも小さな導体半径の電線が芯に巻回されたコイルを備えている。
このようなトランスにおいて、出力を高めるためには、芯に巻回される電線の導体断面積を増やす必要がある。導体半径の小さな電線を用いる場合には、巻回する電線数を増やすことにより、電線の導体断面積を増やすことができる。例えば、複数の素線をスパイラル状に撚り合わせた撚り線(リッツ線)を電線として使用し、導体断面積を増やすことが知られている(例えば特許文献1)。
BACKGROUND ART In electrical and electronic equipment, switching power supplies that include an inverter and a transformer are usually used. For example, the commercial power source in Japan is a low frequency power source of 50 Hz or 60 Hz. When transforming such a low frequency power source without changing its frequency, a large power source is required to obtain the required output. Therefore, before transforming the voltage in the transformer, we used a switching element to increase the frequency of the commercial power supply to several tens of kHz or more, increasing the amount of power transmitted per second and reducing the size to a practical size. Switching power supplies are commonly used.
When a transformer installed in a switching power supply transforms a high-frequency AC voltage, resistance increases due to the skin effect, and transmission loss (conductor loss) due to the coil increases. In order to suppress this transmission loss, transformers used at high frequencies are generally equipped with a coil in which a wire with a conductor radius smaller than the skin depth determined by the frequency is wound around the core.
In order to increase the output of such a transformer, it is necessary to increase the conductor cross-sectional area of the wire wound around the core. When using an electric wire with a small conductor radius, the conductor cross-sectional area of the electric wire can be increased by increasing the number of wires wound. For example, it is known to use a twisted wire (Litz wire) in which a plurality of wires are twisted together in a spiral shape to increase the conductor cross-sectional area (for example, Patent Document 1).
トランスは、通常、入力側(1次側)コイル及び出力側(2次側)コイルを備えており、各コイルに印加される電流の電圧及び電流値が設定される。トランスでは、通常、相対的に、1次側コイル及び2次側コイルのいずれか一方が低圧大電流側コイルとなり、他方が高圧小電流側コイルとなる。
高周波用トランスの低圧大電流側コイルには、従来、上記表皮効果の影響を考慮して設計された細径の導体(素線導体)と、この導体周囲を被覆する薄膜のエナメル層(素線絶縁層)とからなる素線を撚り合わせた撚り線を調製し、この撚り線を一体として、その外周にさらに薄膜の絶縁層(撚り線絶縁層)を形成した絶縁電線が用いられてきた。素線絶縁層や撚り線絶縁層を薄膜に形成しても、低圧の電流を流す低圧大電流側コイルとしては十分な絶縁性を担保することができる。また、これらの絶縁層を薄膜とすることにより、撚り線を構成する素線数を増やすことができ、結果、トータルの導体断面積を増加させることができる利点もある。
A transformer usually includes an input side (primary side) coil and an output side (secondary side) coil, and the voltage and current value of the current applied to each coil are set. In a transformer, usually one of the primary coil and the secondary coil is a low-voltage, high-current coil, and the other is a high-voltage, low-current coil.
Conventionally, the low-voltage, high-current side coil of a high-frequency transformer has a small-diameter conductor (strand conductor) designed to take into account the influence of the skin effect mentioned above, and a thin enamel layer (strand wire conductor) that covers this conductor. An insulated wire has been used in which a stranded wire is prepared by twisting together wires consisting of an insulating layer), and a thin insulating layer (stranded wire insulating layer) is further formed on the outer periphery of the stranded wire. Even if the wire insulating layer or the stranded wire insulating layer is formed into a thin film, sufficient insulation can be ensured as a low-voltage, high-current coil through which a low-voltage current flows. Furthermore, by forming these insulating layers into thin films, the number of strands constituting the stranded wire can be increased, which has the advantage of increasing the total conductor cross-sectional area.
上記の通り、トランスのコイルを構成する絶縁電線には、従来から、特に低圧大電流側コイルとして、薄膜の素線絶縁層を有する素線を撚り合わせた撚り線を、さらに、薄膜の撚り線絶縁層で被覆した絶縁電線が用いて、トータルの導体断面積を増加させる試みがなされてきた。他方、撚り線を構成する素線の数を増やすと撚り線の製造コストが上昇する問題がある。撚り線の製造コストの上昇は、撚り線を用いた絶縁電線、この絶縁電線を用いたコイル、ないしはこのコイルを有するトランス等の製造コストの上昇にも繋がる。
そこで本発明は、撚り線の伝送損失を抑えながら、製造コストの低減も実現することができる撚り線、この撚り線を用いた絶縁電線、この絶縁電線を用いたコイル、及びこのコイルを有するトランスを提供することを課題とする。
As mentioned above, the insulated wires constituting the coil of a transformer have traditionally been made of stranded wires made by twisting strands of wire with a thin-film strand insulating layer, especially as a low-voltage, high-current coil. Attempts have been made to increase the total conductor cross-sectional area by using insulated wires coated with an insulating layer. On the other hand, there is a problem in that increasing the number of strands constituting a stranded wire increases the manufacturing cost of the stranded wire. An increase in the manufacturing cost of the stranded wire also leads to an increase in the manufacturing cost of an insulated wire using the stranded wire, a coil using the insulated wire, a transformer having the coil, and the like.
Therefore, the present invention provides a stranded wire that can reduce the transmission loss of the stranded wire and reduce manufacturing costs, an insulated wire using the stranded wire, a coil using the insulated wire, and a transformer including the coil. The challenge is to provide the following.
本発明者の上記課題は、下記の手段により解決される。
[1]
導体と、該導体周囲を覆うエナメル層とを有する素線が複数本撚り合わされた撚り線であって、前記導体の断面が円形であり、該円形の直径に対する前記エナメル層の厚みの比の値(エナメル層の厚み/導体断面の直径)が0.08~0.5である、撚り線。
[2]
前記撚り線の周囲を覆う絶縁層を有する、絶縁電線。
[3]
前記絶縁層が3層以上で構成される、[2]に記載の絶縁電線。
[4]
[2]又は[3]に記載の絶縁電線を用いたコイル。
[5]
[4]に記載のコイルを有するトランス。
The above-mentioned problem of the present inventors is solved by the following means.
[1]
A stranded wire in which a plurality of wires each having a conductor and an enamel layer surrounding the conductor are twisted together, the conductor having a circular cross section, and the ratio of the thickness of the enamel layer to the diameter of the circle. A stranded wire in which (thickness of enamel layer/diameter of conductor cross section) is 0.08 to 0.5.
[2]
An insulated wire having an insulating layer surrounding the stranded wire.
[3]
The insulated wire according to [2], wherein the insulating layer is composed of three or more layers.
[4]
A coil using the insulated wire according to [2] or [3].
[5]
A transformer having the coil according to [4].
本発明及び本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。例えば、「A~B」と記載されている場合、その数値範囲は、「A以上B以下」である。 In the present invention and this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits. For example, when "A to B" is written, the numerical range is "A to B".
本発明の撚り線は、伝送損失を抑えながら、製造コストの低減も実現することができる。 The stranded wire of the present invention can reduce manufacturing costs while suppressing transmission loss.
本発明の撚り線は、導体(素線導体)と、当該導体を覆うエナメル層(素線絶縁層)とを有する素線が複数本撚り合わされた撚り線である。本発明の撚り線を構成する各素線が下記(A)の構成を満たすことにより、伝送損失を抑えながら、製造コストの低減も実現することができる。
(A)上記導体の断面が円形であり、該円形の直径に対する前記エナメル層の厚みの比の値(エナメル層の厚み/導体断面の直径)が0.08~0.5である。
上記(A)において、エナメル層の厚みと導体断面の直径の単位は同じである(例えばいずれもμm)。
The stranded wire of the present invention is a stranded wire in which a plurality of wires each having a conductor (strand conductor) and an enamel layer (strand insulation layer) covering the conductor are twisted together. By satisfying the configuration (A) below, each of the strands constituting the stranded wire of the present invention can reduce manufacturing costs while suppressing transmission loss.
(A) The cross section of the conductor is circular, and the ratio of the thickness of the enamel layer to the diameter of the circle (thickness of the enamel layer/diameter of the cross section of the conductor) is 0.08 to 0.5.
In the above (A), the units of the thickness of the enamel layer and the diameter of the cross section of the conductor are the same (for example, both are μm).
以下に、図面を参照して、本発明の絶縁電線、並びに、本発明の絶縁電線を構成する撚り線、この撚り線を構成する素線(素線導体及び素線絶縁層)及び撚り線の周囲を覆う絶縁層(撚り線絶縁層)の好ましい実施形態について説明するが、本発明は、本発明で規定すること以外はこれらの実施形態に限定されない。なお、図面において、絶縁電線を構成する撚り線絶縁層の輪郭形状を輪環状に図示したが、本発明の絶縁電線において、撚り線絶縁層は、撚り線との間隙を充填していてもよい。また、輪郭形状は真円に限定されない。例えば、輪郭形状の円形度は0.7000~1.0000とすることができ、0.8000~1.0000とすることが好ましく、0.9000~1.0000とすることも好ましく、0.9500~1.0000とすることも好ましく、0.9800~1.0000とすることも好ましい。円形度は下記式(1)により算出される。 Below, with reference to the drawings, the insulated wire of the present invention, the stranded wire constituting the insulated wire of the present invention, the strands (elemental conductor and strand insulating layer) constituting the stranded wire, and the stranded wire. Although preferred embodiments of the surrounding insulating layer (stranded wire insulating layer) will be described, the present invention is not limited to these embodiments except as specified in the present invention. Note that in the drawings, the outline shape of the stranded wire insulating layer constituting the insulated wire is shown as a ring, but in the insulated wire of the present invention, the stranded wire insulating layer may fill the gap between the stranded wires. . Further, the contour shape is not limited to a perfect circle. For example, the circularity of the contour shape can be 0.7000 to 1.0000, preferably 0.8000 to 1.0000, preferably 0.9000 to 1.0000, and 0.9500 to 1.0000. It is also preferable to set it to 1.0000 to 1.0000, and it is also preferable to set it to 0.9800 to 1.0000. Circularity is calculated by the following formula (1).
円形度=4π×(面積)÷(周囲長)2 (1) Circularity = 4π x (area) ÷ (perimeter) 2 (1)
また、図面において、素線導体ないし素線の断面が円形である形態を、当該断面が真円の形状として示しているが、素線導体ないし素線の断面が円形である形態は、当該断面が真円の形状に限られない。例えば、線導体ないし素線の断面の円形度を0.7000~1.0000とすることができ、0.8000~1.0000とすることが好ましく、0.9000~1.0000とすることも好ましく、0.9500~1.0000とすることも好ましく、0.9800~1.0000とすることも好ましい。
すなわち、本発明において断面の円形度が0.7000~1.0000のものは、すべて断面が「円形」の概念に含まれるものとする。
In addition, in the drawings, a form in which the cross section of the strand conductor or strand is circular is shown as having a perfect circular cross section, but a form in which the strand conductor or strand is circular in cross section is is not limited to a perfectly circular shape. For example, the circularity of the cross section of the wire conductor or wire can be 0.7000 to 1.0000, preferably 0.8000 to 1.0000, and also 0.9000 to 1.0000. It is preferably from 0.9500 to 1.0000, and more preferably from 0.9800 to 1.0000.
That is, in the present invention, all those having a cross-sectional circularity of 0.7000 to 1.0000 are included in the concept of a "circular" cross-section.
[絶縁電線]
本発明の好ましい絶縁電線1Aは、図1に示されるように、素線10を7本撚り合わせてなる撚り線2Aと、撚り線2Aの外周を被覆する撚り線絶縁層3Aと、を有する。
[Insulated wire]
As shown in FIG. 1, a preferable
本発明の好ましい絶縁電線1Bは、図2に示されるように、絶縁層3Bが3層構造であること以外は、絶縁電線1Aと同様である。絶縁電線1Bにおいて、3層構造を形成する各層は、いずれも、同一の厚みに設定されているが、本発明においては、各層の厚みの関係は特に限定されない。
A preferable
<撚り線>
本発明の撚り線は、上記(A)を満たす複数の素線を撚り合わせてなるものであれば、特に限定されない。
撚り合わせる素線数としては、例えば2本以上とすることができる。素線の整列性を考えると、1本の中心素線(心線)の周囲に複数の素線(側線)を撚り合わせた構造が好ましい。撚り合わせる素線数は7本以上が好ましく、交流抵抗と実用的な加工性を考えると100本以下が好ましい。撚り合わせる素線数は、より好ましくは7~61本であり、さらに好ましくは7~37本であり、特に好ましくは7~19本である。
素線を撚り合わせる際の、素線の配置、撚り方向、撚りピッチ等は、目的、用途等に応じて、適宜に設定できる。典型的には、撚り線を構成する各素線が互いに接するように最密充填状に配されることが好ましい。ここで、「最密充填状」とは、図1~3に示すように、すべての素線を、隣り合う素線の素線導体間の距離が、素線絶縁層の厚さの2倍となるように配することを意味する。換言すれば、隣り合う素線の素線導体間の距離が、素線絶縁層の厚さによって確定されることを意味する。
<Twisted wire>
The stranded wire of the present invention is not particularly limited as long as it is formed by twisting together a plurality of wires that satisfy the above (A).
The number of wires to be twisted together can be, for example, two or more. Considering the alignment of the strands, a structure in which a plurality of strands (side wires) are twisted around one central strand (core wire) is preferable. The number of strands to be twisted is preferably 7 or more, and preferably 100 or less in consideration of AC resistance and practical workability. The number of strands to be twisted is more preferably 7 to 61, still more preferably 7 to 37, particularly preferably 7 to 19.
When twisting the wires together, the arrangement of the wires, the twisting direction, the twisting pitch, etc. can be set as appropriate depending on the purpose, use, etc. Typically, it is preferable that the wires constituting the stranded wire are arranged in a close-packed manner so as to be in contact with each other. Here, "closest packing" means that all wires are arranged so that the distance between the wire conductors of adjacent wires is twice the thickness of the wire insulating layer, as shown in Figures 1 to 3. This means arranging them so that In other words, it means that the distance between the strand conductors of adjacent strands is determined by the thickness of the strand insulating layer.
本発明の撚り線の導体断面積率は、絶縁層の厚みが厚くなることでコイルないしトランスが大型化することを抑制する観点から、20%以上が好ましく、25%以上がより好ましく、30%以上がさらに好ましい。上記の導体断面積率とは、撚り線の断面形状(平面視)において、撚り線に外接する外接円(例えば外接円C、図3参照)の面積(S1)に対する、各導体の断面積の合計値(S2)の百分率((S2/S1)×100)である。 The conductor cross-sectional area ratio of the stranded wire of the present invention is preferably 20% or more, more preferably 25% or more, and 30% The above is more preferable. The above-mentioned conductor cross-sectional area ratio refers to the cross-sectional area of each conductor relative to the area (S1) of a circumscribed circle circumscribing the stranded wire (for example, circumscribed circle C, see Figure 3) in the cross-sectional shape of the stranded wire (planar view). It is the percentage ((S2/S1)×100) of the total value (S2).
(素線)
本発明の素線は、導体(素線導体)と、この導体周囲を覆うエナメル層(素線絶縁層)とを有し、上記(A)を満足するものであれば、それ以外の構成は特に限定されない。
(Elementary wire)
The strand of the present invention has a conductor (strand conductor) and an enamel layer (strand insulating layer) surrounding the conductor, and other configurations are acceptable as long as the above (A) is satisfied. Not particularly limited.
素線導体としては、従来、コイル用等の巻線で用いられているものを広く使用することができる。例えば、銅線、アルミニウム線等の金属導体が挙げられる。
上記素線導体の断面円形の直径(線径、素線導体径)は、上記(A)を満足すれば特に限定されない。例えば、当該直径を0.05~0.50mmとすることができ、0.08~0.45mmとすることがより好ましく、0.10~0.40mmとすることがさらに好ましく、0.10~0.35mmとすることがさらに好ましい。本発明において、素線導体の断面円形が真円でない場合、上記直径は円相当径(同じ面積の真円の直径)を意味する。
As the wire conductor, it is possible to use a wide variety of wires conventionally used in winding wires for coils and the like. Examples include metal conductors such as copper wire and aluminum wire.
The diameter (wire diameter, diameter of the stranded conductor) of the circular cross section of the stranded conductor is not particularly limited as long as the above (A) is satisfied. For example, the diameter can be 0.05 to 0.50 mm, more preferably 0.08 to 0.45 mm, even more preferably 0.10 to 0.40 mm, and even more preferably 0.10 to 0.45 mm. More preferably, it is 0.35 mm. In the present invention, when the cross-sectional circular shape of the wire conductor is not a perfect circle, the above-mentioned diameter means a circle equivalent diameter (diameter of a perfect circle having the same area).
素線導体の周囲を覆うエナメル層は、樹脂ワニスを素線導体の周囲に塗布、焼付けして形成される素線絶縁層である。このエナメル層は熱可塑性樹脂層でもよく、熱硬化性樹脂層でもよく、熱硬化性樹脂層であることが好ましい。エナメル層の形成に用いる樹脂は特に限定されない。例えば、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、及びポリエステルイミド(PEsI)などのイミド結合を有する熱硬化性樹脂、ポリウレタン(PU)、熱硬化性ポリエステル(PEst)、H種ポリエステル(HPE)、ポリイミドヒダントイン変性ポリエステル、ポリヒダントイン、ポリベンゾイミダゾール、メラミン樹脂、エポキシ樹脂等が挙げられ、これらの1種又は2種以上を用いることができる。 The enamel layer covering the periphery of the wire conductor is a wire insulating layer formed by applying and baking resin varnish around the wire conductor. This enamel layer may be a thermoplastic resin layer or a thermosetting resin layer, and is preferably a thermosetting resin layer. The resin used to form the enamel layer is not particularly limited. For example, thermosetting resins having imide bonds such as polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), and polyesterimide (PEsI), polyurethane (PU), thermosetting polyester (PEst), Examples include H-type polyester (HPE), polyimidohydantoin-modified polyester, polyhydantoin, polybenzimidazole, melamine resin, and epoxy resin, and one or more of these can be used.
上記エナメル層は、電線で通常用いられる各種の添加剤を含有していてもよい。この場合、添加剤の含有量としては、特に限定されないが、樹脂成分100質量部に対して、5質量部以下が好ましく、3質量部以下がより好ましい。 The enamel layer may contain various additives commonly used in electric wires. In this case, the content of the additive is not particularly limited, but is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, based on 100 parts by mass of the resin component.
上記エナメル層の厚みは、上記(A)を満足すれば特に限定されず、素線導体径との関係で適宜に調整される。上記エナメル層の厚みは、素線断面において、エナメル層について無作為に20箇所の厚さ(素線導体の表面とエナメル層の素線導体とは反対側の表面との最短距離)を測定し、20個の測定値の相加平均とする。なお、撚り線絶縁層の厚さも同様にして決定することができる。 The thickness of the enamel layer is not particularly limited as long as the above (A) is satisfied, and is appropriately adjusted in relation to the diameter of the wire conductor. The thickness of the enamel layer is determined by measuring the thickness of the enamel layer at 20 random locations in the cross section of the wire (the shortest distance between the surface of the wire conductor and the surface of the enamel layer on the opposite side of the wire conductor). , is the arithmetic mean of 20 measured values. Note that the thickness of the stranded wire insulating layer can also be determined in the same manner.
上記エナメル層は、公知の方法により、形成できる。例えば、導体等の外周に、熱硬化性樹脂等の樹脂成分のワニスを塗布して焼付けする方法が好ましい。このワニスは樹脂成分と、溶媒と、必要により、樹脂成分の硬化剤又は各種の添加剤とを含有する。溶媒は、有機溶媒が好ましく、樹脂成分を溶解又は分散できるものが適宜に選択される。
ワニスの塗布方法は、通常の方法を選択することができ、例えば、導体の断面形状と相似形若しくは略相似形の開口を有するワニス塗布用ダイスを用いる方法等が挙げられる。ワニスの焼付けは、通常、焼付炉で行われる。このときの条件は、樹脂成分又は溶媒の種類等に応じて一義的に決定できないが、例えば、炉内温度400~650℃にて通過時間を10~90秒の条件が挙げられる。
The enamel layer can be formed by a known method. For example, it is preferable to apply a varnish made of a resin component such as a thermosetting resin to the outer periphery of the conductor and then bake it. This varnish contains a resin component, a solvent, and, if necessary, a curing agent for the resin component or various additives. The solvent is preferably an organic solvent, and one that can dissolve or disperse the resin component is appropriately selected.
As the method for applying the varnish, a conventional method can be selected, such as a method using a varnish application die having an opening similar or substantially similar to the cross-sectional shape of the conductor. Baking of varnish is usually performed in a baking oven. Although the conditions at this time cannot be uniquely determined depending on the type of resin component or solvent, for example, the conditions include a furnace temperature of 400 to 650° C. and a passing time of 10 to 90 seconds.
<撚り線絶縁層>
撚り線絶縁層は、複数本の素線を撚り合わせた撚り線を被覆する層であればよく、樹脂成分として後述する熱可塑性樹脂を含有する層が好ましい。撚り線絶縁層の厚さは特に限定されず、例えば、50~300μmが好ましく、50~150μmがより好ましい。
撚り線絶縁層は、撚り線を被覆することができれば、撚り線の被覆態様等は特に限定されない。この絶縁層は、例えば、押出成形(押出被覆)することにより形成された層(押出被覆層)とすることができる。
<Twisted wire insulation layer>
The stranded wire insulating layer may be any layer that covers a stranded wire obtained by twisting a plurality of wires together, and preferably a layer containing a thermoplastic resin, which will be described later, as a resin component. The thickness of the stranded wire insulating layer is not particularly limited, and is preferably, for example, 50 to 300 μm, more preferably 50 to 150 μm.
The stranded wire insulating layer is not particularly limited in the manner in which the stranded wire is covered, as long as it can cover the stranded wire. This insulating layer can be, for example, a layer (extrusion coating layer) formed by extrusion molding (extrusion coating).
撚り線絶縁層は、単層でもよく、2層以上の積層構造とすることもできる。撚り線絶縁層は、好ましくは3層以上、より好ましくは3~5層の積層構造とすることができる。3層以上の積層構造とすると、コイルやトランス等を構成する巻線として用いたときに、絶縁電線の十分な沿面距離を確保できるので、通常、絶縁性を確保するために用いられる絶縁テープを省略することができる。これにより、コイルないしトランスの小型化にも効果的である。
撚り線絶縁層が積層構造を有する場合、各層の厚さは特に限定されない。例えば、各層の厚さは、10~100μmが好ましく、15~50μmがより好ましい。各層の厚さは同じでもよく、それぞれが異なっていてもよい。
The stranded wire insulating layer may be a single layer or may have a laminated structure of two or more layers. The stranded wire insulating layer preferably has a laminated structure of three or more layers, more preferably three to five layers. With a laminated structure of three or more layers, sufficient creepage distance can be secured for the insulated wire when used as a winding wire constituting a coil or transformer, so the insulating tape normally used to ensure insulation can be used. Can be omitted. This is also effective in reducing the size of the coil or transformer.
When the stranded wire insulating layer has a laminated structure, the thickness of each layer is not particularly limited. For example, the thickness of each layer is preferably 10 to 100 μm, more preferably 15 to 50 μm. The thickness of each layer may be the same or different.
絶縁層は、樹脂成分として、好ましくは熱可塑性樹脂を含有する。熱可塑性樹脂としては、絶縁電線の絶縁層として通常用いられる熱可塑性樹脂であれば特に限定されることなく用いることができる。熱可塑性樹脂は結晶性であってもよく、非晶性であってもよい。
上記熱可塑性樹脂としては、例えば、ポリアミド(PA、ナイロン)、ポリエーテルイミド(PEI)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE、変性ポリフェニレンエーテルを含む)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、又は超高分子量ポリエチレン等の汎用エンジニアリングプラスチック;
ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド(PPS)、ポリアリレート(PAR)、ポリエーテルケトン(PEK)、ポリアリールエーテルケトン(PAEK)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリエーテルエーテルケトン(PEEK、変性PEEKを含む)、ポリエーテルケトンケトン(PEKK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、熱可塑性ポリイミド樹脂(TPI)、熱可塑性ポリアミドイミド(TPAI)、又は液晶ポリエステル等のスーパーエンジニアリングプラスチック;
ポリエチレンテレフタレート又はポリエチレンナフタレートをベース樹脂とするポリマーアロイ、ABS/ポリカーボネート、ナイロン6,6、芳香族ポリアミド樹脂、ポリフェニレンエーテル/ナイロン6,6、ポリフェニレンエーテル/ポリスチレン、又はポリブチレンテレフタレート/ポリカーボネート等の上記エンジニアリングプラスチックを含むポリマーアロイ;が挙げられる。
熱可塑性樹脂は、1種又は2種以上含有していてもよい。
The insulating layer preferably contains a thermoplastic resin as a resin component. As the thermoplastic resin, any thermoplastic resin commonly used as an insulating layer of an insulated wire can be used without particular limitation. The thermoplastic resin may be crystalline or amorphous.
Examples of the thermoplastic resin include polyamide (PA, nylon), polyetherimide (PEI), polyacetal (POM), polycarbonate (PC), polyphenylene ether (PPE, including modified polyphenylene ether), and polybutylene terephthalate (PBT). ), general-purpose engineering plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or ultra-high molecular weight polyethylene;
Polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyarylate (PAR), polyetherketone (PEK), polyaryletherketone (PAEK), tetrafluoroethylene-ethylene copolymer (ETFE) , polyetheretherketone (PEEK, including modified PEEK), polyetherketoneketone (PEKK), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), thermoplastic polyimide resin ( Super engineering plastics such as TPI), thermoplastic polyamideimide (TPAI), or liquid crystal polyester;
Polymer alloys based on polyethylene terephthalate or polyethylene naphthalate, ABS/polycarbonate, nylon 6,6, aromatic polyamide resins, polyphenylene ether/nylon 6,6, polyphenylene ether/polystyrene, or polybutylene terephthalate/polycarbonate, etc. Examples include polymer alloys including engineering plastics.
One type or two or more types of thermoplastic resins may be contained.
撚り線絶縁層が積層構造を有する場合、各層に含まれる樹脂成分は、互いに、同じでも異なるものでもよい。 When the stranded wire insulating layer has a laminated structure, the resin components contained in each layer may be the same or different from each other.
撚り線絶縁層は、電線で通常用いられる各種の添加剤を含有していてもよい。この場合、添加剤の含有量としては、特に限定されないが、樹脂成分100質量部に対して、5質量部以下が好ましく、3質量部以下がより好ましい。 The stranded wire insulation layer may contain various additives commonly used in electric wires. In this case, the content of the additive is not particularly limited, but is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, based on 100 parts by mass of the resin component.
撚り線絶縁層は、撚り線の外周に、熱可塑性樹脂をベースとして含有する樹脂組成物を押出成形することにより、形成することが好ましい。樹脂組成物は、上述の樹脂成分と、必要により各種の添加剤とを含有する。押出方法は、樹脂成分の種類等に応じて一義的に決定できないが、例えば、撚り線の断面形状と相似形若しくは略相似形の開口を有する押出ダイスを用いて、樹脂成分の溶融温度以上の温度で押出す方法が挙げられる。
撚り線絶縁層は、押出成形に限定されず、上述の熱可塑性樹脂と溶媒等と必要により各種の添加剤とを含有するワニスを用いて、上記エナメル層と同様にして塗布、焼付けにより形成することもできる。
The stranded wire insulating layer is preferably formed by extrusion molding a resin composition containing a thermoplastic resin as a base around the outer periphery of the stranded wire. The resin composition contains the above-mentioned resin component and, if necessary, various additives. The extrusion method cannot be determined uniquely depending on the type of resin component, etc., but for example, an extrusion die having an opening similar or approximately similar to the cross-sectional shape of the stranded wire may be used to extrude at a temperature higher than the melting temperature of the resin component. An example is a method of extruding at temperature.
The stranded wire insulating layer is not limited to extrusion molding, but can be formed by coating and baking in the same manner as the enamel layer, using a varnish containing the above-mentioned thermoplastic resin, a solvent, etc., and various additives if necessary. You can also do that.
素線導体の径およびエナメル層の厚みは、上述した通りである。本発明では、素線導体径(h1)に対するエナメル層の厚み(h2)の比の値(h2/h1)が0.08~0.5であり(図4参照)、0.10~0.45が好ましく、0.12~0.40がより好ましく、0.14~0.40がさらに好ましく、0.18~0.40がさらに好ましく、0.20~0.40が特に好ましい。
本発明では、上記比の値の下限値を、撚り線を構成する従来の素線に比べて高い値に制御する。上述した通り、トータルの導体断面積を増加させるために、従来、薄膜の素線絶縁層を有する素線を撚り合わせた撚り線が用いられてきた。しかし、本発明者らが検討を重ねたところ、撚り線を構成する素線において、上記比の値を0.08以上へと高めた場合に、予想以上に抵抗が抑制できることを見出した。この抵抗の抑制を加味すると、素線絶縁層の厚みを上記比の値を満足するように厚膜とした方が、コイルないしトランスの巻き線として用いた場合に、従来と同等の性能を担保でき、かつ、素線数を低減できる分、製造コストを低減できることがわかってきた。そこで、本発明では、上述のように、上記比の値を0.08~0.5に制御するものである。
なお、上記比の値の上限を0.5としているのは、上記比の値が0.5を越えるとエナメル層の厚みが相対的にかなり厚くなり、必要な導体断面積を確保しようとしたとき、撚り線の仕上がり径を大きくせざるを得なくなるからである。つまり、本発明では上記比の値の上限を、現実的な厚膜である0.5としている。
The diameter of the wire conductor and the thickness of the enamel layer are as described above. In the present invention, the ratio (h2/h1) of the thickness (h2) of the enamel layer to the diameter (h1) of the wire conductor is 0.08 to 0.5 (see FIG. 4), and 0.10 to 0. 45 is preferred, 0.12 to 0.40 is more preferred, 0.14 to 0.40 is even more preferred, 0.18 to 0.40 is even more preferred, and 0.20 to 0.40 is particularly preferred.
In the present invention, the lower limit of the ratio is controlled to a higher value than that of conventional wires forming the stranded wire. As described above, in order to increase the total conductor cross-sectional area, a stranded wire in which strands of wire having a thin strand insulating layer are twisted together has been conventionally used. However, after repeated studies, the present inventors found that when the value of the above-mentioned ratio was increased to 0.08 or more in the strands constituting the stranded wire, the resistance could be suppressed more than expected. Considering the suppression of this resistance, it is better to make the wire insulating layer thicker so that it satisfies the value of the above ratio, to ensure the same performance as before when used as a coil or transformer winding wire. It has been found that manufacturing costs can be reduced by reducing the number of strands. Therefore, in the present invention, as described above, the value of the ratio is controlled to be between 0.08 and 0.5.
The reason why the upper limit of the above ratio value is 0.5 is because if the above ratio value exceeds 0.5, the thickness of the enamel layer becomes relatively thick, and we tried to secure the necessary conductor cross-sectional area. This is because, in some cases, the finished diameter of the stranded wire must be increased. That is, in the present invention, the upper limit of the above ratio is set to 0.5, which is a realistic thick film.
[コイル及びトランス]
<コイル>
本発明のコイルは、上述の、本発明の絶縁電線を用いたものである。具体的には、例えば、強磁性若しくはフェリ磁性の素材からなる鉄芯、又は、空気を芯として、その周りに本発明の絶縁電線を巻回したものである。
本発明において、鉄芯等の芯について、サイズは、用途等に応じて適宜に選択される。また、絶縁電線の巻き方、巻数(2巻以上)、ピッチ等についても、目的、用途等に応じて適宜に選択される。
本発明のコイルは、トランスを構成する1次側(入力側)コイルや2次側(出力側)コイルとして用いることができる。より詳細には、トランスを構成する低圧大電流側コイルとして用いることができ、また、高圧小電流側コイルとして用いることもできる。本発明において、低圧大電流側コイルとは、2つのコイルのうち相対的に、低圧大電流値の電流が流れるコイルを意味し、高圧小電流側コイルとは、2つのコイルのうち相対的に、高圧小電流値の電流が流れるコイルを意味する。コイルそれ自体は公知であり、例えば、特開2018-190980号公報等の記載を参照することができる。
[Coil and transformer]
<Coil>
The coil of the present invention uses the above-mentioned insulated wire of the present invention. Specifically, the insulated wire of the present invention is wound around an iron core made of a ferromagnetic or ferrimagnetic material, or an air core.
In the present invention, the size of the core, such as an iron core, is appropriately selected depending on the purpose and the like. Further, the method of winding the insulated wire, the number of turns (two or more turns), pitch, etc. are also appropriately selected depending on the purpose, use, etc.
The coil of the present invention can be used as a primary side (input side) coil or a secondary side (output side) coil that constitutes a transformer. More specifically, it can be used as a low-voltage, large-current side coil that constitutes a transformer, and can also be used as a high-voltage, small-current side coil. In the present invention, the low-voltage, large-current side coil means a coil through which a relatively low-voltage, large-current current flows between the two coils; , means a coil through which a current of high voltage and small current flows. The coil itself is publicly known, and for example, the description in Japanese Patent Application Laid-Open No. 2018-190980 can be referred to.
<トランス>
本発明のトランスは、本発明のコイルを有していれば、その構造又はサイズ等は特に限定されない。例えば、入力側のコイル(一次コイル)と出力側のコイル(二次コイル)を含む複数のコイルを備えている。トランスは、一次コイルと二次コイルの巻き数比に応じて、交流の電圧を変換することができる。
本発明のトランスは、2つ以上、好ましくは2つのコイルを備え、そのうちの少なくとも一方が低圧大電流側コイルとして本発明のコイルを備えている。さらに好ましくは、低圧大電流側コイルが本発明のコイルであり、高圧小電流側コイルも本発明のコイルである。
本発明のトランスは、互いに別の芯の周りに絶縁電線を巻回した一次コイル及び二次コイルを有するものでもよく、同一の芯の周りに直接又は絶縁テープ等を介して一次コイルの絶縁電線及び二次コイルの絶縁電線をそれぞれ巻回したものでもよい。トランスそれ自体は公知であり、例えば、特開2018-190980号公報等の記載を参照することができる。
<Trans>
The structure or size of the transformer of the present invention is not particularly limited as long as it has the coil of the present invention. For example, it includes a plurality of coils including an input side coil (primary coil) and an output side coil (secondary coil). A transformer can convert alternating current voltage depending on the turn ratio of the primary coil and the secondary coil.
The transformer of the present invention includes two or more, preferably two, coils, at least one of which includes the coil of the present invention as a low voltage, high current side coil. More preferably, the low voltage, high current side coil is a coil of the present invention, and the high voltage, low current side coil is also a coil of the present invention.
The transformer of the present invention may have a primary coil and a secondary coil in which insulated wires are wound around different cores, and the insulated wires of the primary coil are wrapped around the same core either directly or through an insulating tape or the like. Alternatively, the secondary coil may be wound with an insulated wire. The transformer itself is publicly known, and for example, the description in Japanese Patent Application Laid-Open No. 2018-190980 can be referred to.
本発明のコイル及びトランスは、それぞれ、電源用、特にスイッチング電源用として好ましく用いられる。電源とは、ある特定の電圧・電流を供給する装置をいう。
本発明のコイル及びトランスは、スイッチング電源用として好ましく用いられ、特に、交流の商用電源を変圧して整流し、電気・電子機器に適した電圧の直流に変換する、交流(AC)/直流(DC)コンバータ用として、好ましく用いられる。
The coil and transformer of the present invention are preferably used for power supplies, particularly for switching power supplies. A power supply is a device that supplies a specific voltage and current.
The coil and transformer of the present invention are preferably used for switching power supplies, and in particular, alternating current (AC)/direct current (AC)/direct current (AC) that transforms and rectifies AC commercial power and converts it into DC with a voltage suitable for electrical and electronic equipment. It is preferably used for DC) converters.
以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されない。 EXAMPLES Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited thereto.
[コイルの作製]
<実施例1-1>
断面が円形(真円)で、この円形の直径が0.3mmの素線導体の表面に、ポリアミドイミド樹脂ワニスを塗布し、焼付けて、厚さ0.025mmのエナメル層を形成し、素線を得た。この素線における素線導体断面の直径(h1)に対するエナメル層の厚み(h2)の比の値(h2/h1)は0.08である。
次に、上記で得られた1本の素線を中心として、その周囲に同じ6本の素線を最密充填状に配置した状態で、これらの素線を撚り合わせて素線数(撚り数)が7である撚り線を得た。作製した撚り線の仕上がり径(外接円の直径)、各導体の断面積の合計値、導体断面積率は、それぞれ、1.05mm、0.495mm2、57%であった。
次に、作製した撚り線を、ボビンの外周面に、撚り線同士が接するように10ターン巻き回して(5ターンからなる一列を2列(並列数2)分、隙間なく形成して)、実施例1-1のコイルを作製した。このボビンは、撚り線を巻き回す外周の直径が11.1mm、軸線長さが10.45mmであった。
[Coil production]
<Example 1-1>
A polyamide-imide resin varnish is applied to the surface of the wire conductor, which has a circular cross section (perfect circle) and a diameter of 0.3 mm, and is baked to form an enamel layer with a thickness of 0.025 mm. I got it. The ratio (h2/h1) of the thickness (h2) of the enamel layer to the diameter (h1) of the cross section of the strand conductor in this strand (h2/h1) is 0.08.
Next, with the same six strands arranged in a close-packed manner around the one strand obtained above, these strands are twisted together to determine the number of strands (twisting). A stranded wire with a number) of 7 was obtained. The finished diameter (diameter of circumscribed circle), total cross-sectional area of each conductor, and conductor cross-sectional area ratio of the stranded wire were 1.05 mm, 0.495 mm 2 , and 57%, respectively.
Next, the prepared stranded wire was wound around the outer peripheral surface of the bobbin for 10 turns so that the strands were in contact with each other (forming two rows (parallel number 2) of 5 turns without any gaps), A coil of Example 1-1 was produced. This bobbin had an outer diameter of 11.1 mm around which the strands were wound, and an axial length of 10.45 mm.
<実施例1-2>
エナメル層の厚みを0.07mmとしたこと以外は、実施例1-1と同様にして、実施例1-2のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Example 1-2>
A coil of Example 1-2 was produced in the same manner as Example 1-1 except that the thickness of the enamel layer was 0.07 mm. The composition of the strands and strands in the coil is shown in Table 1 below.
<従来例1-3>
エナメル層の厚みを0.01mmとしたこと以外は、実施例1-1と同様にして、従来例1-3のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Conventional example 1-3>
A coil of Conventional Example 1-3 was produced in the same manner as Example 1-1 except that the thickness of the enamel layer was 0.01 mm. The composition of the strands and strands in the coil is shown in Table 1 below.
<実施例2-1>
素線導体の断面の直径を0.18mm、エナメル層の厚みを0.025mmとし、素線の撚り数を19として最密充填状に撚り合わせたこと以外は、実施例1-1と同様にして、実施例2-1のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Example 2-1>
The procedure was the same as in Example 1-1, except that the diameter of the cross section of the wire conductor was 0.18 mm, the thickness of the enamel layer was 0.025 mm, and the number of twists of the wire was 19, and the wires were twisted in a close-packed manner. Thus, a coil of Example 2-1 was produced. The composition of the strands and strands in the coil is shown in Table 1 below.
<実施例2-2>
エナメル層の厚みを0.075mmとしたこと以外は、実施例2-1と同様にして、実施例2-2のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Example 2-2>
A coil of Example 2-2 was produced in the same manner as Example 2-1 except that the thickness of the enamel layer was 0.075 mm. The composition of the strands and strands in the coil is shown in Table 1 below.
<従来例2-3>
エナメル層の厚みを0.005mmとしたこと以外は、実施例2-1と同様にして、従来例2-3のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Conventional example 2-3>
A coil of Conventional Example 2-3 was produced in the same manner as Example 2-1 except that the thickness of the enamel layer was 0.005 mm. The composition of the strands and strands in the coil is shown in Table 1 below.
<実施例3-1>
素線導体の断面の直径を0.13mm、エナメル層の厚みを0.02mmとし、素線の撚り数を37として最密充填状に撚り合わせたこと以外は、実施例1-1と同様にして、実施例3-1のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Example 3-1>
The procedure was the same as in Example 1-1, except that the diameter of the cross section of the wire conductor was 0.13 mm, the thickness of the enamel layer was 0.02 mm, and the number of twists of the wire was 37, and the wires were twisted in a close-packed manner. Thus, a coil of Example 3-1 was produced. The composition of the strands and strands in the coil is shown in Table 1 below.
<実施例3-2>
エナメル層の厚みを0.05mmとしたこと以外は、実施例3-1と同様にして、実施例3-2のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Example 3-2>
A coil of Example 3-2 was produced in the same manner as Example 3-1 except that the thickness of the enamel layer was 0.05 mm. The composition of the strands and strands in the coil is shown in Table 1 below.
<従来例3-3>
エナメル層の厚みを0.004mmとしたこと以外は、実施例3-1と同様にして、従来例3-3のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Conventional example 3-3>
A coil of Conventional Example 3-3 was produced in the same manner as Example 3-1 except that the thickness of the enamel layer was 0.004 mm. The composition of the strands and strands in the coil is shown in Table 1 below.
<実施例4-1>
素線導体の断面の直径を0.1mm、エナメル層の厚みを0.019mmとし、素線の撚り数を61として最密充填状に撚り合わせたこと以外は、実施例1-1と同様にして、実施例4-1のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Example 4-1>
The procedure was the same as in Example 1-1, except that the diameter of the cross section of the wire conductor was 0.1 mm, the thickness of the enamel layer was 0.019 mm, and the number of twists of the wire was 61, and the wires were twisted in a close-packed manner. Thus, a coil of Example 4-1 was produced. The composition of the strands and strands in the coil is shown in Table 1 below.
<実施例4-2>
エナメル層の厚みを0.03mmとしたこと以外は、実施例4-1と同様にして、実施例4-2のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Example 4-2>
A coil of Example 4-2 was produced in the same manner as Example 4-1 except that the thickness of the enamel layer was 0.03 mm. The composition of the strands and strands in the coil is shown in Table 1 below.
<従来例4-3>
エナメル層の厚みを0.004mmとしたこと以外は、実施例4-1と同様にして、従来例4-3のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Conventional example 4-3>
A coil of Conventional Example 4-3 was produced in the same manner as Example 4-1 except that the thickness of the enamel layer was 0.004 mm. The composition of the strands and strands in the coil is shown in Table 1 below.
<実施例5-1>
実施例1-1と同様にして作製した撚り線の外周にPET(ポリエチレンテレフタレート)樹脂を、厚みが100μmとなるように押出成形し、撚り線の周囲にさらに絶縁層を有する絶縁電線を得た。次に、得られた絶縁電線を、ボビンに巻きつけて、実施例5-1のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Example 5-1>
PET (polyethylene terephthalate) resin was extruded around the outer periphery of a stranded wire produced in the same manner as in Example 1-1 to a thickness of 100 μm to obtain an insulated wire having an additional insulating layer around the stranded wire. . Next, the obtained insulated wire was wound around a bobbin to produce a coil of Example 5-1. The composition of the strands and strands in the coil is shown in Table 1 below.
<実施例5-2>
エナメル層の厚みを0.07mmとしたこと以外は、実施例5-1と同様にして、実施例5-2のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Example 5-2>
A coil of Example 5-2 was produced in the same manner as Example 5-1 except that the thickness of the enamel layer was 0.07 mm. The composition of the strands and strands in the coil is shown in Table 1 below.
<従来例5-3>
エナメル層の厚みを0.01mmとしたこと以外は、実施例5-1と同様にして、従来例5-3のコイルを作製した。当該コイルにおける素線と撚り線の構成を下記表1に示す。
<Conventional example 5-3>
A coil of Conventional Example 5-3 was produced in the same manner as Example 5-1 except that the thickness of the enamel layer was 0.01 mm. The composition of the strands and strands in the coil is shown in Table 1 below.
[コイルの性能評価]
上記実施例及び従来例に係るコイルの交流抵抗を、下記R/Rdcを指標にして評価した。
LCRメータ(商品名:E4980A、Agilent社製)を用いて、周波数1MHzの交流電流を通電したときの抵抗値(R)を測定した。当該抵抗値を直流抵抗(Rdc)で除算することによりR/Rdcを算出し、この値を交流抵抗の指標とした。
下記表1には、各コイルにおけるR/Rdcを示すとともに、下記式(2)で算出される、従来例に対する抵抗低減率も示した。
[Coil performance evaluation]
The AC resistances of the coils according to the above embodiments and conventional examples were evaluated using the following R/Rdc as an index.
Using an LCR meter (trade name: E4980A, manufactured by Agilent), the resistance value (R) was measured when an alternating current with a frequency of 1 MHz was applied. R/Rdc was calculated by dividing the resistance value by DC resistance (Rdc), and this value was used as an index of AC resistance.
Table 1 below shows the R/Rdc of each coil, and also shows the resistance reduction rate with respect to the conventional example, which is calculated by the following formula (2).
(1-[実施例のR/Rdc]/[従来例のR/Rdc])×100 (2) (1-[R/Rdc of Example]/[R/Rdc of Conventional Example]) x 100 (2)
表1に示されるように、素線導体径が同じであるもので比較したとき、各実施例のコイルは、h2/h1が本発明で規定するよりも小さい従来例に比べて、抵抗を効果的に低減できることがわかった。したがって、h2/h1を本発明の規定内とすることにより、撚り線を構成する素線の数を低減しながら、従来の性能を維持できること、すなわち、従来の性能を維持しながら、撚り線の製造コストの削減が可能になることがわかる。 As shown in Table 1, when comparing coils with the same wire conductor diameter, the coils of each example have a lower resistance than the conventional example in which h2/h1 is smaller than specified by the present invention. It was found that it was possible to reduce the Therefore, by setting h2/h1 within the specification of the present invention, it is possible to maintain the conventional performance while reducing the number of strands constituting the stranded wire, that is, to maintain the conventional performance while maintaining the conventional performance. It can be seen that manufacturing costs can be reduced.
1A,1B…絶縁電線、2A…撚り線、3A,3B…絶縁層、10…素線、11…導体、12…エナメル層。
1A, 1B... Insulated wire, 2A... Stranded wire, 3A, 3B... Insulating layer, 10... Element wire, 11... Conductor, 12... Enamel layer.
Claims (5)
前記導体の断面が円形であり、該円形の直径に対する前記エナメル層の厚みの比の値が0.08~0.5である、撚り線。 A stranded wire in which a plurality of wires each having a conductor and an enamel layer surrounding the conductor are twisted together,
A stranded wire in which the cross section of the conductor is circular and the value of the ratio of the thickness of the enamel layer to the diameter of the circle is from 0.08 to 0.5.
A transformer comprising the coil according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022040555A JP2023135383A (en) | 2022-03-15 | 2022-03-15 | Twisted wire, insulated wire, coil and transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022040555A JP2023135383A (en) | 2022-03-15 | 2022-03-15 | Twisted wire, insulated wire, coil and transformer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023135383A true JP2023135383A (en) | 2023-09-28 |
Family
ID=88144018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022040555A Pending JP2023135383A (en) | 2022-03-15 | 2022-03-15 | Twisted wire, insulated wire, coil and transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023135383A (en) |
-
2022
- 2022-03-15 JP JP2022040555A patent/JP2023135383A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10319491B2 (en) | Rectangular wire, and method of producing the same and electrical equipment using the same | |
US10366805B2 (en) | Insulated winding wire articles having conformal coatings | |
KR102106918B1 (en) | Winding, coil and transformer | |
KR20110106914A (en) | Insulated wire and coil | |
US20180182507A1 (en) | Continuously Transposed Conductors And Assemblies | |
ES2896019T3 (en) | Continuously Transposed Driver | |
US20200251243A1 (en) | Magnet Wire With Improved Enamel Adhesion | |
US20150243409A1 (en) | Insulated winding wire containing semi-conductive layers | |
US10510464B1 (en) | Continuously transposed conductors and assemblies | |
JP2013074144A5 (en) | ||
JP2023135383A (en) | Twisted wire, insulated wire, coil and transformer | |
JP7306789B2 (en) | coil and transformer | |
JP2024128628A (en) | Stranded wire, insulated wire, coils and transformers | |
JPH10134642A (en) | Multi-layer insulated wire and transformer with it | |
JP7050566B2 (en) | High frequency high output transformer | |
JP7558374B1 (en) | Tape-wrapped insulated wire and coils | |
JP7146449B2 (en) | Wires and coils for high frequency coils | |
JPH05190360A (en) | High-frequency transformer | |
JP2021118338A (en) | Spacer for electric wire, composite material for electric wire, electric wire, coil, transformer and power conversion circuit device | |
WO2023153246A1 (en) | Insulated wire, coil, rotating electric machine, and electric/electronic device | |
JP2007193945A (en) | Electric cable | |
JP7537903B2 (en) | Multilayer insulated wire for transformers | |
JP2023143124A (en) | Flat cable, coil, and production method of flat cable | |
TWI459408B (en) | Insulated wires and coils | |
JPH0597018U (en) | Multi-layer insulated wire for high frequency transformer winding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20241024 |