[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7146449B2 - Wires and coils for high frequency coils - Google Patents

Wires and coils for high frequency coils Download PDF

Info

Publication number
JP7146449B2
JP7146449B2 JP2018097737A JP2018097737A JP7146449B2 JP 7146449 B2 JP7146449 B2 JP 7146449B2 JP 2018097737 A JP2018097737 A JP 2018097737A JP 2018097737 A JP2018097737 A JP 2018097737A JP 7146449 B2 JP7146449 B2 JP 7146449B2
Authority
JP
Japan
Prior art keywords
wire
wires
insulating
layer
stranded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018097737A
Other languages
Japanese (ja)
Other versions
JP2019204837A (en
Inventor
弘 北沢
正平 宮原
勝夫 羽生
正宏 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP2018097737A priority Critical patent/JP7146449B2/en
Publication of JP2019204837A publication Critical patent/JP2019204837A/en
Application granted granted Critical
Publication of JP7146449B2 publication Critical patent/JP7146449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Insulated Conductors (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、高周波コイル用電線及びコイルに関する。更に詳しくは、特に、機器の高周波化にともない、受動部品であるトランス等のコイル部品の省エネや高効率に対応できる電線であって、モーター、インバータ、非接触給電用等のパワー半導体を使う高周波分野に絶縁電線を用いたコイル(リアクトル、インダクタ、チョークコイル、ノイズフィルター、IHヒータ、電源トランス等)として使用される高周波コイル用電線及びコイルに関する。 TECHNICAL FIELD The present invention relates to an electric wire and coil for high frequency coils. More specifically, as the frequency of equipment increases, it is a wire that can respond to energy saving and high efficiency of coil parts such as transformers, which are passive parts, and is a high-frequency wire that uses power semiconductors for motors, inverters, contactless power supply, etc. The present invention relates to high-frequency coil wires and coils used as coils (reactors, inductors, choke coils, noise filters, IH heaters, power transformers, etc.) using insulated wires in the field.

コイル部品には、複数の絶縁電線を撚り合わせたリッツ線や、そのリッツ線をさらにテープ巻き又は溶融押出しして得た複合絶縁電線等が用いられている。これらの絶縁電線は、数十kHz~数百kHzの高周波領域における表皮効果による交流抵抗の上昇を抑えることができるので、高周波分野のコイル用電線として広く使用されている。特に近年、コイル部品の小型化が要請され、使用されるコイル用電線の細径化も要請されている。 A litz wire obtained by twisting a plurality of insulated wires, a composite insulated wire obtained by further winding the litz wire with a tape or by melt-extrusion, or the like is used for the coil component. These insulated wires can suppress an increase in AC resistance due to the skin effect in a high frequency range of several tens of kHz to several hundreds of kHz, so they are widely used as coil wires in the field of high frequencies. In particular, in recent years, there has been a demand for miniaturization of coil components, and there has also been a demand for a reduction in the diameter of coil wires used.

こうした要請に対し、特許文献1には、直流重畳高周波回路、低周波重畳高周波回路等において損失を低減する電線及びコイルが提案されている。この技術は、銅線表面に磁性メッキ層を形成しその磁性メッキ層の表面に絶縁被覆を形成した絶縁被覆磁性材メッキ銅線と、銅線表面に絶縁被覆を形成した絶縁被覆銅線とを、断面全面について混在させて撚るか又は撚らずに集合させたことに特徴がある。そして、この技術は、全面に絶縁被覆磁性材メッキ銅線が配されているため、直流または低周波における抵抗を減らすことができるとともに、流れる電流が作り出す磁界は絶縁被覆磁性材メッキ銅線の磁性材メッキ層で遮断されて銅線部分まで入り難くなるため、高周波における近接効果による銅損の増加を抑制でき、従って、直流重畳高周波回路、低周波重畳高周波回路等での損失を低減できる、というものである。 In response to such a request, Patent Document 1 proposes an electric wire and a coil that reduce loss in a DC superimposed high-frequency circuit, a low-frequency superimposed high-frequency circuit, and the like. This technology consists of two types of insulation coated magnetic material-plated copper wire, in which a magnetic plating layer is formed on the surface of the copper wire and an insulation coating is formed on the surface of the magnetic plating layer, and insulation-coated copper wire, in which an insulation coating is formed on the surface of the copper wire. , is characterized in that the entire cross section is mixed and twisted or gathered without twisting. In addition, this technology can reduce the resistance in direct current or low frequency because the insulation coating magnetic material plated copper wire is arranged on the entire surface, and the magnetic field created by the flowing current is the magnetism of the insulation coating magnetic material plated copper wire. Since it is cut off by the material plating layer and it is difficult to enter the copper wire part, it is possible to suppress the increase in copper loss due to the proximity effect at high frequencies, so it is possible to reduce the loss in DC superimposed high frequency circuits, low frequency superimposed high frequency circuits, etc. It is.

特開2009-277396号公報JP 2009-277396 A

本発明は、機器の高周波化にともない、受動部品であるトランス等のコイル部品の省エネや高効率に対応できる電線の提供を目的としたものであって、モーター、インバータ、非接触給電用等のパワー半導体を使う高周波分野に絶縁電線を用いたコイル(リアクトル、インダクタ、チョークコイル、ノイズフィルター、IHヒータ、電源トランス等)として使用される高周波コイル用電線、及びその高周波コイル用電線で作製されたコイルを提供することにある。 The purpose of the present invention is to provide an electric wire that can respond to energy saving and high efficiency of coil parts such as transformers, which are passive parts, as the frequency of equipment increases. High-frequency coil wires used as coils (reactors, inductors, choke coils, noise filters, IH heaters, power transformers, etc.) using insulated wires in the high-frequency field that uses power semiconductors, and wires made from these high-frequency coil wires It is to provide a coil.

(1)本発明に係る高周波コイル用電線は、中心導体及び該中心導体の外周に設けられた絶縁層を有する絶縁素線を複数本撚り合わせて一次撚り線とし、前記一次撚り線をさらに撚って少なくとも二次撚り線とした集合撚り線構造からなる高周波コイル用電線であって、
前記集合撚り線構造は、二次撚り線、三次撚り線及び四次撚り線から選ばれるいずれかが最外周撚り線となる構造であり、前記最外周撚り線の本数が3本以上6本以下の範囲内であることを特徴とする。
(1) An electric wire for a high-frequency coil according to the present invention is a primary stranded wire obtained by twisting a plurality of insulated wires having a central conductor and an insulating layer provided on the outer periphery of the central conductor, and further twisting the primary stranded wire. A high-frequency coil electric wire having a collective strand structure in which at least a secondary strand is formed by
The bundled twisted wire structure is a structure in which any one selected from a secondary twisted wire, a tertiary twisted wire and a quaternary twisted wire is the outermost twisted wire, and the number of the outermost twisted wires is 3 or more and 6 or less. is within the range of

この発明によれば、集合撚り線構造は二次撚り線、三次撚り線及び四次撚り線から選ばれるいずれかが最外周撚り線となる構造であり、その最外周撚り線の本数が3本以上6本以下の範囲内であるようにすることにより、電流の偏りが発生しないで、より一層抵抗損失効果を抑制することができる。その結果、この高周波コイル用電線でコイルを作製することにより、受動部品であるトランス等のコイル部品の省エネや高効率化に寄与できる。 According to the present invention, the bundled strand structure is a structure in which any one selected from the secondary strand, the tertiary strand and the quaternary strand is the outermost strand, and the number of the outermost strand is three. By setting the number of wires to be within the range of 6 or less, the resistance loss effect can be further suppressed without causing current imbalance. As a result, by fabricating a coil with this electric wire for high frequency coils, it is possible to contribute to energy saving and efficiency enhancement of coil components such as transformers, which are passive components.

本発明に係る高周波コイル用電線において、前記集合撚り線構造を構成する各段階の撚り線のピッチは、下記計算式の範囲内であることが好ましい。下記式において、Yは撚りピッチ(mm)であり、Xは一次撚り線から四次撚り線までの各撚り段階の数(1~4)である。
8.65X+22≧Y≧8.15X-3 ・・・(1)
4≧X≧1 ・・・(2)
In the high-frequency coil wire according to the present invention, it is preferable that the pitch of the twisted wire at each stage constituting the bundled twisted wire structure is within the range of the following formula. In the formula below, Y is the twist pitch (mm) and X is the number of each twist stage (1-4) from the primary to the quaternary strands.
8.65X+22≧Y≧8.15X−3 (1)
4≧X≧1 (2)

この発明によれば、集合撚り線構造を構成する各段階の撚り線のピッチを上記計算式の範囲内とすることにより撚り段階を増す毎に総外径が増した場合において、好ましい撚りピッチとしてコイル巻き線性のよい高周波コイル用電線とすることができる。 According to the present invention, when the total outer diameter increases as the number of twisting steps is increased by setting the pitch of the twisted wires in each step constituting the bundled twisted wire structure within the range of the above calculation formula, the preferable twist pitch is An electric wire for high-frequency coils with good coil winding properties can be obtained.

本発明に係る高周波コイル用電線において、前記中心導体が直径0.04mm以上0.12mm以下の範囲内であり、前記絶縁素線の数が19本以上5000本以下の範囲内である。 In the high-frequency coil wire according to the present invention, the diameter of the central conductor is within the range of 0.04 mm or more and 0.12 mm or less, and the number of the insulating wires is within the range of 19 or more and 5000 or less.

本発明に係る高周波コイル用電線において、前記中心導体が、タフピッチ銅若しくは無酸素銅からなる銅線、又は前記銅線に磁性層が設けられた磁性線であることが好ましい。 In the high-frequency coil wire according to the present invention, it is preferable that the central conductor is a copper wire made of tough pitch copper or oxygen-free copper, or a magnetic wire in which the copper wire is provided with a magnetic layer.

本発明に係る高周波コイル用電線において、前記絶縁層が、エナメル被覆層又はイミダゾール化合物層であることが好ましい。 In the high-frequency coil wire according to the present invention, the insulating layer is preferably an enamel coating layer or an imidazole compound layer.

本発明に係る高周波コイル用電線において、前記集合撚り線構造の外周に絶縁被覆層が設けられ、前記絶縁被覆層が、絶縁性押出し樹脂、絶縁性テープ、又はそれらの組み合わせにより構成されていることが好ましい。 In the high-frequency coil wire according to the present invention, an insulating coating layer is provided on the outer periphery of the bundled strand structure, and the insulating coating layer is composed of an insulating extruded resin, an insulating tape, or a combination thereof. is preferred.

(2)本発明に係るコイルは、上記本発明に係る高周波コイル用電線を用いてなることを特徴とする。 (2) A coil according to the present invention is characterized by using the electric wire for a high frequency coil according to the present invention.

本発明によれば、機器の高周波化にともない、受動部品であるトランス等のコイル部品の省エネや高効率化に寄与できる高周波コイル用電線、及びその高周波コイル用電線で作製されたコイルを提供することができる。特に、集合撚り線構造として一次撚り線、一次撚り線を更に二次撚りした二次撚り線、二次撚り線を更に三次撚りした三次撚り線等の高次の撚り線は総断面積が大きい電流容量の大きな電線であるが、こうした電線において、機器の高周波化に対応できる省エネ・高効率のコイル用電線として好ましい。 ADVANTAGE OF THE INVENTION According to this invention, the electric wire for high frequency coils which can contribute to energy saving and efficiency improvement of coil components, such as a transformer which is a passive component, and the coil produced with the electric wire for high frequency coils are provided with the high frequency of an apparatus. be able to. In particular, high-order stranded wires such as a primary stranded wire, a secondary stranded wire obtained by further twisting the primary stranded wire, and a tertiary stranded wire obtained by further twisting the secondary stranded wire have a large total cross-sectional area. Although it is an electric wire with a large current capacity, it is preferable as an energy-saving and highly efficient coil electric wire that can cope with high frequency devices.

本発明に係る高周波コイル用電線の例を示す断面模式図であり、(A)は一次撚り線と二次撚り線からなる2段階構造の集合撚り線構造であり、(B)は一次撚り線から三次撚り線からなる3段階構造の集合撚り線構造であり、(C)は一次撚り線から四次撚り線からなる4段階構造の集合撚り線構造である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional schematic diagram showing an example of an electric wire for a high-frequency coil according to the present invention, where (A) is a two-stage bundled strand structure consisting of a primary strand and a secondary strand, and (B) is a primary strand. (C) is a four-stage bundled strand structure consisting of primary to quaternary strands. 一次撚り線の一例を示す構成図である。FIG. 2 is a configuration diagram showing an example of a primary twisted wire; 一次撚り線を構成する絶縁素線の例であり、(A)は銅線上に絶縁層を設けたものであり、(B)は磁性線上に絶縁層を設けたものである。It is an example of the insulated wire constituting the primary stranded wire, in which (A) is a copper wire provided with an insulating layer, and (B) is a magnetic wire provided with an insulating layer. (A)は実施例2の高周波コイル用電線の断面写真であり、(B)は比較例1の電線の断面写真である。(A) is a cross-sectional photograph of the high-frequency coil electric wire of Example 2, and (B) is a cross-sectional photograph of the electric wire of Comparative Example 1. FIG. 本発明に係る高周波コイル用電線の一例を示す構成図であり、絶縁被覆層を三層で構成した例である。FIG. 2 is a configuration diagram showing an example of the high-frequency coil electric wire according to the present invention, and is an example in which the insulating coating layer is configured with three layers.

本発明に係る高周波コイル用電線及びコイルについて図面を参照しながら説明する。なお、本発明は、以下に説明する実施形態及び図面に記載した形態と同じ技術的思想の発明を含むものであり、本発明の技術的範囲は実施形態の記載や図面の記載のみに限定されるものでない。 A high-frequency coil wire and coil according to the present invention will be described with reference to the drawings. The present invention includes inventions having the same technical idea as the embodiments described below and the forms described in the drawings, and the technical scope of the present invention is limited only to the description of the embodiments and the description of the drawings. not something.

[高周波コイル用電線]
本発明に係る高周波コイル用電線20は、図1~図5に示すように、中心導体1及びその中心導体1の外周に設けられた絶縁層2を有する絶縁素線3を複数本撚り合わせて一次撚り線11とし、その一次撚り線11をさらに撚って少なくとも二次撚り線12とした集合撚り線構造10からなる高周波コイル用電線である。そして、集合撚り線構造10は、二次撚り線12、三次撚り線13及び四次撚り線14から選ばれるいずれかが最外周撚り線となる構造であり、その最外周撚り線の本数が3本以上6本以下の範囲内であることに特徴がある。
[Wires for high frequency coils]
As shown in FIGS. 1 to 5, a high-frequency coil electric wire 20 according to the present invention is obtained by twisting a plurality of insulated wires 3 having a central conductor 1 and an insulating layer 2 provided on the outer periphery of the central conductor 1. The high-frequency coil electric wire comprises a bundled stranded wire structure 10 having a primary stranded wire 11 and at least a secondary stranded wire 12 by further twisting the primary stranded wire 11 . The bundled strand structure 10 has a structure in which any one selected from the secondary strand 12, the tertiary strand 13 and the quaternary strand 14 is the outermost strand, and the number of the outermost strand is three. It is characterized by being in the range of 1 or more and 6 or less.

こうした高周波コイル用電線20の集合撚り線構造10は、二次撚り線12、三次撚り線13及び四次撚り線14から選ばれるいずれかが最外周撚り線となる構造であり、その最外周撚り線の本数が3本以上6本以下の範囲内であるようにすることにより、電流の偏りが発生しないで、より一層抵抗損失効果を抑制することができる。その結果、この高周波コイル用電線20でコイルを作製することにより、受動部品であるトランス等のコイル部品の省エネや高効率化に寄与できる。 The bundled strand structure 10 of the high-frequency coil electric wire 20 has a structure in which any one selected from the secondary strand 12, the tertiary strand 13, and the quaternary strand 14 is the outermost strand. By setting the number of wires to be in the range of 3 or more and 6 or less, it is possible to further suppress the resistance loss effect without causing current imbalance. As a result, by fabricating a coil with the electric wire 20 for high-frequency coils, it is possible to contribute to energy saving and efficiency enhancement of coil components such as transformers, which are passive components.

以下、高周波コイル用電線の構成要素を説明する。 The constituent elements of the high-frequency coil wire will be described below.

(中心導体)
中心導体1は、いわゆるリッツ線を構成する絶縁素線3の中心導体として使用されている各種の導体であれば特に限定されず、銅、銅合金、銅クラッド複合線、磁性線等を挙げることができる。好ましい中心導体1としては、タフピッチ銅、無酸素銅からなる銅線、又はそうした銅導体1aに磁性層1bが設けられた磁性線を挙げることができる。タフピッチ銅か無酸素銅であるかは、JIS H-3510に準拠した水素脆化試験によって判定することができる。磁性層2bが設けられているか否かは、ICP発光分光分析によって測定して定性及び定量分析することができる。
(Center conductor)
The central conductor 1 is not particularly limited as long as it is various conductors used as the central conductor of the insulated wire 3 that constitutes the so-called litz wire. can be done. A preferable central conductor 1 is a copper wire made of tough-pitch copper or oxygen-free copper, or a magnetic wire in which a magnetic layer 1b is provided on such a copper conductor 1a. Whether it is tough pitch copper or oxygen-free copper can be determined by a hydrogen embrittlement test according to JIS H-3510. Whether or not the magnetic layer 2b is provided can be measured by ICP emission spectrometry for qualitative and quantitative analysis.

中心導体1として、図3(B)のように銅導体1a上に磁性層1bを設けた場合は、後述の実施例で示すように、特に高周波での抵抗変化率(交流抵抗/直流抵抗)を抑制することができるので好ましく適用される。磁性層1bは、上記特許文献1と同様、電気めっきや無電解めっきで形成することができ、例えば、鉄、コバルト、ニッケル、又はそれらの合金(各種のパーマロイ合金を含む。)等を挙げることができる。特に、銅導体1a上に鉄めっき層とニッケルめっき層を順に設けた磁性層は、ニッケルめっき層の作用によりはんだ付けも可能になるので好ましく適用される。鉄めっき層の厚さは、0.2μm以上3.0μm以下の範囲内で設けられていることが好ましく、高周波コイル等に使用される場合に交流抵抗を低減して高周波特性が向上する。なお、交流抵抗を低減する等の効果を阻害しない範囲であれば、鉄めっき層に他の元素(例えばニッケル、コバルト、リン、ホウ素等)が含まれていてもよい。ニッケルめっき層は、鉄めっき層が作用する高周波特性を低下させないとともに、はんだ付けを容易にさせるので、好ましく適用される。ニッケルめっき層の厚さは特に限定されないが、例えば0.01~0.5μm程度であることが好ましい。なお、磁性層1bを電気めっきや無電解めっきで形成する場合のめっき液組成や条件も特に限定されず、従来と同様の手段を適用できる。 As the central conductor 1, when the magnetic layer 1b is provided on the copper conductor 1a as shown in FIG. can be suppressed, so it is preferably applied. The magnetic layer 1b can be formed by electroplating or electroless plating as in Patent Document 1, and examples include iron, cobalt, nickel, or alloys thereof (including various permalloy alloys). can be done. In particular, a magnetic layer in which an iron-plated layer and a nickel-plated layer are provided in this order on the copper conductor 1a is preferably applied because the action of the nickel-plated layer enables soldering. The iron plating layer preferably has a thickness of 0.2 μm or more and 3.0 μm or less. When used in a high frequency coil or the like, the AC resistance is reduced and the high frequency characteristics are improved. Note that the iron plating layer may contain other elements (for example, nickel, cobalt, phosphorus, boron, etc.) as long as the effect of reducing the AC resistance is not impaired. The nickel plating layer is preferably applied because it does not degrade the high frequency characteristics that the iron plating layer acts on and it facilitates soldering. Although the thickness of the nickel plating layer is not particularly limited, it is preferably about 0.01 to 0.5 μm, for example. When the magnetic layer 1b is formed by electroplating or electroless plating, the plating solution composition and conditions are not particularly limited, and conventional means can be applied.

中心導体1の直径は特に限定されないが、多くの本数で構成する本発明に係る高周波コイル用電線20の作製に好ましく適用できる程度の直径であればよく、例えば0.04~0.12mm程度の範囲内であることが好ましい。 The diameter of the central conductor 1 is not particularly limited, but may be a diameter that can be preferably applied to the production of the high-frequency coil electric wire 20 according to the present invention configured with a large number of wires, for example, about 0.04 to 0.12 mm. preferably within the range.

(絶縁層)
絶縁層2は、図3に示すように、中心導体1上に設けられている。絶縁層2を設けることにより、高周波コイル用電線20を、各種高周波コイル、高周コイル用の電線(撚り線、集合させた素線の外周を絶縁被覆により一体化した絶縁電線等)として有用に利用できる。絶縁層2は絶縁性を確保できるものであれば特に限定されず、各種のエナメル被覆層等を挙げることができる。例えば、はんだ付け可能な絶縁エナメル被膜、はんだ付け可能な絶縁エナメル被膜と融着エナメル被膜の積層被覆層、イミダゾール化合物層等を挙げることができる。はんだ付け可能な絶縁エナメル被膜は、例えば汎用ポリウレタン、変性ポリウレタン、ポリエステルイミド等のはんだ付け可能なエナメル塗料を塗布焼付けして形成できる。また、更にその外周に形成する融着エナメル被膜は、例えばナイロンやエポキシ等の融着エナメル塗料を塗布焼付けして形成できる。
(insulating layer)
The insulating layer 2 is provided on the central conductor 1 as shown in FIG. By providing the insulating layer 2, the high-frequency coil wire 20 is useful as a wire for various high-frequency coils and high-frequency coils (a stranded wire, an insulated wire in which the outer circumference of a group of wires is integrated with an insulating coating, etc.). Available. The insulating layer 2 is not particularly limited as long as it can ensure insulation, and various enamel coating layers can be used. Examples thereof include a solderable insulating enamel coating, a laminate coating layer of a solderable insulating enamel coating and a fusion-bonded enamel coating, an imidazole compound layer, and the like. The solderable insulating enamel coating can be formed by applying and baking a solderable enamel paint such as general-purpose polyurethane, modified polyurethane or polyesterimide. Further, the fusion enamel coating formed on the outer circumference can be formed by applying and baking a fusion enamel paint such as nylon or epoxy.

イミダゾール化合物層は、中心導体1の構成成分である金属と錯体を形成することができるイミダゾール化合物を中心導体1に浸漬又は接触させ、その後乾燥させて形成される。イミダゾール化合物としては、イミダゾール、アミン有機酸塩等を挙げることができる。イミダゾールは、上市されているものから入手可能である。イミダゾールが、中心導体1を構成する銅、鉄又はニッケル等と反応することにより、金属イミダゾール錯体(銅イミダゾール錯体、鉄イミダゾール錯体、ニッケルイミダゾール錯体)が形成される。なお、イミダゾール化合物層の厚さは、0.05~0.5μmの範囲内であることが好ましい。この範囲内の厚さでイミダゾール化合物層が設けられることにより、中心導体1の酸化を防止でき、はんだ濡れ性を優れたものとすることができる。さらに、エナメル皮膜に比べ、皮膜厚さを1/10程度に抑えることができるので、最終的な高周波コイル用電線20の直径を小さくして断面積を約15%小さくでき、コイルの小型化に貢献できる。また、イミダゾール化合物層は、エナメル皮膜のように厚くないので、はんだ付け時の焼けカスが非常に微量であり、はんだ接続部における焼けカスに起因する問題が発生しにくいという利点もある。なお、イミダゾール化合物層の形成は、焼き付け工程が不要であり、直ぐ後に撚り合わせを行うことができるという利点もある。 The imidazole compound layer is formed by immersing or contacting the central conductor 1 with an imidazole compound capable of forming a complex with a metal that is a component of the central conductor 1, followed by drying. Examples of imidazole compounds include imidazole and amine organic acid salts. Imidazoles are commercially available. Imidazole reacts with copper, iron, nickel, or the like forming the central conductor 1 to form a metal imidazole complex (copper imidazole complex, iron imidazole complex, nickel imidazole complex). Incidentally, the thickness of the imidazole compound layer is preferably within the range of 0.05 to 0.5 μm. By providing the imidazole compound layer with a thickness within this range, oxidation of the central conductor 1 can be prevented, and excellent solder wettability can be achieved. Furthermore, since the film thickness can be reduced to about 1/10 of that of the enamel film, the diameter of the final high-frequency coil wire 20 can be reduced and the cross-sectional area can be reduced by about 15%, which contributes to miniaturization of the coil. can contribute. In addition, since the imidazole compound layer is not as thick as an enamel film, the amount of burnt scum during soldering is very small, and there is also the advantage that problems due to burnt scum at solder joints are less likely to occur. In addition, the formation of the imidazole compound layer has the advantage that the baking process is not required and the twisting can be performed immediately after.

(絶縁素線)
絶縁素線3は、図3に示すように、中心導体1上に絶縁層2を設けて構成される。この絶縁素線3は、後述の一次撚り線11を構成し、その一次撚り線11はその後にさらに撚られて最終的な集合撚り線構造10を構成する。最終的な集合撚り線構造10を構成する絶縁素線3は、二次撚り線12、三次撚り線13及び四次撚り線14から選ばれる構造形態となり、その本数は、19本以上5000本以下の範囲内となる。
(Insulated wire)
As shown in FIG. 3, the insulating wire 3 is constructed by providing an insulating layer 2 on a central conductor 1. As shown in FIG. The insulated strands 3 constitute primary strands 11 to be described later, which are then further twisted to form the final bundled strand structure 10 . The insulating strands 3 constituting the final bundled strand structure 10 have a structural form selected from secondary strands 12, tertiary strands 13, and quaternary strands 14, and the number thereof is 19 or more and 5000 or less. within the range of

(集合撚り線構造)
集合撚り線構造10は、図1,図2及び図4に示すように、絶縁素線3を複数本撚り合わせて一次撚り線11とし、その一次撚り線11をさらに撚って少なくとも二次撚り線12とした構造である。
(aggregate strand structure)
As shown in FIGS. 1, 2 and 4, the stranded bundle structure 10 is formed by twisting a plurality of insulating wires 3 into a primary stranded wire 11, and further twisting the primary stranded wire 11 to form at least a secondary twist. The structure is represented by line 12 .

この集合撚り線構造10においては、二次撚り線12、三次撚り線13及び四次撚り線14から選ばれるいずれかが最外周撚り線となる。そして、その最外周撚り線の本数が、3本以上6本以下の範囲内であることに特徴がある。最外周撚り線の本数を3本以上6本以下の範囲内とすることにより、電流の偏りが発生しないで、より一層抵抗損失効果を抑制することができる。その結果、この高周波コイル用電線でコイルを作製することにより、受動部品であるトランス等のコイル部品の省エネや高効率化に寄与できる。後述の実施例と比較例で示すように、その本数が3本未満では、断面を丸形状に整えることが困難であり、次工程で設ける絶縁被覆層4の外径変動が大きく、その外径変動が抵抗変化率のばらつきを生じさせることがあり、一方、その本数が6本を超えると、抵抗変化率(交流抵抗/直流抵抗)の値が十分に抑制されないことがある。 In this bundled strand structure 10, one of the secondary strands 12, the tertiary strands 13 and the quaternary strands 14 is the outermost strand. The number of outermost twisted wires is in the range of 3 or more and 6 or less. By setting the number of the outermost twisted wires within the range of 3 or more and 6 or less, it is possible to further suppress the resistance loss effect without causing current imbalance. As a result, by fabricating a coil with this electric wire for high frequency coils, it is possible to contribute to energy saving and efficiency enhancement of coil components such as transformers, which are passive components. As shown in examples and comparative examples described later, if the number is less than 3, it is difficult to arrange the cross section into a round shape, and the outer diameter of the insulating coating layer 4 to be provided in the next step fluctuates greatly. Fluctuations may cause variations in the rate of resistance change. On the other hand, if the number exceeds 6, the value of the rate of resistance change (AC resistance/DC resistance) may not be sufficiently suppressed.

図1において、(A)は一次撚り線11と二次撚り線12からなる2段階構造の集合撚り線構造10であり、(B)は一次撚り線11から三次撚り線13からなる3段階構造の集合撚り線構造10であり、(C)は一次撚り線11から四次撚り線14からなる4段階構造の集合撚り線構造10である。 In FIG. 1, (A) is a two-stage stranded bundle structure 10 consisting of primary strands 11 and secondary strands 12, and (B) is a three-stage structure composed of primary strands 11 to tertiary strands 13. (C) is a four-stage twisted bundle structure 10 consisting of primary strands 11 to quaternary strands 14 .

集合撚り線構造10を構成する各段階の撚り線のピッチは、下記計算式の範囲内であることが好ましい。下記式において、Yは撚りピッチ(mm)であり、Xは一次撚り線から四次撚り線までの各撚り段階の数(1~4)である。
8.65X+22≧Y≧8.15X-3 ・・・(1)
4≧X≧1 ・・・(2)
It is preferable that the pitch of the twisted wires in each stage constituting the bundled twisted wire structure 10 is within the range of the following formula. In the formula below, Y is the twist pitch (mm) and X is the number of each twist stage (1-4) from the primary to the quaternary strands.
8.65X+22≧Y≧8.15X−3 (1)
4≧X≧1 (2)

集合撚り線構造10を構成する各段階の撚り線のピッチYを上記計算式の範囲内とすることにより、撚り段階を増す毎に総外径が増した場合において、好ましい撚りピッチYとしてコイル巻き線性のよい高周波コイル用電線20とすることができる。ピッチYが上記範囲の下限未満である場合は、線速が遅くなり、それによって生産効率が低下してコストを押上げる要因となることがある。一方、ピッチYが上記範囲の上限を超える場合は、撚り線としての形状を保持し難く、撚り乱れが生じやすく、且つそのことによって抵抗変化率のばらつきや交流抵抗の増加に繋がることがある。 By setting the pitch Y of the twisted wires in each stage constituting the stranded bundle structure 10 within the range of the above calculation formula, when the total outer diameter increases with each increase in the twisting stage, the preferable twist pitch Y is set to the coil winding. The high-frequency coil electric wire 20 having good linearity can be obtained. If the pitch Y is less than the lower limit of the above range, the linear speed becomes slow, which may reduce the production efficiency and increase the cost. On the other hand, if the pitch Y exceeds the upper limit of the above range, it is difficult to maintain the shape of the stranded wire, and the twist tends to be disturbed, which may lead to variations in the resistance change rate and an increase in the AC resistance.

(絶縁被覆層)
絶縁被覆層4は、図4及び図5に示すように、集合撚り線構造10の外周に設けられる。図5は、絶縁被覆層4を三層(4a,4b,4c)で構成した三層絶縁電線の例である。この絶縁被覆層4は、絶縁性押出し樹脂、絶縁性テープ、又はそれらの組み合わせにより構成されていることが好ましい。絶縁被覆層4は、単層であってもよいし、図5に示すような積層であってもよい。また、絶縁被覆層4は、テープ巻きと押出しを組み合わせて積層してもよい。
(insulating coating layer)
The insulating coating layer 4 is provided on the outer circumference of the bundled strand structure 10, as shown in FIGS. FIG. 5 shows an example of a three-layer insulated wire in which the insulating coating layer 4 is composed of three layers (4a, 4b, 4c). This insulating coating layer 4 is preferably made of an insulating extruded resin, an insulating tape, or a combination thereof. The insulating coating layer 4 may be a single layer, or may be a laminate as shown in FIG. Moreover, the insulating coating layer 4 may be laminated by combining tape winding and extrusion.

(高周波コイル用電線及びコイル)
こうして構成された高周波コイル用電線20は、モーター、インバータ、非接触給電用等のパワー半導体を使う高周波分野に絶縁電線を用いたコイル(リアクトル、インダクタ、チョークコイル、ノイズフィルター、IHヒータ、電源トランス等)として使用される。この高周波コイル用電線20は、抵抗変化率の上昇を抑制でき、安定した高周波特性を示すことができ、低コストで製造可能な細径の高周波コイル用電線となる。
(Wires and coils for high frequency coils)
The high-frequency coil wire 20 thus configured is a coil (reactor, inductor, choke coil, noise filter, IH heater, power transformer) using an insulated wire for high-frequency fields that use power semiconductors such as motors, inverters, and contactless power supply. etc.). This high-frequency coil electric wire 20 can suppress an increase in resistance change rate, can exhibit stable high-frequency characteristics, and can be manufactured at a low cost as a small-diameter high-frequency coil electric wire.

以上のように、本発明に係る高周波コイル用電線20は、機器の高周波化にともない、受動部品であるトランス等のコイル部品の省エネや高効率化に寄与できる。特に、集合撚り線構造として一次撚り線、一次撚り線を更に二次撚りした二次撚り線、二次撚り線を更に三次撚りした三次撚り線等の高次の撚り線は総断面積が大きい電流容量の大きな電線であるが、こうした電線において、機器の高周波化に対応できる省エネ・高効率のコイル用電線として好ましい。特に本発明は、ハイブリッド自動車(HEV)や電気自動車(EV)等の電動化技術を支えるパワーエレクトロニクス技術のキーデバイスとして、パワー半導体関連部品に好ましく応用できる。こうした機器のスイッチング周波数が高周波化に移行している背景により、これら機器に使用される受動部品であるトランスやインダクタ等のコイル用巻線材料として好ましく適用される。 As described above, the high-frequency coil electric wire 20 according to the present invention can contribute to energy saving and efficiency improvement of coil components such as transformers, which are passive components, as the frequency of devices increases. In particular, high-order stranded wires such as a primary stranded wire, a secondary stranded wire obtained by further twisting the primary stranded wire, and a tertiary stranded wire obtained by further twisting the secondary stranded wire have a large total cross-sectional area. Although it is an electric wire with a large current capacity, it is preferable as an energy-saving and highly efficient coil electric wire that can cope with high frequency devices. In particular, the present invention can be preferably applied to power semiconductor-related parts as a key device of power electronics technology that supports electrification technology for hybrid vehicles (HEV), electric vehicles (EV), and the like. With the switching frequency of such devices shifting to higher frequencies, it is preferably applied as a winding material for coils such as transformers and inductors, which are passive components used in these devices.

具体的な応用としては、抵抗変化率の上昇を抑制できるという効果より、例えば、DC/DCコンバータ効率を向上させることができる。特に、DCコンバータにおいて、インダクタの巻線用電線として適用することにより、インダクタの発熱及びDC/DCコンバータの効率を向上させることができる。 As a specific application, for example, DC/DC converter efficiency can be improved by the effect of being able to suppress an increase in resistance change rate. In particular, in a DC converter, the heat generation of the inductor and the efficiency of the DC/DC converter can be improved by applying it as a winding wire for the inductor.

以下、実施例と比較例により本発明をさらに詳しく説明する。なお、これにより本発明が限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples. In addition, this invention is not limited by this.

「実施例1」
中心導体1として、直径0.9mmのタフピッチ銅を冷間伸線加工した直径0.10mmのタフピッチ銅線を準備した。次に、その中心導体1を熱処理して加工歪を除去した後、ポリウレタン皮膜を塗布・焼付して絶縁層2を形成し、直径0.120mmの絶縁素線3Aを得た。この絶縁素線3Aを18本集合させ、20mmピッチで一次撚りして直径約0.585mmの一次撚り線11を得た。続いて、この一次撚り線11を3本集合させ、30mmピッチで二次撚りして直径約1.01mmの二次撚り線12を得た。なお、ここでは最外周撚り線は二次撚り線12であり、絶縁素線3Aの合計は54本である。さらに、この二次撚り線12の外周に、厚さ0.1mmでPFAを溶融押出しして、外径約1.21mmの絶縁電線20を作製した。
"Example 1"
As the central conductor 1, a tough pitch copper wire with a diameter of 0.10 mm was prepared by cold drawing tough pitch copper with a diameter of 0.9 mm. Next, after the center conductor 1 was heat-treated to remove processing strain, a polyurethane film was applied and baked to form an insulating layer 2, and an insulating wire 3A having a diameter of 0.120 mm was obtained. Eighteen of these insulated wires 3A were assembled and primary stranded at a pitch of 20 mm to obtain a primary stranded wire 11 having a diameter of about 0.585 mm. Subsequently, three of the primary stranded wires 11 were assembled and secondary stranded at a pitch of 30 mm to obtain a secondary stranded wire 12 having a diameter of about 1.01 mm. Here, the outermost twisted wire is the secondary twisted wire 12, and the total number of the insulating wires 3A is 54. As shown in FIG. Furthermore, PFA was melt-extruded to a thickness of 0.1 mm around the outer periphery of the secondary stranded wire 12 to produce an insulated wire 20 having an outer diameter of about 1.21 mm.

[実施例2]
実施例1において、絶縁素線3Aを14本集合させ、20mmピッチで一次撚りして直径約0.516mmの一次撚り線11を得た。続いて、この一次撚り線11を4本集合させ、30mmピッチで二次撚りして直径約1.03mmの二次撚り線12を得た。なお、ここでは最外周撚り線は二次撚り線12であり、絶縁素線3Aの合計は56本である。それ以外は実施例1と同様にして、外径約1.23mmの絶縁電線20を作製した。
[Example 2]
In Example 1, 14 insulated wires 3A were gathered and primary twisted at a pitch of 20 mm to obtain a primary twisted wire 11 having a diameter of about 0.516 mm. Subsequently, four of these primary stranded wires 11 were assembled and secondary stranded at a pitch of 30 mm to obtain a secondary stranded wire 12 having a diameter of about 1.03 mm. Here, the outermost twisted wire is the secondary twisted wire 12, and the total number of the insulating wires 3A is 56. As shown in FIG. Otherwise, in the same manner as in Example 1, an insulated wire 20 having an outer diameter of about 1.23 mm was produced.

[実施例3]
実施例1において、絶縁素線3Aを11本集合させ、20mmピッチで一次撚りして直径約0.458mmの一次撚り線11を得た。続いて、この一次撚り線11を5本集合させ、30mmピッチで二次撚りして直径約1.03mmの二次撚り線12を得た。なお、ここでは最外周撚り線は二次撚り線12であり、絶縁素線3Aの合計は55本である。それ以外は実施例1と同様にして、外径約1.22mmの絶縁電線20を作製した。
[Example 3]
In Example 1, eleven insulated wires 3A were gathered and primary twisted at a pitch of 20 mm to obtain a primary twisted wire 11 having a diameter of approximately 0.458 mm. Subsequently, five of these primary stranded wires 11 were assembled and secondary stranded at a pitch of 30 mm to obtain a secondary stranded wire 12 having a diameter of about 1.03 mm. Here, the outermost twisted wire is the secondary twisted wire 12, and the total number of the insulating wires 3A is 55. As shown in FIG. Otherwise, in the same manner as in Example 1, an insulated wire 20 having an outer diameter of about 1.22 mm was produced.

[実施例4]
実施例1において、絶縁素線3Aを9本集合させ、20mmピッチで一次撚りして直径約0.414mmの一次撚り線11を得た。続いて、この一次撚り線11を6本集合させ、30mmピッチで二次撚りして直径約1.01mmの二次撚り線12を得た。なお、ここでは最外周撚り線は二次撚り線12であり、絶縁素線3Aの合計は54本である。それ以外は実施例1と同様にして、外径約1.21mmの絶縁電線20を作製した。
[Example 4]
In Example 1, nine insulated wires 3A were gathered and primary twisted at a pitch of 20 mm to obtain a primary twisted wire 11 having a diameter of approximately 0.414 mm. Subsequently, six of these primary stranded wires 11 were assembled and secondary stranded at a pitch of 30 mm to obtain a secondary stranded wire 12 having a diameter of about 1.01 mm. Here, the outermost twisted wire is the secondary twisted wire 12, and the total number of the insulating wires 3A is 54. As shown in FIG. Otherwise, in the same manner as in Example 1, an insulated wire 20 having an outer diameter of about 1.21 mm was produced.

[実施例5]
中心導体1として、直径0.9mmのタフピッチ銅を冷間伸線加工した直径0.10mmのタフピッチ銅導体1aを準備し、そのタフピッチ銅導体1aの表面を前処理した後に厚さ1μmの鉄めっき層(磁性層1b)と厚さ0.05μmのニッケルめっき層とを順次形成した。次に、その中心導体1を熱処理して加工歪を除去した後、ポリウレタン皮膜を塗布・焼付して絶縁層2を形成し、直径0.120mmの絶縁素線3Bを得た。それ以外は実施例1と同様にして、外径約1.21mmの絶縁電線20を作製した。
[Example 5]
As the central conductor 1, a tough pitch copper conductor 1a with a diameter of 0.10 mm is prepared by cold drawing tough pitch copper with a diameter of 0.9 mm. A layer (magnetic layer 1b) and a nickel plating layer having a thickness of 0.05 μm were sequentially formed. Next, after the center conductor 1 was heat-treated to remove processing strain, a polyurethane film was applied and baked to form an insulating layer 2, thereby obtaining an insulating wire 3B having a diameter of 0.120 mm. Otherwise, in the same manner as in Example 1, an insulated wire 20 having an outer diameter of about 1.21 mm was produced.

[実施例6]
実施例5で得た絶縁素線3Bを14本集合させて一次撚り線11とした他は、実施例2と同様にして、外径約1.23mmの絶縁電線20を作製した。
[Example 6]
An insulated wire 20 having an outer diameter of about 1.23 mm was produced in the same manner as in Example 2, except that 14 insulated wires 3B obtained in Example 5 were gathered to form a primary stranded wire 11.

[実施例7]
実施例5で得た絶縁素線3Bを11本集合させて一次撚り線11とした他は、実施例3と同様にして、外径約1.22mmの絶縁電線20を作製した。
[Example 7]
An insulated wire 20 having an outer diameter of about 1.22 mm was produced in the same manner as in Example 3, except that eleven insulated wires 3B obtained in Example 5 were assembled to form a primary stranded wire 11.

[実施例8]
実施例5で得た絶縁素線3Bを9本集合させて一次撚り線11とした他は、実施例4と同様にして、外径約1.21mmの絶縁電線20を作製した。
[Example 8]
An insulated wire 20 having an outer diameter of about 1.21 mm was produced in the same manner as in Example 4, except that nine insulated wires 3B obtained in Example 5 were gathered to form a primary stranded wire 11.

[比較例1]
実施例1において、絶縁素線3Aを8本集合させ、20mmピッチで一次撚りして直径約0.390mmの一次撚り線11を得た。続いて、この一次撚り線11を7本集合させ、30mmピッチで二次撚りして直径約1.03mmの二次撚り線12を得た。なお、ここでは最外周撚り線は二次撚り線12であり、絶縁素線3Aの合計は56本である。それ以外は実施例1と同様にして、外径約1.23mmの絶縁電線20を作製した。
[Comparative Example 1]
In Example 1, eight insulated wires 3A were assembled and primary stranded at a pitch of 20 mm to obtain a primary stranded wire 11 having a diameter of approximately 0.390 mm. Subsequently, seven of these primary stranded wires 11 were assembled and secondary stranded at a pitch of 30 mm to obtain a secondary stranded wire 12 having a diameter of about 1.03 mm. Here, the outermost twisted wire is the secondary twisted wire 12, and the total number of the insulating wires 3A is 56. As shown in FIG. Otherwise, in the same manner as in Example 1, an insulated wire 20 having an outer diameter of about 1.23 mm was produced.

[比較例2]
実施例5において、絶縁素線3Bを8本集合させ、20mmピッチで一次撚りして直径約0.390mmの一次撚り線11を得た。続いて、この一次撚り線11を7本集合させ、30mmピッチで二次撚りして直径約1.03mmの二次撚り線12を得た。なお、ここでは最外周撚り線は二次撚り線12であり、絶縁素線3Bの合計は56本である。それ以外は実施例5と同様にして、外径約1.23mmの絶縁電線20を作製した。
[Comparative Example 2]
In Example 5, eight insulated wires 3B were gathered and primary twisted at a pitch of 20 mm to obtain a primary twisted wire 11 having a diameter of about 0.390 mm. Subsequently, seven of these primary stranded wires 11 were assembled and secondary stranded at a pitch of 30 mm to obtain a secondary stranded wire 12 having a diameter of about 1.03 mm. Here, the outermost twisted wire is the secondary twisted wire 12, and the total number of the insulating wires 3B is 56. As shown in FIG. Otherwise, in the same manner as in Example 5, an insulated wire 20 having an outer diameter of about 1.23 mm was produced.

[比較例3]
実施例1において、絶縁素線3Aを28本集合させ、20mmピッチで一次撚りして直径約0.730mmの一次撚り線11を得た。続いて、この一次撚り線11を2本集合させ、30mmピッチで二次撚りして直径約1.08mmの二次撚り線12を得た。なお、ここでは最外周撚り線は二次撚り線12であり、絶縁素線3Aの合計は56本である。それ以外は実施例1と同様にして、外径約1.23mmの絶縁電線20を作製した。
[Comparative Example 3]
In Example 1, 28 insulated wires 3A were gathered and primary twisted at a pitch of 20 mm to obtain a primary twisted wire 11 having a diameter of about 0.730 mm. Subsequently, two of the primary stranded wires 11 were assembled and secondary stranded at a pitch of 30 mm to obtain a secondary stranded wire 12 having a diameter of about 1.08 mm. Here, the outermost twisted wire is the secondary twisted wire 12, and the total number of the insulating wires 3A is 56. As shown in FIG. Otherwise, in the same manner as in Example 1, an insulated wire 20 having an outer diameter of about 1.23 mm was produced.

[測定と結果]
実施例1~8及び比較例1,2の絶縁電線20を用いて、抵抗変化率を測定した。直流抵抗は、YOKOGAWA抵抗計により測定した。各絶縁電線20でヘリカルコイルを作製(巻数:6ターン、巻枠直径65mm)し、インピーダンスアナライザにより、100kHzから1000kHzの範囲で測定した。抵抗変化率は、各周波数での交流抵抗を直流抵抗で割って算出した。これらの結果を表1及び表2に示した。
[Measurements and results]
Using the insulated wires 20 of Examples 1 to 8 and Comparative Examples 1 and 2, the rate of change in resistance was measured. DC resistance was measured with a YOKOGAWA resistance meter. A helical coil was produced from each insulated wire 20 (number of turns: 6 turns, winding frame diameter 65 mm), and was measured in the range from 100 kHz to 1000 kHz with an impedance analyzer. The resistance change rate was calculated by dividing the AC resistance at each frequency by the DC resistance. These results are shown in Tables 1 and 2.

Figure 0007146449000001
Figure 0007146449000001

Figure 0007146449000002
Figure 0007146449000002

表1及び表2の結果より、実施例1~8のように、いずれの絶縁素線3A,3Bを用いた場合であっても作製した絶縁電線20の抵抗変化率は比較例1,2に比べて抑制されているのがわかった。その傾向は特に高周波(例えば、300kHz以上)になればなるほど顕著であり、高周波帯域でより効果的であることがわかった。具体的には、200kHz以上では、実施例1~8と比較例1,2とは、概ね20%程度の差が生じており、最外周撚り線の数が3~6本の範囲内のものが、比較例1,2の7本のものと比較して優れていることが確認された。このことから、周波数200kHz以上では交流抵抗の上昇は近接効果が支配的になることが分かる。さらには、最外周撚り線(二次撚り線12)を7本とした場合は、中心に位置する一次撚り線11の子撚り1ユニット分がそのままの位置に留まってしまい、その外周に位置する6ユニット分の子撚りに、電流の偏りが発生していることが考えられる。また、実施例1~4と実施例5~8とを比較すると、磁性層が設けられた中心導体1を適用した実施例5~8は、実施例1~4に比べて、周波数300kHz以上でより差が生じており、周波数の上昇に伴い、その差はより顕著に現れた。最も差が顕著であった1MHzでは、両者に70%以上の抵抗損失を抑制できる効果の差が得られ、磁性層が設けられたものの高い効果が確認できた。なお、比較例3では、断面を丸形状に整えることが困難であり、絶縁被覆層4を設けた後の外径変動が大きく、抵抗変化率の大きなばらつきがみられた。 From the results of Tables 1 and 2, as in Examples 1 to 8, the resistance change rate of the insulated wire 20 manufactured using any of the insulated wires 3A and 3B is comparable to that of Comparative Examples 1 and 2. It was found to be relatively suppressed. This tendency is more conspicuous as the frequency becomes higher (for example, 300 kHz or higher), and it was found to be more effective in the high frequency band. Specifically, at 200 kHz or more, there is a difference of about 20% between Examples 1 to 8 and Comparative Examples 1 and 2, and the number of outermost twisted wires is within the range of 3 to 6. was confirmed to be superior to the seven samples of Comparative Examples 1 and 2. From this, it can be seen that the proximity effect is dominant in the increase in AC resistance at frequencies of 200 kHz or higher. Furthermore, when the number of the outermost twisted wires (secondary twisted wires 12) is seven, one unit of twisted strands of the primary twisted wire 11 located in the center remains at the position as it is, and the outermost twisted wire (secondary twisted wire 12) stays at the position as it is. It is conceivable that current bias occurs in the child twist of 6 units. Further, when comparing Examples 1 to 4 with Examples 5 to 8, Examples 5 to 8, in which the central conductor 1 provided with a magnetic layer is applied, have a frequency of 300 kHz or higher compared to Examples 1 to 4. The difference was more pronounced, and the difference became more pronounced as the frequency increased. At 1 MHz, where the difference was most conspicuous, a difference in the effect of suppressing the resistance loss of 70% or more was obtained between the two, confirming a high effect despite the provision of the magnetic layer. In Comparative Example 3, it was difficult to arrange the cross section into a round shape, the outer diameter varied greatly after the insulating coating layer 4 was provided, and the resistance change rate varied greatly.

1 中心導体
1a 銅導体
1b 磁性層
2 絶縁層
3 絶縁素線
3A 銅線を中心導体としたもの
3B 磁性層を設けた導線を中心導体としたもの
4 絶縁被覆層
4a 一層目の絶縁被覆
4b 二層目の絶縁被覆
4c 三層目の絶縁被覆
10 集合撚り線構造
11 一次撚り線
12 二次撚り線
13 三次撚り線
14 四次撚り線
20 高周波コイル用電線

1 Central conductor 1a Copper conductor 1b Magnetic layer 2 Insulating layer 3 Insulating wire 3A Copper wire as central conductor 3B Conducting wire provided with magnetic layer as central conductor 4 Insulating coating layer 4a First insulating coating 4b Two Insulating coating of layer 4c Insulating coating of third layer 10 Collective strand structure 11 Primary strand 12 Secondary strand 13 Tertiary strand 14 Quaternary strand 20 High-frequency coil wire

Claims (5)

中心導体及び該中心導体の外周に設けられた絶縁層を有する絶縁素線を9本以上18本以下撚り合わせて一次撚り線とし、前記一次撚り線をさらに撚って二次撚り線とした集合撚り線構造(横断面中央部分を中空部、コア線材、軸部材又は絶縁物とする場合を除く。)からなる高周波コイル用電線であって、
前記中心導体が直径0.04mm以上0.12mm以下の範囲内であり、
前記集合撚り線構造は、前記二次撚り線の本数が3本以上6本以下の範囲内であり、
前記集合撚り線構造の外周に絶縁被覆層が設けられ、前記絶縁被覆層が、絶縁性押出し樹脂、絶縁性テープ、又はそれらの組み合わせにより構成されている、ことを特徴とする高周波コイル用電線。
A set of 9 or more and 18 or less insulated wires having a central conductor and an insulating layer provided on the outer periphery of the central conductor to form a primary stranded wire, and the primary stranded wires are further twisted to form a secondary stranded wire. An electric wire for high-frequency coils having a stranded wire structure (excluding the case where the central portion of the cross section is a hollow portion, a core wire, a shaft member, or an insulator) ,
The central conductor has a diameter of 0.04 mm or more and 0.12 mm or less,
The number of secondary strands in the bunched strand structure is in the range of 3 or more and 6 or less ,
An electric wire for a high-frequency coil , wherein an insulating coating layer is provided on the outer circumference of the bundled strand structure, and the insulating coating layer is composed of an insulating extruded resin, an insulating tape, or a combination thereof .
前記絶縁被覆層を三層で構成した三層絶縁電線である、請求項1に記載の高周波コイル用電線。2. The high-frequency coil electric wire according to claim 1, which is a three-layer insulated electric wire in which said insulating coating layer is composed of three layers. 前記中心導体が、タフピッチ銅若しくは無酸素銅からなる銅線、又は前記銅線に磁性層が設けられた磁性線である、請求項1又は2に記載の高周波コイル用電線。 3. The high-frequency coil wire according to claim 1 , wherein said central conductor is a copper wire made of tough-pitch copper or oxygen-free copper, or a magnetic wire in which said copper wire is provided with a magnetic layer. 前記絶縁層が、エナメル被覆層又はイミダゾール化合物層である、請求項1~3のいずれか1項に記載の高周波コイル用電線。 The high-frequency coil wire according to any one of claims 1 to 3 , wherein said insulating layer is an enamel coating layer or an imidazole compound layer. 請求項1~4のいずれか1項に記載の係る高周波コイル用電線を用いてなる、ことを特徴とするコイル。 A coil using the high-frequency coil wire according to any one of claims 1 to 4 .
JP2018097737A 2018-05-22 2018-05-22 Wires and coils for high frequency coils Active JP7146449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018097737A JP7146449B2 (en) 2018-05-22 2018-05-22 Wires and coils for high frequency coils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018097737A JP7146449B2 (en) 2018-05-22 2018-05-22 Wires and coils for high frequency coils

Publications (2)

Publication Number Publication Date
JP2019204837A JP2019204837A (en) 2019-11-28
JP7146449B2 true JP7146449B2 (en) 2022-10-04

Family

ID=68727309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097737A Active JP7146449B2 (en) 2018-05-22 2018-05-22 Wires and coils for high frequency coils

Country Status (1)

Country Link
JP (1) JP7146449B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240186033A1 (en) * 2021-06-29 2024-06-06 Totoku Makisen Co., Ltd. Rectangular cross-section multi-core insulated wire, and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108654A (en) 2003-09-30 2005-04-21 Canon Inc Litz wire and exciting coil, and induction heating device using above
JP2013168385A (en) 2013-05-15 2013-08-29 Totoku Electric Co Ltd Wire and coil
JP2016046298A (en) 2014-08-20 2016-04-04 Tdk株式会社 Coil unit
JP2016134273A (en) 2015-01-19 2016-07-25 東京特殊電線株式会社 Insulation electric wire, coil using the same, and method for producing the insulation electric wire
WO2017183610A1 (en) 2016-04-22 2017-10-26 古河電気工業株式会社 Winding, coil, and transformer
JP2018006174A (en) 2016-07-01 2018-01-11 東京特殊電線株式会社 Flat insulation wire and production method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823106A (en) * 1981-07-31 1983-02-10 株式会社日立製作所 Wire for coil and coil using same
JPS61142608A (en) * 1984-12-14 1986-06-30 古河電気工業株式会社 High frequency litz wire
JPH0298409U (en) * 1989-01-24 1990-08-06
JPH04116310U (en) * 1991-03-29 1992-10-16 東京特殊電線株式会社 Multilayer insulated wire for high frequency transformer winding
JP2785610B2 (en) * 1992-10-07 1998-08-13 日立電線株式会社 Litz wire to prevent terminal unevenness
JPH10321358A (en) * 1997-05-15 1998-12-04 Toshiba Corp Induction heating cooker
JP3404518B2 (en) * 1997-11-05 2003-05-12 核融合科学研究所長 Superconducting conductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108654A (en) 2003-09-30 2005-04-21 Canon Inc Litz wire and exciting coil, and induction heating device using above
JP2013168385A (en) 2013-05-15 2013-08-29 Totoku Electric Co Ltd Wire and coil
JP2016046298A (en) 2014-08-20 2016-04-04 Tdk株式会社 Coil unit
JP2016134273A (en) 2015-01-19 2016-07-25 東京特殊電線株式会社 Insulation electric wire, coil using the same, and method for producing the insulation electric wire
WO2017183610A1 (en) 2016-04-22 2017-10-26 古河電気工業株式会社 Winding, coil, and transformer
US20190051451A1 (en) 2016-04-22 2019-02-14 Furukawa Electric Co., Ltd. Winding wire, coil, and transformer
JP2018006174A (en) 2016-07-01 2018-01-11 東京特殊電線株式会社 Flat insulation wire and production method thereof

Also Published As

Publication number Publication date
JP2019204837A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
CN104021864B (en) Electric wire and coil
JP4879373B2 (en) High frequency electric wire and high frequency coil
JP2011124129A (en) High-frequency electric wire
US20140360756A1 (en) Electrically insulated wire
US20170352474A1 (en) Coil device and method for manufacturing the same
US20180182507A1 (en) Continuously Transposed Conductors And Assemblies
WO2017183610A1 (en) Winding, coil, and transformer
CN113346635A (en) Coil, wireless charging transmitting and receiving device and mobile terminal
JP7146449B2 (en) Wires and coils for high frequency coils
CN112331399B (en) Conductive wire, coil and equipment
CN216389010U (en) High-frequency vertical winding inductor
CN213546097U (en) Wireless charging coil with low alternating current resistance
CN101777401A (en) Shield conversion lead of parallel composite strip
CN101728024A (en) Method for manufacturing tinned winding wire
CN210606923U (en) High-current low-height coil
JP4491983B2 (en) Induction heating coil
WO2012131934A1 (en) Insulated wire and coil
JP7109938B2 (en) High-frequency coil wire, insulated wire, and method for manufacturing high-frequency coil wire
CN220341028U (en) Winding power inductor with low alternating current resistance
JP2016219252A (en) Litz wire, litz wire coil, and production method of litz wire
JP7123578B2 (en) Insulated wire for high frequency coil
JP7558374B1 (en) Tape-wrapped insulated wire and coils
CN221708430U (en) Special corona-resistant enameled rectangular copper wire for new energy automobile
CN221746990U (en) Square winding wire structure
JPH03184214A (en) Self-fusion-type aggregate cable and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220921

R150 Certificate of patent or registration of utility model

Ref document number: 7146449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350