JP2023080648A - Liquid waste concentration method and apparatus - Google Patents
Liquid waste concentration method and apparatus Download PDFInfo
- Publication number
- JP2023080648A JP2023080648A JP2021194103A JP2021194103A JP2023080648A JP 2023080648 A JP2023080648 A JP 2023080648A JP 2021194103 A JP2021194103 A JP 2021194103A JP 2021194103 A JP2021194103 A JP 2021194103A JP 2023080648 A JP2023080648 A JP 2023080648A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- liquid waste
- thickened sludge
- polymer flocculant
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010808 liquid waste Substances 0.000 title claims abstract description 121
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000010802 sludge Substances 0.000 claims abstract description 324
- 238000002156 mixing Methods 0.000 claims abstract description 38
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 6
- 229920000642 polymer Polymers 0.000 claims description 121
- 238000005189 flocculation Methods 0.000 claims description 102
- 230000016615 flocculation Effects 0.000 claims description 100
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 71
- 239000007788 liquid Substances 0.000 claims description 44
- 230000018044 dehydration Effects 0.000 claims description 31
- 238000006297 dehydration reaction Methods 0.000 claims description 31
- 230000008719 thickening Effects 0.000 claims description 25
- 230000005484 gravity Effects 0.000 claims description 19
- 238000005469 granulation Methods 0.000 claims description 13
- 230000003179 granulation Effects 0.000 claims description 13
- 230000003311 flocculating effect Effects 0.000 claims description 12
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 9
- 230000002776 aggregation Effects 0.000 claims description 8
- 230000001112 coagulating effect Effects 0.000 claims description 4
- 238000005054 agglomeration Methods 0.000 claims description 2
- 238000005345 coagulation Methods 0.000 abstract description 26
- 230000015271 coagulation Effects 0.000 abstract description 26
- 238000006243 chemical reaction Methods 0.000 abstract description 22
- 230000008569 process Effects 0.000 abstract description 19
- 239000006185 dispersion Substances 0.000 abstract description 4
- 238000000605 extraction Methods 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 31
- 208000005156 Dehydration Diseases 0.000 description 30
- 239000002562 thickening agent Substances 0.000 description 25
- 239000000701 coagulant Substances 0.000 description 18
- 238000010586 diagram Methods 0.000 description 16
- 239000008394 flocculating agent Substances 0.000 description 12
- 230000029087 digestion Effects 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 239000000835 fiber Substances 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 238000004062 sedimentation Methods 0.000 description 9
- 239000010865 sewage Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000008399 tap water Substances 0.000 description 9
- 235000020679 tap water Nutrition 0.000 description 9
- 238000007670 refining Methods 0.000 description 8
- 235000002639 sodium chloride Nutrition 0.000 description 8
- 125000002091 cationic group Chemical group 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 6
- 238000013019 agitation Methods 0.000 description 6
- 230000003750 conditioning effect Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229920006317 cationic polymer Polymers 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 229920000193 polymethacrylate Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- RLLPVAHGXHCWKJ-IEBWSBKVSA-N (3-phenoxyphenyl)methyl (1s,3s)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate Chemical compound CC1(C)[C@H](C=C(Cl)Cl)[C@@H]1C(=O)OCC1=CC=CC(OC=2C=CC=CC=2)=C1 RLLPVAHGXHCWKJ-IEBWSBKVSA-N 0.000 description 3
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 229920006318 anionic polymer Polymers 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000000855 fermentation Methods 0.000 description 3
- 230000004151 fermentation Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000005188 flotation Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 2
- -1 alkali metal salts Chemical class 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 231100000315 carcinogenic Toxicity 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000003295 industrial effluent Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000010815 organic waste Substances 0.000 description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- WZAPMUSQALINQD-UHFFFAOYSA-M potassium;ethenyl sulfate Chemical compound [K+].[O-]S(=O)(=O)OC=C WZAPMUSQALINQD-UHFFFAOYSA-M 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000013502 plastic waste Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005614 potassium polyacrylate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は、液状廃棄物の濃縮方法および液状廃棄物の濃縮装置に関し、特に、液状廃棄物から凝集フロックを形成させ、この凝集フロックを含む液状廃棄物から濃縮汚泥と分離液を得る、液状廃棄物の濃縮方法および液状廃棄物の濃縮装置に関する。 TECHNICAL FIELD The present invention relates to a liquid waste concentration method and a liquid waste concentration apparatus, and more particularly to a liquid waste in which flocculated flocs are formed from the liquid waste, and thickened sludge and a separated liquid are obtained from the liquid waste containing the flocculated flocs. The present invention relates to a method for concentrating substances and an apparatus for concentrating liquid waste.
液状廃棄物は、水中の浮遊物質が沈殿または浮上して泥状になった汚泥や、し尿や浄化槽汚泥、浄水処理、下水処理、民間排水等の処理過程で発生する液状廃棄物である。液状廃棄物には、有機汚泥と無機汚泥の二種類がある。前者は、下水処理場や食品工場、紙・パルプ工場等からの有機性排水を処理する設備で発生する汚泥や産業廃棄物として収集される有機性廃棄物である。有機性廃棄物の主成分は鉱物油や動植物油を含む有機物である。 Liquid waste is sludge that has become muddy due to sedimentation or floating of suspended solids in water, and liquid waste that is generated during treatment processes such as night soil, septic tank sludge, water treatment, sewage treatment, and private wastewater treatment. There are two types of liquid waste: organic sludge and inorganic sludge. The former is organic waste collected as sludge and industrial waste generated by facilities that treat organic wastewater from sewage treatment plants, food factories, paper and pulp factories, and the like. The main components of organic waste are organic matter including mineral oil, animal and vegetable oils.
後者は、土木工事現場や浄水場の凝集沈殿汚泥である上水汚泥、金属メッキ工場等の砂や金属成分等を多く含む排水を処理する設備で発生する汚泥である。 The latter is clean water sludge, which is coagulated sedimentation sludge at civil engineering sites and water purification plants, and sludge generated at equipment for treating wastewater containing a large amount of sand, metal components, etc., such as in metal plating factories.
また、液状廃棄物である、バイオマスや下水汚泥などを嫌気性条件下でそれらの有機物を分解する消化槽やメタン発酵槽から排出される消化汚泥も液状廃棄物である。 In addition, digested sludge discharged from a digestion tank or a methane fermentation tank that decomposes organic matter such as biomass and sewage sludge under anaerobic conditions is also a liquid waste.
汚泥の減容のために濃縮、あるいは濃縮と脱水が行われる。 Thickening or thickening and dehydration are performed to reduce the volume of sludge.
濃縮は、汚泥の濃度を高め、濃縮汚泥とする工程である。 Thickening is a process of increasing the concentration of sludge to obtain thickened sludge.
脱水は、機械的な圧力をかけて、濃縮汚泥から水分を絞り出す工程であり、これにより、含水率の低い脱水ケーキが得られる。 Dewatering is the process of applying mechanical pressure to squeeze water out of thickened sludge, resulting in a dewatered cake with a low water content.
汚泥の脱水処理では、汚泥濃度が高い程、汚泥の脱水効率が向上するため、脱水処理に先立ち、汚泥を濃縮する各種方法が提案されている。 In sludge dehydration, the higher the sludge concentration, the higher the sludge dehydration efficiency. Therefore, various methods for concentrating sludge prior to dehydration have been proposed.
図6は、従来の、液状廃棄物の濃縮・脱水方法の処理フローを示す模式図である。 FIG. 6 is a schematic diagram showing a processing flow of a conventional liquid waste concentration/dehydration method.
上述のとおり、一般に濃縮は脱水機に供給する汚泥濃度を高めるための前処理として使用される。汚泥は凝集槽で高分子凝集剤を添加し、凝集フロックを作る調質を行った後に、調質後の汚泥は濃縮機で濃縮汚泥と、分離液に分離される。 As mentioned above, thickening is commonly used as a pretreatment to increase the sludge concentration fed to the dehydrator. Sludge is added with a polymer flocculating agent in a flocculating tank, and after conditioning to form flocculated sludge, the sludge after conditioning is separated into concentrated sludge and a separated liquid in a thickener.
汚泥への高分子凝集剤の添加率は汚泥の固形物に対して概ね0.2~5wt%である。 The addition rate of the polymer flocculant to the sludge is generally 0.2 to 5 wt% relative to the solid matter of the sludge.
濃縮汚泥は脱水機で脱水されて、更に減量化される。この脱水処理に高分子凝集剤が水に溶解した水溶液として用いられる。水溶液の濃度は特に限定されないが、通常0.05~0.8wt%である。 The thickened sludge is dehydrated in a dehydrator to further reduce the volume. For this dehydration treatment, an aqueous solution in which a polymer flocculant is dissolved in water is used. Although the concentration of the aqueous solution is not particularly limited, it is usually 0.05 to 0.8 wt%.
脱水機からは脱水ろ液と、脱水ケーキが搬出されて、脱水ケーキは埋立処分等で外部搬出されたり、自前の焼却炉で焼却処分されたりする。下水処理では返流水として、分離液と脱水ろ液を下水処理工程に送り、水処理する。 A dehydrated filtrate and a dehydrated cake are carried out from the dehydrator, and the dehydrated cake is carried out for landfill disposal or the like, or is incinerated in an incinerator of its own. In the sewage treatment, the separated liquid and the dehydrated filtrate are sent to the sewage treatment process as return water for water treatment.
また、濃縮は嫌気性消化槽やメタン発酵槽での嫌気処理性能向上のために、嫌気性消化槽に供給する汚泥濃度を高めるための前処理として使用される。 In addition, concentration is used as a pretreatment for increasing the concentration of sludge supplied to an anaerobic digestion tank or methane fermentation tank in order to improve the anaerobic treatment performance of the anaerobic digestion tank or methane fermentation tank.
図7は、従来の、嫌気性消化の前処理としての液状廃棄物の濃縮方法の処理フローを示す模式図である。 FIG. 7 is a schematic diagram showing a processing flow of a conventional method for concentrating liquid waste as pretreatment for anaerobic digestion.
図示のように、汚泥に凝集槽で高分子凝集剤を添加し、凝集フロックを作る調質を行った後に、調質後の汚泥は濃縮機で濃縮汚泥と、分離液に分離される。濃縮汚泥の有機物は嫌気性消化槽でメタンガスと炭酸ガスに分解される。メタンガスはボイラ燃料等に利用される。分離液は下水処理工程に送られて、水処理される。 As shown in the figure, a polymer flocculant is added to sludge in a flocculation tank, and after conditioning to form flocculated sludge, the sludge after conditioning is separated into thickened sludge and a separated liquid in a thickener. Organic matter in thickened sludge is decomposed into methane gas and carbon dioxide gas in an anaerobic digester. Methane gas is used as boiler fuel. The separated liquid is sent to a sewage treatment process for water treatment.
嫌気性消化槽の汚泥(消化汚泥)も定期的に嫌気性消化槽から消化汚泥として引き抜かれて、図6のように濃縮と、脱水が行われる。 The sludge in the anaerobic digestion tank (digested sludge) is also periodically withdrawn from the anaerobic digestion tank as digested sludge, and concentrated and dewatered as shown in FIG.
汚泥の濃縮には、従来より、重力濃縮槽や造粒濃縮装置が用いられている。 Gravity thickeners and granulation thickeners have been conventionally used to thicken sludge.
図8は、従来の、重力濃縮装置を用いた液状廃棄物の処理フローを示す模式図である。 FIG. 8 is a schematic diagram showing a processing flow of liquid waste using a conventional gravity concentrator.
図示のように、凝集槽の汚泥に高分子凝集剤を添加し、凝集フロックを作る調質を行った後に、調質後の汚泥は重力濃縮槽で濃縮汚泥と、分離液に分離される。濃縮汚泥は脱水機や嫌気性消化槽に送られる。 As shown in the figure, a polymer flocculant is added to the sludge in the flocculation tank, and after conditioning to form flocculated sludge, the sludge after conditioning is separated into thickened sludge and separated liquid in the gravity thickening tank. Thickened sludge is sent to a dehydrator or an anaerobic digester.
調質された汚泥は重力濃縮槽に流入し、固液分離される。分離液は分離液流出管から排出される。重力濃縮槽に沈殿した汚泥は槽内のピケットフェンスで汚泥を攪拌して、汚泥粒子間の水を排出させて、濃縮汚泥を得る。濃縮汚泥は水槽の下部から排出される。 The conditioned sludge flows into the gravity thickener and undergoes solid-liquid separation. The separated liquid is discharged from the separated liquid outflow tube. The sludge settled in the gravity thickening tank is agitated by a picket fence in the tank to discharge water between sludge particles to obtain thickened sludge. Thickened sludge is discharged from the bottom of the water tank.
図9は、従来の、造粒濃縮装置を用いた液状廃棄物の処理フローを示す模式図である。 FIG. 9 is a schematic diagram showing a processing flow of liquid waste using a conventional granulating and concentrating apparatus.
図示のように、造粒濃縮装置は、撹拌機とドラフトチューブで水槽下部から流入する汚泥と高分子凝集剤を混合することで、凝集フロックを良い大きい造粒物にする。その造粒物と分離液はスクリーンで分離されて、分離液は分離液流出管から排出される。造粒物は濃縮汚泥となり、濃縮汚泥流出管を介して造粒濃縮装置から外に排出される。 As shown in the figure, the granulation and concentration apparatus mixes the sludge flowing from the bottom of the water tank with the polymer flocculant using a stirrer and a draft tube, thereby turning flocculated flocs into large granules. The granules and the separated liquid are separated by a screen, and the separated liquid is discharged from the separated liquid outflow tube. The granules become thickened sludge and are discharged outside from the granulation and thickening device through the thickened sludge outflow pipe.
また、特許文献1は、汚泥と凝集剤とを反応させて凝集汚泥を生成する凝集反応槽と、凝集反応槽から抜き出された凝集汚泥を濃縮して濃縮汚泥を形成する濃縮機と、凝集反応槽から濃縮機に凝集汚泥を供給する汚泥供給路と、濃縮機により形成された濃縮汚泥の一部を凝集反応槽に環流させる汚泥環流路と、濃縮機により形成された濃縮汚泥の残部を、外部に排出する排出路と、前記凝集反応槽に前記凝集剤を投入する第1の凝集剤投入装置とを備える汚泥濃縮装置を開示する。 Further, Patent Document 1 discloses a flocculation reaction tank that reacts sludge with a flocculant to generate flocculated sludge, a thickener that thickens flocculated sludge extracted from the flocculation reaction tank to form thickened sludge, and flocculation. A sludge supply channel that supplies flocculated sludge from the reaction tank to the thickener, a sludge circulation channel that circulates part of the thickened sludge formed by the thickener to the flocculation reaction tank, and a remaining thickened sludge formed by the thickener. , a sludge thickener comprising a discharge path for discharging to the outside and a first coagulant charging device for charging the coagulant into the coagulation reaction tank.
特許文献1の汚泥濃縮装置によれば、濃縮汚泥の一部が凝集反応槽に還流されるので、凝集反応槽における濃縮汚泥の滞留時間を延ばすことができ、これにより、凝集フロックの緻密度と機械的強度が増大し、脱水後の脱水ケーキの含水量をより一層低減させることができる。 According to the sludge thickener of Patent Document 1, part of the thickened sludge is returned to the coagulation reaction tank, so that the retention time of the thickened sludge in the coagulation reaction tank can be extended, thereby increasing the compactness of the coagulated flocs. The mechanical strength is increased, and the water content of the dehydrated cake after dehydration can be further reduced.
特許文献2は、(1)原水に無機凝集剤を添加するとともに、高分子凝集剤を含む返送汚泥を添加して凝集反応を行わせる凝集工程、(2)凝集工程で生成した凝集フロックを固液分離する固液分離工程、(3)固液分離工程から得られる処理水を逆浸透膜装置及び/又はイオン交換装置に通水して脱塩する脱塩工程、(4)固液分離工程から排出される凝集汚泥の一部を凝集工程に返送する汚泥返送工程、並びに(5)凝集工程に返送される凝集汚泥に高分子凝集剤を添加する工程を有する純水製造方法を開示する。 Patent Document 2 describes (1) a flocculation step in which an inorganic flocculant is added to raw water and a return sludge containing a polymer flocculant is added to cause a flocculation reaction, and (2) the flocculated flocs produced in the flocculation step are solidified. A solid-liquid separation step of liquid separation, (3) a desalination step of passing the treated water obtained from the solid-liquid separation step through a reverse osmosis membrane device and/or an ion exchange device to desalinate it, (4) a solid-liquid separation step and (5) a step of adding a polymer flocculant to the flocculated sludge returned to the flocculation step.
特許文献2の純水製造方法によれば、沈殿または浮上処理水のSS濃度が低くなり、処理水の水質が向上する。 According to the pure water production method of Patent Document 2, the SS concentration of the sedimentation or flotation treated water is reduced, and the water quality of the treated water is improved.
特許文献1によれば、濃縮汚泥の一部を凝集反応槽に還流させない従来の濃縮方法と比較して凝集フロックの緻密度と機械的強度が増大し、脱水後の脱水ケーキの含水量をより一層低減させることができるものの、高分子凝集剤が凝集反応槽に添加されることで槽内の粘度が上昇し、濃縮汚泥、汚泥、高分子凝集剤の凝集反応槽での分散性が低下し、混合が不十分になる虞がある。 According to Patent Document 1, compared with the conventional concentration method in which part of the thickened sludge is not returned to the coagulation reaction tank, the compactness and mechanical strength of the coagulated floc are increased, and the water content of the dehydrated cake after dehydration is increased. Although it can be further reduced, the addition of the polymer flocculant to the flocculation reaction tank increases the viscosity in the tank, and the dispersibility of the thickened sludge, sludge, and polymer flocculant in the flocculation reaction tank decreases. , there is a risk of insufficient mixing.
したがって、凝集反応槽の撹拌条件や濃縮汚泥の返送量などの凝集反応槽の運転条件に凝集反応が大きく左右され、濃縮性に影響が出る。 Therefore, the agglomeration reaction is greatly influenced by the operating conditions of the flocculation reaction tank, such as the stirring conditions of the flocculation reaction tank and the return amount of thickened sludge, and the thickening property is affected.
特許文献2には、固液分類工程で排出された凝集汚泥の一部に高分子凝集剤を添加し、凝集工程に返送しているが、処理対象が廃棄されるべき液体廃棄物(汚泥)ではなく、純水の原料となる原水であることから凝集工程も低粘度となり、分散の不均一性の課題が生じない。また、処理対象物が原水であり、技術分野も異なる。 In Patent Document 2, a polymer flocculant is added to a part of the flocculated sludge discharged in the solid-liquid classification process and returned to the flocculation process, but the liquid waste (sludge) that should be disposed of is the object of treatment. However, since it is raw water that is a raw material for pure water, the aggregation process also has a low viscosity, and the problem of non-uniform dispersion does not occur. Moreover, the object to be treated is raw water, and the technical field is also different.
上記課題を鑑みてなされた本願発明の目的は、凝集反応の際の分散性を向上させ、多少の運転条件の違いによっても安定的な濃縮を可能とする汚泥の濃縮方法及び濃縮装置を提供することにある。 An object of the present invention, which has been made in view of the above problems, is to provide a sludge thickening method and a sludge thickening apparatus that improve dispersibility during a flocculation reaction and enable stable thickening even with slight differences in operating conditions. That's what it is.
本発明者らは、上記目的の達成に向け、鋭意検討したところ、凝集槽での凝集、濃縮機での汚泥の濃縮、濃縮汚泥の一部の凝集工程への返送を伴う汚泥の濃縮方法において、返送する濃縮汚泥に対して、処理対象の汚泥と混合する前に高分子凝集剤を添加することで、凝集槽における凝集フロックをさらに大きく緻密にすることができると共に、凝集槽に高分子凝集剤が添加されないことで凝集槽内の粘度上昇を抑制できることを見出し、その結果、多少の運転条件の違いによっても安定的に濃縮機での濃縮効率が向上することを見出し、本発明を完成させるに至った。 The present inventors have made intensive studies to achieve the above object, and found that in a sludge thickening method involving flocculation in a flocculation tank, thickening of sludge in a thickener, and return of part of the thickened sludge to the flocculation process, By adding a polymer flocculant to the thickened sludge to be returned before mixing it with the sludge to be treated, the flocculated flocs in the flocculation tank can be made larger and denser, and the polymer flocculation in the flocculation tank can be increased. It was found that the viscosity increase in the flocculation tank can be suppressed by not adding any agent, and as a result, the concentration efficiency in the concentrator can be stably improved even if the operating conditions are slightly different, and the present invention is completed. reached.
すなわち、上記目的は、液状廃棄物から凝集フロックを形成させる凝集工程と、前記凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る濃縮工程と、前記濃縮工程で得られた前記濃縮汚泥の少なくとも一部を取り出す取り出し工程と、取り出された濃縮汚泥に高分子凝集剤を添加し、得られた凝集濃縮汚泥を前記凝集工程に返送する返送工程と、を有し、前記凝集工程における前記凝集フロックの形成が、前記返送された前記凝集濃縮汚泥の前記液状廃棄物への混合によりなされることを特徴とする液状廃棄物の濃縮方法により達成することができる。 That is, the above object is provided by a flocculation step of forming flocculated flocs from liquid waste, a concentration step of concentrating the liquid waste containing the flocculated flocs to obtain concentrated sludge and a separated liquid, and the a taking-out step of taking out at least part of the thickened sludge; and a returning step of adding a polymer flocculant to the taken-out thickened sludge and returning the obtained flocculated thickened sludge to the flocculation step, wherein the flocculation step The formation of the flocculated flocs in A. above can be achieved by the method for concentrating liquid waste, characterized in that the flocculated and thickened sludge returned is mixed with the liquid waste.
本発明に係る液状廃棄物の濃縮方法の好ましい態様は以下の通りである。
(1)取り出し工程後に、取り出された濃縮汚泥の残部を脱水する脱水工程をさらに有する。
Preferred embodiments of the method for concentrating liquid waste according to the present invention are as follows.
(1) After the removal step, the method further includes a dehydration step for dewatering the remaining thickened sludge that has been removed.
これによれば、高濃度となっている濃縮汚泥を脱水することで脱水性能を従来よりも向上させることができる。
(2)高分子凝集剤が、水道用高分子凝集剤である。高分子凝集剤として水道用高分子凝集剤を使用することで、上水汚泥から大きくて強固な凝集フロックを作ることができ、したがって、得られた濃縮汚泥の濃縮性が向上する。
(3)高分子凝集剤が、アクリルアミドモノマーを含まない水道用高分子凝集剤である。これにより、上水汚泥から得られる濃縮汚泥の濃縮性が向上するとともに、濃縮の際に生じた分離水が浄水処理の前段工程に返送された場合にも、発がん性を有するアクリルアミドモノマーが浄水処理の前段工程に返送されることが無い。
According to this, the dehydration performance can be improved more than before by dehydrating thickened sludge that has become highly concentrated.
(2) The polymer flocculant is a polymer flocculant for water supply. By using a polymer flocculant for water supply as a polymer flocculant, it is possible to form large and strong flocculated flocs from tap water sludge, thus improving the thickening property of the obtained thickened sludge.
(3) The polymer flocculant is a water supply polymer flocculant that does not contain an acrylamide monomer. As a result, the concentration of thickened sludge obtained from tap water sludge is improved, and even if the separated water generated during concentration is returned to the first stage of water purification treatment, the carcinogenic acrylamide monomer will be removed from the water purification treatment. There is no need to return to the previous stage of the process.
また、上記目的は、液状廃棄物から凝集フロックを形成させる凝集手段と、前記凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る濃縮手段と、前記濃縮手段で得られた前記濃縮汚泥の少なくとも一部を取り出す配管手段と、前記配管手段で取り出された前記濃縮汚泥に高分子凝集剤を添加・混合し、凝集濃縮汚泥を得る混合手段と、前記混合手段で得られた凝集濃縮汚泥を前記凝集手段に返送する返送手段と、を有することを特徴とする液状廃棄物の濃縮装置によっても達成することができる。 Further, the above objects are provided by: flocculating means for forming flocculated flocs from liquid waste; concentrating means for concentrating the liquid waste containing the flocculated flocs to obtain concentrated sludge and a separated liquid; Piping means for taking out at least part of the thickened sludge, mixing means for adding and mixing a polymer flocculant to the thickened sludge taken out by the piping means to obtain flocculated thickened sludge, and flocculation obtained by the mixing means. and return means for returning the thickened sludge to the flocculating means.
本発明に係る液状廃棄物の濃縮装置の好ましい態様は以下の通りである。
(1)濃縮手段が重力濃縮装置であるか、または凝集手段および濃縮手段が造粒濃縮装置である。
Preferred embodiments of the liquid waste concentrator according to the present invention are as follows.
(1) The concentration means is a gravity concentration device, or the flocculation means and concentration means are a granulation concentration device.
本発明によれば、液状廃棄物に直接高分子凝集剤を添加して凝集フロックを形成させるのではなく、濃縮汚泥の少なくとも一部に高分子凝集剤を添加・混合して凝集濃縮汚泥を得て、この凝集濃縮汚泥を液状廃棄物と混合させることで凝集フロックが形成されているので、液状廃棄物に直接高分子凝集剤を添加する場合と比較して凝集フロック形成時の粘度上昇が抑制され、凝集反応の際の分散性が向上する。さらに、凝集濃縮汚泥を核として凝集フロックが形成されるので、従来よりも凝集フロックが大きく強固なものとなる。 According to the present invention, instead of directly adding a polymer flocculant to liquid waste to form flocculated flocs, a polymer flocculant is added to and mixed with at least a part of thickened sludge to obtain flocculated thickened sludge. Since flocculated flocs are formed by mixing this flocculated thickened sludge with the liquid waste, the increase in viscosity during flocculation formation is suppressed compared to the case where the polymer flocculant is directly added to the liquid waste. and improves dispersibility during the aggregation reaction. Furthermore, since the flocculated flocs are formed with the flocculated thickened sludge as the nucleus, the flocculated flocs are larger and stronger than before.
よって、凝集反応の条件が多少異なっていても液状廃棄物の安定的な濃縮が可能となる。 Therefore, it is possible to stably concentrate the liquid waste even if the aggregation reaction conditions are slightly different.
<液状廃棄物の濃縮方法>
図1は、本発明の液状廃棄物の濃縮方法の一例を説明するためのフローチャートであり、図2は、本発明の液状廃棄物の濃縮方法による処理フローの代表例を示す模式図である。
<Method for Concentrating Liquid Waste>
FIG. 1 is a flow chart for explaining an example of the method for concentrating liquid waste of the present invention, and FIG. 2 is a schematic diagram showing a representative example of the processing flow according to the method for concentrating liquid waste of the present invention.
本発明は、図1に示すように、凝集工程(S100)と、濃縮工程(S110)と、取り出し工程(S120)と、返送工程(S130)と、を有する。 The present invention, as shown in FIG. 1, has a flocculation step (S100), a concentration step (S110), a removal step (S120), and a return step (S130).
(液状廃棄物)
液状廃棄物は、懸濁物質濃度が1000mg/L以上の廃液、水中の有機物や無機物の懸濁浮遊物質や水処理用薬品として添加された無機凝集剤の加水分解生成物や粉末活性炭などが沈殿または浮上して泥状(スラリー状)になった汚泥や、固形粒子、藻類や菌類、無機凝集剤の加水分解生成物等を含む上水汚泥、し尿や浄化槽汚泥や、浄水処理、下水処理、民間排水等の水処理過程で発生する液状廃棄物である。
(liquid waste)
Liquid waste includes waste liquid with a suspended solid concentration of 1000 mg/L or more, suspended suspended solids of organic and inorganic substances in water, hydrolysis products of inorganic flocculants added as water treatment chemicals, powdered activated carbon, etc. Or sludge that has risen to become muddy (slurry), solid particles, algae and fungi, water supply sludge containing hydrolysis products of inorganic flocculants, night soil and septic tank sludge, water purification treatment, sewage treatment, It is a liquid waste generated in the process of water treatment such as private sector wastewater.
以下、図1および図2に基づき、本発明の液状廃棄物の濃縮方法を説明する。 The liquid waste concentration method of the present invention will be described below with reference to FIGS. 1 and 2. FIG.
[凝集工程(S100)]
本工程では、液状廃棄物から凝集フロックを形成させる。凝集フロックの形成は、返送された凝集濃縮汚泥(高分子凝集剤を添加した濃縮汚泥である)の液状廃棄物への混合によりなされる。凝集濃縮汚泥については後述する。本工程は、凝集槽において行われるのが一般的である。
[Aggregation step (S100)]
In this step, agglomerated flocs are formed from liquid waste. Formation of flocculated flocs is achieved by mixing returned flocculated thickened sludge (thickened sludge to which polymer flocculant has been added) into the liquid waste. The coagulated thickened sludge will be described later. This step is generally performed in a coagulation tank.
凝集濃縮汚泥と液状廃棄物が流入する凝集槽の汚泥濃度(SS濃度)は5.0~20g/Lが好ましく、SS濃度は10~20g/Lであることがより好ましい。このことから、凝集槽の汚泥濃度をモニタリングすることで、後述する返送工程(S130)において最適な凝集濃縮汚泥の返送流量を決定できる。 The sludge concentration (SS concentration) of the coagulation tank into which the coagulated thickened sludge and the liquid waste flow is preferably 5.0 to 20 g/L, and more preferably 10 to 20 g/L. Therefore, by monitoring the sludge concentration in the coagulation tank, it is possible to determine the optimum return flow rate of the coagulated and thickened sludge in the return step (S130), which will be described later.
凝集槽の前段には、無機凝集剤を添加、混合する混合槽が配備されていてもよい。 A mixing tank for adding and mixing the inorganic coagulant may be provided in the preceding stage of the coagulation tank.
混合槽で無機凝集剤が添加される場合、無機凝集剤は、市販品の硫酸バンド、ポリ塩化アルミニウム(PAC)、ポリ硫酸第2鉄(ポリ鉄)、塩化第2鉄あるいはこれらの混合物が使用できる。また、これらの無機凝集剤を使用すると、調質時の液状廃棄物のpHが低下するため、適正な凝集pHに調整するために、アルカリ剤として市販の苛性ソーダ等を使用する。 When an inorganic flocculant is added in the mixing tank, the inorganic flocculant is commercially available aluminum sulfate, polyaluminum chloride (PAC), polyferric sulfate (polyiron), ferric chloride, or a mixture thereof. can. In addition, since the use of these inorganic flocculants lowers the pH of the liquid waste during refining, commercially available caustic soda or the like is used as an alkaline agent to adjust the flocculation pH to an appropriate level.
また、混合槽で添加される無機凝結剤に加えて、あるいは無機凝結剤に代えて、有機凝結剤を添加することとしてもよい。混合槽で有機凝結剤が添加される場合、有機凝結剤は市販品を用いることができ、例えば、ポリアルキルポリアミン、ポリエチレンイミン、ジアリルジメチルアンモニウムクロリド、エチレンジアミンエピクロルヒドリン重縮合物、ジシアンジアミド・塩化アンモニウム・ホルムアルデヒド重縮合物、ポリエチレン・ポリアミン・ジメチルアミン・エピクロルヒドリン重縮合物、ジアルキルアミン・エピクロルヒドリン重縮合物などから1種以上を用いることができる。 In addition to the inorganic coagulant added in the mixing tank, or instead of the inorganic coagulant, an organic coagulant may be added. When an organic coagulant is added in the mixing tank, a commercially available organic coagulant can be used, such as polyalkylpolyamine, polyethyleneimine, diallyldimethylammonium chloride, ethylenediamine epichlorohydrin polycondensate, dicyandiamide/ammonium chloride/formaldehyde. One or more of polycondensates, polyethylene/polyamine/dimethylamine/epichlorohydrin polycondensates, dialkylamine/epichlorohydrin polycondensates, and the like can be used.
有機凝結剤は、製品を無希釈で使用しても、水などで任意に希釈して使用できる。有機凝結剤が添加される場合、液状廃棄物への有機凝結剤の添加率は、汚泥(液状廃棄物)の固形物TSに対して、概ね0.1質量%~10質量%であり、好ましくは、0.5質量%~5質量%である。 The organic coagulant can be used without diluting the product, or after being diluted with water or the like. When the organic coagulant is added, the addition rate of the organic coagulant to the liquid waste is generally 0.1% by mass to 10% by mass with respect to the solid matter TS of the sludge (liquid waste), preferably is 0.5% by mass to 5% by mass.
凝集槽内の液状廃棄物を凝集濃縮汚泥と混合し、凝集フロックを作る調質を行った後に、凝集フロックを含む液状廃棄物は濃縮工程(S110)に移送される(以上、凝集工程(S100))。 After the liquid waste in the flocculation tank is mixed with the flocculated thickened sludge and subjected to refining to form flocculated flocs, the liquid waste containing the flocculated flocs is transferred to the concentration step (S110) (the flocculation step (S100 )).
[濃縮工程(S110)]
本工程では、凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る。濃縮に用いる濃縮機としては、例えば、重力濃縮槽などの重力濃縮装置、遠心濃縮機、スクリーン濃縮機、ベルト型ろ過濃縮機、造粒濃縮槽、浮上濃縮など市販の濃縮装置が使用できる。
[Concentration step (S110)]
In this step, liquid waste containing flocculated flocs is concentrated to obtain concentrated sludge and separated liquid. As a thickener used for concentration, for example, a commercially available thickener such as a gravity thickener such as a gravity thickener, a centrifugal thickener, a screen thickener, a belt-type filtration thickener, a granulation thickener, and a flotation thickener can be used.
液状廃棄物が浄水場の凝集沈殿処理工程等から発生する凝集沈殿汚泥、すなわち、上水汚泥である場合、本工程で使用される濃縮機は重力濃縮槽が一般的である。 When the liquid waste is coagulated sedimentation sludge generated from a coagulating sedimentation treatment process in a water purification plant, that is, tap water sludge, the thickener used in this process is generally a gravity thickening tank.
濃縮前の液状廃棄物の汚泥濃度、SSは5g/Lから15g/Lであるが、濃縮後の濃縮汚泥の汚泥濃度、SSは、汚泥の性状や濃縮機の種類や運転条件で異なるが、20~40g/Lになる。 The sludge concentration of the liquid waste before thickening, SS, is 5 g/L to 15 g/L. 20 to 40g/L.
汚泥濃度が20~40g/Lと高濃度の濃縮汚泥は、任意に嫌気性消化槽に移送してもよい。この場合、濃縮濃度の汚泥濃度が高濃度であることで嫌気性消化槽での滞留時間が長くなり、嫌気性消化性能を向上させることができる(以上、濃縮工程(S110))。 Thickened sludge with a high sludge concentration of 20-40 g/L may optionally be transferred to an anaerobic digester. In this case, the high sludge concentration in the concentrated concentration lengthens the retention time in the anaerobic digestion tank, and the anaerobic digestion performance can be improved (concentration step (S110)).
[取り出し工程(S120)]
本工程では、濃縮工程(S110)で得られた濃縮汚泥の少なくとも一部を取り出す。濃縮汚泥の取り出しには、例えば、一端が前記濃縮機に接続され、他端が前記凝集槽または凝集槽の上流位置に接続された専用の返送配管と、当該返送配管に設けられた返送ポンプと、を含む返送ラインを用いることができる。これによれば、後段の返送工程(S130)において、高分子凝集剤を添加して得られた凝集濃縮汚泥を凝集槽に安定した汚泥流量で返送することができる。
[Extraction step (S120)]
In this step, at least part of the thickened sludge obtained in the thickening step (S110) is taken out. For taking out thickened sludge, for example, a dedicated return pipe having one end connected to the thickener and the other end connected to the coagulation tank or an upstream position of the coagulation tank, and a return pump provided in the return pipe , can be used. According to this, in the subsequent return step (S130), the flocculated thickened sludge obtained by adding the polymer flocculant can be returned to the flocculation tank at a stable sludge flow rate.
取り出される濃縮汚泥の量は、後述する凝集濃縮汚泥と液状廃棄物との好適な混合割合に基づき、この混合割合のために必要な量で取り出されることとなる(以上、取り出し工程(S120))。 The amount of thickened sludge to be taken out is based on a suitable mixing ratio of flocculated thickened sludge and liquid waste, which will be described later, and is taken out in an amount necessary for this mixing ratio (above, taking-out step (S120)). .
[返送工程(S130)]
本工程では、取り出された濃縮汚泥に高分子凝集剤を添加し、得られた凝集濃縮汚泥を凝集工程(S100)に返送する。
[Returning step (S130)]
In this step, a polymer flocculant is added to the thickened sludge taken out, and the obtained flocculated thickened sludge is returned to the flocculation step (S100).
高分子凝集剤の添加場所は、濃縮汚泥の(図示していない)返送ポンプの吸込部、吐出部、上記返送配管の途中に設けたラインミキサー、また図2の混合部位に混合槽を設け、この混合槽で添加することとしても良い。返送配管の途中に設けた混合槽の撹拌は、機械撹拌でも濃縮汚泥による水流による撹拌でもよい。 The place where the polymer flocculant is added is the suction part and the discharge part of the thickened sludge return pump (not shown), the line mixer provided in the middle of the return pipe, and the mixing tank provided at the mixing part in FIG. It may be added in this mixing tank. Agitation in the mixing tank provided in the middle of the return pipe may be mechanical agitation or agitation by a water flow of thickened sludge.
返送配管の途中に設けた混合槽での濃縮汚泥の滞留時間は撹拌方法や撹拌強度、返送流量やその濃度で変化するが、例えば0.5~3分間とすることができる。滞留時間が0.5分以上であれば高分子凝集剤と濃縮汚泥の混合が十分である。一方、滞留時間が3分間以下であれば、返送配管の途中に設けた混合槽内に濃縮汚泥の凝集物が堆積する可能性や凝集性が低下する可能性が低く抑えることができる。 The retention time of the thickened sludge in the mixing tank provided in the middle of the return pipe varies depending on the stirring method, stirring intensity, return flow rate and its concentration, but can be, for example, 0.5 to 3 minutes. If the residence time is 0.5 minutes or longer, the polymer flocculant and thickened sludge are sufficiently mixed. On the other hand, if the residence time is 3 minutes or less, it is possible to reduce the possibility that thickened sludge aggregates will accumulate in the mixing tank provided in the middle of the return pipe and the possibility that the flocculation property will deteriorate.
高分子凝集剤は、市販品を使用することができ、アニオン性高分子凝集剤あるいはカチオン性高分子凝集剤あるいは両性高分子凝集剤、それぞれ単独でも組合せても使用できる。また、高分子凝集剤は、粉末状、液状(ディスパージョン状、エマルジョン状)などが使用できる。 Commercially available polymer flocculants can be used, and anionic polymer flocculants, cationic polymer flocculants, or amphoteric polymer flocculants can be used either alone or in combination. Further, the polymer flocculant can be used in powder form, liquid form (dispersion form, emulsion form), or the like.
アニオン性高分子凝集剤は、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸カリウム、ポリメタクリル酸アンモニウムからなる群より選択されるいずれか1種以上を用いることが可能である。 The anionic polymer flocculant is selected from the group consisting of polyacrylic acid, sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, polymethacrylic acid, sodium polymethacrylate, potassium polymethacrylate, and ammonium polymethacrylate. It is possible to use any one or more of
また、ポリアクリルアミド系高分子凝集剤も使用することができ、これは、アクリルアミドモノマーと(メタ)アクリル酸塩の共重合物である。 Polyacrylamide-based polymer flocculants can also be used, which are copolymers of acrylamide monomers and (meth)acrylates.
液状廃棄物が浄水場の凝集沈殿処理工程等から発生する凝集沈殿汚泥、すなわち、上水汚泥である場合、高分子凝集剤としては、水道用高分子凝集剤を使用する。 When the liquid waste is coagulated sedimentation sludge generated from a coagulating sedimentation treatment process in a water purification plant, that is, tap water sludge, a polymer flocculant for water supply is used as the polymer flocculant.
水道用高分子凝集剤は、日本水道協会で規格化(JWWA K163:2019、水道用ポリアクリルアミド)されている。水道用高分子凝集剤としては、水道用ポリアクリルアミドを本工程において用いることができる。一方で、アクリルアミドは発がん性を有することから、アクリルアミドモノマーが残留する濃縮工程(S110)の分離液や脱水ろ液が返送水として浄水処理の前段工程に返送されることを回避する観点から、アクリルアミドモノマーを含まないポリアクリル酸、ポリアクリル酸ナトリウムなどの水道用高分子凝集剤が好適である。 Polymer flocculants for water supply are standardized by the Japan Water Works Association (JWWA K163:2019, polyacrylamide for water supply). As the polymer flocculant for water supply, polyacrylamide for water supply can be used in this step. On the other hand, since acrylamide is carcinogenic, from the viewpoint of avoiding that the separated liquid and dehydrated filtrate in the concentration step (S110) in which acrylamide monomer remains are returned to the first step of water purification treatment as returned water, acrylamide Polymeric flocculants for water supply such as polyacrylic acid and sodium polyacrylate that do not contain monomers are suitable.
カチオン性高分子凝集剤は、カチオン性モノマーを必須成分として、カチオン性モノマーの単独重合体又は共重合体、カチオン性モノマーとノニオン性モノマーとの共重合体との共重合体などから1種以上を選択して使用することができる。カチオン性モノマーとしては、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレートもしくはこれらのアルカリ金属塩、4級アンモニウム塩などである。 The cationic polymer flocculant contains a cationic monomer as an essential component, and at least one of homopolymers or copolymers of cationic monomers, copolymers of cationic monomers and nonionic monomers, and the like. can be selected and used. Cationic monomers include dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, alkali metal salts and quaternary ammonium salts thereof.
また、両性高分子凝集剤は、カチオン性モノマー、アニオン性モノマー及びノニオン性モノマーを共重合し、分子内にカチオン単位、アニオン単位及びノニオン単位を有するものである。 Amphoteric polymer flocculants are obtained by copolymerizing cationic monomers, anionic monomers and nonionic monomers, and have cationic units, anionic units and nonionic units in the molecule.
液状廃棄物が生物処理後の汚泥である場合、高分子凝集剤としては、任意のカチオン度や分子量のカチオン性高分子凝集剤や両性高分子凝集剤を使用することができる。 When the liquid waste is sludge after biological treatment, a cationic polymer flocculant or an amphoteric polymer flocculant having any cationic degree or molecular weight can be used as the polymer flocculant.
液状廃棄物が上水汚泥である場合、濃縮汚泥に対して、高分子凝集剤として、0.1%塩粘度が2~5mPa・sで、アニオン当量が-9.0以下のポリ(メタ)アクリル酸塩の水道用高分子凝集剤を添加することが好ましいが、水道用高分子凝集剤としてはこれに限られるものではない。アクリルアミドモノマーを含む水道用高分子凝集剤も、アクリルアミドモノマーを含まない水道用高分子凝集剤も、それぞれ目的に応じて使用することができる。 When the liquid waste is tap water sludge, poly (meth) having a 0.1% salt viscosity of 2 to 5 mPa s and an anion equivalent of −9.0 or less is used as a polymer flocculant for concentrated sludge. Although it is preferable to add an acrylate polymer flocculant for water supply, the polymer flocculant for water supply is not limited to this. Both a polymer flocculant for water supply containing an acrylamide monomer and a polymer flocculant for water supply not containing an acrylamide monomer can be used depending on the intended purpose.
なお、塩粘度は、1Nの塩化ナトリウム水溶液に、ポリ(メタ)アクリル酸塩をその濃度が0.1質量%になるよう溶解した試料を、B型粘度計にて25℃の条件で測定した値であり、単位はmPa・sである。 The salt viscosity was measured by using a Brookfield viscometer at 25° C. for a sample obtained by dissolving a poly(meth)acrylic acid salt in a 1N sodium chloride aqueous solution to a concentration of 0.1% by mass. value, and the unit is mPa·s.
アニオン当量は以下の測定法で求めることができる値であって、単位はmeq/gである。ポリ(メタ)アクリル酸塩0.1%水溶液を調整し、メチルグリコールキトサン溶液(N/200)を5ml添加し、攪拌後、トイジンブルー指示薬を2~3滴添加し、ポリビニル硫酸カリウム溶液(PVSK,N/400)で滴定し、変色して10秒以上保持する時点を終点とする。同上の操作で試料を添加せずにブランク試験を行い、下記式によりアニオン当量Avを算出する。 The anion equivalent is a value that can be determined by the following measurement method, and the unit is meq/g. Prepare a 0.1% aqueous solution of poly (meth) acrylate, add 5 ml of methyl glycol chitosan solution (N / 200), stir, add 2 to 3 drops of toydin blue indicator, add potassium polyvinyl sulfate solution ( PVSK, N/400), and the end point is when the color changes and is maintained for 10 seconds or more. A blank test is performed without adding a sample by the same procedure as above, and the anion equivalent Av is calculated by the following formula.
アニオン当量(Av)[meq/g]=
(ブランク滴定量ml-サンプル滴定量ml)×1/2×PVSKの力価
Anion equivalent (Av) [meq/g] =
(blank titer ml - sample titer ml) x 1/2 x PVSK titer
濃縮汚泥への高分子凝集剤の添加率は0.02wt/wt%対SS以上2.0wt/wt%対SS以下である。高分子凝集剤の添加率が0.02wt/wt%対SS以上なら、高分子凝集剤の溶解液が濃縮汚泥と良く混合して、凝集槽で強固な凝集フロックが生成して、濃縮性能が向上する。高分子凝集剤の添加率が2.0wt/wt%対SS以下であることで、高分子凝集剤の使用量を抑えつつ凝集した凝集濃縮汚泥と液状廃棄物とから凝集槽で強固な凝集フロックが生成して、濃縮性能が向上する。 The addition rate of the polymer flocculant to the concentrated sludge is 0.02 wt/wt% vs. SS or more and 2.0 wt/wt% vs. SS or less. If the addition rate of the polymer flocculant is 0.02 wt/wt% vs. SS or more, the solution of the polymer flocculant mixes well with the thickened sludge, forming strong flocculated flocs in the flocculation tank and improving the concentration performance. improves. By setting the addition rate of the polymer flocculant to 2.0 wt/wt% vs. SS or less, the amount of the polymer flocculant used is suppressed, and the flocculated thickened sludge and liquid waste are flocculated to form strong flocculated flocs in the flocculation tank. is generated to improve the concentration performance.
予め設定された濃縮汚泥への高分子凝集剤添加率(「wt/wt%対SS」または「wt/wt%対TS」)と、凝集濃縮汚泥と液状廃棄物が流入する凝集槽の汚泥濃度と汚泥流量、濃縮汚泥濃度をモニタリングすることで、凝集工程(S100)に返送する凝集濃縮汚泥の最適な返送流量が決定できる。 Polymer flocculant addition rate ("wt/wt% vs. SS" or "wt/wt% vs. TS") set in advance to thickened sludge, and sludge concentration in the flocculation tank into which flocculated thickened sludge and liquid waste flow By monitoring the sludge flow rate and thickened sludge concentration, the optimum return flow rate of the coagulated and thickened sludge to be returned to the coagulation step (S100) can be determined.
また、返送工程(S130)の返送配管の途中に汚泥流量計や汚泥濃度計を設置して、返送流量や汚泥濃度のモニターすることで、凝集工程(S100)への凝集濃縮汚泥の返送量が制御できて、安定した濃縮を行うことができる。 In addition, by installing a sludge flow meter and a sludge concentration meter in the middle of the return pipe of the return process (S130) and monitoring the return flow rate and sludge concentration, the amount of coagulated and thickened sludge returned to the coagulation process (S100) Controllable and stable concentration can be achieved.
汚泥濃度の検出は、近赤外光式汚泥濃度計、レーザー光式汚泥濃度計、マイクロ波汚泥濃度計などの市販の汚泥濃度計が使用できる。汚泥流量の検出は市販の電磁流量計や超音波流量計などが使用できる。凝集濃縮汚泥を返送するポンプは市販品でよく、回転数制御で設定流量に調節して返送することができる。 A commercially available sludge concentration meter such as a near-infrared light type sludge concentration meter, a laser light type sludge concentration meter, or a microwave sludge concentration meter can be used to detect the sludge concentration. A commercially available electromagnetic flowmeter, ultrasonic flowmeter, or the like can be used to detect the sludge flow rate. The pump for returning the coagulated and thickened sludge may be a commercially available product, and the sludge can be returned after being adjusted to a set flow rate by controlling the rotation speed.
本発明の液状廃棄物の濃縮方法によれば、凝集工程(S100)における液状廃棄物からの凝集フロックの形成が、液状廃棄物に直接高分子凝集剤を添加するのではなく、返送された凝集濃縮汚泥を液状廃棄物と混合することによりなされるので、凝集反応の際の粘度上昇が従来よりも抑制されて凝集反応時の分散性が向上する。よって、従来の凝集槽に流入する汚泥(液状廃棄物)の流量を基準とした高分子凝集剤の注入率設定方法に比べて、液状廃棄物の性状等に関わらず常に最適な添加量で高分子凝集剤を添加することが可能となる。 According to the method for concentrating liquid waste of the present invention, the formation of flocculated flocs from the liquid waste in the flocculation step (S100) is performed by adding the polymer flocculant directly to the liquid waste, instead of flocculating the returned flocculation. Since the thickened sludge is mixed with the liquid waste, the increase in viscosity during the flocculation reaction is suppressed more than before, and the dispersibility during the flocculation reaction is improved. Therefore, compared to the conventional method of setting the injection rate of the polymer flocculant based on the flow rate of sludge (liquid waste) flowing into the flocculation tank, the optimal addition amount is always high regardless of the properties of the liquid waste. It becomes possible to add a molecular flocculant.
これにより、高分子凝集剤の使用量を最適化して効率的な処理を行いながら、高い凝集効果と濃縮性を安定して継続的に得ることが可能となる。 As a result, it is possible to stably and continuously obtain a high flocculation effect and concentration while performing efficient treatment by optimizing the amount of polymer flocculant used.
最適な高分子凝集剤添加量の凝集濃縮汚泥を凝集工程(S100)に返送すれば、さらに高分子凝集剤を凝集工程(S100)において追加添加する必要はない。むしろ、凝集工程(S100)で高分子凝集剤を追加添加すると、高分子凝集剤溶液の粘性のために凝集槽で分散均一化に時間がかかり、かえって凝集性や濃縮性が低下する可能性がある。 If the coagulated thickened sludge with the optimum added amount of polymer flocculant is returned to the flocculation step (S100), there is no need to additionally add the polymer flocculant in the flocculation step (S100). Rather, if the polymer flocculant is additionally added in the flocculation step (S100), it will take time to homogenize the dispersion in the flocculation tank due to the viscosity of the polymer flocculant solution, and there is a possibility that the flocculation and concentration properties will rather decrease. be.
なお、汚泥濃度の指標としてSS(懸濁物質)やTS(Total solids:全蒸発残留物)がある。また、下水のような溶解塩類濃度(食塩などの溶解塩類濃度)が低い汚泥ではSSとTSの測定値は同じであるが、溶解塩類濃度が高いし尿処理などでは汚泥のSSとTSの数値が異なる場合、汚泥濃度はSSを採用する。 SS (suspended solids) and TS (total solids) are available as indexes of sludge concentration. In addition, the measured values of SS and TS are the same for sludge with a low concentration of dissolved salts (concentration of dissolved salts such as common salt) such as sewage, but the values of SS and TS of sludge with a high concentration of dissolved salts such as night soil treatment are different. If different, the sludge concentration is taken from SS.
本発明において、SS及びTSは以下の定義に従う。
SS:K 0102:2019 工場排水試験方法 14.1 懸濁物質
TS:K 0102:2019 工場排水試験方法 14.2 全蒸発残留物
In the present invention, SS and TS follow the definitions below.
SS:K 0102:2019 Industrial Effluent Test Method 14.1 Suspended Solids TS:K 0102:2019 Industrial Effluent Test Method 14.2 Total Evaporation Residue
以上、本発明の液状廃棄物の濃縮方法の一例を、図1および図2に基づき説明したが、本発明はこの一例に限られない。 An example of the liquid waste concentration method of the present invention has been described above with reference to FIGS. 1 and 2, but the present invention is not limited to this example.
例えば、濃縮工程(S110)で得られた濃縮汚泥の少なくとも一部が取り出され、凝縮濃縮汚泥として凝集工程(S100)に返送されているが、濃縮工程(S110)で得られた濃縮汚泥の残部を脱水することとしてもよい。 For example, at least part of the thickened sludge obtained in the concentration step (S110) is taken out and returned to the flocculation step (S100) as condensed thickened sludge, but the remainder of the thickened sludge obtained in the concentration step (S110) may be dehydrated.
図1に示すように、本発明の液状廃棄物の濃縮方法は、任意工程として脱水工程(S140)を含む。脱水工程(S140)を以下に説明する。 As shown in FIG. 1, the liquid waste concentration method of the present invention includes a dehydration step (S140) as an optional step. The dehydration step (S140) will be described below.
[脱水工程(S140)]
本工程では、取り出し工程(S120)後に前記取り出された前記濃縮汚泥の残部を脱水する。
[Dehydration step (S140)]
In this step, the remainder of the thickened sludge taken out after the taking out step (S120) is dewatered.
脱水は、濃縮汚泥に機械的な圧力をかけて、濃縮汚泥から水分を絞り出して、含水率の低い脱水ケーキを得るものである。 Dehydration involves applying mechanical pressure to the thickened sludge to squeeze water out of the thickened sludge to obtain a dehydrated cake with a low water content.
本工程に用いる脱水装置は、従来公知の装置を用いることができ、例えば、ベルトプレス脱水機、遠心脱水機、加圧脱水機、真空脱水機、造粒調質式高効率直接脱水法、多重円盤型脱水機、スクリュープレス型脱水機、電気浸透式脱水機などが挙げられる。 As the dehydrator used in this step, conventionally known devices can be used. A disk type dehydrator, a screw press type dehydrator, an electroosmotic dehydrator and the like can be mentioned.
得られた脱水ケーキは、従来同様、搬出して埋立処分されたり、焼却炉で焼却されたりして処分される(以上、脱水工程(S140))。 The obtained dehydrated cake is disposed of by carrying it out and landfilling it, or by incinerating it in an incinerator, as in the conventional case (above, the dehydration step (S140)).
脱水工程(S140)の含む本発明の液状廃棄物の濃縮方法によれば、濃縮工程(S110)後に得られた濃縮汚泥は大きくて強固なフロックを含むので、脱水工程(S140)における脱水性能も向上し、得られた脱水ケーキの含水率が従来よりも低減している。よって、脱水ケーキの運搬コストや、焼却時の燃料コストを従来より低減させることができる。 According to the liquid waste concentration method of the present invention including the dehydration step (S140), the thickened sludge obtained after the concentration step (S110) contains large and firm flocs, so the dehydration performance in the dehydration step (S140) is also improved. The moisture content of the obtained dehydrated cake is lower than before. Therefore, the cost of transporting the dehydrated cake and the cost of fuel for incineration can be reduced.
さらに、本発明の液状廃棄物の濃縮方法においては、濃縮汚泥に高分子凝集剤が添加され、また、液状廃棄物に対して任意に無機凝集剤や有機凝結剤が添加されるが、それ以外の添加剤を使用してもよい。例えば、濃縮性向上のため、液状廃棄物に短繊維状薬剤が添加されてもよい。 Furthermore, in the liquid waste concentration method of the present invention, a polymer flocculant is added to the concentrated sludge, and an inorganic flocculant or an organic coagulant is optionally added to the liquid waste. additives may be used. For example, short fibrous chemicals may be added to the liquid waste to improve concentration.
短繊維状薬剤は、例えば、古紙や木綿などの天然の短繊維物、化学合成された短繊維物や再生短繊維物が挙げられる。プラスチック廃棄物から再生製糸した短繊維物やビスコースレーヨンからなる短繊維物が好適である。 Short fibrous agents include, for example, natural short fibers such as used paper and cotton, chemically synthesized short fibers, and regenerated short fibers. Short fibers regenerated from plastic waste and staple fibers made of viscose rayon are suitable.
中でもビスコースレーヨンからなる短繊維物である短繊維状薬剤(例えばエバグロースU-700シリーズ、水ing社製)は濃縮効果に優れる。 Among them, a short fibrous drug (for example, Evergulose U-700 series, manufactured by Swing Co., Ltd.), which is a short fiber material made of viscose rayon, has an excellent concentration effect.
液状廃棄物への分散性および液状廃棄物(汚泥)との親和性に優れる観点から、繊維長さが5~10mmで含水率が30~80wt/wt%の短繊維状薬剤が好適である。 From the standpoint of excellent dispersibility in liquid waste and affinity with liquid waste (sludge), a short fibrous agent having a fiber length of 5 to 10 mm and a water content of 30 to 80 wt/wt% is suitable.
短繊維状薬剤の添加率は、液状廃棄物あたり0.02~1.0wt/vol%であり、好ましくは0.1~0.5wt/vol%である。 The addition rate of the short fibrous chemical is 0.02 to 1.0 wt/vol%, preferably 0.1 to 0.5 wt/vol%, based on the liquid waste.
短繊維状薬剤の添加率が、液状廃棄物あたり0.02wt/vol%以上であることで、液状廃棄物と繊維によりさらに強固な凝集フロックを得ることができ、濃縮工程(S110)での濃縮性が向上する。したがって、さらに高濃度の濃縮汚泥が得られ、分離液のSS濃度やBOD濃度の低減が発揮される。 By setting the addition rate of the short fibrous chemical to be 0.02 wt/vol% or more per liquid waste, it is possible to obtain even stronger aggregated flocs by the liquid waste and fibers, and the concentration in the concentration step (S110) improve sexuality. Therefore, thickened sludge with a higher concentration can be obtained, and the SS concentration and BOD concentration of the separated liquid can be reduced.
また、短繊維状薬剤の添加率が、液状廃棄物あたり1.0wt/vol%未満であることで、液状廃棄物中に短繊維状薬剤を均一に混合分散でき、液状廃棄物の油分やSSを効果的に捕捉でき、また経済的にも有利である。 In addition, since the addition rate of the short fiber chemical is less than 1.0 wt/vol% per liquid waste, the short fiber chemical can be uniformly mixed and dispersed in the liquid waste, and the oil content and SS of the liquid waste can be reduced. can be effectively captured and is economically advantageous.
<液状廃棄物の濃縮装置>
図3は、本発明の液状廃棄物の処理装置10を示す模式図である。図示のように、本発明の液状廃棄物の処理装置10は、凝集手段20と、濃縮手段30と、配管手段40と、混合手段50と、返送手段60と、を有する。
<Liquid Waste Concentrator>
FIG. 3 is a schematic diagram showing a liquid waste treatment apparatus 10 of the present invention. As illustrated, the liquid waste treatment apparatus 10 of the present invention has flocculation means 20 , concentration means 30 , piping means 40 , mixing means 50 and return means 60 .
凝集手段14は、液状廃棄物から凝集フロックを形成させる手段であり、一般的には凝集槽である。凝集槽内で混合された液状廃棄物と返送された凝集濃縮汚泥とが撹拌され、凝集フロックが成長し、形成される。 The flocculating means 14 is means for forming flocculated flocs from liquid waste, and is generally a flocculating tank. The liquid waste mixed in the coagulation tank and the returned coagulated thickened sludge are agitated to grow and form coagulated flocs.
凝集槽の前段には、無機凝集剤を添加、混合する混合槽が配備されていてもよい。また、混合槽で添加される無機凝結剤に加えて、あるいは無機凝結剤に代えて、有機凝結剤を添加することとしてもよい。 A mixing tank for adding and mixing the inorganic coagulant may be provided in the preceding stage of the coagulation tank. In addition to the inorganic coagulant added in the mixing tank, or instead of the inorganic coagulant, an organic coagulant may be added.
凝集槽内の汚泥濃度(SS濃度)、凝集濃縮汚泥の返送流量、無機凝集剤、および有機凝結剤については、上記液状廃棄物の濃縮方法で述べたとおりであり、ここではその記載を省略する。凝集手段20の下流には、濃縮手段30が設けられている。 The sludge concentration (SS concentration) in the coagulation tank, the return flow rate of the coagulated and thickened sludge, the inorganic coagulant, and the organic coagulant are as described in the method for concentrating the liquid waste, and the description thereof is omitted here. . Concentrating means 30 is provided downstream of the aggregation means 20 .
濃縮手段30は、凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る手段である。 The concentrating means 30 is means for concentrating liquid waste containing flocculated flocs to obtain concentrated sludge and separated liquid.
濃縮手段30としては、従来公知の濃縮手段を用いることができ、例えば、重力濃縮槽などの重力濃縮装置、遠心濃縮機、スクリーン濃縮機、ベルト型ろ過濃縮機、造粒濃縮槽、浮上濃縮など市販の濃縮装置が使用できる。 As the concentration means 30, conventionally known concentration means can be used, for example, a gravity concentration device such as a gravity concentration tank, a centrifugal concentration machine, a screen concentration machine, a belt-type filtration concentration machine, a granulation concentration tank, a flotation concentration, and the like. Commercially available concentrators can be used.
中でも、濃縮手段30が重力濃縮装置であるか、または凝集手段20および濃縮手段30が造粒濃縮装置であることが好ましい。 Among them, it is preferable that the concentration means 30 is a gravity concentration device, or the aggregation means 20 and the concentration means 30 are granulation concentration devices.
図4は、濃縮手段が重力濃縮装置である場合の液状廃棄物の処理装置を示す模式図である。図示のように、重力濃縮装置は、凝集槽からの凝集フロックを含む液状廃棄物(調質された汚泥)をセンターウエル内に導入し、ピケットフェンスと汚泥掻き寄せ板を駆動装置で回転させることで、調質された汚泥中の水や気泡を分離するために緩く撹拌する。汚泥は重力で分離されて濃縮汚泥と分離液となり、分離液は分離液流出管から引き抜かれ、濃縮汚泥は重力濃縮装置下方の濃縮汚泥引き抜き管より引き抜かれる。 FIG. 4 is a schematic diagram showing a liquid waste treatment apparatus in which the concentrating means is a gravity concentrator. As shown in the figure, the gravity thickener introduces liquid waste (conditioned sludge) containing flocculated flocs from the flocculating tank into the center well, and rotates the picket fence and the sludge scraping plate with a driving device. and gently agitate to separate water and air bubbles in the conditioned sludge. Sludge is separated by gravity into thickened sludge and separated liquid, the separated liquid is withdrawn from the separated liquid outflow pipe, and the thickened sludge is withdrawn from the thickened sludge withdrawal pipe below the gravity thickener.
本発明によれば、凝集フロックが強固なものであるので、槽内のピケットフェンスで汚泥を攪拌しても、汚泥が壊れず、汚泥粒子間の水が排出しやすく、高濃度の濃縮汚泥を得ることができる。高濃度の濃縮汚泥が得られるので、返送する濃縮汚泥流量が低減でき、返送ポンプ(図示していない)の動力費の低減になる。また、後段に脱水設備を設ける場合には、脱水機の脱水性能向上や嫌気性消化での濃縮汚泥の滞留時間が長くなり有機物除去効果が向上する。 According to the present invention, since the flocculated floc is strong, even if the sludge is agitated by the picket fence in the tank, the sludge will not break, the water between the sludge particles will be easily discharged, and highly concentrated thickened sludge will be produced. Obtainable. Since highly concentrated thickened sludge can be obtained, the flow rate of thickened sludge to be returned can be reduced, resulting in a reduction in the power cost of the return pump (not shown). Further, when a dehydration facility is provided in the latter stage, the dehydration performance of the dehydrator is improved and the retention time of the thickened sludge in the anaerobic digestion is increased, thereby improving the organic substance removal effect.
図5は、凝集手段および濃縮手段が造粒濃縮装置である場合の液状廃棄物の処理装置を示す模式図である。図示のように、造粒濃縮装置は、撹拌羽根を有する撹拌機を備えた造粒濃縮槽を有し、底部に設けられた汚泥流入管から液状廃棄物を槽内に流入させ、同じく底部に設けられた返送配管から凝集濃縮汚泥を流入させる。 FIG. 5 is a schematic diagram showing a liquid waste treatment apparatus in which the aggregating means and the concentrating means are granulation and concentrating apparatuses. As shown in the figure, the granulation and concentration apparatus has a granulation and concentration tank equipped with a stirrer having agitating blades. Agglomerated thickened sludge is allowed to flow in from the provided return pipe.
液状廃棄物と凝集濃縮汚泥はドラフトチューブと撹拌機で撹拌混合されて凝集フロックを形成し、さらに大きな造粒物を形成する。そこからスクリーンによって造粒された濃縮汚泥と分離液に分離する。造粒濃縮装置によれば、強固で大きい凝集フロックが生成するので、閉塞しやすいスクリーンの目開きを大きくすることができ、安定した濃縮と、高濃度の濃縮汚泥が得られる。 Liquid waste and flocculated thickened sludge are agitated and mixed by a draft tube and an agitator to form flocculated flocs, which are further formed into larger granules. From there, it is separated into granulated thickened sludge and separated liquid by a screen. According to the granulation and thickening apparatus, since strong and large flocs are generated, the opening of the screen, which tends to be clogged, can be enlarged, and stable thickening and high-concentration thickened sludge can be obtained.
分離液は、液状廃棄物が有機汚泥であった場合は、分離液は下水処理工程などに送られて、水処理される。液状廃棄物が無機汚泥であった場合、分離液は返送水として例えば浄水処理の前段工程に返送され、あるいは放流される。濃縮汚泥は配管手段から取り出される。 When the liquid waste is organic sludge, the separated liquid is sent to a sewage treatment process or the like for water treatment. When the liquid waste is inorganic sludge, the separated liquid is returned as return water to, for example, the first step of water purification treatment, or discharged. Thickened sludge is removed from the piping means.
配管手段40は、濃縮手段30で得られた濃縮汚泥の少なくとも一部を取り出す手段であり、例えば、一端が濃縮手段30に接続され、他端が凝集手段20または凝集手段20および濃縮手段30が造粒濃縮装置である場合には他端が濃縮手段30の底部に接続された専用の返送配管と、当該返送配管に設けられた返送ポンプと、を含む返送ラインを用いることができる。当該返送ラインには、混合手段50が設けられている。 The piping means 40 is means for taking out at least part of the thickened sludge obtained by the thickening means 30. For example, one end is connected to the thickening means 30, and the other end is the flocculating means 20 or the flocculating means 20 and the thickening means 30. In the case of a granulation concentrator, a return line including a dedicated return pipe whose other end is connected to the bottom of the concentration means 30 and a return pump provided in the return pipe can be used. A mixing means 50 is provided in the return line.
混合手段50は、配管手段40で取り出された濃縮汚泥に高分子凝集剤を添加・混合し、凝集濃縮汚泥を得る手段である。混合手段50としては、例えば、濃縮汚泥の(図示していない)返送ポンプの吸込部、吐出部もしくは上記返送配管の途中に設けたラインミキサーや混合槽が挙げられる。混合槽における撹拌は、機械撹拌でも濃縮汚泥による水流による撹拌でもよい。混合槽の滞留時間、添加される高分子凝集剤については、上記液状廃棄物の濃縮方法において説明したとおりであり、ここではその説明を省略する。 The mixing means 50 is means for adding and mixing a polymer flocculant to the thickened sludge taken out by the piping means 40 to obtain flocculated thickened sludge. The mixing means 50 includes, for example, a suction part and a discharge part of a return pump (not shown) for thickened sludge, or a line mixer or a mixing tank provided in the middle of the return pipe. Agitation in the mixing tank may be mechanical agitation or agitation by a water flow of thickened sludge. The residence time in the mixing tank and the polymer flocculant to be added are as described in the method for concentrating liquid waste, and the description thereof is omitted here.
返送手段60は、混合手段50で得られた凝集濃縮汚泥を凝集手段に返送する手段である。返送手段60の具体的構成は上記配管手段40で返送ラインとして述べたとおりである。 The returning means 60 is means for returning the coagulated thickened sludge obtained by the mixing means 50 to the coagulating means. The specific configuration of the return means 60 is as described for the return line in the piping means 40 above.
また、返送ラインの返送配管の途中に汚泥流量計や汚泥濃度計を設置して、返送流量や汚泥濃度のモニターすることとしてもよい。汚泥濃度の検出などについては、上記液状廃棄物の濃縮方法において説明したとおりであり、ここではその説明を省略する。 Also, a sludge flow meter and a sludge concentration meter may be installed in the middle of the return pipe of the return line to monitor the return flow rate and the sludge concentration. The detection of the sludge concentration and the like are as explained in the method for concentrating the liquid waste, and the explanation thereof is omitted here.
また、図3に示すように、本発明の液状廃棄物の処理装置10では、返送配管が濃縮汚泥の少なくとも一部を濃縮手段30から取り出した後に混合手段50を経て凝集手段20に返送する返送手段60と、濃縮汚泥の残部を下流に移送する配管とに分岐しているが、当該配管の先に脱水手段(図示せず)を設けることとしてもよい。 Further, as shown in FIG. 3, in the liquid waste treatment apparatus 10 of the present invention, the return pipe takes out at least part of the thickened sludge from the thickening means 30 and then returns it to the flocculating means 20 via the mixing means 50. Although it branches into means 60 and a pipe for transferring the rest of the thickened sludge downstream, a dehydration means (not shown) may be provided at the end of the pipe.
脱水手段は、濃縮汚泥に機械的な圧力をかけて、濃縮汚泥から水分を絞り出して、含水率の低い脱水ケーキを得る手段である。脱水手段としては、従来公知の手段を用いることができる。得られた脱水ケーキは、脱水ケーキは埋立処分等で外部搬出されたり、焼却炉で焼却処分されたりする。 The dewatering means applies mechanical pressure to the thickened sludge to squeeze water out of the thickened sludge to obtain a dehydrated cake with a low water content. Conventionally known means can be used as the dehydration means. The obtained dehydrated cake is carried out to the outside for landfill disposal or the like, or is incinerated in an incinerator.
脱水手段を含む本発明の液状廃棄物の処理装置によれば、強固な凝集フロックが得られることから、濃縮汚泥を脱水する際の脱水性能も向上しており、従来より脱水ケーキの含水率が低下する。したがって、搬出の際の運搬コストが低減でき、さらに焼却処分の際に必要な燃料コストを低減することができる。 According to the liquid waste treatment apparatus of the present invention including the dehydration means, since strong flocculated flocs can be obtained, the dehydration performance when dewatering thickened sludge is also improved, and the water content of the dehydrated cake is lower than before. descend. Therefore, it is possible to reduce the cost of transportation when carrying out, and further reduce the cost of fuel necessary for incineration.
以下、実施例により本発明をより具体的に説明する。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples.
1.実施例1
分流式下水処理場の標準活性汚泥処理設備の余剰汚泥(液状廃棄物)(pH 6.5、 SS 10g/L)を対象に、表1の濃縮試験装置で、余剰汚泥流量 4.5m3/日、液温20~25℃でワイヤのスリット幅1mmのスクリーンで濃縮試験を行った。濃縮汚泥の汚泥濃度と、分離液のSS濃度を測定した。
1. Example 1
Excess sludge (liquid waste) (pH 6.5, SS 10g/L) from the standard activated sludge treatment facility of a separate sewage treatment plant was tested using the concentration test equipment shown in Table 1. The excess sludge flow rate was 4.5m 3 / Concentration tests were conducted using a screen with a wire slit width of 1 mm at a liquid temperature of 20 to 25°C. The sludge concentration of the thickened sludge and the SS concentration of the separated liquid were measured.
表1の凝集槽の余剰汚泥(液状廃棄物)に、予め調製しておいた濃縮汚泥にカチオン性高分子凝集剤(エバグロースC-104G、水ing社製)を余剰汚泥のSS重量当たり0.02~0.5wt%(濃縮汚泥のSS重量当たり0.03~0.74wt%)添加した凝集濃縮汚泥を添加、混合して凝集させた凝集フロックをスクリーンで濃縮した。 Excess sludge (liquid waste) in the flocculation tank shown in Table 1 was mixed with pre-prepared thickened sludge with a cationic polymer flocculant (Ebergrose C-104G, manufactured by Swing) in an amount of 0.00 per SS weight of excess sludge. 02 to 0.5 wt% (0.03 to 0.74 wt% per SS weight of the thickened sludge) was added and mixed to flocculate flocculated flocs, which were then concentrated with a screen.
予め調製しておいた濃縮汚泥は、余剰汚泥にカチオン性高分子凝集剤を添加率0.3wt/wt%対SSで調質後に表1の濃縮試験装置で予め濃縮した濃縮汚泥(SS 38g/L、表2の試験番号No.11)である。 Pre-prepared thickened sludge is thickened sludge (SS 38g/ L, Test No. 11) in Table 2.
また、凝集槽に濃縮汚泥を返送せず、凝集槽に直接、高分子凝集剤を添加した場合や、凝集槽に直接、高分子凝集剤を添加し、更に、高分子凝集剤を添加しない濃縮汚泥を添加した場合についても試験した。 In addition, when the thickened sludge is not returned to the flocculation tank and the polymer flocculant is added directly to the flocculation tank, or when the polymer flocculant is added directly to the flocculation tank and further concentration is performed without adding the polymer flocculant. A case where sludge was added was also tested.
結果を表2に示す。 Table 2 shows the results.
表2の高分子凝集剤添加率(wt/wt%対SS)は、凝集槽SS重量に対する高分子凝集剤の添加率である。 The polymer flocculant addition rate (wt/wt% vs. SS) in Table 2 is the addition rate of the polymer flocculant relative to the weight of the flocculating tank SS.
表2の(i)「高分子凝集剤を濃縮汚泥に添加」は、本発明の方法で、高分子凝集剤の必要添加量を濃縮汚泥に添加して、高分子凝集剤を含む濃縮汚泥(凝集濃縮汚泥)を凝集槽に返送した場合である。 (i) "Add polymer flocculant to thickened sludge" in Table 2 is the method of the present invention, adding the required amount of polymer flocculant to thickened sludge to obtain thickened sludge containing a polymer flocculant ( coagulated thickened sludge) is returned to the coagulation tank.
濃縮汚泥のSS重量に対する高分子凝集剤添加率は括弧内に併記する(試験番号No.1~9)。 The addition rate of the polymer flocculant to the SS weight of the thickened sludge is also shown in parentheses (Test Nos. 1 to 9).
表2の(ii)「濃縮汚泥を返送せず高分子凝集剤を凝集槽に添加」は、濃縮汚泥に高分子凝集剤を添加せず、濃縮汚泥も凝集槽に返送せずに、凝集槽に高分子凝集剤を添加した場合である(試験番号No.10~13)。 (ii) in Table 2, "adding a polymer flocculant to the flocculation tank without returning the thickened sludge" means that no polymer flocculant is added to the thickened sludge and the thickened sludge is not returned to the flocculation tank, (Test Nos. 10 to 13).
表2の(iii)「濃縮汚泥を返送し、高分子凝集剤を凝集槽に添加」は、凝集槽の濃縮汚泥に高分子凝集剤を添加しない濃縮汚泥を返送して、高分子凝集剤を凝集槽に添加した場合である(試験番号No.14~17)。 (iii) “Return thickened sludge and add polymer flocculant to flocculation tank” in Table 2 returns thickened sludge without polymer flocculant added to the thickened sludge in the flocculation tank, adding the polymer flocculant. This is the case when added to the flocculation tank (Test Nos. 14 to 17).
凝集槽のSS重量に対して添加率0.3wt/wt%対SSで高分子凝集剤を濃縮汚泥に添加して得られる凝集濃縮汚泥を凝集槽のSS20g/Lになるように、凝集槽に返送し、凝集濃縮汚泥と余剰汚泥を凝集槽で凝集させてスクリーン濃縮すると、濃縮汚泥のSSは65g/Lで、その分離液のSSは110mg/Lであった(試験番号No.5)。 The flocculated thickened sludge obtained by adding a polymer flocculant to thickened sludge at an addition rate of 0.3 wt / wt% vs. SS with respect to the SS weight in the flocculation tank is added to the flocculation tank so that the SS in the flocculation tank becomes 20 g / L. When the sludge was returned and the coagulated thickened sludge and excess sludge were coagulated in a coagulation tank and screen-thickened, the SS of the thickened sludge was 65 g/L and the SS of the separated liquid was 110 mg/L (Test No. 5).
凝集濃縮汚泥も濃縮汚泥も凝集槽に返送せず、凝集槽に凝集槽のSS重量に対して高分子凝集剤添加率0.3wt/wt%対SSの高分子凝集剤を添加し、凝集させてスクリーン濃縮すると、濃縮汚泥のSSは38g/Lで、その分離液のSSは220mg/Lであった(試験番号No.11)。 Neither coagulated thickened sludge nor thickened sludge is returned to the flocculation tank, and a polymer flocculant with a polymer flocculant addition rate of 0.3 wt / wt% relative to the SS weight in the flocculation tank is added to the flocculation tank to flocculate. The SS of the thickened sludge was 38 g/L, and the SS of the separated liquid was 220 mg/L (Test No. 11).
高分子凝集剤を添加しない濃縮汚泥を凝集槽に返送し、凝集槽のSSを20g/Lに調整して、凝集槽のSS重量に対して高分子凝集剤添加率0.4wt/wt%対SSの高分子凝集剤を凝集槽に添加し、凝集させてスクリーン濃縮すると、濃縮汚泥のSSは44g/Lで、その分離液のSSは300mg/Lであった(試験番号No.15)。 The thickened sludge to which no polymer flocculant is added is returned to the flocculation tank, the SS in the flocculation tank is adjusted to 20 g / L, and the polymer flocculant addition rate is 0.4 wt / wt% with respect to the SS weight in the flocculation tank. When the SS polymer flocculant was added to the flocculation tank, flocculated and screen-concentrated, the SS of the thickened sludge was 44 g/L and the SS of the separated liquid was 300 mg/L (Test No. 15).
本発明のように、高分子凝集剤必要添加量を濃縮汚泥に添加して、高分子凝集剤を含む濃縮汚泥(凝集濃縮汚泥)を凝集槽に返送し、凝集槽で余剰汚泥(液状廃棄物)を調質してスクリーン濃縮することで、高分子凝集剤添加量を減らしても得られた濃縮汚泥のSS濃度が高まり、分離液のSS濃度も低減できた。 As in the present invention, the required addition amount of the polymer flocculant is added to the thickened sludge, the thickened sludge containing the polymer flocculant (flocculated thickened sludge) is returned to the flocculation tank, and the surplus sludge (liquid waste ) was refined and screen-condensed, the SS concentration of the thickened sludge obtained was increased even when the amount of polymer flocculant added was reduced, and the SS concentration of the separated liquid was also reduced.
2.実施例2
実施例1で得られた濃縮汚泥を0.5L分取し、実施例1で使用した高分子凝集剤で調質を行った。濃縮汚泥に対する高分子凝集剤の添加率は、0.5~2.0wt/wt%対SSであった。調質後にろ布面積100cm2のろ布上に調質した濃縮汚泥を乗せて、一軸加圧で圧力50kPaで10分間加圧して、加圧脱水試験機で加圧脱水試験を行った。加圧脱水試験後に脱水ケーキを取り出して、含水率を測定した。また、ろ布から排出された脱水ろ液のSSを測定した。
2. Example 2
0.5 L of the thickened sludge obtained in Example 1 was collected and refined with the polymer flocculant used in Example 1. The addition rate of the polymer flocculant to the thickened sludge was 0.5-2.0 wt/wt% vs. SS. After refining, the refined thickened sludge was placed on a filter cloth having a filter cloth area of 100 cm 2 , and was uniaxially pressurized at a pressure of 50 kPa for 10 minutes to perform a pressure dehydration test with a pressure dehydration tester. After the pressure dehydration test, the dehydrated cake was taken out and the moisture content was measured. Also, the SS of the dehydrated filtrate discharged from the filter cloth was measured.
結果を表3に示す。 Table 3 shows the results.
脱水試験に使用した濃縮汚泥は以下の3種類で、表3の濃縮汚泥に対する高分子凝集剤添加率欄に示す(i)~(iii)の濃縮汚泥の調製方法と、濃縮汚泥濃度は以下のとおりである。 The following three types of thickened sludge were used in the dehydration test. That's right.
(i)高分子凝集剤を濃縮汚泥に添加して得られた濃縮汚泥であり、表2(実施例1)の試験番号No.5に対応し、濃縮汚泥濃度はSS65g/Lである。 (i) Thickened sludge obtained by adding a polymer flocculant to thickened sludge, test number No. in Table 2 (Example 1). 5, and the thickened sludge concentration is SS65g/L.
(ii)濃縮汚泥を返送せず高分子凝集剤を凝集槽して得られた濃縮汚泥であり、表2(実施例1)の試験番号No.11に対応し、濃縮汚泥濃度はSS38g/Lである。 (ii) Thickened sludge obtained by using a polymer flocculant in a flocculation tank without returning the thickened sludge, test number No. 1 in Table 2 (Example 1). 11, and the thickened sludge concentration is SS38g/L.
(iii)濃縮汚泥を返送し、高分子凝集剤を凝集槽に添加して得られた濃縮汚泥であり、表2(実施例1)の試験番号No.15に対応し、濃縮汚泥濃度はSS44g/Lである。 (iii) Thickened sludge obtained by returning the thickened sludge and adding a polymer flocculant to the flocculation tank. 15, and the thickened sludge concentration is SS44g/L.
表2(実施例1)の試験番号No.5の濃縮汚泥に高分子凝集剤を1.0wt/wt%対SSで添加して、調質後に加圧脱水すると、脱水ケーキの含水率は 80%、脱水ろ液のSSは 310mg/Lであった(試験番号No.2)。 Test No. in Table 2 (Example 1). Add 1.0wt/wt% of polymer flocculant to the thickened sludge in step 5 and dehydrate under pressure after refining. There was (test number No. 2).
表2(実施例1)の試験番号No.11の濃縮汚泥に高分子凝集剤を1.5wt/wt%対SSで添加して、調質後に加圧脱水すると、脱水ケーキの含水率は 82%、脱水ろ液のSSは 380mg/Lであった(試験番号No.6)。 Test No. in Table 2 (Example 1). 1.5 wt/wt% of the polymer flocculant is added to the thickened sludge of No. 11, and pressure dewatering is performed after refining. There was (test number No. 6).
表2(実施例1)の試験番号No.15の濃縮汚泥に高分子凝集剤を1.5wt/wt%対SSで添加して、調質後に加圧脱水すると、脱水ケーキの含水率は 82%、脱水ろ液のSSは 350mg/Lであった(試験番号No.10)。 Test No. in Table 2 (Example 1). 1.5 wt/wt% of polymer flocculant is added to the thickened sludge of No. 15, and pressure dewatering is performed after refining. There was (test number No. 10).
本発明のように、必要な高分子凝集剤添加量を濃縮汚泥に添加して、高分子凝集剤を含む濃縮汚泥(凝集濃縮汚泥)を凝集槽に返送し、凝集槽で余剰汚泥(液状廃棄物)を調質してスクリーン濃縮して得られる濃縮汚泥を脱水することで、高分子凝集剤添加量を減らしても低含水率の脱水ケーキが得られる。 As in the present invention, the necessary amount of polymer flocculant is added to the thickened sludge, the thickened sludge containing the polymer flocculant (flocculated thickened sludge) is returned to the flocculation tank, and the excess sludge (liquid waste) is returned to the flocculation tank. By dewatering the thickened sludge obtained by refining and screen-concentrating the material), a dehydrated cake with a low moisture content can be obtained even if the amount of polymer flocculant added is reduced.
本発明で得られる濃縮汚泥は、後段の脱水性能の向上に寄与する。 The thickened sludge obtained by the present invention contributes to the improvement of dehydration performance in the latter stage.
3.実施例3
浄水施設の急速ろ過設備で、濁度3~5度の河川水を水道原水に、PAC注入率20mg/Lで凝集沈殿処理して沈殿池から排出される凝集沈殿汚泥(pH 6.5、 SS 5.1g/L)以下、上水汚泥(液状廃棄物))を対象に、表1の濃縮試験装置で濃縮試験を行った。
3. Example 3
In the rapid filtration equipment of the water purification plant, river water with a turbidity of 3 to 5 degrees is treated with PAC injection rate of 20 mg / L as tap water, and the coagulated sedimentation sludge discharged from the sedimentation tank (pH 6.5, SS 5.1 g/L) or less, a concentration test was performed using the concentration test apparatus shown in Table 1 for tap water sludge (liquid waste).
表1の凝集槽に上水汚泥(液状廃棄物)と、予め調製しておいた濃縮汚泥にアクリルアミドを含まないアニオン性水道用高分子凝集剤(エバグロースWA-200、水ing(株)製)を上水汚泥のSS重量当たり0.2~0.4wt%(濃縮汚泥のSS重量当たり0.35~0.81wt%)添加した凝集濃縮汚泥を添加、混合して凝集させた凝集フロックをスクリーンで濃縮した。 Water supply sludge (liquid waste) in the flocculation tank in Table 1, and pre-prepared thickened sludge containing an acrylamide-free anionic polymer flocculant for water supply (Evergross WA-200, manufactured by Swing Co., Ltd.) 0.2 to 0.4 wt% per SS weight of tap water sludge (0.35 to 0.81 wt% per SS weight of thickened sludge) added flocculated thickened sludge, mixed and flocculated. was concentrated with
予め調製しておいた濃縮汚泥は、上水汚泥に同じアクリルアミドを含まないアニオン性水道用高分子凝集剤を添加率0.4wt/wt%対SSで調質後に表1の濃縮試験装置で濃縮した濃縮汚泥(SS 36g/L、表4の試験番号No.7)である。 The thickened sludge prepared in advance was mixed with the same acrylamide-free anionic water-use polymer flocculant added to the tap water sludge at a rate of 0.4 wt/wt% vs. SS. thickened sludge (SS 36 g/L, test number No. 7 in Table 4).
また、実施例1と同様に、凝集槽に濃縮汚泥を返送せず、凝集槽に直接、高分子凝集剤を添加した場合や、凝集槽に直接、高分子凝集剤を添加し、更に、高分子凝集剤を添加しない濃縮汚泥を添加した場合についても試験した。 Further, as in Example 1, when the thickened sludge is not returned to the flocculation tank and the polymer flocculant is added directly to the flocculation tank, or the polymer flocculant is added directly to the flocculation tank, A test was also conducted in the case of adding thickened sludge to which no molecular flocculant was added.
結果を表4に示す。 Table 4 shows the results.
表4の(i)「高分子凝集剤を濃縮汚泥に添加」は、本発明の方法で、高分子凝集剤の必要添加量を予め調製しておいた濃縮汚泥に添加して、高分子凝集剤を含む濃縮汚泥(凝集濃縮汚泥)を凝集槽に返送した場合である。 In Table 4, (i) “Add polymer flocculant to thickened sludge” is the method of the present invention, adding the necessary amount of polymer flocculant to thickened sludge prepared in advance to obtain polymer flocculation. This is the case where the thickened sludge containing the agent (coagulated thickened sludge) is returned to the coagulation tank.
濃縮汚泥のSS重量に対する高分子凝集剤添加率を表4の括弧内に併記する(試験番号No.1~5)。 The addition rate of the polymer flocculant to the SS weight of the thickened sludge is also shown in parentheses in Table 4 (Test Nos. 1 to 5).
表4の(ii)「濃縮汚泥を返送せず高分子凝集剤を凝集槽に添加」は、濃縮汚泥に高分子凝集剤を添加せず、濃縮汚泥も凝集槽に返送せずに、凝集槽に高分子凝集剤を添加した場合である(試験番号No.6~8)。 (ii) in Table 4, "adding a polymer flocculant to the flocculation tank without returning the thickened sludge" means that no polymer flocculant is added to the thickened sludge and the thickened sludge is not returned to the flocculation tank. (Test Nos. 6 to 8).
表4の(iii)「濃縮汚泥を返送し、高分子凝集剤を凝集槽に添加」は、凝集槽に濃縮汚泥に高分子凝集剤を添加しない濃縮汚泥を返送して、高分子凝集剤を凝集槽に添加した場合である(試験番号No.9~11)。 (iii) “Return the thickened sludge and add the polymer flocculant to the flocculation tank” in Table 4 returns the thickened sludge to the flocculation tank without adding the polymer flocculant to the thickened sludge, and adds the polymer flocculant. This is the case where it was added to the flocculation tank (Test Nos. 9 to 11).
凝集槽のSS重量に対して添加率0.3wt/wt%対SSで高分子凝集剤を濃縮汚泥に添加して得られる凝集濃縮汚泥を凝集槽のSS10g/Lになるように、凝集槽に返送し、凝集濃縮汚泥と余剰汚泥(液状廃棄物)を凝集槽で凝集させてスクリーン濃縮すると、濃縮汚泥のSSは44g/Lで、その分離液のSSは100mg/Lであった(試験番号No.2)。 The flocculated thickened sludge obtained by adding a polymer flocculant to thickened sludge at an addition rate of 0.3 wt / wt% vs. SS with respect to the SS weight in the flocculation tank is added to the flocculation tank so that the SS in the flocculation tank becomes 10 g / L. When the coagulated thickened sludge and excess sludge (liquid waste) were returned and coagulated in the coagulation tank and screen-condensed, the SS of the thickened sludge was 44 g/L, and the SS of the separated liquid was 100 mg/L (Test No. No. 2).
凝集濃縮汚泥も濃縮汚泥も凝集槽に返送せず、凝集槽に凝集槽のSS重量に対して高分子凝集剤添加率0.4wt/wt%対SSの高分子凝集剤を添加して、凝集させてスクリーン濃縮すると、濃縮汚泥のSSは36g/Lで、その分離液のSSは260mg/Lであった(試験番号No.7)。 Neither coagulated thickened sludge nor thickened sludge is returned to the flocculation tank, and a polymer flocculant with a polymer flocculant addition rate of 0.4 wt / wt% relative to the SS weight in the flocculation tank is added to the flocculation tank to flocculate. The SS of the thickened sludge was 36 g/L, and the SS of the separated liquid was 260 mg/L (Test No. 7).
高分子凝集剤を添加しない濃縮汚泥を凝集槽に返送し、凝集槽のSSを10g/Lに調整して、凝集槽のSS重量に対して高分子凝集剤添加率0.4wt/wt%対SSの高分子凝集剤を凝集槽に添加して、凝集させてスクリーン濃縮すると、濃縮汚泥のSSは39g/Lで、その分離液のSSは330mg/Lであった(試験番号No,10)。 The thickened sludge to which no polymer flocculant is added is returned to the flocculation tank, the SS in the flocculation tank is adjusted to 10 g / L, and the polymer flocculant addition rate is 0.4 wt / wt% with respect to the SS weight in the flocculation tank. When the SS polymer flocculant was added to the flocculation tank, flocculated and screen-concentrated, the SS of the thickened sludge was 39 g/L, and the SS of the separated liquid was 330 mg/L (Test No. 10). .
本発明のように、必要な高分子凝集剤添加量を濃縮汚泥に添加して、高分子凝集剤を含む濃縮汚泥(凝集濃縮汚泥)を凝集槽に返送し、凝集槽で上水汚泥(液状廃棄物)を調質してスクリーン濃縮することで、高分子凝集剤添加量を減らしても得られた濃縮汚泥のSS濃度が高まり、分離液のSS濃度も低減できた。 As in the present invention, the necessary amount of polymer flocculant is added to the thickened sludge, the thickened sludge containing the polymer flocculant (flocculated thickened sludge) is returned to the flocculation tank, and the water supply sludge (liquid state) is returned to the flocculation tank. By refining and screen-concentrating waste), the SS concentration of the thickened sludge obtained was increased even when the amount of polymer flocculant added was reduced, and the SS concentration of the separated liquid was also reduced.
Claims (6)
前記凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る濃縮工程と、
前記濃縮工程で得られた前記濃縮汚泥の少なくとも一部を取り出す取り出し工程と、
取り出された濃縮汚泥に高分子凝集剤を添加し、得られた凝集濃縮汚泥を前記凝集工程に返送する返送工程と、を有し、
前記凝集工程における前記凝集フロックの形成が、前記返送された前記凝集濃縮汚泥の前記液状廃棄物への混合によりなされることを特徴とする液状廃棄物の濃縮方法。 an agglomeration step of forming agglomerated flocs from liquid waste;
a concentration step of concentrating the liquid waste containing the flocculated flocs to obtain concentrated sludge and a separated liquid;
A taking-out step of taking out at least part of the thickened sludge obtained in the thickening step;
a return step of adding a polymer flocculant to the thickened sludge taken out and returning the obtained flocculated thickened sludge to the flocculation step;
A method for concentrating liquid waste, wherein the formation of the flocculated flocs in the flocculation step is performed by mixing the returned flocculated thickened sludge with the liquid waste.
前記凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る濃縮手段と、
前記濃縮手段で得られた前記濃縮汚泥の少なくとも一部を取り出す配管手段と、
前記配管手段で取り出された前記濃縮汚泥に高分子凝集剤を添加・混合し、凝集濃縮汚泥を得る混合手段と、
前記混合手段で得られた凝集濃縮汚泥を前記凝集手段に返送する返送手段と、
を有することを特徴とする液状廃棄物の濃縮装置。 flocculation means for forming flocculation from liquid waste;
Concentrating means for concentrating the liquid waste containing the flocculated flocs to obtain concentrated sludge and a separated liquid;
Piping means for taking out at least part of the thickened sludge obtained by the thickening means;
mixing means for adding and mixing a polymer flocculant to the thickened sludge taken out by the piping means to obtain flocculated thickened sludge;
a returning means for returning the coagulated thickened sludge obtained by the mixing means to the coagulating means;
A concentrating device for liquid waste, characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021194103A JP2023080648A (en) | 2021-11-30 | 2021-11-30 | Liquid waste concentration method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021194103A JP2023080648A (en) | 2021-11-30 | 2021-11-30 | Liquid waste concentration method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023080648A true JP2023080648A (en) | 2023-06-09 |
Family
ID=86656767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021194103A Pending JP2023080648A (en) | 2021-11-30 | 2021-11-30 | Liquid waste concentration method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023080648A (en) |
-
2021
- 2021-11-30 JP JP2021194103A patent/JP2023080648A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6209046B2 (en) | Sludge treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus | |
JP2017121601A (en) | Coagulation method and coagulation device | |
JP5423256B2 (en) | Sludge dewatering method and sludge dewatering device | |
JP5042057B2 (en) | Sludge dewatering method | |
JPWO2014021228A1 (en) | Sludge treatment method and treatment apparatus | |
JP5117228B2 (en) | Sewage sludge treatment method | |
JP7068773B2 (en) | Water treatment agent, water treatment method and water treatment equipment | |
JP6395877B2 (en) | Anaerobic digestion treatment method and anaerobic digestion treatment apparatus | |
JP6362305B2 (en) | Sludge treatment method and apparatus | |
JP2009183888A (en) | Sludge dehydration method | |
WO2019008822A1 (en) | Water treatment method and water treatment device | |
JP2019037956A (en) | Method and device for water treatment of organic wastewater containing oil | |
JP2015058413A (en) | Method and apparatus for organic waste water treatment and method and apparatus for production of chemical fertilizer | |
JP2023080648A (en) | Liquid waste concentration method and apparatus | |
JP2013000712A (en) | Dehydration method and apparatus for organic sludge | |
WO2016006419A1 (en) | Clumping method and clumping device | |
JP7075718B2 (en) | Purified water sludge treatment agent, purified water sludge treatment method and purified water sludge treatment equipment | |
JP6362304B2 (en) | Sludge treatment method and apparatus | |
JP2005007246A (en) | Treatment method for organic waste water | |
JP7547296B2 (en) | Method for treating oil-containing wastewater and water treatment device for oil-containing wastewater | |
WO2019130635A1 (en) | Method and device both for treating water | |
JP6454621B2 (en) | Sludge aggregation method and apparatus | |
JP6197021B2 (en) | Water purification method and water purification facility | |
CN110642442A (en) | Gas production wastewater treatment process containing foam discharging agent | |
JP2023077940A (en) | Treatment method of wastewater formed in water purification treatment and treatment device of wastewater formed in water purification treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20241016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241022 |