[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019037956A - Method and device for water treatment of organic wastewater containing oil - Google Patents

Method and device for water treatment of organic wastewater containing oil Download PDF

Info

Publication number
JP2019037956A
JP2019037956A JP2017163461A JP2017163461A JP2019037956A JP 2019037956 A JP2019037956 A JP 2019037956A JP 2017163461 A JP2017163461 A JP 2017163461A JP 2017163461 A JP2017163461 A JP 2017163461A JP 2019037956 A JP2019037956 A JP 2019037956A
Authority
JP
Japan
Prior art keywords
sludge
oil
treatment
solid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017163461A
Other languages
Japanese (ja)
Other versions
JP6797089B2 (en
Inventor
竜哉 古市
Tatsuya Furuichi
竜哉 古市
智之 森田
Tomoyuki Morita
智之 森田
安永 利幸
Toshiyuki Yasunaga
利幸 安永
克博 大野
Katsuhiro Ono
克博 大野
直明 片岡
Naoaki Kataoka
直明 片岡
伸二 吉田
Shinji Yoshida
伸二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2017163461A priority Critical patent/JP6797089B2/en
Publication of JP2019037956A publication Critical patent/JP2019037956A/en
Application granted granted Critical
Publication of JP6797089B2 publication Critical patent/JP6797089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

To provide a method and a device for treating organic wastewater containing oil and organic matter.SOLUTION: In organic wastewater containing oil and organic matter, a cationic organic polymer flocculant is added to form flocculated floc (flocculation treatment). The treated water containing the flocculated floc is mechanically solid-liquid separated, and the mechanically solid-liquid separated liquid is biologically treated. The separated sludge generated in at least one of the biological treatment and the post-treatment after the biological treatment is returned to the aggregation treatment step or the former stage thereof, and the mixed liquid 2 including the separated sludge 11 and the organic drainage is subjected to flocculation treatment and subsequent steps.SELECTED DRAWING: Figure 2

Description

本発明は、油分を含有する有機性排水の水処理方法及び処理装置に関するものであり、特に食品加工業や飲料工場など油分を含有する排水の油分除去に用いることができる処理方法及び処理装置に関する。   The present invention relates to a water treatment method and treatment apparatus for organic wastewater containing oil, and particularly relates to a treatment method and treatment apparatus that can be used for removing oil from wastewater containing oil such as in the food processing industry and beverage factories. .

従来より、微生物を利用した生物処理が排水処理に用いられているが、油分を含有する排水(以下、含油排水)は生物分解に多くの時間を要する上、微生物の表面を油分が覆うと微生物の呼吸や発酵が阻害され、微生物の失活を招くという問題があった。   Conventionally, biological treatment using microorganisms has been used for wastewater treatment, but wastewater containing oil (hereinafter referred to as oil-containing wastewater) requires much time for biodegradation, and if the surface of the microorganism is covered with oil, the microorganism Respiration and fermentation were hindered, leading to inactivation of microorganisms.

また、生物処理のなかでも膜分離式活性汚泥法(MBR法)は、膜面へも油分が付着する事で、固液分離も困難になるという問題もある。従って、生物処理を利用する場合には、適切な油分の除去が必要である。   Further, among biological treatments, the membrane separation activated sludge method (MBR method) also has a problem that solid-liquid separation becomes difficult due to the oil adhering to the membrane surface. Therefore, when using biological treatment, it is necessary to remove an appropriate oil content.

含油排水から油分を除去する方法としては、オイルトラップ、凝集沈殿処理、加圧浮上処理が挙げられる。この種の従来における技術としては、以下の技術が知られている。   Examples of the method for removing oil from the oil-containing wastewater include an oil trap, a coagulation sedimentation treatment, and a pressurized flotation treatment. The following techniques are known as conventional techniques of this type.

特許文献1には、加圧浮上分離装置に替え、油分の分解特性の優れた微生物を排水に添加することにより油脂類を分解する排水処理が記載されている。しかしこのような微生物の管理は難しく、必ずしも添加した菌が増殖するとは限らないため、菌を安定して増殖させることが困難であり、処理状態が不安定となる事が多い。   Patent Document 1 describes a wastewater treatment for decomposing oils and fats by adding a microorganism having excellent oil decomposition characteristics to wastewater instead of a pressurized flotation separator. However, management of such microorganisms is difficult, and the added bacteria do not always grow, so that it is difficult to stably grow the bacteria, and the treatment state often becomes unstable.

しかも、微生物活性維持のためには微生物を継続的に添加する必要性があるが、その価格は高額であり、技術的な問題とコスト的な問題から本格的な普及には至っていない。   Moreover, it is necessary to continuously add microorganisms to maintain the microbial activity, but the price is high, and due to technical problems and cost problems, full-scale spread has not been achieved.

特許文献2には、従来の加圧浮上分離処理と比較して、より微細な気泡を発生させることにより、固形分回収率を向上させる排水処理が記載されている。しかし、気泡を固形物に付着する基本原理は従来と同様で、除去した固形物に気泡が付着する。   Patent Document 2 describes a wastewater treatment that improves the solids recovery rate by generating finer bubbles as compared with a conventional pressurized flotation separation treatment. However, the basic principle of attaching bubbles to solids is the same as before, and bubbles are attached to the removed solids.

そのため、フロス貯槽上部にフロスが溜まり、脱水機への汚泥供給濃度が変動し、脱水汚泥含水率が変動する問題があり、気泡が付着したままの汚泥をポンプで移送するとキャビテーションが発生し、ポンプ内部に気体が存在するため空廻り運転となり、移送不能となる場合がある。従って、特許文献2では、固形物をそのまま汚泥処理する事が出来ず、気泡を分離するための脱泡槽が必要となり、設備が大きくなると共に維持管理費も増加する。   Therefore, floss accumulates in the upper part of the froth storage tank, there is a problem that the sludge supply concentration to the dehydrator fluctuates and the moisture content of the dehydrated sludge fluctuates. Due to the presence of gas inside, there are cases where the operation becomes idle and the transfer becomes impossible. Therefore, in patent document 2, a solid substance cannot be sludge-treated as it is, and a defoaming tank for separating bubbles is required, which increases the facility and the maintenance cost.

特許文献3では、無機凝集剤を併用するが、無機凝集剤由来の金属水酸化物が発生し、無機汚泥発生量が流入SSより増加することがある。しかも、原水の性質が変動する毎に、薬品注入量、加圧空気量(気-固比)、フロス掻取速度、フロス掻取界面高さなどの調整が必要であり、運転管理が煩雑となる問題がある。   In patent document 3, although an inorganic flocculant is used together, the metal hydroxide derived from an inorganic flocculant may generate | occur | produce and an inorganic sludge generation amount may increase from inflow SS. Moreover, every time the properties of the raw water fluctuate, it is necessary to adjust the chemical injection volume, pressurized air volume (gas-solid ratio), floss scraping speed, floss scraping interface height, etc. There is a problem.

非特許文献1には、原水に凝集剤を注入して凝集反応槽で撹拌した後、この液の一部を加圧水として用いて空気を溶解し、凝集撹拌液と混合してフロックに気泡を付着させて浮上分離槽に流入させる加圧浮上処理法が記載されている。この処理方法では、上部で掻寄せられた含油汚泥にも微細な気泡が付着する。気泡が付着した状態では濃縮が進行せず、後段の汚泥処理設備が大きくなる問題や、移送ポンプにキャビテーションが発生して良好な運転が妨げられる等の問題が発生する。   In Non-Patent Document 1, a flocculant is injected into raw water and stirred in a flocculation reaction tank, then a part of this liquid is used as pressurized water to dissolve air, and mixed with the flocculated stirring liquid to attach bubbles to the floc. A pressure levitation treatment method is described in which it is allowed to flow into the levitation separation tank. In this treatment method, fine bubbles also adhere to the oil-containing sludge scraped at the top. Concentration does not proceed in the state where bubbles are attached, and there are problems such as a problem that the subsequent sludge treatment facility becomes large and cavitation occurs in the transfer pump to prevent good operation.

特開2002−018481号公報Japanese Patent Laid-Open No. 2002-018481 特開2006−297239号公報JP 2006-297239 A 特開2003−211293号公報JP 2003-2111293 A 特開2007−307512号公報JP 2007-307512 A 特開2010−264417号公報JP 2010-264417 A

水処理工学 技報堂出版株式会社 井出哲夫編著Water treatment engineering edited by Tetsuo Ide, Gihodo Publishing Co., Ltd. 機械設備標準仕様書 平成28年度、一般財団法人 下水道事業支援センター発行Mechanical equipment standard specifications Published in 2016, Sewerage Business Support Center

この様な従来における技術では、含油排水を処理し、後段で生物処理を行う際に、従来技術である加圧浮上処理法・凝集沈殿処理法を前処理として実施する事が多い。図1は、従来技術の一方法としての加圧浮上処理法の一例を示すフローシートである。   In such a conventional technique, when the oil-containing wastewater is treated and the biological treatment is performed at a later stage, the pressure levitation treatment method and the coagulation sedimentation treatment method, which are conventional techniques, are often performed as pretreatment. FIG. 1 is a flow sheet showing an example of a pressure levitation treatment method as one method of the prior art.

凝集加圧浮上処理では、まず、無機凝集剤と有機高分子凝集剤(A)を添加して、油分を凝集させ、フロックを形成する。次に、加圧浮上槽内で、空気を溶解させた加圧水を注入することにより、加圧浮上槽表面にフロックを浮上させる。   In the flocculation and pressure levitation treatment, first, an inorganic flocculant and an organic polymer flocculant (A) are added to flocculate oil to form flocs. Next, by injecting pressurized water in which air is dissolved in the pressurized levitation tank, the flock is levitated on the surface of the pressurized levitation tank.

加圧浮上槽表面に浮上したフロックはフロス又は汚泥と呼ばれるが、ここでは含油汚泥と称する。最後に、水面上部に浮上する含油汚泥を掻寄機で系外に排出し、加圧浮上槽の中間水が処理水となる。このような凝集加圧浮上処理には、以下の課題が挙げられる。   The floc that floats on the surface of the pressurized levitation tank is called floss or sludge, but here it is called oil-containing sludge. Finally, the oil-containing sludge that floats above the water surface is discharged out of the system with a scraper, and the intermediate water in the pressurized flotation tank becomes treated water. Such a cohesive pressurization levitation process has the following problems.

(1)無機凝集剤と有機高分子凝集剤の2種類を使用するため、各薬品のタンク、溶解槽、供給ポンプなどの設備が必要となり、投資金額が大きくなる。 (1) Since two types of inorganic flocculants and organic polymer flocculants are used, facilities such as a tank for each chemical, a dissolution tank, and a supply pump are required, which increases the investment amount.

(2)各薬品の注入率を適正に制御する必要があるため、運転管理作業が煩雑となる。 (2) Since it is necessary to appropriately control the injection rate of each medicine, the operation management work becomes complicated.

(3)加圧浮上槽本体についても溶解空気量、加圧水量、掻取速度調節など運転管理項目が多く、運転管理作業が煩雑となる。 (3) There are many operation management items such as the amount of dissolved air, the amount of pressurized water, adjustment of scraping speed, etc., and the operation management work becomes complicated.

(4)無機凝集剤は酸性であるため、その注入量に応じて、アルカリ(例:苛性ソーダ)を添加して反応に適切なpHとする工程が更に必要となり、運転費用が高額となる。 (4) Since the inorganic flocculant is acidic, an additional step of adding an alkali (eg, caustic soda) to obtain a pH suitable for the reaction is required depending on the amount of the inorganic flocculant, and the operating cost is high.

(5)無機凝集剤中の金属に由来する汚泥が発生するため、流入固形物量より多くの含油汚泥が生じる。 (5) Since sludge derived from the metal in the inorganic flocculant is generated, more oil-containing sludge is generated than the amount of inflow solids.

(6)排水中に溶解している又は固形物として存在しているリンが凝集され、含油汚泥として排出されるため、後段生物処理で栄養剤としてのリンが必要となる。 (6) Since phosphorus dissolved in the waste water or existing as a solid is aggregated and discharged as oil-containing sludge, phosphorus as a nutrient is required in the subsequent biological treatment.

(7)含油汚泥の含水率は94〜98%と高く、含油汚泥が大量に発生する。このため、別のタイプの有機高分子凝集剤(B)を用いた脱水処理設備が必要となる。またその前処理として、付着している微細気泡を除去するために撹拌装置を具備した脱気処理設備(脱気槽等)も必要となる。 (7) The water content of oil-containing sludge is as high as 94 to 98%, and a large amount of oil-containing sludge is generated. For this reason, a dehydration treatment facility using another type of organic polymer flocculant (B) is required. Moreover, in order to remove the adhering fine bubbles, a deaeration treatment facility (such as a deaeration tank) equipped with a stirring device is also required as a pretreatment.

本発明は、上記課題に鑑み成されたものであり、その目的とするところは、油分を含有する有機性排水の処理方法及び処理装置において、微生物の無機栄養源(リン等)が過剰に除去されず、アルカリ度の消費を少なくでき、低含水率での脱水処理で、凝集剤由来の汚泥の発生を抑制し、しかも、排出する汚泥量が少ない方法及び装置を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to remove excessive inorganic nutrient sources (such as phosphorus) of microorganisms in a method and apparatus for treating organic wastewater containing oil. Therefore, an object of the present invention is to provide a method and an apparatus that can reduce the consumption of alkalinity, suppress the generation of sludge derived from a flocculant by a dehydration process at a low water content, and reduce the amount of sludge to be discharged.

上記課題を解決するために、本発明は以下の構成とすることができる。   In order to solve the above problems, the present invention can be configured as follows.

(I)油分及び有機物を含む有機性排水を処理する処理方法に関するものであって、有機性排水にカチオン性有機高分子凝集剤を添加し、油分及び有機物の凝集フロックを含む処理水を形成する凝集処理工程と、前記凝集フロックを含む処理水を、前記凝集フロックと分離液とに機械的に固液分離する機械的固液分離工程と、前記機械的に固液分離された分離液を生物処理する生物処理工程とを有し、前記生物処理工程と、前記生物処理工程後の後処理のいずれか一方又は両方で生じる分離汚泥を、前記凝集処理工程と、前記凝集処理工程よりも前段の工程の少なくとも一方の工程へ返送して処理することを特徴とする。 (I) The present invention relates to a treatment method for treating organic wastewater containing oil and organic matter, and a cationic organic polymer flocculant is added to the organic wastewater to form treated water containing coagulated flocs of oil and organic matter. A coagulation treatment step, a mechanical solid-liquid separation step for mechanically solid-liquid separating the treated water containing the coagulation floc into the coagulation floc and a separation liquid, and A biological treatment step to be treated, and the separated sludge generated in either or both of the biological treatment step and the post-treatment after the biological treatment step is separated from the aggregation treatment step and the aggregation treatment step. Returning to at least one of the processes and processing.

(II)上記後処理は、前記機械的固液分離工程とは異なる工程であって、生物処理工程で有機物が除去された処理水を更に固液分離して前記分離汚泥を得る、固液分離工程であることを特徴とする。 (II) The post-treatment is a step different from the mechanical solid-liquid separation step, wherein the treated water from which organic substances have been removed in the biological treatment step is further solid-liquid separated to obtain the separated sludge. It is a process.

(III)更に脱水工程を有し、当該脱水工程は、上記のような分離汚泥と、機械的固液分離工程で生じる含油汚泥とから選択される、少なくとも1種以上の汚泥を脱水処理し、脱水汚泥を得る工程であることを特徴とする。 (III) It further has a dehydration step, and the dehydration step dehydrates at least one kind of sludge selected from the above-described separated sludge and the oil-containing sludge generated in the mechanical solid-liquid separation step, It is a process for obtaining dehydrated sludge.

(IV)上記分離汚泥の返送工程は、有機性排水の油分濃度とSS濃度の少なくともいずれかに応じて返送することを特徴とする。 (IV) The separated sludge returning step is characterized in that it is returned according to at least one of the oil concentration and SS concentration of the organic waste water.

(V)更に、本発明は、油分を含有する有機性排水の処理装置に関するものであって、処理装置は、油分及び有機物を含む有機性排水をpH調整するpH調整手段と、前記pH調整された有機性排水をカチオン性有機高分子凝集剤と混合して油分及び有機物を凝集させ、凝集フロックを含む処理水を得る凝集手段と、前記凝集フロックを含む処理水を、前記凝集フロックと分離液とに固液分離する固液分離手段と、前記固液分離された分離液中の有機物を除去して汚泥と処理水とに分離する生物処理手段と、前記生物処理で生じる汚泥と、当該生物処理後の後処理で生じる汚泥のうち、少なくとも一方の汚泥を、前記凝集手段又はそれよりも上流側の一ヶ所以上の返送場所へ返送する返送手段とを有し、前記返送手段は、前記有機性排水の油分濃度と、当該有機性排水のSS濃度の少なくとも一方の濃度に応じ、前記汚泥を前記凝集手段又は当該凝集手段の前段の装置へ返送することを特徴とすることを特徴とする。 (V) Furthermore, the present invention relates to a treatment apparatus for organic wastewater containing oil, wherein the treatment apparatus is pH-adjusted for adjusting the pH of the organic wastewater containing oil and organic matter, and the pH is adjusted. The organic waste water is mixed with a cationic organic polymer flocculant to agglomerate oil and organic matter to obtain treated water containing agglomerated floc, and the treated water containing the agglomerated floc is separated from the agglomerated floc and the separation liquid Solid-liquid separation means for separating the liquid into solid-liquid, biological treatment means for removing organic matter in the separated liquid-solid separation and separating it into sludge and treated water, sludge produced by the biological treatment, and the organism Returning means for returning at least one of the sludge generated in the post-treatment after the treatment to the aggregating means or one or more return places upstream thereof, wherein the returning means is the organic Wastewater oil And density, according to at least one of the density of the SS concentration of the organic waste water, characterized in that said sending back the sludge to the front stage of the apparatus of the aggregation means or the agglomeration means.

上記のような発明は、例えば以下のような効果(i)〜(iii)を奏する。
(i)従来技術と比較して作業負荷が少ない。すなわち、一般的な加圧浮上処理では、無機凝集剤と有機高分子凝集剤の注入率の調整、溶解空気量の調整、加圧水量の調整、掻寄速度の調整等必要な運転管理項目が多く、運転管理が煩雑となっていた。これに対し、上記発明は、機械的固液分離に用いる固液手段(装置)の、運転速度の調整が運転管理の主要項目にすぎない。
The invention as described above has the following effects (i) to (iii), for example.
(I) Less work load than conventional technology. That is, in general pressure flotation treatment, there are many necessary operation management items such as adjustment of injection rate of inorganic flocculant and organic polymer flocculant, adjustment of dissolved air amount, adjustment of pressurized water amount, adjustment of scraping speed, etc. The operation management was complicated. On the other hand, in the above invention, the adjustment of the operation speed of the solid-liquid means (device) used for mechanical solid-liquid separation is only a main item of operation management.

(ii)上記発明は、カチオン性有機高分子凝集剤(油脂分離ポリマ)を主たる凝集剤として使用するため、従来の凝集剤(特に、アルミ系凝集剤、鉄系凝集剤等の無機凝集剤)を使用しないか、使用する場合も僅かな量を必要とするにすぎず、リンの除去率が低く、アルカリ度の消費も少ないという利点もある。 (Ii) Since the above invention uses a cationic organic polymer flocculant (oil separation polymer) as the main flocculant, conventional flocculants (particularly inorganic flocculants such as aluminum flocculants and iron flocculants) Even when used, only a small amount is required, and there is an advantage that the removal rate of phosphorus is low and the consumption of alkalinity is low.

すなわち、従来技術で無機凝集剤としてアルミ系凝集剤を用いた場合、凝集剤の反応式として、下記式
Al(SO+6HCO =2Al(OH)+6CO+3SO 2−
を経て、下記式
2Al(OH)/Al(SO4)=0.23
となり、硫酸アルミニウム1mg/Lあたり、0.23mg/Lの汚泥が凝集剤由来の汚泥として発生する(以上、水処理薬品ハンドブック 技報堂出版)。
That is, when an aluminum-based flocculant is used as an inorganic flocculant in the prior art, the reaction formula of the flocculant is represented by the following formula: Al 2 (SO 4 ) 3 + 6HCO 3 = 2Al (OH) 3 + 6CO 2 + 3SO 4 2 −
Through the following formula 2Al (OH) 3 / Al 2 (SO4) 3 = 0.23
As a result, 0.23 mg / L of sludge is generated as flocculant-derived sludge per 1 mg / L of aluminum sulfate (the water treatment chemical handbook, Gihodo Publishing).

上記工程において、リン酸(PO 3−)は、Al3++PO 3−=AlPOとなり難水溶性のリン酸塩を生成するため、同時にリンが除去されていた。また、鉄系凝集剤を使用する場合も、鉄イオンによりリンが除去されるため、アルミ系、鉄系に係らず、無機凝集剤を用いる場合はリンの除去が問題になった。 In the above process, phosphoric acid (PO 4 3− ) becomes Al 3+ + PO 4 3− = AlPO 4 to form a poorly water-soluble phosphate, so that phosphorus is simultaneously removed. Also, when iron-based flocculants are used, phosphorus is removed by iron ions. Therefore, removal of phosphorus becomes a problem when using inorganic flocculants regardless of whether aluminum or iron-based.

更に、無機凝集剤を使用する場合はアルカリ度の消費も問題になった。例えば、アルミ系凝集剤として、硫酸アルミニウム(Al(SO・18HO)を使用した場合、硫酸アルミニウム1mg/Lに対し、アルカリ度0.45mg/Lを消費するため、苛性ソーダとして0.36mg/Lの注入が必要であった。 Furthermore, consumption of alkalinity has also become a problem when using inorganic flocculants. For example, the aluminum-based coagulant, when using aluminum sulfate (Al 2 (SO 4) 3 · 18H 2 O), with respect to aluminum sulfate 1 mg / L, to consume alkalinity 0.45 mg / L, as caustic soda An injection of 0.36 mg / L was required.

(iii)カチオン性有機高分子凝集剤の作用により、強固なフロックが形成されるため、機械式固液分離装置で低含水率での脱水処理が可能であり、凝集剤(特に無機凝集剤)由来の汚泥も発生しないため、排出する汚泥量が少ない。 (Iii) Since a strong floc is formed by the action of the cationic organic polymer flocculant, the mechanical solid-liquid separator can be dehydrated at a low water content, and the flocculant (particularly inorganic flocculant) Since no sludge derived from it is generated, the amount of discharged sludge is small.

本発明によれば、作業負荷が少ない上に、脱水汚泥の含水率の低減が可能であり、汚泥排出量も減らすことができる。   According to the present invention, the work load is small, the moisture content of the dewatered sludge can be reduced, and the sludge discharge amount can also be reduced.

従来技術の凝集加圧浮上処理のフローシートである。It is a flow sheet of the coagulation pressure levitation processing of the prior art. 本発明を模式的に示すフローシートである。It is a flow sheet which shows the present invention typically. 第1例の水処理方法と、それに用いる処理装置を示す図面である。It is drawing which shows the water treatment method of a 1st example, and the processing apparatus used for it. 第2例の水処理方法と、それに用いる処理装置を示す図面である。It is drawing which shows the water treatment method of a 2nd example, and the processing apparatus used for it. 第3例の水処理方法と、それに用いる処理装置を示す図面である。It is drawing which shows the water treatment method of a 3rd example, and the processing apparatus used for it. 第4例の水処理方法と、それに用いる処理装置を示す図面である。It is drawing which shows the water treatment method of a 4th example, and the processing apparatus used for it. 第1例の固液分離装置を示す模式的断面図である。It is a typical sectional view showing the solid-liquid separation device of the 1st example. 第2例の固液分離装置を示す模式的断面図である。It is a typical sectional view showing the solid-liquid separation device of the 2nd example.

以下、本発明を具体的に説明するが、本発明は特定の具体例に限定されるものではない。   Hereinafter, the present invention will be specifically described, but the present invention is not limited to a specific example.

図2は本発明を模式的に示すフローシートであり、本発明の水処理方法及び処理装置では、被処理水にカチオン性有機高分子凝集剤を添加し、凝集処理を行った後、機械的に固液分離した後の処理水を生物処理する。必要であれば生物処理後の処理水を後処理に供することも可能であり、この後処理の具体的な例としては、前段の機械的固液分離とは異なる装置を用いた固液分離工程がある。   FIG. 2 is a flow sheet schematically showing the present invention. In the water treatment method and treatment apparatus of the present invention, a cationic organic polymer flocculant is added to the water to be treated, and after coagulation treatment, The treated water after solid-liquid separation is biologically treated. If necessary, the treated water after biological treatment can be subjected to post-treatment. As a specific example of this post-treatment, a solid-liquid separation step using an apparatus different from the mechanical solid-liquid separation in the previous stage is possible. There is.

本発明の水処理方法及び処理装置では、生物処理で発生した汚泥(余剰汚泥)と、後処理で発生した汚泥のうち、いずれか一方又は両方の汚泥が返送され、返送された汚泥は被処理水と同様の処理工程を辿る。以下により具体的に説明する。   In the water treatment method and the treatment apparatus of the present invention, either one or both of sludge generated by biological treatment (excess sludge) and sludge generated by post-treatment are returned, and the returned sludge is treated. Follow the same process steps as for water. More specific description will be given below.

<被処理水(有機性排水)>
本発明において、処理の対象となる被処理水は、油分と有機物を含む有機性排水であって、食品加工工場、食品製造工場、飲料生産工場、機械工場、自動車工場など各種工場で発生する排水や下水、し尿、浄化槽からの放流水を挙げることができる。被処理水は特に限定されず、更に、ショッピングセンタ、レストラン、スーパーマーケット、ホテル、病院などの各種施設から排出される排水(厨房排水)を挙げることができる。
<Treatment water (organic wastewater)>
In the present invention, the water to be treated is organic wastewater containing oil and organic matter, and wastewater generated at various factories such as food processing factories, food production factories, beverage production factories, machine factories, automobile factories, etc. And sewage, human waste, and discharge water from septic tanks. The treated water is not particularly limited, and examples thereof include waste water (kitchen waste water) discharged from various facilities such as shopping centers, restaurants, supermarkets, hotels, and hospitals.

油分とは常温で液体の油のみならず、常温で固体の脂肪、即ち、油脂類全般を示す。被処理水に含まれる油分としては、例えば、植物油、動物油、鉱物油などがあり、これら油分は1種又は2種以上が含有される。一般的に、排水中の油分の濃度は、ヘキサン抽出物質として測定される(JIS K0102)。   The oil component indicates not only oil that is liquid at room temperature, but also fat that is solid at room temperature, that is, fats and oils in general. Examples of the oil contained in the water to be treated include vegetable oil, animal oil, mineral oil, and the like, and these oils contain one or more kinds. In general, the concentration of oil in wastewater is measured as a hexane extract (JIS K0102).

有機物は、上記油分と、上記油分以外の有機物を全て含む概念である。すなわち、有機性排水には、油分のみを含む場合と、油分に加え、油分以外の有機物も含む場合がある。有機物としては、炭水化物、タンパク質、脂質、核酸、植物油、動物油、鉱物油、アルコール類、脂肪酸、界面活性剤、塗料など1種以上の有機物を挙げることができる。また、有機物は、動植物由来の物質でも化学的に合成された物質でもよい。また、上記物質から製造された物質でも上記物質の分解物でもよい。更に、被処理水は無機物を含む場合もある。   The organic substance is a concept that includes all of the oil and organic substances other than the oil. That is, the organic wastewater may contain only oil or may contain organics other than oil in addition to oil. Examples of organic substances include one or more organic substances such as carbohydrates, proteins, lipids, nucleic acids, vegetable oils, animal oils, mineral oils, alcohols, fatty acids, surfactants and paints. The organic matter may be a material derived from animals or plants or a chemically synthesized material. Moreover, the substance manufactured from the said substance or the decomposition product of the said substance may be sufficient. Furthermore, the water to be treated may contain an inorganic substance.

次に、本発明に用いるカチオン性有機高分子凝集剤の一例について説明する。   Next, an example of the cationic organic polymer flocculant used in the present invention will be described.

<カチオン性有機高分子凝集剤(油脂分離ポリマ)>
−種類
カチオン性有機高分子凝集剤は特に限定されないが、カチオン性モノマーの単独重合体又は共重合体、カチオン性モノマーとノニオン性モノマーとの共重合体、カチオン性モノマーとアニオン性モノマーとの共重合体などから1種以上を選択して使用することができる。本発明では、ポリ塩化アルミニウム、ポリ硫酸第二鉄などの無機凝集剤と明確に区別するため、有機高分子凝集剤と記載するが、一般的には単に高分子凝集剤と称される。
<Cationic organic polymer flocculant (oil separation polymer)>
-Kind The cationic organic polymer flocculant is not particularly limited, but is a homopolymer or copolymer of a cationic monomer, a copolymer of a cationic monomer and a nonionic monomer, a copolymer of a cationic monomer and an anionic monomer. One or more types can be selected from polymers and used. In the present invention, an organic polymer flocculant is described in order to clearly distinguish it from inorganic flocculants such as polyaluminum chloride and polyferric sulfate, but it is generally simply referred to as a polymer flocculant.

カチオン性モノマーとしては、ジアルキルアミノアルキル(メタ)アクリレート又はジアルキルアミノアルキル(メタ)アクリレートの中和塩、3級塩若しくは4級塩などから1種以上選択することが可能であり、例えば、ジメチルアミノエチル(メタ)アクリレート又はジメチルアミノエチル(メタ)アクリレートの中和塩、3級塩若しくは4級塩などが挙げられる。これらの中でもジメチルアミノエチル(メタ)アクリレートの4級塩が好ましく、より好ましくはアンモニウム塩である。   The cationic monomer can be selected from one or more of dialkylaminoalkyl (meth) acrylate or neutralized salt, tertiary salt or quaternary salt of dialkylaminoalkyl (meth) acrylate. For example, dimethylamino Examples thereof include neutralized salts, tertiary salts, and quaternary salts of ethyl (meth) acrylate or dimethylaminoethyl (meth) acrylate. Among these, a quaternary salt of dimethylaminoethyl (meth) acrylate is preferable, and an ammonium salt is more preferable.

ノニオン性モノマーとしては、(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、(メタ)アクリロニトリル、酢酸ビニルなどから1種以上を選択して用いることができる。アニオン性モノマーとしては、(メタ)アクリル酸、(メタ)アクリル酸ナトリウム、イタコン酸、マレイン酸、フマル酸、2−(メタ)アクリルアミド−メチルプロパンスルホン酸、及びこれらの金属塩又はアンモニウム塩などから1種以上を選択して用いることができる。   As the nonionic monomer, one or more kinds selected from (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (meth) acrylonitrile, vinyl acetate and the like can be used. Examples of the anionic monomer include (meth) acrylic acid, sodium (meth) acrylate, itaconic acid, maleic acid, fumaric acid, 2- (meth) acrylamide-methylpropanesulfonic acid, and metal salts or ammonium salts thereof. One or more types can be selected and used.

なお、(メタ)アクリレートはアクリレートとメタクリレートの両方を含む概念であり、(メタ)アクリル酸はアクリル酸とメタクリル酸の両方を含む概念であり、更に、(メタ)アクリルアミドはアクリルアミドとメタクリルアミドの両方を含む概念である。   In addition, (meth) acrylate is a concept including both acrylate and methacrylate, (meth) acrylic acid is a concept including both acrylic acid and methacrylic acid, and (meth) acrylamide is both acrylamide and methacrylamide. It is a concept that includes

また、カチオン性有機高分子凝集剤としては、非アミジン系高分子凝集剤に加え、アミジン単位を有するアミジン系高分子凝集剤、アミジン系高分子凝集剤と非アミジン系高分子凝集剤を混合した高分子凝集剤などが挙げられる。   As the cationic organic polymer flocculant, in addition to the non-amidine polymer flocculant, an amidine polymer flocculant having an amidine unit, an amidine polymer flocculant and a non-amidine polymer flocculant are mixed. Examples thereof include a polymer flocculant.

カチオン性有機高分子凝集剤の態様は、粉末状、液状(ディスパージョン状、エマルジョン状)などが挙げられる。   Examples of the cationic organic polymer flocculant include powder and liquid (dispersion and emulsion).

−カチオン度
上述したように、原料モノマーの種類や凝集剤の態様は限定されるものではないが、本発明は、カチオン度が50mol%以上、即ち、ポリマの全モノマー単位(ユニット)中にカチオン性モノマー単位を50mol%以上含むカチオン性有機高分子凝集剤を用いることが好ましく、特に好ましいカチオン度は60mol%以上、その中でも80mol%以上が好ましい。
-Cation Degree As described above, the type of raw material monomer and the mode of the flocculant are not limited, but the present invention has a cation degree of 50 mol% or more, that is, a cation in all monomer units of the polymer. It is preferable to use a cationic organic polymer flocculant containing at least 50 mol% of a cationic monomer unit, and a particularly preferable cationic degree is 60 mol% or more, and of these, 80 mol% or more is preferable.

更に、実質カチオン性モノマーからなる(100mol%)カチオン性有機高分子凝集剤を使用することもできる。なお、カチオン度は、凝集剤の原料モノマーに含まれるカチオン性モノマーの割合(mol%)として定義することができる。   Furthermore, a cationic organic polymer flocculant composed of a substantially cationic monomer (100 mol%) can also be used. The cation degree can be defined as the ratio (mol%) of the cationic monomer contained in the raw material monomer of the flocculant.

一般的に、排水中に含まれる油分は、界面活性剤やアルカリ成分によって、排水中に細かく分散し、油分粒子の表面は負に帯電している。一般的な汚濁物質のゼータ電位に比べて、油分粒子のゼータ電位は著しく低く、通常のカチオン性有機高分子凝集剤を加えても、フロックは形成されないか、フロックが形成されても機械的な固液分離に耐える強いフロックは形成されない。   In general, the oil contained in the wastewater is finely dispersed in the wastewater by the surfactant and the alkali component, and the surface of the oil particles is negatively charged. Compared to the zeta potential of general pollutants, the zeta potential of oil particles is remarkably low. Even if a normal cationic organic polymer flocculant is added, flocs are not formed, or even if flocs are formed, they are mechanical. A strong floc that can withstand solid-liquid separation is not formed.

一方、カチオン度が50mol%以上のカチオン性有機高分子凝集剤を加えて混合すると、カチオン性有機高分子凝集剤の大きく正に帯電した(正の電荷密度が高い)分子鎖が排水中に細かく分散した油分を捕捉し、機械的な固液分離に耐える強いフロックを形成することができる。   On the other hand, when a cationic organic polymer flocculant having a cationic degree of 50 mol% or more is added and mixed, the cationic organic polymer flocculant has large positively charged (high positive charge density) molecular chains in the waste water. Capable of capturing dispersed oil and forming a strong floc that can withstand mechanical solid-liquid separation.

−分子量
カチオン性有機高分子凝集剤の分子量は特に限定されないが、分子量が500万以上であることが好ましく、特に600万以上、その中でも800万以上であることが好ましい。ここでの分子量は、固有粘度法で測定・算出された値であり、その測定、算出法の詳細は、「ポリマー凝集剤使用の手引き」の112〜116頁(東京都下水道サービス株式会社、平成14年3月発行)に記載されている。
—Molecular Weight The molecular weight of the cationic organic polymer flocculant is not particularly limited, but the molecular weight is preferably 5 million or more, particularly 6 million or more, and more preferably 8 million or more. The molecular weight here is a value measured and calculated by the intrinsic viscosity method. For details of the measurement and calculation method, see pages 112 to 116 of "Guide for using polymer flocculant" (Tokyo Sewerage Service Co., Ltd., Heisei) Issued in March 2014).

上述したように排水中の油分は細かく分散しているので、通常のカチオン性有機高分子凝集剤を加えても、フロック形成は形成されないか、フロックが形成されても機械的な固液分離に耐える強いフロックは形成されない。一方、分子量が500万以上のカチオン性有機高分子凝集剤を添加して混合すると、カチオン性有機高分子凝集剤の長い分子鎖が排水中に細かく分散した油分を捕捉し、機械的な固液分離に耐える強いフロックを形成することができる。   As described above, the oil in the waste water is finely dispersed. Therefore, even if a normal cationic organic polymer flocculant is added, floc formation is not formed, or even if floc is formed, mechanical solid-liquid separation is possible. A strong floc to withstand is not formed. On the other hand, when a cationic organic polymer flocculant having a molecular weight of 5 million or more is added and mixed, the long molecular chain of the cationic organic polymer flocculant captures finely dispersed oil in the waste water, and mechanical solid-liquid A strong floc that can withstand separation can be formed.

−粘度
分子量と同じ観点から、カチオン性有機高分子凝集剤の特性を溶液粘度で定義することもできる。具体的には、カチオン性有機高分子凝集剤を純水に2g/Lで溶解したときの溶液粘度は、200mPa・s以上であることが好ましく、特に220mPa・s以上、その中でも250mPa・s以上であることが好ましい。
-Viscosity From the same viewpoint as the molecular weight, the characteristics of the cationic organic polymer flocculant can be defined by the solution viscosity. Specifically, the solution viscosity when the cationic organic polymer flocculant is dissolved in pure water at 2 g / L is preferably 200 mPa · s or more, particularly 220 mPa · s or more, and more preferably 250 mPa · s or more. It is preferable that

また、カチオン性有機高分子凝集剤を純水に1g/Lで溶解した場合、その水溶液の粘度は100mPa・s以上であることが好ましく、特に120mPa・s以上、その中でも150mPa・s以上であることが好ましい。   In addition, when the cationic organic polymer flocculant is dissolved in pure water at 1 g / L, the viscosity of the aqueous solution is preferably 100 mPa · s or more, particularly 120 mPa · s or more, and more preferably 150 mPa · s or more. It is preferable.

なお、上記粘度は、濃度が1g/Lと2g/Lのいずれの場合も、B形粘度計、JIS K7117−1:1999の附属書1(参考)に記載されているスピンドルSB2号を使用し、25℃、60min−1の回転速度で測定した値である。スピンドルはロータとも呼ばれる。 In addition, the above-mentioned viscosity uses spindle SB2 described in Appendix 1 (reference) of B-type viscometer, JIS K7117-1: 1999 for both concentrations of 1 g / L and 2 g / L. , 25 ° C., 60 min −1 , measured at a rotational speed. The spindle is also called a rotor.

−溶媒
カチオン性有機高分子凝集剤は、好ましくは溶媒に溶解又は分散させた凝集剤溶液として使用する。この溶媒としては、純水、水道水、工業用水、地下水、各種排水処理の処理水、海水などを挙げることができる。カチオン性有機高分子凝集剤の凝集力を最大限発揮させる観点からは、純水、水道水を使用することが好ましい。一方、経済性の観点からは、工場用水、地下水、各種排水処理の処理水を使用することが好ましい。
—Solvent The cationic organic polymer flocculant is preferably used as a flocculant solution dissolved or dispersed in a solvent. Examples of the solvent include pure water, tap water, industrial water, ground water, treated water for various wastewater treatment, seawater, and the like. From the viewpoint of maximizing the cohesive strength of the cationic organic polymer flocculant, it is preferable to use pure water or tap water. On the other hand, from the viewpoint of economy, it is preferable to use factory water, groundwater, or treated water for various wastewater treatment.

−注入量
カチオン性有機高分子凝集剤の注入量は、3〜300mg/Lであることが好ましく、特に5〜200mg/L、その中でも10〜150mg/Lであることが好ましい。なお、注入量は、1Lの被処理水20に対する量であって、被処理水20を返送汚泥と混合した場合は、1Lの混合液2に対する量を示す。凝集剤溶液を使用する場合の注入量は、溶媒を除いた凝集剤自身の量を意味する。
-Injection amount The injection amount of the cationic organic polymer flocculant is preferably 3 to 300 mg / L, more preferably 5 to 200 mg / L, and particularly preferably 10 to 150 mg / L. The injection amount is an amount with respect to 1 L of water to be treated 20, and indicates an amount with respect to 1 L of the mixed liquid 2 when the water to be treated 20 is mixed with the return sludge. The injection amount in the case of using the flocculant solution means the amount of the flocculant itself excluding the solvent.

また、被処理水20のCODCrに対するカチオン性有機高分子凝集剤の注入率は、0.2%〜10.0%であることが好ましく、特に0.3%〜7.0%、その中でも0.3%〜2.0%であることが好ましい。カチオン性有機高分子凝集剤の注入量が高すぎると、処理コストが高くなるだけではなく、フロックの粘性が増して固液分離が困難になる、フロックが崩れやすくなる等の問題が生じる。 The injection rate of the cationic organic polymer flocculant with respect to COD Cr in the water to be treated 20 is preferably 0.2% to 10.0%, particularly 0.3% to 7.0%. It is preferably 0.3% to 2.0%. If the injection amount of the cationic organic polymer flocculant is too high, not only will the processing cost be increased, but there will be problems such as an increase in the viscosity of the floc, making it difficult to separate the solid and liquid, and the tendency of the floc to collapse.

[その他の薬剤]
本発明は、無機凝集剤など他の薬剤を使用しなくても、油分を含む排水を処理可能ではあるが、上記カチオン性有機高分子凝集剤以外の薬剤の使用を何ら制限するものではない。具体的には、カチオン性有機高分子凝集剤の他、無機凝集剤、有機高分子凝結剤、脱水補助材などの1種以上の薬剤を添加することもできる。
[Other drugs]
Although the present invention can treat wastewater containing oil without using other chemicals such as inorganic flocculants, it does not limit the use of chemicals other than the cationic organic polymer flocculants. Specifically, in addition to the cationic organic polymer flocculant, one or more kinds of agents such as an inorganic flocculant, an organic polymer flocculant, and a dehydration aid can be added.

無機凝集剤としては硫酸バンド、ポリ塩化アルミニウム(PAC)、塩化アルミニウム、ポリ硫酸第2鉄(ポリ鉄)、硫酸第2鉄、塩化第2鉄あるいはこれらの混合物が使用可能である。有機高分子凝結剤としては縮合系ポリアミン、ジシアンジアミド・ホルマリン縮合物、ポリエチレンイミン、ポリビニルイミダリン、ポリビニルピリジン、ジアリルアミン塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩、ポリジメチルジアリルアンモニウム塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩・アクリルアミド共重合体、ポリジメチルジアリルアンモニウム塩・ジアリルアミン塩酸塩誘導体共重合体、アリルアミン塩重合体が挙げられる。   As the inorganic flocculant, sulfuric acid band, polyaluminum chloride (PAC), aluminum chloride, polyferric sulfate (polyiron), ferric sulfate, ferric chloride or a mixture thereof can be used. Organic polymer coagulants include condensed polyamines, dicyandiamide / formalin condensates, polyethyleneimine, polyvinylimidazoline, polyvinylpyridine, diallylamine salts / sulfur dioxide copolymers, polydimethyldiallylammonium salts, polydimethyldiallylammonium salts / sulfur dioxides Examples thereof include a copolymer, a polydimethyldiallylammonium salt / acrylamide copolymer, a polydimethyldiallylammonium salt / diallylamine hydrochloride derivative copolymer, and an allylamine salt polymer.

縮合系ポリアミンの具体例としては、アルキレンジクロライドとアルキレンポリアミンとの縮合物、アニリンとホルマリンの縮合物、アルキレンジアミンとエピクロルヒドリンとの縮合物、アンモニアとエピクロルヒドリンとの縮合物などが挙げられる。エピクロルヒドリンと縮合するアルキレンジアミンとしては、ジメチルアミン、ジエチルアミン、メチルプロピルアミン、メチルブチルアミン、ジブチルアミンが挙げられる。   Specific examples of the condensed polyamine include a condensate of alkylene dichloride and alkylene polyamine, a condensate of aniline and formalin, a condensate of alkylene diamine and epichlorohydrin, a condensate of ammonia and epichlorohydrin, and the like. Examples of the alkylene diamine condensed with epichlorohydrin include dimethylamine, diethylamine, methylpropylamine, methylbutylamine, and dibutylamine.

脱水補助材は特に限定されないが、被処理水に分散して油の除去に寄与する油除去剤が好ましい。油除去剤は、天然高分子系油除去剤、合成高分子系油除去剤のうち1種以上を用いることが可能であり、その態様も粉体、短繊維状など特に限定されないが、化学構造中に親水性部分と疎水性部分の少なくとも一方を有する物質であって、好ましくは親水性部分と疎水性部分の両方を含む物質を用いる。   The dehydration aid is not particularly limited, but an oil removing agent that is dispersed in the water to be treated and contributes to oil removal is preferable. As the oil remover, one or more of a natural polymer oil remover and a synthetic polymer oil remover can be used, and the mode of the oil remover is not particularly limited, such as a powder or a short fiber shape. A substance having at least one of a hydrophilic part and a hydrophobic part therein, preferably a substance containing both a hydrophilic part and a hydrophobic part is used.

天然高分子系油除去剤は、親水性物質であれば特に限定されず、天然物をそのまま、天然物からの抽出物、天然物の精製品、天然物の加工品(化学修飾、変性)、天然物の再生品など多用なものを使用することができるが、好ましくはセルロース系物質、タンパク質系物質であり、特に好ましくはセルロース系物質である。   The natural polymer oil remover is not particularly limited as long as it is a hydrophilic substance. The natural product is used as it is, an extract from the natural product, a refined product of the natural product, a processed product of the natural product (chemical modification, modification), A wide variety of natural products such as regenerated products can be used, but cellulose-based materials and protein-based materials are preferable, and cellulose-based materials are particularly preferable.

合成高分子系油除去剤は、化石原料から合成される親油性物質であれば特に限定されず、ポリオレフィン、ビニル系重合体、脂肪族ポリエステルその他樹脂材料を1種以上用いることができる。更に、分子鎖の絡み合いまたは三次元的な架橋構造のネットワークの中に油分を分子レベルで抱き込む吸油性ポリマを0.1mmから約5mmに無定形に粉砕した粉末も使用可能である。
次に、本発明の処理装置について説明する。
The synthetic polymer oil remover is not particularly limited as long as it is a lipophilic substance synthesized from a fossil raw material, and one or more polyolefins, vinyl polymers, aliphatic polyesters, or other resin materials can be used. Furthermore, it is also possible to use a powder obtained by pulverizing an oil-absorbing polymer that entangles an oil component at a molecular level into a network of entangled molecular chains or a three-dimensional crosslinked structure from 0.1 mm to about 5 mm.
Next, the processing apparatus of the present invention will be described.

<処理装置>
図3〜図6は、それぞれ第1例〜第4例の水処理方法と、それに用いる処理装置を説明するための図面であり、同じ部材には同じ符号を付して説明を省略する。これらの処理装置1a〜1dは、凝集手段15と、固液分離手段(固液分離装置6)と、生物処理手段(生物処理槽9)とを有しており、必要に応じて前処理用の装置(pH調整手段13)や後処理用の装置(固液分離装置10)等、他の手段や装置を設置してもよい。以下に各手段について具体的に説明する。
<Processing device>
3 to 6 are drawings for explaining the water treatment methods of the first to fourth examples and the treatment apparatus used therefor, respectively, and the same members are denoted by the same reference numerals and description thereof is omitted. These processing apparatuses 1a to 1d have a coagulation means 15, a solid-liquid separation means (solid-liquid separation apparatus 6), and a biological treatment means (biological treatment tank 9), and for pretreatment as necessary. Other means and devices such as the above-mentioned device (pH adjusting means 13) and the post-treatment device (solid-liquid separation device 10) may be installed. Each means will be specifically described below.

−凝集手段15
凝集手段15は、凝集槽3と供給手段14とを有しており、供給手段14にはカチオン性有機高分子凝集剤の粉体又は溶液、好ましくは水溶液又は水分散液が収容される。供給手段14は、凝集槽3又はその前段、好ましくは凝集槽3に接続され、最終的にカチオン性有機高分子凝集剤が凝集槽3内部に供給される。凝集手段15で処理された凝集槽処理水5は、直接又は他の処理装置を経て、固液分離手段へ送られる。
-Aggregation means 15
The agglomeration means 15 has an agglomeration tank 3 and a supply means 14, and the supply means 14 contains a powder or solution of a cationic organic polymer flocculant, preferably an aqueous solution or an aqueous dispersion. The supply means 14 is connected to the agglomeration tank 3 or the preceding stage, preferably the agglomeration tank 3, and finally the cationic organic polymer flocculant is supplied into the agglomeration tank 3. The coagulation tank treated water 5 treated by the coagulation means 15 is sent to the solid-liquid separation means directly or via another treatment apparatus.

−固液分離手段(固液分離装置6)
固液分離装置6は特に限定されないが、重力式沈殿処理設備よりも、脱水効率、設置面積、操作管理等の点で機械的固液分離装置が好ましく、また、加圧浮上装置のような凝集浮上分離装置よりも、加圧、遠心力、減圧(真空排気)又はこれらの組み合わせによりフロックを機械的に固液分離する装置がより好ましい。
-Solid-liquid separation means (solid-liquid separation device 6)
The solid-liquid separation device 6 is not particularly limited, but a mechanical solid-liquid separation device is preferable from the viewpoint of dewatering efficiency, installation area, operation management, and the like, and agglomeration such as a pressure flotation device, rather than a gravity precipitation treatment facility. An apparatus for mechanically solid-liquid separation of flocs by pressurization, centrifugal force, reduced pressure (evacuation) or a combination thereof is more preferable than a floating separation apparatus.

機械的な固液分離装置6としては、従来から汚泥脱水や汚泥濃縮に使用されている脱水機や濃縮機を1台又は2台以上組み合わせて使用することが可能であり、汚泥脱水機としては、スクリュープレス脱水機、ベルトプレス脱水機、遠心脱水機、多重円板型脱水機、多重板型スクリュープレス脱水機、回転加圧脱水機、真空脱水機、楕円板型脱水機等があり、汚泥濃縮機としては、スクリュー濃縮機、ベルト濃縮機、遠心濃縮機、楕円板型濃縮機がある。   As the mechanical solid-liquid separator 6, it is possible to use one or a combination of two or more dehydrators and concentrators conventionally used for sludge dewatering and sludge concentration. , Screw press dehydrator, belt press dehydrator, centrifugal dehydrator, multiple disk type dehydrator, multiple plate type screw press dehydrator, rotary pressure dehydrator, vacuum dehydrator, elliptical plate dehydrator, etc., sludge Examples of the concentrator include a screw concentrator, a belt concentrator, a centrifugal concentrator, and an elliptical plate concentrator.

図7、8の符号6a、6bは第1例、第2例の固液分離装置を示す部分断面図であって、これらの固液分離装置6a、6bは、フロックを連続処理するフロック移動手段35を有している。フロック移動手段35は、例えば、回転ロールのようなベルト駆動手段37と、ベルト駆動手段37に架け渡されたベルト36とを有している。上記凝集槽処理水5は、フロック投入口33を介してベルト36上に供給され、ベルト駆動手段37の回転により、ベルト36と共に略水平方向に移動する。   Reference numerals 6a and 6b in FIGS. 7 and 8 are partial cross-sectional views showing the solid-liquid separators of the first and second examples, and these solid-liquid separators 6a and 6b are flock moving means for continuously processing flocks. 35. The flock moving unit 35 includes, for example, a belt driving unit 37 such as a rotating roll, and a belt 36 spanned over the belt driving unit 37. The coagulating tank treated water 5 is supplied onto the belt 36 through the flock inlet 33 and moves in a substantially horizontal direction together with the belt 36 by the rotation of the belt driving means 37.

ベルト36の一部又は全部はろ布で構成されており、被処理水は移動の間にフロックと水分とに固液分離され、分離した処理水7はベルト36下方の捕捉手段34に補足され、分離したフロック(含油汚泥8)は排出口39から排出される。含油汚泥8を排出後のベルト36はフロック投入口33側へ戻り、凝集槽処理水5が再度供給されるが、フロック投入口33側に戻る前に、洗浄管38からの洗浄水を散布し、ベルト36を洗浄してもよい。   Part or all of the belt 36 is made of a filter cloth, and the treated water is solid-liquid separated into floc and moisture during the movement, and the separated treated water 7 is captured by the capturing means 34 below the belt 36, The separated flock (oil-containing sludge 8) is discharged from the discharge port 39. The belt 36 after discharging the oil-containing sludge 8 returns to the flock inlet 33 side, and the coagulation tank treated water 5 is supplied again. Before returning to the flock inlet 33 side, the cleaning water from the cleaning pipe 38 is sprayed. The belt 36 may be washed.

このように、上記固液分離装置6a、6bはいずれも固液分離処理の連続処理に適しているが、より好ましくは第2例の固液分離装置6bのように、加圧手段41を設置する(図8)。加圧手段41はフロックを加圧(圧搾)する装置であって、例えば、排出口39の手前に配置された1枚以上の加圧板42を有している。   Thus, the solid-liquid separation devices 6a and 6b are both suitable for continuous processing of the solid-liquid separation process, but more preferably, the pressurizing means 41 is installed like the solid-liquid separation device 6b of the second example. (FIG. 8). The pressurizing means 41 is a device that pressurizes (squeezes) the flock, and includes, for example, one or more pressurizing plates 42 disposed in front of the discharge port 39.

加圧板42は鉛直面からフロック投入口33側へ傾斜し、その下端とベルト36との間には隙間があり、その隙間を通過する際に、フロックは加圧板42でベルト36に押し付けられて加圧(圧搾)される。このときの加圧圧力は、隙間の大きさ、加圧板42の傾斜角度及び枚数、フロックの移動速度及び供給量等を加圧条件とし、1以上の加圧条件を変更することで、調整することができる。   The pressure plate 42 is inclined from the vertical surface to the flock inlet 33 side, and there is a gap between the lower end of the pressure plate 42 and the belt 36, and when passing through the gap, the flock is pressed against the belt 36 by the pressure plate 42. Pressurized (squeezed). The pressurization pressure at this time is adjusted by changing one or more pressurization conditions, with the size of the gap, the inclination angle and number of pressurization plates 42, the moving speed of the flock and the supply amount, etc. as pressurization conditions. be able to.

なお、加圧手段41は加圧板42に限定されず、加圧ロールのような他の形状の加圧部材を用いてもよい。いずれの場合も、加圧手段41により、フロックの含水率を効率良く低下させることができる。フロックに加える圧力は装置や固液分離条件により適宜変更可能であるが、200kPa以下が好ましく、特に1kPa〜150kPaが好ましく、その中でも1kPa〜100kPaが好ましく、より好ましくは10kPa以上、更に好ましくは15kPa以上、特に好ましくは20kPa以上である。上記圧力は、第2例の固液分離装置6bの場合は加圧板42の加圧条件で調整することができるし、スクリュープレス脱水機の場合は、スクリューの回転数や出口の開度を調整して内部圧力を調整することができる。   Note that the pressurizing means 41 is not limited to the pressurizing plate 42, and a pressurizing member having another shape such as a pressurizing roll may be used. In either case, the moisture content of the floc can be efficiently reduced by the pressurizing means 41. The pressure applied to the floc can be appropriately changed depending on the apparatus and solid-liquid separation conditions, but is preferably 200 kPa or less, particularly preferably 1 kPa to 150 kPa, and more preferably 1 kPa to 100 kPa, more preferably 10 kPa or more, and further preferably 15 kPa or more. Especially preferably, it is 20 kPa or more. In the case of the solid-liquid separator 6b of the second example, the pressure can be adjusted by the pressurizing condition of the pressurizing plate 42. In the case of a screw press dehydrator, the screw rotation speed and the opening degree of the outlet are adjusted. The internal pressure can be adjusted.

上記凝集手段15と固液分離装置6a、6bでは、フロック形成工程と固液分離工程を別々に行っていたが、遠心脱水機のように、フロック形成工程と固液分離工程を同時に行う装置を採用することもできる。   In the agglomeration means 15 and the solid-liquid separation devices 6a and 6b, the flock formation step and the solid-liquid separation step are performed separately, but a device that simultaneously performs the flock formation step and the solid-liquid separation step, such as a centrifugal dehydrator. It can also be adopted.

遠心脱水機は、例えば、筒状のケーシングと、ケーシングに挿通された中空の外胴ボウルと、外胴ボウルに挿通された内胴スクリューとを有しており、外胴ボウルと内筒スクリューは、回転軸線を中心に、同一方向に異なる速度で回転し、回転差が生じるように構成されている。   The centrifugal dehydrator has, for example, a cylindrical casing, a hollow outer bowl that is inserted through the casing, and an inner cylinder screw that is inserted through the outer bowl, and the outer bowl and the inner cylinder screw are Rotating at different speeds in the same direction around the rotation axis, a rotation difference is generated.

被処理水は内胴スクリューの内部空間に供給されるが、その前段でカチオン性有機高分子凝集剤又はその溶液が混合され、その混合溶液は、内胴スクリューの供給口から外胴ボウルと内胴スクリューとの間の隙間(プール)に供給される。供給された混合溶液は撹拌混合されながら強い遠心力を受け、生成したフロックの固液分離が進む。内胴スクリューの外面にはスクリュー羽根が取り付けられており、固液分離で生じた含油汚泥は、回転するスクリュー羽根により移送され、最終的に固液分離装置の排出口から排出される。他方、分離した処理水は汚泥排出側との水位差により、含油汚泥とは別の排出口から排出される。   The water to be treated is supplied to the inner space of the inner cylinder screw, and the cationic organic polymer flocculant or its solution is mixed in the preceding stage, and the mixed solution is supplied from the supply port of the inner cylinder screw to the outer cylinder bowl and the inner cylinder screw. It is supplied to a gap (pool) between the barrel screw. The supplied mixed solution is subjected to strong centrifugal force while being stirred and mixed, and solid-liquid separation of the generated floc proceeds. Screw blades are attached to the outer surface of the inner barrel screw, and the oil-containing sludge generated by the solid-liquid separation is transferred by the rotating screw blades and finally discharged from the discharge port of the solid-liquid separator. On the other hand, the separated treated water is discharged from an outlet different from the oil-containing sludge due to the difference in water level from the sludge discharge side.

上記いずれの固液分離装置を用いた場合も、フロックから分離した処理水(機械的固液分離装置処理水7)は、生物処理手段へ送られる。   Regardless of which solid-liquid separator is used, the treated water separated from the floc (mechanical solid-liquid separator treated water 7) is sent to the biological treatment means.

−生物処理手段(生物処理槽9)
生物処理手段は、生物(特に微生物)を利用するものであれば限定されず、嫌気性微生物、好気性微生物のいずれか一方又は両方を利用し、機械的固液分離装置処理水7から有機物、油分、無機物(窒素、リン、金属)などの残留物質を除去する。
-Biological treatment means (biological treatment tank 9)
The biological treatment means is not limited as long as it uses living organisms (particularly microorganisms), and uses either one or both of anaerobic microorganisms and aerobic microorganisms to treat organic matter from the treated water 7 of the mechanical solid-liquid separation device, Remove residual substances such as oil and inorganic substances (nitrogen, phosphorus, metal).

生物処理手段は、通常、上記のような微生物を収容した生物処理槽9で構成される。本発明では、前段の凝集手段15及び固液分離装置6a、6bにより、有機性排水中の油分の大部分が予め除去されるので、生物処理槽9の方式や使用条件には制限がない。例えば、通常の活性汚泥法の他、膜分離を利用した活性汚泥法(MBR法)、微生物が付着(固定)した担体を利用した生物膜方式でもよいし、微生物が付着した担体を浮遊させる担体添加方式でもよいし、複数方式を組み合わせてもよい。   The biological treatment means is usually composed of a biological treatment tank 9 containing the above microorganisms. In the present invention, most of the oil content in the organic waste water is removed in advance by the agglomeration means 15 and the solid-liquid separation devices 6a and 6b in the previous stage, so there is no limitation on the system and use conditions of the biological treatment tank 9. For example, in addition to the normal activated sludge method, an activated sludge method using membrane separation (MBR method), a biofilm method using a carrier to which microorganisms adhere (fixed) may be used, or a carrier that floats a carrier to which microorganisms have adhered. An addition method may be used, or a plurality of methods may be combined.

これらの中でも、生物処理槽9の内部に膜分離処理装置を設置し、処理水を生物処理槽9で固液分離するMBR法は、余剰汚泥を処理水7から固液分離し、懸濁物質の流出を低減可能な上、後述する汚泥返送の管理も簡易になるので、本発明に特に適している。   Among these, the MBR method in which a membrane separation processing apparatus is installed inside the biological treatment tank 9 and the treated water is solid-liquid separated in the biological treatment tank 9 is obtained by solid-liquid separation of excess sludge from the treated water 7, and suspended matter. In addition to being able to reduce the outflow of the sludge, the management of sludge return described later is also simplified, which is particularly suitable for the present invention.

生物処理槽9を設置台数も特に限定されない。例えば、機械的固液分離処理水7を、複数の生物処理槽9に順番に通水し、多段的に処理することも可能である。更に、機械的固液分離処理水7や原水(被処理水20)の水質に合わせて通水する生物処理槽9の種類を選択し、固液分離手段と生物処理槽9との接続を切り替えてもよい。   The number of installed biological treatment tanks 9 is not particularly limited. For example, the mechanical solid-liquid separation treated water 7 can be passed through a plurality of biological treatment tanks 9 in order and treated in multiple stages. Furthermore, the type of the biological treatment tank 9 that allows water to flow according to the quality of the mechanical solid-liquid separation treated water 7 and raw water (treated water 20) is selected, and the connection between the solid-liquid separation means and the biological treatment tank 9 is switched. May be.

いずれの場合も、生物処理で残留物質が除去された処理水は、処理装置1c、1dの外部に放出されるか(図5、6)、後処理用の装置に供給される(図3、4)。この後処理は特に限定されないが、好ましくは、含油汚泥8の分離に用いた装置6とは別の固液分離手段を用いる。   In either case, the treated water from which residual substances have been removed by biological treatment is discharged to the outside of the treatment apparatuses 1c and 1d (FIGS. 5 and 6) or supplied to a post-treatment apparatus (FIG. 3, 4). Although this post-processing is not specifically limited, Preferably, the solid-liquid separation means different from the apparatus 6 used for isolation | separation of the oil-containing sludge 8 is used.

−固液分離手段(固液分離装置10)
後処理用の固液分離手段には、前段の固液分離装置6とは異なる固液分離装置10を用いる。この固液分離装置10の種類は特に限定されず、前段の固液分離装置6と同じ種類の装置を用いることも可能であるが、より好ましくは、重力式沈殿処理設備、凝集沈殿処理設備、膜分離処理設備又はこれらの組合せであるが、より好ましくは膜分離処理設備である。
-Solid-liquid separation means (solid-liquid separation device 10)
A solid-liquid separation device 10 different from the solid-liquid separation device 6 in the previous stage is used as the solid-liquid separation means for post-processing. The type of the solid-liquid separation device 10 is not particularly limited, and it is possible to use the same type of device as the solid-liquid separation device 6 in the previous stage, but more preferably, gravity precipitation treatment equipment, coagulation precipitation treatment equipment, Although it is a membrane separation processing facility or a combination thereof, more preferably a membrane separation processing facility.

この固液分離装置10で、生物処理後も残留する物質が除去され、処理水は処理装置1a、1bの外部へ放出される。他方、この固液分離装置10では分離汚泥が発生し、更に、その前段の生物処理槽9でも余剰汚泥が発生する。図3〜6の符号11は、固液分離装置10と、生物処理槽9から得られる分離汚泥11を示している。   In the solid-liquid separation device 10, substances remaining after the biological treatment are removed, and the treated water is discharged to the outside of the treatment devices 1a and 1b. On the other hand, separation sludge is generated in the solid-liquid separator 10, and surplus sludge is also generated in the biological treatment tank 9 in the preceding stage. The code | symbol 11 of FIGS. 3-6 has shown the solid-liquid separation apparatus 10 and the separation sludge 11 obtained from the biological treatment tank 9. FIG.

これらの分離汚泥11と、固液分離装置6の含油汚泥8のうち、いずれか1種以上の汚泥を脱水する汚泥脱水機12を設置することも可能であり(図3、5)、汚泥脱水機12としては、前段の固液分離装置6と同様の装置を用いることができる。しかし、汚泥脱水機12を設置する場合も設置しない場合も、本発明の処理装置1a〜1dは、分離汚泥11を返送するための返送手段17を有する。   It is also possible to install a sludge dehydrator 12 for dehydrating any one or more of these separated sludge 11 and the oil-containing sludge 8 of the solid-liquid separator 6 (FIGS. 3 and 5). As the machine 12, an apparatus similar to the solid-liquid separation apparatus 6 in the previous stage can be used. However, whether or not the sludge dewatering machine 12 is installed, the processing apparatuses 1a to 1d of the present invention have the return means 17 for returning the separated sludge 11.

−返送手段17
返送手段17は特に限定されないが、例えば、配管、ポンプ、流量調整装置(フローメーター、フローコントローラ)、バルブ、制御装置などの1以上の部材又はこれらの組合せで構成される。
-Return means 17
Although the return means 17 is not specifically limited, For example, it is comprised by one or more members, such as piping, a pump, a flow control apparatus (flow meter, flow controller), a valve, a control apparatus, or these combination.

返送手段17は、返送元として、前段の固液分離装置6よりも下流側の装置9、10に接続され、返送先として凝集手段15又はそれよりも上流側の装置に接続されている。好ましくは、返送元は生物処理槽9と後段の固液分離装置10のいずれか一方又は両方であり、返送先は凝集手段15の上流側の装置又は配管であり、より好ましくは、返送先として凝集槽3の上流に混合槽を設置する。本発明の処理方法では、この返送手段17を用い、分離汚泥11の一部又は全部を返送する。   The return means 17 is connected as a return source to apparatuses 9 and 10 on the downstream side of the solid-liquid separation apparatus 6 in the previous stage, and is connected as a return destination to the aggregation means 15 or an apparatus on the upstream side. Preferably, the return source is one or both of the biological treatment tank 9 and the subsequent solid-liquid separation device 10, and the return destination is a device or piping on the upstream side of the aggregating means 15, and more preferably as the return destination. A mixing tank is installed upstream of the aggregation tank 3. In the processing method of the present invention, the return means 17 is used to return part or all of the separated sludge 11.

次に、本発明の処理方法について具体的に説明する。   Next, the processing method of the present invention will be specifically described.

<水処理方法>
本発明の水処理方法は、いずれの処理装置1a〜1dを使用する場合も、上述した有機性排水を被処理水20とする。前処理として、pH調整剤(酸・アルカリ等)、無機凝集剤、上記カチオン性有機高分子凝集剤以外の凝集剤(特に、カチオン性有機高分子凝集剤より低分子量の有機凝結剤)、脱水補助材などから1種以上を選択し、被処理水20に添加することも可能である。
<Water treatment method>
The water treatment method of the present invention uses the organic wastewater described above as the treated water 20 when any of the treatment apparatuses 1a to 1d is used. Pre-treatment includes pH adjusters (acid / alkali etc.), inorganic flocculants, flocculants other than the above cationic organic polymer flocculants (especially organic flocculants having a lower molecular weight than cationic organic polymer flocculants), dehydration It is also possible to select one or more types from auxiliary materials and the like and add them to the water to be treated 20.

ただし、栄養源(リン)の除去による生物処理への影響や、汚泥量の増加などを考慮すると、無機凝集剤の使用量は一般的な使用量(例:1000mg/L)よりも少なくすべきであり、アルミ系凝集剤と鉄系凝集剤の少なくとも一方を含む無機凝集剤10を、1Lの被処理水20に対し、500mg未満、好ましくは100mg未満、より好ましくは50mg未満、特に好ましくは10mg未満添加し、更に、無機凝集剤を実質的に添加しないことも可能である。   However, considering the impact on biological treatment due to the removal of nutrients (phosphorus) and the increase in sludge amount, the amount of inorganic flocculant used should be less than the general amount used (eg 1000 mg / L) The inorganic flocculant 10 containing at least one of an aluminum flocculant and an iron flocculant is less than 500 mg, preferably less than 100 mg, more preferably less than 50 mg, and particularly preferably 10 mg with respect to 1 L of water to be treated 20. It is also possible to add less, and to add substantially no inorganic flocculant.

凝集手段15には、必要に応じて前処理された被処理水20と、返送手段17で返送した分離汚泥11の少なくとも一方、より好ましくは両方を供給する。   The agglomeration means 15 is supplied with at least one of the treated water 20 pretreated as necessary and the separated sludge 11 returned by the return means 17, more preferably both.

分離汚泥11は全量を返送してもよいし(図4、6)、必要量のみを返送し、残部を他の装置(汚泥脱水機12)で処理してもよい(図3、5)が、より具体的には、前処理前の被処理水20の水質(油分濃度、SS濃度)や、被処理水20の供給量に応じて、分離汚泥11を返送する。   The entire amount of the separated sludge 11 may be returned (FIGS. 4 and 6), or only the necessary amount may be returned and the remaining part may be processed by another device (sludge dehydrator 12) (FIGS. 3 and 5). More specifically, the separated sludge 11 is returned according to the water quality (oil concentration, SS concentration) of the water to be treated 20 before pretreatment and the supply amount of the water to be treated 20.

具体的には、被処理水20の供給量に対する、分離汚泥11の汚泥濃度(SS濃度)が100〜200mg/Lになるように返送量を決定する。例えば、被処理水20の供給量が100m/日、分離汚泥11の汚泥濃度が5,000mg/Lの場合、下記式Iのように、分離汚泥11の返送量は1日当たり2m以上4m以下となる。 Specifically, the return amount is determined so that the sludge concentration (SS concentration) of the separated sludge 11 with respect to the supply amount of the treated water 20 is 100 to 200 mg / L. For example, when the supply amount of the treated water 20 is 100 m 3 / day and the sludge concentration of the separated sludge 11 is 5,000 mg / L, the return amount of the separated sludge 11 is 2 m 3 to 4 m per day as shown in the following formula I: 3 or less.

100[m/日]×(100〜200)[mg/L]/5000[mg/L]=2〜4[m/日]…式I 100 [m 3 / day] × (100 to 200) [mg / L] / 5000 [mg / L] = 2 to 4 [m 3 /day]...Formula I

但し、上記範囲を超えて返送量を増やす場合もあり、例えば、以下の試験手順で予備試験を行い、判定することができる。   However, the return amount may be increased beyond the above range. For example, a preliminary test can be performed and determined by the following test procedure.

容器に1Lの被処理水20(前処理前)を分取し、所定の注入率(例えば、供給手段14の設定値)でカチオン性有機高分子凝集剤を加え、撹拌機(回転速度50min−1、撹拌時間10分)で被処理水とカチオン性有機高分子凝集剤とを混合し、フロックを形成する。この撹拌機の回転速度と撹拌時間は、凝集手段15での回転速度、撹拌時間(滞留時間)に合わせて変更することができる。 1 L of water to be treated 20 (before pretreatment) is collected in a container, a cationic organic polymer flocculant is added at a predetermined injection rate (for example, a set value of the supply means 14), and a stirrer (rotation speed 50 min − 1 , the water to be treated and the cationic organic polymer flocculant are mixed in a stirring time of 10 minutes to form a floc. The rotation speed and stirring time of the stirrer can be changed in accordance with the rotation speed in the aggregating means 15 and the stirring time (residence time).

次に、篩(目開き1mm)と加圧板(圧力50kPa)を用いて、フロックを含む被処理水を汚泥と分離液に固液分離し、フロックの強度を確認する。このとき、分離液に濁り等が確認される場合は、被処理水20の油分濃度と被処理水20のSS濃度の少なくとも一方に対する凝集性が不十分と見做し、分離汚泥11の返送量と、薬剤(カチオン性有機高分子凝集剤等)の注入量の少なくとも一方を増加させる。この試験手順は必ずしも必須ではなく、過去に行った試験結果、被処理水20の油分濃度やSS濃度、排出元工場の稼働条件等から、必要返送量を推定することもできる。   Next, using a sieve (aperture 1 mm) and a pressure plate (pressure 50 kPa), water to be treated including floc is solid-liquid separated into sludge and a separated liquid, and the strength of the floc is confirmed. At this time, when turbidity or the like is confirmed in the separated liquid, it is considered that the cohesiveness with respect to at least one of the oil concentration of the treated water 20 and the SS concentration of the treated water 20 is insufficient, and the return amount of the separated sludge 11 is returned. And at least one of the injection amount of the drug (cationic organic polymer flocculant, etc.) is increased. This test procedure is not necessarily essential, and the required return amount can be estimated from the results of past tests, the oil concentration and SS concentration of the treated water 20, the operating conditions of the discharge source factory, and the like.

返送した分離汚泥11は、被処理水20とは別に凝集手段15へ供給し、処理することも可能ではあるが、好ましくは、凝集手段15よりも上流で、被処理水20と分離汚泥11を混合した混合液2を凝集手段15へ供給する。   The returned separated sludge 11 may be supplied to the aggregating means 15 separately from the treated water 20 and processed, but preferably, the treated water 20 and the separated sludge 11 are disposed upstream of the aggregating means 15. The mixed liquid 2 is supplied to the aggregation means 15.

最も好ましくは、凝集槽3の上流側に混合槽を設置し、この混合槽で、pH調整手段13からpH調整剤を添加してpH調整を行い、更に、被処理水20と分離汚泥11を混合させて混合液2を形成し、pH調整後の混合液2を凝集手段15で処理する。混合液2のpHは凝集に適したpH(例:pH3〜11)、より好ましくは後段の生物処理にも適したpH(例:pH5〜8)とする。   Most preferably, a mixing tank is installed on the upstream side of the coagulation tank 3, and a pH adjusting agent is added from the pH adjusting means 13 in this mixing tank to adjust the pH, and the treated water 20 and the separated sludge 11 are further added. The mixed liquid 2 is formed by mixing, and the mixed liquid 2 after pH adjustment is processed by the aggregating means 15. The pH of the mixed solution 2 is set to a pH suitable for aggregation (e.g., pH 3 to 11), and more preferably to a pH suitable for subsequent biological treatment (e.g., pH 5 to 8).

凝集槽3には撹拌手段が設置されており、分離汚泥11と被処理水20とを含む混合液2に、供給手段14からカチオン性有機高分子凝集剤を添加し、撹拌すると、被処理水20中の油分及び有機物が凝集し、凝集フロックが形成される。   The aggregating tank 3 is provided with a stirring means, and when the cationic organic polymer flocculant is added from the supply means 14 to the mixed liquid 2 containing the separated sludge 11 and the treated water 20 and stirred, The oil and organic matter in 20 are aggregated to form aggregated flocs.

分離汚泥11は凝集手段15よりも下流の装置9、10で発生するため、既にカチオン性有機高分子凝集剤が付着しており、分離汚泥11の返送量に応じて、カチオン性有機高分子凝集剤も返送されることになる。即ち、混合液2には、供給手段14からのカチオン性有機高分子凝集剤に加え、分離汚泥11由来のカチオン性有機高分子凝集剤も供給されることになる。   Since the separated sludge 11 is generated in the devices 9 and 10 downstream from the aggregating means 15, the cationic organic polymer flocculant is already attached, and the cationic organic polymer agglomeration is performed according to the return amount of the separated sludge 11. The drug will also be returned. That is, in addition to the cationic organic polymer flocculant from the supply means 14, the mixed liquid 2 is also supplied with the cationic organic polymer flocculant derived from the separated sludge 11.

しかも、分離汚泥11に含まれるフロックが核となって凝集フロックが成長するので、新たなカチオン性有機高分子凝集剤や、その他凝集剤(無機凝集剤)の添加量を増やさなくても、凝集フロックが成長し、強固なフロックとなる。従って、凝集槽処理水5を固液分離装置6で機械的に固液分離しても、フロックが破損し難く、効率良く濃縮・脱水処理をすることができる。   In addition, the flocs contained in the separated sludge 11 become the core and the flocs grow, so that the flocculence can be achieved without increasing the amount of new cationic organic polymer flocculant and other flocculants (inorganic flocculants). The floc grows and becomes a strong floc. Therefore, even if the coagulation tank treatment water 5 is mechanically solid-liquid separated by the solid-liquid separation device 6, the floc is not easily damaged, and the concentration / dehydration treatment can be performed efficiently.

この濃縮・脱水処理により、被処理水20由来の油分やSSの多くが含油汚泥8として処理水7から除去される。含油汚泥8は、脱水機12の脱水汚泥と混合して廃棄してもよいし、単独で助燃材などに再利用してもよい。更に、含油汚泥8を、単独又は分離汚泥11と共に脱水機12で脱水した後、廃棄してもよい。   By this concentration / dehydration treatment, most of the oil and SS derived from the treated water 20 are removed from the treated water 7 as the oil-containing sludge 8. The oil-containing sludge 8 may be mixed with the dehydrated sludge of the dehydrator 12 and discarded, or may be reused alone as a combustion aid. Furthermore, the oil-containing sludge 8 may be discarded alone or together with the separated sludge 11 after being dehydrated by the dehydrator 12.

他方、機械的固液分離装置処理水7は、放流側の要求水質により、そのまま処理装置1a〜1dから放流してもよいが、好ましくは生物処理槽9で好気的又は嫌気的に生物処理する。   On the other hand, the mechanical solid-liquid separation device treated water 7 may be discharged from the processing devices 1a to 1d as it is depending on the required water quality on the discharge side, but preferably biologically treated aerobically or anaerobically in the biological treatment tank 9. To do.

この処理水7からは、油分やSSが含油汚泥8として予め除去されているため、BOD負荷が低く、生物処理槽9での滞留時間の短縮や、余剰汚泥の減量などが可能になり、残留油分による微生物の失活も防止される。しかも、本発明は、無機凝集剤の使用を抑えることができるので、多くの微生物の生育に必要なリンが処理水7に残留しており、生物処理槽9の管理も簡易になる。   Since the oil and SS are removed in advance from this treated water 7 as oil-containing sludge 8, the BOD load is low, the residence time in the biological treatment tank 9 can be shortened, the excess sludge can be reduced, etc. Inactivation of microorganisms due to oil is also prevented. Moreover, since the present invention can suppress the use of the inorganic flocculant, phosphorus necessary for the growth of many microorganisms remains in the treated water 7, and the management of the biological treatment tank 9 is also simplified.

生物処理槽9で生成した余剰汚泥は、生物処理槽9の膜装置で固液分離後、又はそのまま分離汚泥11として一部又は全部を返送する。生物処理槽9で有機物が除かれた後の処理水は、水質に応じてそのまま排出し、必要に応じて後段の固液分離装置10で固液分離してから外部に排出する。この固液分離装置10で分離される汚泥も、分離汚泥11として一部又は全部を返送する。   The surplus sludge generated in the biological treatment tank 9 is partly or entirely returned as a separated sludge 11 after solid-liquid separation by the membrane device of the biological treatment tank 9 or as it is. The treated water from which the organic matter has been removed in the biological treatment tank 9 is discharged as it is according to the water quality, and is solid-liquid separated by the subsequent solid-liquid separation device 10 as necessary, and then discharged to the outside. Some or all of the sludge separated by the solid-liquid separator 10 is also returned as the separated sludge 11.

このように、本発明は、油分を含油汚泥8として除去した後に発生する分離汚泥11を返送するので、油分等の生物処理や膜ろ過に悪影響を与える物質は返送せずに、凝集に必要な物質(フロック核、カチオン性有機高分子凝集剤)のみを主に返送して再利用することができる。   As described above, the present invention returns the separated sludge 11 generated after the oil is removed as the oil-containing sludge 8, so that substances that adversely affect biological treatment such as oil and membrane filtration are not returned and are necessary for agglomeration. Only substances (floc nuclei, cationic organic polymer flocculants) can be mainly returned and reused.

以下、実施例により本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

<試験例1>
第4例の処理装置1d(図6)を用いて油分含有有機性排水の処理試験を実施した。この処理試験では、先ず、酸、アルカリで被処理水20を凝集最適pHに調整すると共に(pH=7.1)、生物処理槽9からの余剰汚泥(分離汚泥11)を400mg/Lの返送量で返送し、混合液2とした。この混合液2を凝集槽3に導入し、供給手段14から被処理水1L当たり70mgのカチオン性有機高分子凝集剤(油脂分離ポリマ)を添加し、撹拌した。
<Test Example 1>
The treatment test of the organic wastewater containing oil was carried out using the treatment apparatus 1d (FIG. 6) of the fourth example. In this treatment test, first, the water to be treated 20 is adjusted to an optimum coagulation pH with acid and alkali (pH = 7.1), and surplus sludge (separated sludge 11) from the biological treatment tank 9 is returned to 400 mg / L. The mixture was returned in an amount to obtain a mixed solution 2. This mixed liquid 2 was introduced into the coagulation tank 3, and 70 mg of a cationic organic polymer coagulant (oil separation polymer) was added from the supply means 14 per liter of water to be treated and stirred.

凝集槽処理水5は、図8の固液分離装置6bで機械的に濃縮・脱水処理し、処理水7と含油汚泥8とに分離させた。   The coagulation tank treated water 5 was mechanically concentrated and dehydrated by the solid-liquid separation device 6 b shown in FIG. 8 and separated into treated water 7 and oil-containing sludge 8.

これとは別に、比較例として、無機凝集剤(硫酸バンド)と苛性ソーダを注入し、高分子凝集剤を更に添加した後に、従来技術の加圧浮上法でフロックを除去した。被処理水のpH(pH調整後)、SS濃度、油分(ヘキサン抽出物質)、BOD、COD、リン濃度と共に、上記試験条件を下記表1にまとめた。   Separately from this, as a comparative example, an inorganic flocculant (sulfuric acid band) and caustic soda were injected, and after further adding a polymer flocculant, flocs were removed by the conventional pressure flotation method. The test conditions are summarized in Table 1 below along with the pH of the water to be treated (after pH adjustment), SS concentration, oil content (hexane-extracted substance), BOD, COD, and phosphorus concentration.

Figure 2019037956
Figure 2019037956

上記表中、「油脂分離ポリマ」はジメチルアミノエチルアクリレート四級アンモニウム塩とアクリルアミドとの共重合体からなるカチオン性有機高分子凝集剤(カチオン度85mol%、分子量900万)であり、上記表中、「ポリマ」はアニオン性有機高分子凝集剤(水ing社の商品名「エバグロースA−151」)である。従来技術では、無機凝集剤である硫酸バンドの添加によるpH低下を補うため、NaOHの添加が必須であり、本発明と比較して処理コストが増加した。またP0−P濃度は、従来技術では処理水の残留がほぼ0mg/Lとなり、従来技術では、生物処理に栄養剤としてのリンの注入が必要となることが確認された。 In the above table, “oil separation polymer” is a cationic organic polymer flocculant (cation degree 85 mol%, molecular weight 9 million) made of a copolymer of dimethylaminoethyl acrylate quaternary ammonium salt and acrylamide. “Polymer” is an anionic organic polymer flocculant (trade name “Ebagulose A-151” from Mizu Inc.). In the prior art, in order to compensate for the decrease in pH due to the addition of the sulfuric acid band, which is an inorganic flocculant, the addition of NaOH is essential, and the processing cost is increased as compared with the present invention. The P0 4 -P concentration is approximately 0 mg / L next residual processing water in the prior art, in the prior art, it was confirmed that it is necessary to implantation of phosphorus as nutrients to the biological treatment.

<試験例2>
第2例の処理装置1b(図4)を用いて油分含有有機性排水の処理試験を実施した。この処理試験では、先ず、酸、アルカリで被処理水20を凝集最適pHに調整すると共に(pH=7.1)、後段の固液分離装置10から分離汚泥11の一部(100mg/L、mg/Lは被処理水1L当たりの量、以下同じ)を返送し、混合液2とした。
<Test Example 2>
Using the treatment apparatus 1b (FIG. 4) of the second example, a treatment test of the oil-containing organic waste water was performed. In this treatment test, first, the water 20 to be treated is adjusted to an optimum coagulation pH with acid and alkali (pH = 7.1), and a part of the separated sludge 11 (100 mg / L, mg / L was returned as the amount per 1 L of water to be treated (hereinafter the same), and the mixture 2 was obtained.

この混合液2を凝集槽3に導入し、供給手段14から12mg/Lのカチオン性有機高分子凝集剤(試験例1と同じ油脂分離ポリマ)と、100mg/Lの脱水補助材(セルロース)を添加して、撹拌し、フロックが形成された凝集槽処理水5を機械的固液分離装置6で濃縮・脱水し、処理水7と含油汚泥8とに分離させた。   This mixed liquid 2 is introduced into the agglomeration tank 3, and 12 mg / L of a cationic organic polymer flocculant (the same oil separation polymer as in Test Example 1) and 100 mg / L of a dehydration auxiliary material (cellulose) are supplied from the supply means 14. The coagulation tank treated water 5 in which flocs were formed was added and stirred, and concentrated and dehydrated with a mechanical solid-liquid separator 6, and separated into treated water 7 and oil-containing sludge 8.

含油汚泥8は廃棄し、処理水を生物処理槽9で処理した後、その処理水を、後段の固液分離装置10(重力式沈殿処理)で処理した。この固液分離装置10で処理後の処理水について、ヘキサン抽出物質を測定した。その測定結果を、試験条件と共に下記表2に記載する。   The oil-containing sludge 8 was discarded and the treated water was treated in the biological treatment tank 9, and then the treated water was treated with a solid-liquid separation device 10 (gravity precipitation treatment) at the subsequent stage. With respect to the treated water treated by the solid-liquid separator 10, the hexane extract material was measured. The measurement results are shown in Table 2 below together with the test conditions.

Figure 2019037956
Figure 2019037956

上記表2から明らかなように、本発明によれば、ヘキサン抽出物質の処理水残留量が極めて低く、油分が十分に除去されたことが確認された。   As apparent from Table 2 above, according to the present invention, it was confirmed that the residual amount of treated water of the hexane extract was extremely low and the oil was sufficiently removed.

また、余剰の分離汚泥11を含油汚泥8と混合し、汚泥脱水機で脱水処理したところ、汚泥処理が一元化できた上に、脱水処理後の含油汚泥含水率は、80.4%となった。これに対し、従来技術による脱水汚泥の含水率は85%程度であり、本発明の優位性が確認された。   Moreover, when the excess separated sludge 11 was mixed with the oil-containing sludge 8 and dehydrated by the sludge dewatering machine, the sludge treatment could be unified and the oil-containing sludge moisture content after the dehydration was 80.4%. . On the other hand, the water content of the dewatered sludge according to the prior art is about 85%, confirming the superiority of the present invention.

1a〜1d:処理装置、 2:混合液、 3:凝集槽、 5:凝集槽処理水、 6、6a、6b:固液分離装置、 7:機械式固液分離装置処理水、 8:含油汚泥、 9:生物処理槽、 10:固液分離装置、 11:分離汚泥、 12:汚泥脱水機、 13:pH調整手段、 14:供給手段、 15:凝集手段、 17:返送手段、 20:被処理水、 33:フロック投入口、 34:捕捉手段、 35:フロック移動手段、 36:ベルト、 37:ベルト駆動手段、 38:洗浄管、 39:排出口、 41:加圧手段、 42:加圧板 DESCRIPTION OF SYMBOLS 1a-1d: Processing apparatus, 2: Mixed liquid, 3: Coagulation tank, 5: Coagulation tank processing water, 6, 6a, 6b: Solid-liquid separation apparatus, 7: Mechanical solid-liquid separation apparatus processing water, 8: Oil-containing sludge , 9: biological treatment tank, 10: solid-liquid separator, 11: separated sludge, 12: sludge dehydrator, 13: pH adjusting means, 14: supply means, 15: coagulation means, 17: return means, 20: treated Water: 33: Flock inlet, 34: Trapping means, 35: Flock moving means, 36: Belt, 37: Belt driving means, 38: Washing pipe, 39: Discharge port, 41: Pressurizing means, 42: Pressurizing plate

Claims (5)

油分及び有機物を含む有機性排水に、カチオン性有機高分子凝集剤を添加し、油分及び有機物の凝集フロックを含む処理水を形成させる凝集処理工程と、
前記凝集フロックを含む処理水を、前記凝集フロックと分離液とに機械的に固液分離する機械的固液分離工程と、
前記機械的に固液分離された分離液を生物処理する生物処理工程と、を有し、
前記生物処理工程と、前記生物処理工程後の後処理のいずれか一方又は両方で生じる分離汚泥を、前記凝集処理工程と、前記凝集処理工程よりも前段の工程の少なくとも一方の工程へ返送して処理することを特徴とする有機性排水の水処理方法。
A coagulation treatment step of adding a cationic organic polymer flocculant to an organic wastewater containing oil and organic matter to form treated water containing coagulation flocs of oil and organic matter;
A mechanical solid-liquid separation step for mechanically solid-liquid separating the treated water containing the aggregated floc into the aggregated floc and a separation liquid;
A biological treatment step of biologically treating the mechanically separated solid-liquid separated liquid,
The separated sludge generated in one or both of the biological treatment step and the post-treatment after the biological treatment step is returned to the aggregation treatment step and at least one of the steps preceding the aggregation treatment step. A method for treating organic wastewater, comprising treating the organic wastewater.
前記後処理は、前記生物処理工程で有機物が除去された処理水を更に固液分離して前記分離汚泥を得ることを特徴とする請求項1に記載の有機性排水の水処理方法。   The water treatment method for organic waste water according to claim 1, wherein in the post-treatment, the treated water from which organic substances have been removed in the biological treatment step is further subjected to solid-liquid separation to obtain the separated sludge. 前記機械的固液分離工程で生じる含油汚泥と、前記分離汚泥のいずれか一方又は両方を脱水処理し、脱水汚泥を得ることを特徴とする請求項1又は請求項2に記載の有機性排水の水処理方法。   The oil-containing sludge generated in the mechanical solid-liquid separation step and one or both of the separated sludge are dehydrated to obtain a dehydrated sludge. Water treatment method. 前記分離汚泥を、前記有機性排水の油分濃度とSS濃度との少なくともいずれかに応じて返送することを特徴とする請求項1〜3のいずれか1項に記載の有機性排水の水処理方法。   The water treatment method for organic wastewater according to any one of claims 1 to 3, wherein the separated sludge is returned according to at least one of an oil concentration and an SS concentration of the organic wastewater. . 油分及び有機物を含む有機性排水をpH調整するpH調整手段と、
pH調整された前記有機性排水をカチオン性有機高分子凝集剤と混合して油分及び有機物を凝集させ、凝集フロックを含む処理水を得る凝集手段と、
前記凝集フロックを含む処理水を、前記凝集フロックと分離液とに固液分離する固液分離手段と、
前記固液分離された分離液中の有機物を除去して汚泥と処理水とに分離する生物処理手段と、
前記生物処理で生じる汚泥と、当該生物処理後の後処理で生じる汚泥のうち、少なくとも一方の汚泥を、前記凝集手段と、当該凝集手段よりも上流側のいずれか一ヶ所以上の返送場所へ返送する返送手段とを有し、
前記返送手段は、前記有機性排水の油分濃度と、当該有機性排水のSS濃度の少なくとも一方の濃度に応じ、前記汚泥を前記凝集手段又は当該凝集手段の前段の装置へ返送することを特徴とすることを特徴とする、油分を含有する有機性排水の処理装置。
PH adjusting means for adjusting pH of organic wastewater containing oil and organic matter;
agglomeration means for mixing the organic wastewater adjusted to pH with a cationic organic polymer flocculant to agglomerate oil and organic matter to obtain treated water containing agglomerated floc;
Solid-liquid separation means for solid-liquid separating the treated water containing the aggregated floc into the aggregated floc and a separation liquid;
A biological treatment means for removing organic substances in the separated liquid and separating it into sludge and treated water;
Return at least one of the sludge generated in the biological treatment and the sludge generated in the post-treatment after the biological treatment to the aggregation means and one or more return places upstream from the aggregation means. And return means to
The return means returns the sludge to the agglomeration means or a device upstream of the agglomeration means according to at least one of the oil concentration of the organic waste water and the SS concentration of the organic waste water. An organic wastewater treatment apparatus containing oil.
JP2017163461A 2017-08-28 2017-08-28 Water treatment method and treatment equipment for organic wastewater containing oil Active JP6797089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017163461A JP6797089B2 (en) 2017-08-28 2017-08-28 Water treatment method and treatment equipment for organic wastewater containing oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017163461A JP6797089B2 (en) 2017-08-28 2017-08-28 Water treatment method and treatment equipment for organic wastewater containing oil

Publications (2)

Publication Number Publication Date
JP2019037956A true JP2019037956A (en) 2019-03-14
JP6797089B2 JP6797089B2 (en) 2020-12-09

Family

ID=65727310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163461A Active JP6797089B2 (en) 2017-08-28 2017-08-28 Water treatment method and treatment equipment for organic wastewater containing oil

Country Status (1)

Country Link
JP (1) JP6797089B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241494A1 (en) * 2019-05-31 2020-12-03 デクセリアルズ株式会社 Water treatment agent, method for preparing same, and water treatment method
CN114956442A (en) * 2021-02-22 2022-08-30 苏州博净源环境科技有限公司 Oil-removing pretreatment method for oil-containing organic wastewater
JP7547296B2 (en) 2021-08-30 2024-09-09 水ing株式会社 Method for treating oil-containing wastewater and water treatment device for oil-containing wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131645A (en) * 1976-04-27 1977-11-04 Kurita Water Ind Ltd Treatment method for waste water from processing fish or edible meat
JPH09201599A (en) * 1996-01-26 1997-08-05 Kubota Corp Method for recovering useful substance from organic waste and utilizing the same as resources
JP2010137150A (en) * 2008-12-10 2010-06-24 Fuji Xerox Co Ltd Water treatment method
JP2015123437A (en) * 2013-12-27 2015-07-06 水ing株式会社 Treatment method and treatment device for grease-containing waste water
JP2016052619A (en) * 2014-09-03 2016-04-14 水ing株式会社 Method and apparatus for treating organic wastewater containing fat and oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131645A (en) * 1976-04-27 1977-11-04 Kurita Water Ind Ltd Treatment method for waste water from processing fish or edible meat
JPH09201599A (en) * 1996-01-26 1997-08-05 Kubota Corp Method for recovering useful substance from organic waste and utilizing the same as resources
JP2010137150A (en) * 2008-12-10 2010-06-24 Fuji Xerox Co Ltd Water treatment method
JP2015123437A (en) * 2013-12-27 2015-07-06 水ing株式会社 Treatment method and treatment device for grease-containing waste water
JP2016052619A (en) * 2014-09-03 2016-04-14 水ing株式会社 Method and apparatus for treating organic wastewater containing fat and oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241494A1 (en) * 2019-05-31 2020-12-03 デクセリアルズ株式会社 Water treatment agent, method for preparing same, and water treatment method
CN114956442A (en) * 2021-02-22 2022-08-30 苏州博净源环境科技有限公司 Oil-removing pretreatment method for oil-containing organic wastewater
JP7547296B2 (en) 2021-08-30 2024-09-09 水ing株式会社 Method for treating oil-containing wastewater and water treatment device for oil-containing wastewater

Also Published As

Publication number Publication date
JP6797089B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
Erkan et al. Membrane bioreactors for wastewater treatment
Qin et al. A submerged membrane bioreactor with pendulum type oscillation (PTO) for oily wastewater treatment: Membrane permeability and fouling control
WO2013160429A1 (en) Method for a membrane bioreactor
JP6797089B2 (en) Water treatment method and treatment equipment for organic wastewater containing oil
US20170297924A1 (en) Water treatment process employing dissolved air flotation to remove suspended solids
JP5817166B2 (en) Method for separating and collecting microalgae
JP6395877B2 (en) Anaerobic digestion treatment method and anaerobic digestion treatment apparatus
JP6738492B2 (en) Water treatment method and water treatment device
WO2016111324A1 (en) Organic sludge treatment method and treatment device
JP2019072675A (en) Coagulation sedimentation apparatus and coagulation sedimentation treatment method
JP5821218B2 (en) Method for separating and collecting microalgae
JP5466864B2 (en) Water treatment apparatus and water treatment method
CN215559636U (en) Wastewater treatment system
JP2017131842A (en) Treatment method and treatment device for organic waste water
WO2017169050A1 (en) Wastewater treatment system
JP7547296B2 (en) Method for treating oil-containing wastewater and water treatment device for oil-containing wastewater
JP6710666B2 (en) Water treatment method and water treatment device
Kulkarni Coagulation for wastewater treatment: a review on investigations and studies
JP2005007354A (en) Water treatment method and apparatus
JP6837403B2 (en) Water treatment method for wastewater containing oil and water treatment equipment for wastewater containing oil
CN219429833U (en) Oilfield fracturing fluid advanced treatment equipment
CN215886724U (en) Sewage treatment system
JP2014028365A (en) Method of treating paper industry sewage
JP2022144224A (en) Drainage treatment method and drainage treatment device
JP2023080648A (en) Liquid waste concentration method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190926

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190926

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6797089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250