[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2022084158A - 回転モーターおよびロボット - Google Patents

回転モーターおよびロボット Download PDF

Info

Publication number
JP2022084158A
JP2022084158A JP2020195828A JP2020195828A JP2022084158A JP 2022084158 A JP2022084158 A JP 2022084158A JP 2020195828 A JP2020195828 A JP 2020195828A JP 2020195828 A JP2020195828 A JP 2020195828A JP 2022084158 A JP2022084158 A JP 2022084158A
Authority
JP
Japan
Prior art keywords
stator
teeth
divided
core
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2020195828A
Other languages
English (en)
Inventor
成和 ▲高▼木
Shigekatsu Takagi
秀明 西田
Hideaki Nishida
周史 小枝
Shuji Koeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2020195828A priority Critical patent/JP2022084158A/ja
Priority to US17/456,221 priority patent/US20220166265A1/en
Publication of JP2022084158A publication Critical patent/JP2022084158A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2796Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manipulator (AREA)

Abstract

【課題】多相交流で駆動する回転モーターにおいて、分割コア同士の隙間が特定の相間、例えばU相とW相との間等に偏らないため、分割コア同士の隙間に起因するトルク変動が少ない回転モーター、および、かかる回転モーターを備えるロボットを提供すること。【解決手段】ステーターと、回転軸まわりに回転し、前記ステーターとの間に隙間を介して配置されているローターと、を備え、前記ステーターは、基部、および、前記基部に接続されているティース部、を含む分割コアと、前記ティース部に巻き回され、n相(nは3以上の整数)のうちの1相の信号が供給されるコイルと、を有し、前記ステーターは、前記回転軸まわりの環状に並べられている複数の前記分割コアを有し、複数の前記分割コアのうち少なくとも1つは、nの倍数以外の数の前記ティース部を含むことを特徴とする回転モーター。【選択図】図3

Description

本発明は、回転モーターおよびロボットに関するものである。
特許文献1には、回転動力を出力する回転軸と、回転軸を回転させるローターと、ローターを挟んで設けられた2つのステーターと、を備えるアキシャルギャップ型モーターが開示されている。各ステーターは、複数のステーター分割部を備えている。
各ステーター分割部は、コイルと、コイルを保持するステーターコアと、を備えており、このうち、ステーターコアは、U相、V相およびW相の各コイルが巻装された3つのステーター突極部を備えている。そして、特許文献1に記載のアキシャルギャップ型モーターでは、このようなステーター分割部を6つ、環状に並べられることにより、各ステーターが構成されている。
このようにしてステーター分割部を用いることにより、例えば出力の大きなモーターを製造するときでも、同じステーター分割部を共通で用いることができる。また、ステーターを分割することにより、ステーターコアの製造が容易になるとともに、ステーターコアの組み付けも容易になる。
特開2016-32400号公報
特許文献1に記載の複数のステーター分割部は、いずれも、U相、V相およびW相の各コイルが巻装された3つのステーター突極部を備える同じ形状をなしている。このため、このステーター分割部を環状に並べた場合、U相のコイルが巻装されたステーター突極部と、W相のコイルが巻装されたステーター突極部と、が隙間を介して必ず隣り合うことになる。このように特定の相のステーター突極部同士が隙間を介して隣り合っている場合、ローターが備える磁石がこの隙間を通過するときには、ローターの出力が低下する。その結果、アキシャルギャップ型モーターのトルク変動が大きくなるという課題がある。
本発明の適用例に係る回転モーターは、
ステーターと、
回転軸まわりに回転し、前記ステーターとの間に隙間を介して配置されているローターと、
を備え、
前記ステーターは、
基部、および、前記基部に接続されているティース部、を含む分割コアと、
前記ティース部に巻き回され、n相(nは3以上の整数)のうちの1相の信号が供給されるコイルと、
を有し、
前記ステーターは、前記回転軸まわりの環状に並べられている複数の前記分割コアを有し、
複数の前記分割コアのうち少なくとも1つは、nの倍数以外の数の前記ティース部を含むことを特徴とする。
本発明の適用例に係るロボットは、
本発明の適用例に係る回転モーターを備えることを特徴とする。
第1実施形態に係る回転モーターであるアキシャルギャップモーターの概略構成を示す縦断面図である。 図1のローターのみを示す斜視図である。 図1に示すステーターが備えるステーターコアのみを示す斜視図である。 図3に示すステーターコアを軸方向A1に見たときの平面図である。 図4に示すステーターコアが含む3つの分割コアのうち、1つを示す平面図である。 図5のX-X線断面図である。 図6に示す分割コアにコイルを巻き付け、ステーターやローターとともに組み立てられた状態をシミュレートしたときの磁路を模式的に示す図である。 分割前のステーターコアが有するバックヨーク部に分割部が設定されているとき、分割コアの内部に形成される磁路を模式的に示す図である。 環状に並べられた12のスロットを備えるステーターについて、ステーターコアの分割パターンをシミュレートした表である。 環状に並べられた54のスロットを備えるステーターについて、ステーターコアの分割パターンの例を示す図である。 環状に並べられた54のスロットを備えるステーターについて、ステーターコアの分割パターンの例を示す図である。 第2実施形態に係る回転モーターであるラジアルギャップモーターの概略構成を示す断面図である。 第3実施形態に係るロボットを示す斜視図である。 図13に示すロボットの概略図である。
以下、本発明の回転モーターおよびロボットを添付図面に示す実施形態に基づいて詳細に説明する。
1.第1実施形態
まず、第1実施形態に係る回転モーターについて説明する。
1.1.回転モーターの構造
図1は、第1実施形態に係る回転モーターであるアキシャルギャップモーターの概略構成を示す縦断面図である。
図1に示すアキシャルギャップモーター1は、ダブルステーター構造を採用したモーターである。具体的には、図1に示すアキシャルギャップモーター1は、回転軸AXまわりに回転するシャフト2と、シャフト2に固定され、シャフト2とともに回転軸AXまわりに回転するローター3と、回転軸AXに沿ってローター3の両側に配置されている一対のステーター4、5と、を備える。このようなアキシャルギャップモーター1は、回転軸AXを中心としてローター3およびシャフト2を回転させ、シャフト2に連結された駆動対象部材に回転力を伝達する。なお、アキシャルギャップモーター1は、シングルステーター構造を採用するモーターであってもよい。
なお、本願の各図では、回転軸AXに沿う両方向を「軸方向A」といい、ローター3の円周に沿う両方向を「周方向C」といい、ローター3の径に沿う両方向を「径方向R」という。また、軸方向Aのうち、ステーター4からステーター5に向かう方向を「軸方向A1」とし、ステーター5からステーター4に向かう方向を「軸方向A2」とする。
シャフト2は、部分的に外径が異なる略円柱状であり、中実である。これにより、シャフト2の機械的強度が向上する。ただし、シャフト2は、中空であってもよい。
シャフト2には、円盤状のローター3がシャフト2と同心的に固定されている。ローター3は、フレーム30と、フレーム30に配置された複数の永久磁石6と、を備える。
シャフト2には、軸受け81、82を介してステーター4、5が取り付けられる。これらの軸受け81、82により、シャフト2およびローター3は、ステーター4、5を側面ケース80で結合して構成されるモーターケース10に対して回転可能に支持される。なお、本実施形態では、軸受け81、82としてラジアルボールベアリングを用いているが、これに限定されず、例えば、アキシャルボールベアリング、アンギュラボールベアリング、テーパーローラーベアリング等、各種ベアリングを用いることができる。
図2は、図1のローターのみを示す斜視図である。
図2に示すローター3は、中央部に位置するハブ31と、ハブ31よりも外側に位置する環状のリム32と、を有するフレーム30を備えている。
フレーム30は、図2に示すように、回転軸AX上に中心を持つ円環状をなしている。そして、図2に示すフレーム30は、回転軸AXに沿って貫通する貫通孔311と、外縁近傍に設けられ、軸方向Aに貫通する複数の貫通孔321と、を有している。貫通孔311には、図1に示すシャフト2が例えば圧入等により固定されている。また、回転軸AXに沿ったハブ31の厚さ、すなわち、ハブ31の軸方向Aにおける厚さは、リム32よりも厚くなっている。これにより、ハブ31の機械的強度が高くなっている。なお、シャフト2とローター3との固定方法は、特に限定されず、ハブ31の形状等も上記に限定されない。
フレーム30の構成材料としては、例えば、ステンレス鋼、アルミニウム合金、マグネシウム合金、チタン合金のような金属材料、アルミナ、ジルコニアのようなセラミックス材料、エンジニアリングプラスチックのような樹脂材料、CFRP(Carbon Fiber Reinforced Plastics)、GFRP(Glass Fiber Reinforced Plastics)のような各種繊維強化プラスチック、FRC(Fiber Reinforced Ceramics)、FRM(Fiber Reinforced Metallics)のような繊維強化複合材料等が挙げられる。
また、フレーム30の構成材料は、非磁性材料であるのが好ましい。これにより、フレーム30が磁束の影響を受けにくくなり、トルクの低下等の問題が発生しにくくなる。なお、非磁性材料とは、比透磁率が0.9以上3.0以下程度となる材料のことをいう。
貫通孔321には、それぞれ永久磁石6が挿入されている。永久磁石6の数は、アキシャルギャップモーター1の相数と極数とにより決められるが、本実施形態では一例として24個である。永久磁石6としては、例えば、ネオジム磁石、フェライト磁石、サマリウムコバルト磁石、アルニコ磁石、ボンド磁石等が挙げられるが、これらには限定されない。
永久磁石6は、例えば、接着剤、締結具、緊縛具等を用いて、フレーム30に固定される。また、接着剤とその他の手段とを併用するようにしてもよい。さらに、永久磁石6同士を接着剤で接着するようにしてもよいし、永久磁石6を覆うように接着剤やモールド樹脂を配置してもよい。
ステーター4、5は、図1に示すように、軸方向Aの両側からローター3を挟み込むように配置されている。具体的には、ローター3の上側には隙間(ギャップ)を介してステーター4が配置され、ローター3の下側には隙間(ギャップ)を介してステーター5が配置されている。
ステーター4は、シャフト2と同心的に配置されている環状のケース41と、ケース41の軸方向A1の面に支持され、永久磁石6と対向して配置されている環状のステーターコア42と、ステーターコア42に巻き付けられている複数のコイル43と、を有する。
ステーター5は、シャフト2と同心的に配置されている環状のケース51と、ケース51の軸方向A2の面に支持され、永久磁石6と対向して配置されている環状のステーターコア52と、ステーターコア52に巻き付けられている複数のコイル53と、を有する。
ステーターコア42、52は、それぞれ、例えば、電磁鋼板の積層体、磁性粉末の圧粉体、電磁鋼板と磁性粉末とを組み合わせたハイブリッド体等の各種磁性材料、特に軟磁性材料で構成される。
以下、ステーター4、5の構成について説明するが、ステーター4、5は互いに同様の構成であるため、以下では、ステーター5を代表にして説明し、ステーター4についてはその説明を省略する。
図3は、図1に示すステーター5が備えるステーターコア52のみを示す斜視図である。図4は、図3に示すステーターコア52を軸方向A1に見たときの平面図である。
図3および図4に示すステーターコア52は、環状に並べられた12のスロットを有するステーター5に用いられるコアであって、3つの分割コア54の集合体で構成されている。分割コア54は、互いに同じ形状をなしている。そして、全体として環状になるように、3つの分割コア54が配置され、これによりステーターコア52が構成されている。したがって、分割コア54は、円環状をなすステーターコアを仮想し、それを3つに分割したときの1部材に相当する。以下、円環状をなすステーターコアを「分割前のステーターコア」という。
ステーターコア52として分割コア54の集合体を用いることにより、分割前のステーターコアを用いる場合に比べて、ステーターコア52の製造容易性を高めることができる。つまり、分割前のステーターコアは大きいため、例えば圧粉成形により成形する場合、大型の金型が必要になる。このため、製造難易度が高く、製造コストが高くなる。
これに対し、分割コア54は、分割前のステーターコアに比べて小さいため、金型も小さくすることができる。これにより、製造容易性を高めるとともに、製造コストを削減することができる。
図5は、図4に示すステーターコア52が含む3つの分割コア54のうち、1つを示す平面図である。図6は、図5のX-X線断面図である。
図5および図6に示す分割コア54は、円環状をなすステーターコア52を、周方向Cで3等分してなる部材に相当する。このため、分割コア54の平面視形状は、図5に示すように、中心を共有し、半径が異なる2つの円弧541、542と、円弧541、542の径方向に延在する2つの線分543、544と、で囲まれた「円環分割形状」である。2つの円弧541、542の中心角は、いずれも120°である。
図5および図6に示す分割コア54は、平面視で上記のような円環分割形状をなすバックヨーク部55(基部)と、バックヨーク部55から軸方向A2に突出するティース部56a、56bと、を含む。このうち、バックヨーク部55は、円環分割形状をなす板状体である。また、ティース部56a、56bは、それぞれ底面が台形状をなす柱状体である。そして、ティース部56aは、その周方向Cの幅が相対的に広く設定され、ティース部56bは、その周方向Cの幅がティース部56aの半分に設定されている。
分割前のステーターコアを分割する場合、その分割位置は、特に限定されないが、図3および図4では、分割前のステーターコアが有しているティース部に設定されている。このため、分割コア54が含むティース部56bは、分割前のステーターコアが有しているティース部を半分に分割してなる部位に相当する。
一方、分割コア54が含むティース部56aは、分割前のステーターコアが有しているティース部がそのまま分割コア54に移行したものである。したがって、図3および図4に示すように、3つの分割コア54を環状に配置した場合、隣り合う2つの分割コア54の境界では、ティース部56b同士が隣接することになる。その結果、隣接した2つのティース部56bによって、磁気回路の観点からは、1つのティース部56aと同等の部位が形成される。
したがって、分割コア54を用いることにより、製造容易性を高め、製造コストを削減する、という効果が得られる一方、分割に伴う磁気回路上の悪影響は小さく抑えられることになる。
図7は、図3および図4に示すように、分割前のステーターコアが有するティース部に分割部Pが設定されているとき、すなわち、図6に示す分割コア54同士を分割部Pで隣接させたとき、分割コア54の内部に形成される磁路MCを模式的に示す図である。換言すれば、図7は、図6に示す分割コア54にコイル53を巻き付け、ステーター4やローター3とともに組み立てられた状態をシミュレートしたときの磁路MCを模式的に示す図である。
図7に示すように、分割コア54の内部に形成される磁路MCは、各部位の長手方向とほぼ平行に延在する。したがって、分割前のティース部が軸方向Aと平行な分割部Pで分割されたとしても、磁路MCには分割の影響が及びにくい。このため、分割部Pを分割前のティース部に設定した場合には、分割に伴う磁気回路上の悪影響を最小限に留めることができる。
以上のように、本実施形態では、分割部Pが分割前のステーターコアのティース部に設定されているので、互いに隣り合う分割コア54の一方に含まれるティース部56bを第1ティース部とし、他方に含まれるティース部56bを第2ティース部とするとき、これらは図7に示すように、第1ティース部と第2ティース部との集合体56cを構成している。そして、図1に示すコイル53は、図7に示す集合体56cに巻き回されている。
このような構成によれば、前述したように、分割部Pが、ステーターコア52の内部に形成される磁路に悪影響を及ぼしにくくなる。このため、ステーターコア52を分割コア54で構成したとしても、それに伴ってアキシャルギャップモーター1のトルクが低下するのを抑制することができる。
これに対し、図8は、分割前のステーターコアが有するバックヨーク部55に分割部Pが設定されているとき、分割コア54’の内部に形成される磁路MCを模式的に示す図である。
図8に示すように、分割コア54’の内部に形成される磁路MCは、分割部Pと交差する。このため、分割部Pによって磁路MCが悪影響を受け、磁気抵抗が増加する。そうすると、図7に比べて、アキシャルギャップモーター1の高トルク化はやや劣る。ただし、分割部Pに近いティース部に取り付けられるコイルの相が特定の相に偏らないという点では、図8に示す分割部Pの位置であっても、アキシャルギャップモーター1のトルク変動を小さく抑えるという効果は得られる。
なお、以下の説明では、分割コア54に含まれるティース部56a、56bの数を数えるとき、ティース部56aは1個と数え、ティース部56bは1/2個と数える。したがって、集合体56cは1個と数える。なお、分割前のステーターコアを分割するとき、ティース部の分割位置は、ティース部を二分する位置が好ましいが、それ以外の位置であってもよい。
ステーターコア52は、例えば、溶融、接着剤、溶接等によってケース51に固定されていてもよいし、各種係合構造を用いてケース51に係合していてもよい。
コイル53は、図1に示すように、ステーターコア52の各ティース部56a、56bの外周に巻き回されている。そして、ステーターコア52およびコイル53により、電磁石が構成される。コイル53は、ステーターコア52の各ティース部56a、56bに巻き付けられた導線であってもよいし、あらかじめ導線をボビン等に巻き取っておき、これを各ティース部56a、56bに嵌め込んだものであってもよい。
アキシャルギャップモーター1は、図示しない通電回路を有し、各コイル53は、この通電回路に接続されている。各コイル53へは、多相交流の位相の異なるn相(nは3以上の整数)の信号が供給される。本明細書では、一例として、U相、V相およびW相という3つの信号を、U相用のコイル53、V相用のコイル53、およびW相用のコイル53にそれぞれ供給する三相交流の通電回路について説明する。なお、多相交流としては、三相交流以外に、例えば四相交流、五相交流等が挙げられる。
各コイル53に三相交流を印加すると、電磁石とそれに対向する永久磁石6との間に吸引力や反発力が発生する。このような力の発生が周期的に繰り返されることにより、ローター3を回転軸AXまわりに回転させるための駆動力が生じる。
このようなアキシャルギャップモーター1では、ステーターコア52の各ティース部56a、56bも、U相用、V相用およびW相用に分けられる。図4ないし図6では、各ティース部56a、56bに、U、VまたはWのいずれかを表示している。なお、Uの表示がされているティース部56a、56bを、特に「U相ティース部56U」とする。また、Vの表示がされているティース部56a、56bを、特に「V相ティース部56V」とする。さらに、Wの表示がされているティース部56a、56bを、特に「W相ティース部56W」とする。U、V、Wの表示は、周方向Cに沿って繰り返されることになる。
ここで、ステーターコア52では、3つの分割コア54が分割部Pを介して並んでいるが、これらの分割コア54は、それぞれ4個のティース部56a、56bを含んでいる。したがって、ステーターコア52は、合計で12個のティース部56a、56bを含んでいる。換言すれば、ステーター5のスロット数は12である。
このように、本実施形態では、分割コア54が含むティース部56a、56bの数を、三相交流の相数である3の倍数以外の数に設定している。なお、これをn相交流に拡張すると、分割コアが含むティース部の数を、nの倍数以外の数に設定すればよい。
分割コア54が含むティース部56a、56bをこのような個数に設定することで、分割コア54同士を環状に並べて配置したとき、3つの分割部Pが特定の相のティース部に偏るのを避けることができる。図4の場合、3つの分割部Pを、U相ティース部56U、V相ティース部56VおよびW相ティース部56Wに1つずつ振り分けることができている。このような分割部Pが設けられるティース部を3相に振り分けることにより、ステーター5とローター3との相互作用が、三相交流の特定の相に偏ってしまうのを抑制することができる。
具体的には、分割部Pがローター3の永久磁石6と対向したときには、アキシャルギャップモーター1の出力が低下するおそれがあるものの、図4では、そのような出力低下を発生させる分割部Pが、3相に等分配されている。これにより、分割部Pが特定の相のティース部のみに設定される場合に比べて、出力低下の幅を抑制することができる。
以上のように、アキシャルギャップモーター1(第1実施形態に係る回転モーター)は、ステーター4、5と、回転軸AXまわりに回転し、ステーター4、5との間に隙間を介して配置されているローター3と、を備える。ステーター5は、バックヨーク部55(基部)、および、バックヨーク部55に接続されているティース部56a、56b、を含む分割コア54と、ティース部56a、56bに巻き回され、n相(nは3以上の整数)のうちの1相の信号が供給されるコイル53と、を有する。また、ステーター5は、回転軸AXまわりの環状に並べられている複数の分割コア54を有する。そして、複数の分割コア54のうちの少なくとも1つは、nの倍数以外の数のティース部56a、56bを含んでいる。
このような構成によれば、前述したように、分割コア54同士の隙間である分割部Pが、特定の相のティース部56bに偏るのを防止することができる。本実施形態のように三相交流を用いた場合、分割部Pを少なくとも2相のティース部56bに、好ましくは3相のティース部56bに振り分けることができる。
仮に、分割コアが含むティース部の数が、nの倍数である3個であった場合、分割コアの数は4になる。そして、分割コア同士の隙間は、U相、V相、W相のうちのいずれか1つのティース部に偏ることになる。これに対し、本実施形態では、分割コア54が含むティース部56a、56bの数を、nの倍数以外の4個に設定しているため、分割部Pの位置をずらすことができる。これにより、分割部Pが特定の相のティース部56bに偏るのを防止することができる。その結果、分割部Pに起因する出力低下の幅を抑制し、アキシャルギャップモーター1のトルク変動を小さく抑えることができるので、アキシャルギャップモーター1の高効率化を図ることができる。
なお、このような従来技術に対する有利な効果は、前述したように、分割部Pがバックヨーク部55に設定されている場合でも得られる。ただし、トルク変動をより小さく抑えるという観点では、分割部Pがティース部56bに設定されるのが好ましい。
また、3つの分割コア54は、いずれもnの倍数以外の数のティース部56a、56bを含んでいるのが好ましい。具体的には、本実施形態に係るアキシャルギャップモーター1は、三相交流で駆動されるため、4つの分割コア54が含むティース部56a、56bの数は、いずれも、3、6、9、・・・という3の倍数以外の数である4個に設定されている。
このような構成によれば、前述したような作用、すなわち、ステーターコア52全体のうちいずれかの位置で、分割部Pが異なる相のティース部56bに振り分けられる、という作用が得られるだけでなく、1つの分割コア54の両端が含まれる2つの分割部Pが互いに異なる相のティース部56bに振り分けられるという、より有利な作用が得られる。
この作用をより詳しく説明すると、仮に、3つの分割コア54の中に、3の倍数のティース部を含むものがあった場合、その分割コアの両端が含まれる分割部では、互いに同相の信号で励磁されることになる。これに対し、3の倍数のティース部を含む分割コアが全くない場合には、1つの分割コア54の両端が含まれる2つの分割部Pは、必ず互いに異なる相の信号で励磁されることになる。
このような原則に基づいて分割部Pの位置を設定することにより、ステーターコア52全体のうちいずれかの位置で、分割部Pが同じ相に振り分けられることがあったとしても、それらの分割部Pの物理的な位置を互いに離すことができる。その結果、アキシャルギャップモーター1のトルク変動が、特定の機械角で発生し、制御性が低下するのを防止することができる。
なお、ステーターコアの構成は、これに限定されず、nの倍数の数のティース部を含む分割コアを有していてもよい。つまり、ステーターコアは、nの倍数以外の数のティース部を含む分割コアと、nの倍数の数のティース部を含む分割コアと、で構成されていてもよい。
また、ステーター5は、分割コア54をnの倍数個有しているのが好ましい。具体的には、本実施形態に係るアキシャルギャップモーター1は、三相交流で駆動されるため、1つのステーター5が有する分割コア54の数は、3の倍数である3個である。
このような構成によれば、分割部Pの振り分け方を適宜調整することで、図4に示すように、3つの分割部Pを、U相ティース部56U、V相ティース部56V、W相ティース部56Wの3か所に均等に振り分けることができる。その結果、分割部Pの位置が特定の相のティース部に偏ることに伴うトルク変動を、より小さく抑えることができる。
なお、ステーターの構成は、これに限定されず、ステーターが有する分割コアの個数が、nの倍数個以外の個数であってもよい。
また、ステーター5が含むティース部56a、56bの合計数は、nの倍数であるのが好ましい。具体的には、本実施形態に係るアキシャルギャップモーター1は、三相交流で駆動されるため、1つのステーター5が含むティース部56a、56bの数は、3の倍数である12個である。
このような構成によれば、三相交流のU相、V相、W相を、12個のティース部56a、56bに均等に振り分けることができる。つまり、U相ティース部56Uの数、V相ティース部56Vの数、W相ティース部56Wの数を、互いに等しくすることができる。このため、制御性に優れたアキシャルギャップモーター1を実現することができる。
1.2.分割パターンの例(12スロット)
図3および図4に示すステーターコア52は、前述したように、3つの分割コア54で構成されている。そして、各分割コア54は、互いに同じ形状を有するものである。
一方、ステーターコア52の分割パターンは、このようなパターンに限定されず、様々なパターンが考えられる。
図9は、環状に並べられた12のスロットを備えるステーターについて、ステーターコアの分割パターンをシミュレートした表である。
図9の分割パターンを記載した列の1行目には、12スロットのスロット番号を示している。このスロット番号は、環状に並べられた分割コアのうち、含まれるティース部の数が最も多い分割コアを起点にしたとき、各ティース部に順次振られた番号である。
分割パターンを記載した列の2行目には、各スロット番号に対応する三相交流の相を記載している。
分割パターンを記載した列の3行目以降には、12スロットに対応するステーターコアの分割部の位置をシミュレートした分割パターンを、パターン1から順に列挙している。スロット番号を付した列の中央に縦の実線が引かれている場合、そのスロット番号のティース部に分割部が設定されていることを示している。したがって、縦の実線同士で挟まれた範囲が分割コアに相当する。
また、図9の分割パターンを記載した列には、1つの分割コアに含まれるティース部の個数を表示している。具体的には、図9の分割パターンを記載した列には、分割部を表す縦の実線同士の間に数字を記載している。この数字が、各分割コア単体に含まれるティース部の個数を表している。
図9の分割パラメーターを記載した列には、各分割パターンに対応する分割パラメーターを示している。ここでいう分割パラメーターとは、以下の6項目である。
・分割コアに含まれるティース部の最大数
・分割コアの構成(ティース部の数ごとの分割コアの数)
・分割コアの数(分割部の数)
・最大一致回数
・最大一致回数となるときの起点となるスロット番号(起点番号)
・U相、V相、W相の各ティース部に含まれる分割部の数
図9に示すように、ステーターコアは、ティース部の数が互いに異なる2種類以上の分割コアを有していてもよい。上記6項目の1つである、分割コアに含まれるティース部の最大数とは、ステーターコアが2種類以上の分割コアを有するとき、ティース部の数が最も多い分割コアが含むティース部の数である。
また、分割コアの構成とは、ステーターコアが有する分割コアの数を、各分割コアが含むティース部の数ごとに集計したものである。
最大一致回数および起点番号については、後に詳述する。
U相、V相、W相の各ティース部に含まれる分割部の数とは、分割部がU相、V相、W相の各ティース部のうち、いずれに位置しているかを集計した結果である。
図9の判定結果を記載した列には、各分割パターンがアキシャルギャップモーターの制御性において有用であるか否かを判定するため、2つの判定項目についての判定結果を示している。ここでいう判定項目とは、以下の2項目である。
・均等性…U相、V相、W相の各ティース部に含まれる分割部の数が、互いに等しいこと
・対称性…隣り合うティース部を2つ以上含む周期で構造的に繰り返される「繰り返し構造」を有していること
図9では、上記項目を満たす場合にはOKと表示し、満たさない場合にはNGと表示している。
分割パターンが均等性を有することにより、前述したように、分割部が三相のティース部に等分配されることになるため、分割部が特定の相のティース部のみに分配される場合に比べて、出力低下の幅を抑制することができる。
分割パターンが対称性を有することにより、アキシャルギャップモーターの機械的および電気的な対称性が高くなる。このため、アキシャルギャップモーターを駆動したときにステーターコアが変形しにくくなるとともに、分割部の偏在による出力低下も抑えられる。その結果、振動やトルク変動が抑制されたアキシャルギャップモーターを実現することができる。
なお、図9に示す判定結果は、均等性および対称性という、より高度な効果を得られるか否かを示すものである。したがって、均等性および対称性の双方を有さないパターンであっても、分割部を1つの相のティース部に偏らせないという基本的な効果は得られる。ただし、パターン58は、各分割コアが含むティース部の数がいずれも3の倍数であるため、例外である。
1.2.1.均等性
以上のようなシミュレーションを考察すると、図9に示す分割パターンは、いずれも、含まれるティース部の数が3の倍数以外の数である分割コアを1つ以上有している。その上で、2つの判定項目のうち、少なくとも均等性を満たすためには、以下の2つの要素(a)、(b)を満たす必要がある。
(a)分割コアの数が3の倍数であること
(b)環状に並べられている分割コアについて、各分割コアを起点にしてティース部の数を累加するとき、ティース部の累加数が3の倍数に一致する回数の最大値が、分割コアの数の1/3以下の回数であること
このうち、(a)の要素については前述した通りである。
(b)の要素は、環状に並んでいる分割コアについて、各分割コアを起点にしてティース部の数を累加し、ティース部の累加数が3の倍数に一致する回数の最大値が、分割コアの数の1/3以下という基準範囲を満たす、というものである。
具体的には、環状に並んでいる分割コアの1つを起点とし、周方向Cの一方に向かってティース部の数を累加していく。そして、全てのティース部の数を累加したとき、ティース部の累加数が3の倍数に一致した回数(一致回数)を数える。このような一致回数の計数を、全ての起点で行い、一致回数の最大値を求める。ここでは、一致回数の最大値を「最大一致回数」とする。また、最大一致回数が得られるときに起点となったスロット番号を「起点番号」とする。この最大一致回数が分割コアの数の1/3以下という基準範囲に入っていれば、(b)の要素は満たされることになり、1/3超であれば、(b)の要素は満たされないことになる。以下、(b)の要素について、パターン52、53を例にしてさらに説明する。
パターン52では、図9に示すように、最大一致回数が得られる起点番号が1であるから、スロット番号1から累加を開始する。スロット番号1の分割部からスロット番号6の分割部までのティース部の数は5である。この数に、スロット番号6の分割部からスロット番号7の分割部までのティース部の数を累加すると、累加数は6になる。この累加数は、3の倍数であるので、この時点で一致回数は1回となる。続いて、スロット番号7の分割部からスロット番号8の分割部までのティース部の数を累加すると、累加数は7になる。続いて、スロット番号8の分割部からスロット番号9の分割部までのティース部の数を累加すると、累加数は8になる。続いて、スロット番号9の分割部からスロット番号11の分割部までのティース部の数を累加すると、累加数は10になる。続いて、スロット番号11の分割部からスロット番号1の分割部までのティース部の数を累加すると、累加数は12になる。この累加数は、3の倍数であるので、この時点で一致回数は2回となる。
以上のようにしてティース部の累加数が3の倍数に一致する回数を数えると、パターン52では合計で2回である。この回数がパターン52の最大一致回数である。そして、パターン52では、この最大一致回数が、パターン52の分割コアの数6個の1/3以下、すなわち2以下という基準範囲に入っている。よって、パターン52は、上記(b)の要素を満たしている。
一方、パターン53では、図9に示すように、最大一致回数が得られる起点番号が1であるから、スロット番号1から累加を開始する。スロット番号1の分割部からスロット番号6の分割部までのティース部の数は5である。この数に、スロット番号6の分割部からスロット番号7の分割部までのティース部の数を累加すると、累加数は6になる。この累加数は、3の倍数であるので、この時点で一致回数は1回となる。続いて、スロット番号7の分割部からスロット番号8の分割部までのティース部の数を累加すると、累加数は7になる。続いて、スロット番号8の分割部からスロット番号10の分割部までのティース部の数を累加すると、累加数は9になる。この累加数は、3の倍数であるので、この時点で一致回数は2回となる。続いて、スロット番号10の分割部からスロット番号12の分割部までのティース部の数を累加すると、累加数は11になる。続いて、スロット番号12の分割部からスロット番号1の分割部までのティース部の数を累加すると、累加数は12になる。この数は、3の倍数であるので、この時点で一致回数は3回となる。
以上のようにしてティース部の累加数が3の倍数に一致する回数を数えると、パターン53では合計で3回である。この回数がパターン53の最大一致回数である。そして、パターン53では、この最大一致回数が、パターン53の分割コアの数6個の1/3以下、すなわち2以下という基準範囲から外れている。よって、パターン53は、上記(b)の要素を満たしていない。
パターン52とパターン53とで分割パラメーターを比較すると、(b)の要素を満たしているパターン52では、U相、V相、W相の各ティース部に含まれる分割部の数が、2つずつであることがわかる。したがって、パターン52は均等性を満たしている。
これに対し、(b)の要素を満たしていないパターン53では、例えばU相ティース部に含まれる分割部の数が3つになっている。こうなると、分割コアの数が6個であるから、U相、V相、W相の各ティース部に分割部を均等に振り分けることは不可能である。したがって、パターン53は均等性を満たさない。
よって、(a)の要素および(b)の要素の双方を満たすことは、分割部を、U相、V相、W相の各ティース部に均等に振り分けるための前提条件ということができる。
以上のように、環状に並べられている複数の分割コアのうち、1つの分割コアを起点にしてティース部の数を累加し、ティース部の累加数がnの倍数に一致する回数を、分割コアごとに集計して最大値(最大一致回数)を求めたとき、最大一致回数が、ステーターが有する分割コアの数の1/n以下の回数であることが好ましい。具体的には、図9に示す例では、三相交流が用いられているため、前述したティース部の累加数が3の倍数に一致する回数の最大値(最大一致回数)は、分割コアの数の1/3以下の回数であることが好ましい。
このような要素を満たすことにより、分割部を各相のティース部に均等に振り分けることができ、ステーターコアの均等性を高めることができる。なお、ここでは、12スロットの場合を例にして説明したが、上記の説明はスロット数によらない。
1.2.2.対称性
また、2つの判定項目のうち、対称性を満たすためには、以下の2つの要素(c)、(d)を満たす必要がある。
(c)分割コアに含まれるティース部の最大数が、スロット数(ステーターにおけるティース部の合計数)の1/2未満であること
(d)ティース部の数が同じ分割コアの数が、偶数個または3の倍数個であること
このうち、(c)の要素は、例えばスロット数が12である場合、分割コアに含まれるティース部の最大数を6未満とする、というものである。この最大数が6以上になると、前述した対称性の定義に示す「繰り返し構造」を実現しにくくなり、対称性の確保が難しくなる。
このように、ステーターでは、分割コアに含まれるティース部の最大数が、ティース部の合計数の半分未満であることが好ましい。つまり、いずれの分割コアも、含まれるティース部の数を、ステーターが含むティース部の合計数の半分未満に設定していることが好ましい。これにより、ステーターコアの構造上の偏りが抑えられるため、前述した「繰り返し構造」を実現しやすくなり、対称性を高めることができる。
一方、(d)の要素は、分割パラメーターの1つである分割コアの構成において、ティース部の数ごとに集計した分割コアの数が、偶数または3の倍数である、というものである。ステーターコアが(d)の要素を満たすことにより、構造上の対称性がより高くなる。
また、図9全体から言えることは、分割コアを複数種類用いることで、分割コアの数を抑えつつ、均等性や対称性を確保しやすくなる、ということである。すなわち、複数の分割コアは、第1コアと、含まれるティース部の数が第1コアとは異なる第2コアと、という少なくとも2種類を有しているのが好ましい。例えば、図9に示すパターン27の場合、ティース部の数が3個である分割コア(第1コア)が3つ、ティース部の数が1個である分割コア(第2コア)が3つ、用いられている。これにより、分割コアの数や種類を抑えつつ、均等性と対称性の双方を確保している。
なお、分割コアの数を増やすと、分割コア1つの大きさを小さくすることができるので、分割コアの製造容易性が高くなる。一方、分割コアの数が多い分、組み立て工数が増えることになる。また、分割コアの種類を増やすと、製造コストが上昇する。したがって、製造容易性、製造コスト、組み立て工数等のバランスを考慮しながら、分割コアの数と種類を最適化するようにすればよい。
1.3.分割パターンの例(54スロット)
図10および図11は、それぞれ、環状に並べられた54のスロットを備えるステーターについて、ステーターコアの分割パターンの例を示す図である。
図10に示すステーターコア52Aは、6つの分割コア54Aと、2つの分割コア54Bと、で構成されている。
分割コア54Aが含むティース部56a、56bの数は7個であり、分割コア54Bが含むティース部56a、56bの数は6個である。
ステーターコア52Aでは、3つの分割コア54Aと、1つの分割コア54Bとで、1つの繰り返し構造が形成されている。そして、ステーターコア52Aは、この繰り返し構造を2つ有している。これにより、対称性が確保されている。
一方、ステーターコア52Aは、合計で8つの分割部Pを有している。このうち、4つの分割部Pは、U相ティース部56Uに振り分けられている。また、V相ティース部56VおよびW相ティース部56Wには、それぞれ2つの分割部Pが振り分けられている。したがって、ステーターコア52Aでは、8つの分割部Pを3相に振り分けているものの、各相に振り分けられた分割部Pの数は、互いに異なっている。このため、均等性は確保されていない。
図11に示すステーターコア52Cは、6つの分割コア54Cと、3つの分割コア54Dと、で構成されている。
分割コア54Cが含むティース部56a、56bの数は7個であり、分割コア54Dが含むティース部56a、56bの数は4個である。
ステーターコア52Cでは、2つの分割コア54Cと、1つの分割コア54Dとで、1つの繰り返し構造が形成されている。そして、ステーターコア52Cは、この繰り返し構造を3つ有している。これにより、対称性が確保されている。また、繰り返し構造の個数が奇数であるため、ステーターコア52Cの中心Oを対称の中心としたとき、分割部Pの位置が点対称(180°回転対称)になるのを防止することができる。これにより、ステーターコア52Cの機械的強度をより高めることができる。
一方、ステーターコア52Cは、合計で9つの分割部Pを有している。これらの分割部Pは、U相ティース部56U、V相ティース部56VおよびW相ティース部56Wに均等に振り分けられている。これにより、均等性も確保されている。
2.第2実施形態
次に、第2実施形態に係る回転モーターについて説明する。
図12は、第2実施形態に係る回転モーターであるラジアルギャップモーターの概略構成を示す断面図である。
以下、第2実施形態について説明するが、以下の説明では、第1実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図12では、第1実施形態と同様の構成について、同一の符号を付している。
前述した第1実施形態に係る回転モーターがアキシャルギャップモーター1であったのに対し、本実施形態に係る回転モーターは、ラジアルギャップモーター1Eである点が異なる以外、第1実施形態に係る回転モーターと同様である。
図12に示すラジアルギャップモーター1Eは、外周側に位置するステーター5と、内周側に位置し、ステーター4との間に隙間を介して配置されるローター3と、を備える。
ローター3は、回転軸AXまわりに回転可能なフレーム30と、回転軸AXまわりの周方向Cに並ぶ複数の永久磁石6と、を有する。
ステーター5は、円環状のステーターコア52と、ステーターコア52に巻き付けられている複数のコイル53と、を有する。
図12に示すステーターコア52は、環状に並べられた6つのスロットを有するコアであって、3つの分割コア54Eの集合体で構成されている。分割コア54Eは、互いに同じ形状をなしている。そして、分割コア54Eは、それぞれ、3の倍数以外の数、具体的には2個のティース部56a、56bを含んでいる。
このような構成によれば、分割コア54E同士の隙間である分割部Pが、特定の相のティース部56bに偏るのを防止することができる。本実施形態のように三相交流を用いた場合、分割部PをU相ティース部56U、U相ティース部56VおよびW相ティース部56Wの3つに振り分けることができる。その結果、分割部Pに起因する出力低下の幅を抑制し、ラジアルギャップモーター1Eのトルク変動を小さく抑えることができる。
以上のような第2実施形態においても、第1実施形態と同様の効果が得られる。
3.第3実施形態
次に、第3実施形態に係るロボットについて説明する。
図13は、第3実施形態に係るロボットを示す斜視図である。図14は、図13に示すロボットの概略図である。
図13に示すロボット100は、例えば、各種ワーク(対象物)の搬送、組立、検査等の各作業で用いられる。
図13および図14に示すように、ロボット100は、基台400、ロボットアーム1000、駆動部401~406と、を有する。
図13および図14に示す基台400は、水平な床101に載置されている。なお、基台400は、床101ではなく、壁、天井、架台等に載置されていてもよい。
図13および図14に示すロボットアーム1000は、第1アーム11、第2アーム12、第3アーム13、第4アーム14、第5アーム15および第6アーム16を備えている。第6アーム16の先端には、図示しないエンドエフェクターを着脱可能に取り付けることができ、そのエンドエフェクターでワークを把持等することができる。エンドエフェクターで把持等するワークとしては、特に限定されず、例えば、電子部品、電子機器等が挙げられる。なお、本明細書では、第6アーム16を基準にしたときの基台400側を「基端側」とし、基台400を基準にしたときの第6アーム16側を「先端側」とする。
エンドエフェクターとしては、特に限定されないが、ワークを把持するハンド、ワークを吸着する吸着ヘッド等が挙げられる。
ロボット100は、基台400と、第1アーム11と、第2アーム12と、第3アーム13と、第4アーム14と、第5アーム15と、第6アーム16とが、基端側から先端側に向ってこの順に連結された単腕の6軸垂直多関節ロボットである。以下では、第1アーム11、第2アーム12、第3アーム13、第4アーム14、第5アーム15および第6アーム16をそれぞれ「アーム」とも言う。アーム11~16の長さは、それぞれ、特に限定されず、適宜設定可能である。なお、ロボットアーム1000が有するアームの数は、1~5本または7本以上であってもよい。また、ロボット100は、スカラロボットであってもよく、2つまたはそれ以上のロボットアーム1000を備える双腕ロボットであってもよい。
基台400と第1アーム11とは、関節171を介して連結されている。第1アーム11は、基台400に対し、鉛直軸と平行な第1回動軸O1を回動中心として回動可能となっている。第1アーム11は、モーター401Mおよび図示しない減速機を有する駆動部401の駆動により回動する。モーター401Mは、第1アーム11を回動させる駆動力を発生する。
第1アーム11と第2アーム12とは、関節172を介して連結されている。第2アーム12は、第1アーム11に対し、水平面と平行な第2回動軸O2を回動中心として回動可能となっている。第2アーム12は、モーター402Mおよび図示しない減速機を有する駆動部402の駆動により回動する。モーター402Mは、第2アーム12を回動させる駆動力を発生する。
第2アーム12と第3アーム13とは、関節173を介して連結されている。第3アーム13は、第2アーム12に対し、水平面と平行な第3回動軸O3を回動中心として回動可能となっている。第3アーム13は、モーター403Mおよび図示しない減速機を有する駆動部403の駆動により回動する。モーター403Mは、第3アーム13を回動させる駆動力を発生する。
第3アーム13と第4アーム14とは、関節174を介して連結されている。第4アーム14は、第3アーム13に対し、第3アーム13の中心軸と平行な第4回動軸O4を回動中心として回動可能となっている。第4アーム14は、モーター404Mおよび図示しない減速機を有する駆動部404の駆動により回動する。モーター404Mは、第4アーム14を回動させる駆動力を発生する。
第4アーム14と第5アーム15とは、関節175を介して連結されている。第5アーム15は、第4アーム14に対し、第4アーム14の中心軸と直交する第5回動軸O5を回動中心として回動可能となっている。第5アーム15は、モーター405Mおよび図示しない減速機を有する駆動部405の駆動により回動する。モーター405Mは、第5アーム15を回動させる駆動力を発生する。
第5アーム15と第6アーム16とは、関節176を介して連結されている。第6アーム16は、第5アーム15に対し、第5アーム15の先端部の中心軸と平行な第6回動軸O6を回動中心として回動可能となっている。第6アーム16は、モーター406Mおよび図示しない減速機を有する駆動部406の駆動により回動する。モーター406Mは、第6アーム16を回動させる駆動力を発生する。
これらのモーター401M~406Mのうちの少なくとも1つに、前述した各実施形態に係る回転モーターが用いられる。すなわち、ロボット100は、前述した各実施形態に係る回転モーターを備える。
各実施形態に係る回転モーターは、トルク変動が少なく、高効率で制御性の高いものとなる。このため、ロボット100は、ロボットアーム1000の制御性に優れ、使い勝手に優れたものとなる。また、回転モーターがアキシャルギャップモーターである場合には、ロボットアーム1000の小型化および設計自由度の向上を容易に図ることができる。さらに、各実施形態に係る回転モーターを用いることにより、モーター401M~406Mの高トルク化を図り、減速機を省略して、駆動部401~406のダイレクトドライブ駆動を可能にすることができる。
また、駆動部401~406には、図示しない角度センサーが設けられる。これらの角度センサーとしては、例えば、ロータリーエンコーダー等の各種エンコーダーが挙げられる。角度センサーは、駆動部401~406のモーターまたは減速機の出力軸の回動角度を検出する。
駆動部401~406および角度センサーは、それぞれ、図示しないロボット制御装置と電気的に接続されている。ロボット制御装置は、駆動部401~406の動作を独立して制御する。
以上、本発明の回転モーターおよびロボットを図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではない。
例えば、本発明の回転モーターおよびロボットは、それぞれ、前記実施形態の各部が同様の機能を有する任意の構成物に置換されたものであってもよく、前記実施形態に任意の構成物が付加されたものであってもよい。
1…アキシャルギャップモーター、1E…ラジアルギャップモーター、2…シャフト、3…ローター、4…ステーター、5…ステーター、6…永久磁石、10…モーターケース、11…第1アーム、12…第2アーム、13…第3アーム、14…第4アーム、15…第5アーム、16…第6アーム、30…フレーム、31…ハブ、32…リム、41…ケース、42…ステーターコア、43…コイル、51…ケース、52…ステーターコア、52A…ステーターコア、52C…ステーターコア、53…コイル、54…分割コア、54’…分割コア、54A…分割コア、54B…分割コア、54C…分割コア、54D…分割コア、54E…分割コア、55…バックヨーク部、56U…U相ティース部、56V…V相ティース部、56W…W相ティース部、56a…ティース部、56b…ティース部、56c…集合体、80…側面ケース、81…軸受け、82…軸受け、100…ロボット、101…床、171…関節、172…関節、173…関節、174…関節、175…関節、176…関節、311…貫通孔、321…貫通孔、400…基台、401…駆動部、401M…モーター、402…駆動部、402M…モーター、403…駆動部、403M…モーター、404…駆動部、404M…モーター、405…駆動部、405M…モーター、406…駆動部、406M…モーター、541…円弧、542…円弧、543…線分、544…線分、1000…ロボットアーム、A…軸方向、A1…軸方向、A2…軸方向、AX…回転軸、C…周方向、MC…磁路、O…中心、O1…第1回動軸、O2…第2回動軸、O3…第3回動軸、O4…第4回動軸、O5…第5回動軸、O6…第6回動軸、P…分割部、R…径方向

Claims (9)

  1. ステーターと、
    回転軸まわりに回転し、前記ステーターとの間に隙間を介して配置されているローターと、
    を備え、
    前記ステーターは、
    基部、および、前記基部に接続されているティース部、を含む分割コアと、
    前記ティース部に巻き回され、n相(nは3以上の整数)のうちの1相の信号が供給されるコイルと、
    を有し、
    前記ステーターは、前記回転軸まわりの環状に並べられている複数の前記分割コアを有し、
    複数の前記分割コアのうち少なくとも1つは、nの倍数以外の数の前記ティース部を含むことを特徴とする回転モーター。
  2. 複数の前記分割コアは、いずれもnの倍数以外の数の前記ティース部を含む請求項1に記載の回転モーター。
  3. 前記ステーターは、前記分割コアをnの倍数個有する請求項1または2に記載の回転モーター。
  4. 複数の前記分割コアは、
    第1コアと、
    含まれる前記ティース部の数が前記第1コアと異なる第2コアと、
    を有する請求項1ないし3のいずれか1項に記載の回転モーター。
  5. 環状に並べられている複数の前記分割コアのうち、1つの前記分割コアを起点にして前記ティース部の数を累加し、前記ティース部の累加数がnの倍数に一致する回数を、前記分割コアごとに集計して最大値を求めたとき、前記最大値が、前記ステーターが有する前記分割コアの数の1/n以下の回数である請求項1ないし4のいずれか1項に記載の回転モーター。
  6. 前記ステーターが含む前記ティース部の合計数は、nの倍数である請求項1ないし5のいずれか1項に記載の回転モーター。
  7. 前記分割コアが含む前記ティース部の数は、前記ステーターが含む前記ティース部の合計数の半分未満である請求項1ないし6のいずれか1項に記載の回転モーター。
  8. 互いに隣り合う前記分割コアの一方に含まれる前記ティース部を第1ティース部とし、他方に含まれる前記ティース部を第2ティース部とするとき、
    前記コイルは、前記第1ティース部と前記第2ティース部との集合体に巻き回されている請求項1ないし7のいずれか1項に記載の回転モーター。
  9. 請求項1ないし8のいずれか1項に記載の回転モーターを備えることを特徴とするロボット。
JP2020195828A 2020-11-26 2020-11-26 回転モーターおよびロボット Withdrawn JP2022084158A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020195828A JP2022084158A (ja) 2020-11-26 2020-11-26 回転モーターおよびロボット
US17/456,221 US20220166265A1 (en) 2020-11-26 2021-11-23 Rotary motor and robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020195828A JP2022084158A (ja) 2020-11-26 2020-11-26 回転モーターおよびロボット

Publications (1)

Publication Number Publication Date
JP2022084158A true JP2022084158A (ja) 2022-06-07

Family

ID=81657351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020195828A Withdrawn JP2022084158A (ja) 2020-11-26 2020-11-26 回転モーターおよびロボット

Country Status (2)

Country Link
US (1) US20220166265A1 (ja)
JP (1) JP2022084158A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4443702A1 (en) * 2023-04-06 2024-10-09 Siemens Gamesa Renewable Energy A/S Stator segment and segmented stator for a wind turbine generator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050745A (ja) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd アキシャルギャップ回転電機
TW200822488A (en) * 2006-09-08 2008-05-16 Sanyo Electric Co Motor
JP2010017072A (ja) * 2008-06-06 2010-01-21 Daikin Ind Ltd 電機子コア、電機子、電機子コアの製造方法及び電機子の製造方法
JP2010035268A (ja) * 2008-07-25 2010-02-12 Daikin Ind Ltd アキシャルギャップ型モータ
JP5450189B2 (ja) * 2010-03-16 2014-03-26 アスモ株式会社 電機子コアの製造方法
RU2604650C2 (ru) * 2011-01-11 2016-12-10 КьюЭм ПАУЭР, ИНК. Электрическая вращательная машина с внутренними постоянными магнитами с магнитоизолированными фазами
JP2012147541A (ja) * 2011-01-11 2012-08-02 Seiko Epson Corp 電気機械装置およびそれを用いたアクチュエーター、モーター、ロボット、ロボットハンド。
WO2014079881A2 (en) * 2012-11-20 2014-05-30 Jaguar Land Rover Limited Electric machine and method of operation thereof
JP2018061341A (ja) * 2016-10-05 2018-04-12 Ntn株式会社 アキシャルギャップ型モータ
JP2019063934A (ja) * 2017-09-29 2019-04-25 セイコーエプソン株式会社 ロボット
JP2019208297A (ja) * 2018-05-28 2019-12-05 株式会社デンソー ステータコア、アキシャルギャップ型モータ、及び、ステータコアの製造方法

Also Published As

Publication number Publication date
US20220166265A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
JP6148085B2 (ja) モータ、及びモータのステーコア及びロータコアの製造方法
JP6330183B1 (ja) 二軸一体型モータ
JP4701269B2 (ja) 磁気機械
JP2013038944A (ja) モータ
US20220149683A1 (en) Rotary motor and manufacturing method for rotor
JP5462877B2 (ja) 永久磁石型ステッピングモータ
JPH11243672A (ja) 推力制御可能な回転型同期機
JP2013048498A (ja) ハイブリッド型回転電機
KR101194909B1 (ko) 이중 코일 보빈 및 이를 포함하는 구형모터
US20220352799A1 (en) Rotary motor and robot arm
JP2022084158A (ja) 回転モーターおよびロボット
US20220166298A1 (en) Rotary motor and robot
JP5143119B2 (ja) 印刷機又は印刷機のための電気機械
JP2022116601A (ja) モーターおよびロボット
JP2022084160A (ja) 回転モーターおよびロボット
US20220376571A1 (en) Rotary motor, robot, and manufacturing method for rotary motor
JP5453933B2 (ja) 電磁ユニット
JP2023147681A (ja) モーターおよびロボット
WO2002082622A1 (fr) Moteur synchrone du type a aimant permanent
JP2004215496A (ja) 励磁機、界磁機およびそれを用いた同期機
JP2007089304A (ja) 永久磁石式回転電機
JP2022163317A (ja) モーターおよびロボット
JP4744022B2 (ja) 永久磁石3相ステッピングモータ
JP5590930B2 (ja) アキシャルギャップモータ
JP2022085557A (ja) 回転モーターの製造方法、回転モーターおよびロボット

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240521

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20240722