JP2021113150A - 炭酸リチウム、水酸化リチウムおよび硫酸リチウムの調製のための方法 - Google Patents
炭酸リチウム、水酸化リチウムおよび硫酸リチウムの調製のための方法 Download PDFInfo
- Publication number
- JP2021113150A JP2021113150A JP2021053234A JP2021053234A JP2021113150A JP 2021113150 A JP2021113150 A JP 2021113150A JP 2021053234 A JP2021053234 A JP 2021053234A JP 2021053234 A JP2021053234 A JP 2021053234A JP 2021113150 A JP2021113150 A JP 2021113150A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- compartment
- item
- aqueous composition
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 title claims abstract description 1011
- 238000000034 method Methods 0.000 title abstract description 907
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 title abstract description 324
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 title abstract description 134
- 229910052808 lithium carbonate Inorganic materials 0.000 title abstract description 133
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 title abstract description 70
- 239000000203 mixture Substances 0.000 claims abstract description 406
- 239000012528 membrane Substances 0.000 claims description 452
- 239000002253 acid Substances 0.000 claims description 193
- 150000002642 lithium compounds Chemical class 0.000 claims description 119
- 238000005341 cation exchange Methods 0.000 claims description 70
- 239000003011 anion exchange membrane Substances 0.000 claims description 48
- 239000000523 sample Substances 0.000 claims description 24
- 238000005868 electrolysis reaction Methods 0.000 abstract description 285
- 238000000909 electrodialysis Methods 0.000 abstract description 107
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 abstract description 103
- HPCCWDVOHHFCKM-UHFFFAOYSA-M lithium;hydrogen sulfate Chemical compound [Li+].OS([O-])(=O)=O HPCCWDVOHHFCKM-UHFFFAOYSA-M 0.000 abstract description 61
- 230000008569 process Effects 0.000 description 350
- 229910052744 lithium Inorganic materials 0.000 description 243
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 239
- 230000002829 reductive effect Effects 0.000 description 213
- 239000000243 solution Substances 0.000 description 175
- 229910021645 metal ion Inorganic materials 0.000 description 165
- 239000002585 base Substances 0.000 description 148
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 139
- 150000002500 ions Chemical class 0.000 description 123
- 238000006243 chemical reaction Methods 0.000 description 96
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 85
- 238000002474 experimental method Methods 0.000 description 82
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 78
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 63
- 239000011575 calcium Substances 0.000 description 62
- 239000002244 precipitate Substances 0.000 description 61
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 59
- 239000011777 magnesium Substances 0.000 description 56
- 238000012546 transfer Methods 0.000 description 54
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 51
- 229910052751 metal Inorganic materials 0.000 description 50
- 239000002184 metal Substances 0.000 description 50
- 239000006228 supernatant Substances 0.000 description 49
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 47
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 47
- 235000011130 ammonium sulphate Nutrition 0.000 description 47
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 44
- 239000000463 material Substances 0.000 description 42
- 238000012360 testing method Methods 0.000 description 41
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 40
- 229920000557 Nafion® Polymers 0.000 description 40
- 239000007787 solid Substances 0.000 description 40
- 229910021529 ammonia Inorganic materials 0.000 description 37
- 239000001166 ammonium sulphate Substances 0.000 description 37
- 239000000047 product Substances 0.000 description 35
- 229910052749 magnesium Inorganic materials 0.000 description 34
- 229910052791 calcium Inorganic materials 0.000 description 32
- 239000011734 sodium Substances 0.000 description 32
- 238000005342 ion exchange Methods 0.000 description 30
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 29
- 239000003456 ion exchange resin Substances 0.000 description 29
- 229920003303 ion-exchange polymer Polymers 0.000 description 29
- 238000004519 manufacturing process Methods 0.000 description 27
- 150000001768 cations Chemical class 0.000 description 25
- 239000012535 impurity Substances 0.000 description 24
- HQRPHMAXFVUBJX-UHFFFAOYSA-M lithium;hydrogen carbonate Chemical compound [Li+].OC([O-])=O HQRPHMAXFVUBJX-UHFFFAOYSA-M 0.000 description 22
- 235000011121 sodium hydroxide Nutrition 0.000 description 21
- 239000002002 slurry Substances 0.000 description 20
- 230000003111 delayed effect Effects 0.000 description 19
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 19
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 18
- 229910052742 iron Inorganic materials 0.000 description 18
- 238000001556 precipitation Methods 0.000 description 18
- 230000002441 reversible effect Effects 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 17
- 238000003556 assay Methods 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- 229910052708 sodium Inorganic materials 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 15
- 239000012530 fluid Substances 0.000 description 15
- -1 polytetra-fluoroethylene Polymers 0.000 description 15
- 229910001416 lithium ion Inorganic materials 0.000 description 14
- 239000011572 manganese Substances 0.000 description 14
- 230000001376 precipitating effect Effects 0.000 description 14
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 13
- 150000003863 ammonium salts Chemical class 0.000 description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 12
- 230000000903 blocking effect Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 12
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 230000033444 hydroxylation Effects 0.000 description 10
- 238000005805 hydroxylation reaction Methods 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 9
- 241000196324 Embryophyta Species 0.000 description 9
- 235000011941 Tilia x europaea Nutrition 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 239000011651 chromium Substances 0.000 description 9
- 238000010924 continuous production Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000004571 lime Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 9
- 238000011084 recovery Methods 0.000 description 9
- 229910000029 sodium carbonate Inorganic materials 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 239000012141 concentrate Substances 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000010985 leather Substances 0.000 description 8
- 229940071264 lithium citrate Drugs 0.000 description 8
- WJSIUCDMWSDDCE-UHFFFAOYSA-K lithium citrate (anhydrous) Chemical compound [Li+].[Li+].[Li+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WJSIUCDMWSDDCE-UHFFFAOYSA-K 0.000 description 8
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 8
- 230000008929 regeneration Effects 0.000 description 8
- 238000011069 regeneration method Methods 0.000 description 8
- 101000654471 Mus musculus NAD-dependent protein deacetylase sirtuin-1 Proteins 0.000 description 7
- 150000001450 anions Chemical class 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 230000001186 cumulative effect Effects 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- 238000002386 leaching Methods 0.000 description 7
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- 229910052748 manganese Inorganic materials 0.000 description 7
- 238000001139 pH measurement Methods 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 229910013553 LiNO Inorganic materials 0.000 description 6
- 125000002091 cationic group Chemical group 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 229910021653 sulphate ion Inorganic materials 0.000 description 6
- 101100464175 Candida albicans (strain SC5314 / ATCC MYA-2876) PIR32 gene Proteins 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- 101150045321 PIR3 gene Proteins 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000007865 diluting Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 241000209094 Oryza Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 150000003868 ammonium compounds Chemical class 0.000 description 4
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 230000002572 peristaltic effect Effects 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- HEHRHMRHPUNLIR-UHFFFAOYSA-N aluminum;hydroxy-[hydroxy(oxo)silyl]oxy-oxosilane;lithium Chemical compound [Li].[Al].O[Si](=O)O[Si](O)=O.O[Si](=O)O[Si](O)=O HEHRHMRHPUNLIR-UHFFFAOYSA-N 0.000 description 3
- 229910052822 amblygonite Inorganic materials 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 238000011217 control strategy Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 3
- 229910000271 hectorite Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 229910052629 lepidolite Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052670 petalite Inorganic materials 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000005297 pyrex Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000012066 reaction slurry Substances 0.000 description 3
- 229910021647 smectite Inorganic materials 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 229910000174 eucryptite Inorganic materials 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000009854 hydrometallurgy Methods 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 238000009533 lab test Methods 0.000 description 2
- 238000005339 levitation Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002179 total cell area Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 1
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- 101100244359 Arabidopsis thaliana AHA3 gene Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 241001131796 Botaurus stellaris Species 0.000 description 1
- 101100464170 Candida albicans (strain SC5314 / ATCC MYA-2876) PIR1 gene Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 101100269836 Mus musculus Ank1 gene Proteins 0.000 description 1
- 101100219710 Mus musculus Cbarp gene Proteins 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 101100231811 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HSP150 gene Proteins 0.000 description 1
- 101100464174 Schizosaccharomyces pombe (strain 972 / ATCC 24843) pir2 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002479 acid--base titration Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 239000003012 bilayer membrane Substances 0.000 description 1
- 208000028683 bipolar I disease Diseases 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- SUPUVLWGKPVHBQ-UHFFFAOYSA-M lithium sulfite Chemical compound [Li+].OS([O-])=O SUPUVLWGKPVHBQ-UHFFFAOYSA-M 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical compound NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/08—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/422—Electrodialysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/445—Ion-selective electrodialysis with bipolar membranes; Water splitting
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D7/00—Carbonates of sodium, potassium or alkali metals in general
- C01D7/07—Preparation from the hydroxides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
- C22B4/02—Light metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/14—Alkali metal compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/14—Alkali metal compounds
- C25B1/16—Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
- C25B15/023—Measuring, analysing or testing during electrolytic production
- C25B15/025—Measuring, analysing or testing during electrolytic production of electrolyte parameters
- C25B15/027—Temperature
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
- C25B15/023—Measuring, analysing or testing during electrolytic production
- C25B15/025—Measuring, analysing or testing during electrolytic production of electrolyte parameters
- C25B15/029—Concentration
- C25B15/031—Concentration pH
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/21—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms two or more diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2684—Electrochemical processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Automation & Control Theory (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Primary Cells (AREA)
Abstract
Description
の優先権の利益を主張し、当該出願は、その全体が本明細書において参考として援用され
る。
、かかる方法は、リチウム含有材料からの炭酸リチウムの調製に有用である。例えば、本
開示はまた、水酸化リチウムおよび硫酸リチウムなどの他のリチウム生成物の生成に関す
る。
り、現状の世界生産能力は、おそらく、予測される需要の増大を満足するものではない。
例えば、炭酸リチウムは、アルミニウム溶融塩電解における、ならびにエナメルおよびガ
ラスにおける添加剤として使用される。炭酸リチウムはまた、躁鬱病をコントロールする
ため、ニオブ酸リチウム、タンタル酸リチウムおよびフッ化リチウムのエレクトロニクス
グレードの結晶の作製において、ならびに最先端技術であるリチウム電池においても使用
され得る。
びに比較的長い耐用年数のため、いくつかの既存の用途および提案されている新しい用途
において、一般的に好まれる電池となっている。リチウム電池は、いくつかの用途、例え
ばラップトップコンピュータ、携帯電話、医療用の機器および埋入物(例えば、心臓ペー
スメーカー)に使用されている。また、リチウム電池は、新しい自動車、例えば、ハイブ
リッドカーおよび電気自動車(これらはともに、低排出物質および炭化水素燃料に対する
低依存性のため、環境にやさしく、「グリーン」である)の開発において注目されている
選択肢である。
チウム生産業者は限られた数しか存在しない。リチウム生成物に対する需要の高まりの直
接的な結果として、電池の製造業者からは、さらなる信頼性のある高品質のリチウム生成
物、例えば炭酸リチウムの供給元が求められつつある。
チウムは、例えば、リチウムを含有している苦汁を使用すること、または海水を使用する
ことにより調製され得る。提案されている一部の方法は、生成した炭酸リチウムの数回の
精製工程を伴うものである。例えば、炭酸ナトリウムでの沈殿が必要とされ、生成した炭
酸リチウムの数回の精製工程を伴う方法が提案されている。
存在している。
硫酸リチウムを含む水性組成物を、少なくとも一部の該硫酸リチウムが水酸化リチウム
に変換されるのに適した条件下で電気分解または電気透析に供することであって、ここで
、該電気分解または電気透析中、該硫酸リチウムを含む水性組成物は約1〜約4の値を有
するpHに少なくとも実質的に維持される、こと;および
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
リチウム化合物を含む水性組成物を、少なくとも一部の該リチウム化合物が水酸化リチ
ウムに変換されるのに適した条件下で電気分解または電気透析に供すること;および
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
酸焙焼リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性組
成物が得られるように水で浸出させること;
Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基と約4.5〜
約6.5のpHが得られるように反応させ、それにより該少なくとも1種類の金属イオン
を少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、該少なくとも1種類
の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種
類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させ
て、該少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;
該リチウム化合物を含む該水性組成物を電気透析または電気分解に供すること;ならび
に
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
酸焙焼リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性組
成物が得られるように水で浸出させること;
Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基と約4.5〜
約6.5のpHが得られるように反応させ、それにより該少なくとも1種類の金属イオン
を少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、該少なくとも1種類
の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種
類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させ
て、該少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;
該リチウム化合物を含む該水性組成物を本開示において規定される方法による電気透析
または電気分解に供すること;ならびに
本開示において規定したようにして該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
リチウム化合物を含む水性組成物を、該リチウム化合物の水酸化リチウムへの変換に好
適な条件下で、第1のエレクトロメンブレン(electromembrane)プロセ
スに供し、第1のリチウム低減水性流と第1の水酸化リチウム富化水性流を得ること;お
よび
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で第2のエレクトロメンブレンプロセスに供し、第2のリチウム低減水性
流と第2の水酸化リチウム富化水性流を得ること
を含む、水酸化リチウムの調製方法を提供する。
リチウム化合物を含む水性組成物を、該リチウム化合物の水酸化リチウムへの変換に好
適な条件下で、第1のエレクトロメンブレンプロセスに供して所定の程度まで進行させ、
第1のリチウム低減水性流と第1の水酸化リチウム富化水性流を得ること;および
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で第2のエレクトロメンブレンプロセスに供し、第2のリチウム低減水性
流と第2の水酸化リチウム富化水性流を得ること
を含む、水酸化リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、第1のエレクト
ロメンブレンプロセスに供し、第1のリチウム低減水性流と第1の水酸化リチウム富化水
性流を得ること;ならびに
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で第2のエレクトロメンブレンプロセスに供し、第2のリチウム低減水性
流と第2の水酸化リチウム富化水性流を得ること
を含む、水酸化リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、硫酸リチウムおよび
/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、第1のエレクトロ
メンブレンプロセスに供して所定の程度まで進行させ、第1のリチウム低減水性流と第1
の水酸化リチウム富化水性流を得ること;ならびに
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で第2のエレクトロメンブレンプロセスに供し、第2のリチウム低減水性
流と第2の水酸化リチウム富化水性流を得ること
を含む、水酸化リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、2コンパートメ
ントメンブレンプロセスを含む第1のエレクトロメンブレンプロセスに供し、第1のリチ
ウム低減水性流と第1の水酸化リチウム富化水性流を得ること;ならびに
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で3コンパートメントメンブレンプロセスを含む第2のエレクトロメンブ
レンプロセスに供し、第2のリチウム低減水性流と第2の水酸化リチウム富化水性流を得
ること
を含む、水酸化リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、2コンパートメ
ントメンブレンプロセスを含む第1のエレクトロメンブレンプロセスに供して所定の程度
まで進行させ、第1のリチウム低減水性流と第1の水酸化リチウム富化水性流を得ること
;ならびに
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で3コンパートメントメンブレンプロセスを含む第2のエレクトロメンブ
レンプロセスに供し、第2のリチウム低減水性流と第2の水酸化リチウム富化水性流を得
ること
を含む、水酸化リチウムの調製方法も包含される。
リチウム化合物を含む水性組成物を、該リチウム化合物の水酸化リチウムへの変換に好
適な条件下で、陽イオン交換膜によって陰極液コンパートメントと隔てられた陽極液コン
パートメントを備えた第1の電気化学セル内で行なわれる2コンパートメントモノポーラ
またはバイポーラ膜電解プロセスに供し、第1のリチウム低減水性流と第1の水酸化リチ
ウム富化水性流を得ること;および
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で、陰イオン交換膜によって中央コンパートメントと隔てられた陽極液コ
ンパートメントおよび陽イオン交換膜によって該中央コンパートメントと隔てられた陰極
液コンパートメントを備えた第2の電気化学セル内で行なわれる3コンパートメントモノ
ポーラまたはバイポーラ膜電解プロセスに供し、第2のリチウム低減水性流と第2の水酸
化リチウム富化水性流を得ること
を含む、水酸化リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、陽イオン交換膜
によって陰極液コンパートメントと隔てられた陽極液コンパートメントを備えた第1の電
気化学セル内で行なわれる2コンパートメントモノポーラまたはバイポーラ膜電解プロセ
スに供し、第1のリチウム低減水性流と第1の水酸化リチウム富化水性流を得ること;な
らびに
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で、陰イオン交換膜によって中央コンパートメントと隔てられた陽極液コ
ンパートメントおよび陽イオン交換膜によって該中央コンパートメントと隔てられた陰極
液コンパートメントを備えた第2の電気化学セル内で行なわれる3コンパートメントモノ
ポーラまたはバイポーラ膜電解プロセスに供し、第2のリチウム低減水性流と第2の水酸
化リチウム富化水性流を得ること
を含む、水酸化リチウムの調製方法も包含される。
リチウム化合物を含む水性組成物を、該リチウム化合物の水酸化リチウムへの変換に好
適な条件下で、陽イオン交換膜によって陰極液コンパートメントと隔てられた陽極液コン
パートメントを備えた第1の電気化学セル内で行なわれる2コンパートメントモノポーラ
またはバイポーラ膜電解プロセスに供して所定の程度まで進行させ、第1のリチウム低減
水性流と第1の水酸化リチウム富化水性流を得ること;および
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で、陰イオン交換膜によって中央コンパートメントと隔てられた陽極液コ
ンパートメントおよび陽イオン交換膜によって該中央コンパートメントと隔てられた陰極
液コンパートメントを備えた第2の電気化学セル内で行なわれる3コンパートメントモノ
ポーラまたはバイポーラ膜電解プロセスに供し、第2のリチウム低減水性流と第2の水酸
化リチウム富化水性流を得ること
を含む、水酸化リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、陽イオン交換膜
によって陰極液コンパートメントと隔てられた陽極液コンパートメントを備えた第1の電
気化学セル内で行なわれる2コンパートメントモノポーラまたはバイポーラ膜電解プロセ
スに供して所定の程度まで進行させ、第1のリチウム低減水性流と第1の水酸化リチウム
富化水性流を得ること;ならびに
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で、陰イオン交換膜によって中央コンパートメントと隔てられた陽極液コ
ンパートメントおよび陽イオン交換膜によって該中央コンパートメントと隔てられた陰極
液コンパートメントを備えた第2の電気化学セル内で行なわれる3コンパートメントモノ
ポーラまたはバイポーラ膜電解プロセスに供し、第2のリチウム低減水性流と第2の水酸
化リチウム富化水性流を得ること
を含む、水酸化リチウムの調製方法も包含される。
リチウム化合物を含む水性組成物を、該リチウム化合物の水酸化リチウムへの変換に好
適な条件下で、第1のエレクトロメンブレンプロセスに供し、第1のリチウム低減水性流
と第1の水酸化リチウム富化水性流を得ること;
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で第2のエレクトロメンブレンプロセスに供し、第2のリチウム低減水性
流と第2の水酸化リチウム富化水性流を得ること;および
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
リチウム化合物を含む水性組成物を、該リチウム化合物の水酸化リチウムへの変換に好
適な条件下で、第1のエレクトロメンブレンプロセスに供して所定の程度まで進行させ、
第1のリチウム低減水性流と第1の水酸化リチウム富化水性流を得ること;
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で第2のエレクトロメンブレンプロセスに供し、第2のリチウム低減水性
流と第2の水酸化リチウム富化水性流を得ること;
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、第1のエレクト
ロメンブレンプロセスに供し、第1のリチウム低減水性流と第1の水酸化リチウム富化水
性流を得ること;
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で第2のエレクトロメンブレンプロセスに供し、第2のリチウム低減水性
流と第2の水酸化リチウム富化水性流を得ること;
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、第1のエレクト
ロメンブレンプロセスに供して所定の程度まで進行させ、第1のリチウム低減水性流と第
1の水酸化リチウム富化水性流を得ること;
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で第2のエレクトロメンブレンプロセスに供し、第2のリチウム低減水性
流と第2の水酸化リチウム富化水性流を得ること;ならびに
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、2コンパートメ
ントメンブレンプロセスを含む第1のエレクトロメンブレンプロセスに供し、第1のリチ
ウム低減水性流と第1の水酸化リチウム富化水性流を得ること;
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で3コンパートメントメンブレンプロセスを含む第2のエレクトロメンブ
レンプロセスに供し、第2のリチウム低減水性流と第2の水酸化リチウム富化水性流を得
ること;ならびに
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、2コンパートメ
ントメンブレンプロセスを含む第1のエレクトロメンブレンプロセスに供して所定の程度
まで進行させ、第1のリチウム低減水性流と第1の水酸化リチウム富化水性流を得ること
;
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で3コンパートメントメンブレンプロセスを含む第2のエレクトロメンブ
レンプロセスに供し、第2のリチウム低減水性流と第2の水酸化リチウム富化水性流を得
ること;ならびに
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法も包含される。
リチウム化合物を含む水性組成物を、該リチウム化合物の水酸化リチウムへの変換に好
適な条件下で、陽イオン交換膜によって陰極液コンパートメントと隔てられた陽極液コン
パートメントを備えた第1の電気化学セル内で行なわれる2コンパートメントモノポーラ
またはバイポーラ膜電解プロセスに供し、第1のリチウム低減水性流と第1の水酸化リチ
ウム富化水性流を得ること;
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で、陰イオン交換膜によって中央コンパートメントと隔てられた陽極液コ
ンパートメントおよび陽イオン交換膜によって該中央コンパートメントと隔てられた陰極
液コンパートメントを備えた第2の電気化学セル内で行なわれる3コンパートメントモノ
ポーラまたはバイポーラ膜電解プロセスに供し、第2のリチウム低減水性流と第2の水酸
化リチウム富化水性流を得ること;ならびに
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、陽イオン交換膜
によって陰極液コンパートメントと隔てられた陽極液コンパートメントを備えた第1の電
気化学セル内で行なわれる2コンパートメントモノポーラまたはバイポーラ膜電解プロセ
スに供し、第1のリチウム低減水性流と第1の水酸化リチウム富化水性流を得ること;
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で、陰イオン交換膜によって中央コンパートメントと隔てられた陽極液コ
ンパートメントおよび陽イオン交換膜によって該中央コンパートメントと隔てられた陰極
液コンパートメントを備えた第2の電気化学セル内で行なわれる3コンパートメントモノ
ポーラまたはバイポーラ膜電解プロセスに供し、第2のリチウム低減水性流と第2の水酸
化リチウム富化水性流を得ること;ならびに
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法も包含される。
リチウム化合物を含む水性組成物を、該リチウム化合物の水酸化リチウムへの変換に好
適な条件下で、陽イオン交換膜によって陰極液コンパートメントと隔てられた陽極液コン
パートメントを備えた第1の電気化学セル内で行なわれる2コンパートメントモノポーラ
またはバイポーラ膜電解プロセスに供して所定の程度まで進行させ、第1のリチウム低減
水性流と第1の水酸化リチウム富化水性流を得ること;
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で、陰イオン交換膜によって中央コンパートメントと隔てられた陽極液コ
ンパートメントおよび陽イオン交換膜によって該中央コンパートメントと隔てられた陰極
液コンパートメントを備えた第2の電気化学セル内で行なわれる3コンパートメントモノ
ポーラまたはバイポーラ膜電解プロセスに供し、第2のリチウム低減水性流と第2の水酸
化リチウム富化水性流を得ること;ならびに
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法も包含される。
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、該硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、陽イオン交換膜
によって陰極液コンパートメントと隔てられた陽極液コンパートメントを備えた第1の電
気化学セル内で行なわれる2コンパートメントモノポーラまたはバイポーラ膜電解プロセ
スに供して所定の程度まで進行させ、第1のリチウム低減水性流と第1の水酸化リチウム
富化水性流を得ること;
第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製されるの
に好適な条件下で、陰イオン交換膜によって中央コンパートメントと隔てられた陽極液コ
ンパートメントおよび陽イオン交換膜によって該中央コンパートメントと隔てられた陰極
液コンパートメントを備えた第2の電気化学セル内で行なわれる3コンパートメントモノ
ポーラまたはバイポーラ膜電解プロセスに供し、第2のリチウム低減水性流と第2の水酸
化リチウム富化水性流を得ること;ならびに
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法も包含される。
水酸化リチウムを含む水性組成物をCO2と、該CO2を該組成物中にスパージングす
ることにより反応させ(該スパージングは約10〜約12.5のpHで行なわれる)、そ
れにより、炭酸リチウムを含む沈殿物を得ること;
少なくとも一部の該沈殿物を清澄器内に挿入して重炭酸リチウムを含む上清みと該炭酸
リチウムを含む固形分とを得、該固形分を該上清みから分離すること;および
該上清みを、該重炭酸リチウムが炭酸リチウムに少なくとも部分変換されるように少な
くとも約85℃の温度で加熱すること
を含む、炭酸リチウムの調製方法を提供する。
リチウム化合物を含む水性組成物を、少なくとも一部の該リチウム化合物が水酸化リチ
ウムに変換されるのに適した条件下で電気透析または電気分解に供すること、ここで、該
電気透析または電気分解中、該リチウム化合物を含む該水性組成物は、約9.5〜約12
.5の値を有するpHに少なくとも実質的に維持される;および
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
リチウム化合物を含む水性組成物を、少なくとも一部の該リチウム化合物が水酸化リチ
ウムに変換されるのに適した条件下で電気透析または電気分解に供すること、ここで、該
電気透析または電気分解中、リチウム化合物を含む水性組成物は7より大きいpHを有す
る;および
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
酸焙焼リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性組
成物が得られるように水で浸出させること;
Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基と約4.5〜
約6.5のpHが得られるように反応させ、それにより該少なくとも1種類の金属イオン
を少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、該少なくとも1種類
の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種
類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させ
て、該少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;
該リチウム化合物を含む該水性組成物を、少なくとも一部の該リチウム化合物が水酸化
リチウムに変換されるのに適した条件下で電気透析または電気分解に供すること;ならび
に
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
イオンを含む水性組成物が得られるように水で浸出させること;
Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基と約4.5〜
約6.5のpHが得られるように反応させ、それにより該少なくとも1種類の金属イオン
を少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、該少なくとも1種類
の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種
類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させ
て、該少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;
該リチウム化合物を含む該水性組成物を、少なくとも一部の該リチウム化合物が水酸化
リチウムに変換されるのに適した条件下で電気透析または電気分解に供すること;ならび
に
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
イオンを含む水性組成物が得られるように水で浸出させること;
任意選択で、Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基
と約4.5〜約6.5のpHが得られるように反応させること;
該少なくとも1種類の金属イオンを少なくとも1種類の水酸化物の形態で少なくとも部
分沈殿させて、該少なくとも1種類の水酸化物を含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種
類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させ
て、該少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;
該リチウム化合物を含む該水性組成物を、少なくとも一部の該リチウム化合物が水酸化
リチウムに変換されるのに適した条件下で電気透析または電気分解に供すること;ならび
に
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
硫酸リチウムを含む水性組成物を、少なくとも一部の該硫酸リチウムが水酸化リチウム
に変換されるのに適した条件下で電気透析または電気分解に供すること、ここで、該電気
透析または電気分解中、該硫酸リチウムを含む水性組成物は、約9.5〜約12.5の値
を有するpHに少なくとも実質的に維持される;および
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
硫酸リチウムを含む水性組成物を、少なくとも一部の該硫酸リチウムが水酸化リチウム
に変換されるのに適した条件下で電気透析または電気分解に供すること、ここで、該電気
透析または電気分解中、該硫酸リチウムを含む水性組成物は7より大きいpHを有する;
および
該水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法を提供する。
リチウム化合物を含む水性組成物を、少なくとも一部の該リチウム化合物が水酸化リチ
ウムに変換されるのに適した条件下で電気透析または電気分解に供すること
を含む、水酸化リチウムの調製方法を提供する。
リチウム化合物を含む水性組成物を、少なくとも一部の該リチウム化合物が水酸化リチ
ウムに変換されるのに適した条件下で電気透析または電気分解に供することを含み、該電
気透析または電気分解中、該リチウム化合物を含む該水性組成物は、約9.5〜約12.
5の値を有するpHに少なくとも実質的に維持される、水酸化リチウムの調製方法を提供
する。
硫酸リチウムを含む水性組成物を、少なくとも一部の該硫酸リチウムが水酸化リチウム
に変換されるのに適した条件下で電気透析または電気分解に供することを含み、該電気透
析または電気分解中、硫酸リチウムを含む水性組成物は、約9.5〜約12.5の値を有
するpHに少なくとも実質的に維持される、水酸化リチウムの調製方法を提供する。
リチウム化合物を含む水性組成物を、少なくとも一部の該リチウム化合物が水酸化リチ
ウムに変換されるのに適した条件下で電気透析または電気分解に供することを含み、該電
気透析または電気分解中、リチウム化合物を含む水性組成物は7より大きいpHを有する
、水酸化リチウムの調製方法を提供する。
硫酸リチウムを含む水性組成物を、少なくとも一部の該硫酸リチウムが水酸化リチウム
に変換されるのに適した条件下で電気透析または電気分解に供することを含み、該電気透
析または電気分解中、硫酸リチウムを含む水性組成物は7より大きいpHを有する、水酸
化リチウムの調製方法を提供する。
酸焙焼リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性組
成物が得られるように水で浸出させること;
Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基と約4.5〜
約6.5のpHが得られるように反応させ、それにより該少なくとも1種類の金属イオン
を少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、該少なくとも1種類
の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;ならびに
該リチウム化合物を含む該水性組成物を、少なくとも一部の該リチウム化合物が水酸化
リチウムに変換されるのに適した条件下で電気透析または電気分解に供すること
を含む、水酸化リチウムの調製方法を提供する。
塩基焼成リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性
組成物が得られるように水で浸出させること;
Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基と約4.5〜
約6.5のpHが得られるように反応させ、それにより該少なくとも1種類の金属イオン
を少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、該少なくとも1種類
の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種
類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させ
て、該少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;ならびに
該リチウム化合物を含む該水性組成物を、少なくとも一部の該リチウム化合物が水酸化
リチウムに変換されるのに適した条件下で電気透析または電気分解に供すること
を含む、水酸化リチウムの調製方法を提供する。
塩基焼成リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性
組成物が得られるように水で浸出させること;
任意選択で、Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基
と約4.5〜約6.5のpHが得られるように反応させること
該少なくとも1種類の金属イオンを少なくとも1種類の水酸化物の形態で少なくとも部
分沈殿させて、該少なくとも1種類の水酸化物を含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種
類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させ
て、該少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;ならびに
該リチウム化合物を含む該水性組成物を、少なくとも一部の該リチウム化合物が水酸化
リチウムに変換されるのに適した条件下で電気透析または電気分解に供すること
を含む、水酸化リチウムの調製方法を提供する。
酸焙焼リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性組
成物が得られるように水で浸出させること;
Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基と約4.5〜
約6.5のpHが得られるように反応させ、それにより該少なくとも1種類の金属イオン
を少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、該少なくとも1種類
の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種
類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させ
て、該少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;ならびに
該リチウム化合物を含む該水性組成物を、少なくとも一部の該リチウム化合物が水酸化
リチウムに変換されるのに適した条件下で電気透析または電気分解に供すること
を含む、水酸化リチウムの調製方法を提供する。
酸焙焼リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性組
成物が得られるように水で浸出させること、ここで、該リチウム含有材料は、H2SO4
と事前に反応させた材料である;
Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基と約4.5〜
約6.5のpHが得られるように反応させ、それにより該少なくとも1種類の金属イオン
を少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、該少なくとも1種類
の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;ならびに
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが組成物から少なくとも
部分除去され、それにより硫酸リチウムを含む水性組成物が得られるように接触させるこ
と
を含む、硫酸リチウムの調製方法を提供する。
酸焙焼リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性組
成物が得られるように水で浸出させること、ここで、該リチウム含有材料は、H2SO4
と事前に反応させた材料である;
Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基と約4.5〜
約6.5のpHが得られるように反応させ、それにより該少なくとも1種類の金属イオン
を少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、該少なくとも1種類
の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種類の金属イ
オンを少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させて、該少なくとも1種
類の炭酸塩を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;ならびに
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが組成物から少なくとも
部分除去され、それにより硫酸リチウムを含む水性組成物が得られるように接触させるこ
と
を含む、硫酸リチウムの調製方法を提供する。
塩基焼成リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性
組成物が得られるように水で浸出させること;
Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基と約4.5〜
約6.5のpHが得られるように反応させ、それにより該少なくとも1種類の金属イオン
を少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、該少なくとも1種類
の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の該少なくとも1種類
の金属イオンを有する水性組成物とが得られるようにし、該水性組成物を該沈殿物から分
離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種
類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させ
て、該少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;
該リチウム化合物を含む該水性組成物を、少なくとも一部の該リチウム化合物が水酸化
リチウムに変換されるのに適した条件下で電気透析または電気分解に供すること;ならび
に
該水酸化リチウムを炭酸リチウムに変換すること
を含むものであるか;
あるいは
塩基焼成リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性
組成物が得られるように水で浸出させること;
任意選択で、Li+および該少なくとも1種類の金属イオンを含む該水性組成物を塩基
と約4.5〜約6.5のpHが得られるように反応させること;
該少なくとも1種類の金属イオンを少なくとも1種類の水酸化物の形態で少なくとも部
分沈殿させて、該少なくとも1種類の水酸化物を含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
任意選択で、Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオ
ンを有する該水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応
させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種
類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈殿させ
て、該少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んでおり、低
減された含量の該少なくとも1種類の金属イオンを有する水性組成物とが得られるように
し、該水性組成物を該沈殿物から分離すること;
Li+を含んでおり、該低減された含量の該少なくとも1種類の金属イオンを有する該
水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが該組成物から少なくと
も部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触させ
ること;
該リチウム化合物を含む該水性組成物を、少なくとも一部の該リチウム化合物が水酸化
リチウムに変換されるのに適した条件下で電気透析または電気分解に供すること;ならび
に
該水酸化リチウムを炭酸リチウムに変換すること
を含むものである、炭酸リチウムの調製を提供する。
硫酸リチウムを含む水性組成物を、少なくとも一部の該硫酸リチウムが水酸化リチウム
に変換されるのに適した条件下で電気分解または電気透析に供することを含み、該電気分
解中、該硫酸リチウムを含む水性組成物は7より大きいpHを有する、水酸化リチウムの
調製方法を提供する。
リチウム化合物を含む水性組成物を、少なくとも一部の該リチウム化合物が水酸化リチ
ウムに変換されるのに適した条件下で電気分解または電気透析に供することを含み、該電
気分解または電気透析中、硫酸リチウムを含む水性組成物は7より大きいpHを有する、
水酸化リチウムの調製方法を提供する。
本発明は、例えば、以下の項目を提供する。
(項目1)
硫酸リチウムを含む水性組成物を、少なくとも一部の前記硫酸リチウムが水酸化リチウム
に変換されるのに適した条件下で電気分解または電気透析に供することであって、ここで
、前記電気分解または前記電気透析中、前記硫酸リチウムを含む水性組成物は約1〜約4
の値を有するpHに少なくとも実質的に維持される、こと;および
前記水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法。
(項目2)
前記硫酸リチウムを含む水性組成物が電気分解に供される、項目1に記載の方法。
(項目3)
前記硫酸リチウムを含む水性組成物がバイポーラ膜電気透析プロセスに供される、項目1
に記載の方法。
(項目4)
前記硫酸リチウムを含む水性組成物がモノポーラまたはバイポーラ膜電解プロセスに供さ
れる、項目1に記載の方法。
(項目5)
前記硫酸リチウムを含む水性組成物がモノポーラまたはバイポーラ3コンパートメント膜
電解プロセスに供される、項目1に記載の方法。
(項目6)
前記電気分解中、前記pHが約2〜約4の値または約2の値に少なくとも実質的に維持さ
れる、項目2、3、4または5に記載の方法。
(項目7)
前記硫酸リチウムを含む水性組成物が電気透析に供される、項目1に記載の方法。
(項目8)
前記硫酸リチウムを含む水性組成物がバイポーラ3コンパートメント電気透析プロセスに
供される、項目1に記載の方法。
(項目9)
前記電気透析中、前記pHが約1〜約2の値に少なくとも実質的に維持される、項目7ま
たは8に記載の方法。
(項目10)
3コンパートメント膜電解セル内で行なわれる、項目1に記載の方法。
(項目11)
モノポーラまたはバイポーラ3コンパートメント膜電解セル内で行なわれる、項目1に記
載の方法。
(項目12)
前記硫酸リチウムを中央コンパートメント内に、水酸化リチウムを含む水性組成物を陰極
コンパートメント内に、硫酸を含む水性組成物を陽極コンパートメント内に導入すること
により行なわれる、項目1に記載の方法。
(項目13)
前記方法中、前記水酸化リチウムを含む水性組成物が、約35〜約70g/Lの水酸化リ
チウム濃度に少なくとも実質的に維持される、項目12に記載の方法。
(項目14)
前記方法中、前記水酸化リチウムを含む水性組成物が、約45〜約65g/Lの水酸化リ
チウム濃度に少なくとも実質的に維持される、項目12に記載の方法。
(項目15)
前記方法中、前記硫酸を含む水性組成物が、約20〜約50g/Lの硫酸濃度に少なくと
も実質的に維持される、項目12〜14のいずれか1項に記載の方法。
(項目16)
前記方法中、前記硫酸を含む水性組成物が、約25〜約35g/Lの硫酸濃度に少なくと
も実質的に維持される、項目12〜14のいずれか1項に記載の方法。
(項目17)
前記方法中、前記硫酸リチウムを含む水性組成物が、約10〜約20g/Lの硫酸リチウ
ム濃度に少なくとも実質的に維持される、項目12〜16のいずれか1項に記載の方法。
(項目18)
前記方法中、前記硫酸リチウムを含む水性組成物が、約13〜約17g/Lの硫酸リチウ
ム濃度に少なくとも実質的に維持される、項目12〜16のいずれか1項に記載の方法。
(項目19)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約20〜約80℃の値に少なく
とも実質的に維持される、項目1〜18のいずれか1項に記載の方法。
(項目20)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約20〜約60℃の値に少なく
とも実質的に維持される、項目1〜18のいずれか1項に記載の方法。
(項目21)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約30〜約40℃の値に少なく
とも実質的に維持される、項目1〜18のいずれか1項に記載の方法。
(項目22)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約50〜約60℃の値に少なく
とも実質的に維持される、項目1〜18のいずれか1項に記載の方法。
(項目23)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約46〜約54℃の値に少なく
とも実質的に維持される、項目1〜18のいずれか1項に記載の方法。
(項目24)
前記方法中、電流が約400〜約3000A/m2の密度に少なくとも実質的に維持され
る、項目1〜23のいずれか1項に記載の方法。
(項目25)
前記方法中、電流が約400〜約2000A/m2の密度に少なくとも実質的に維持され
る、項目1〜23のいずれか1項に記載の方法。
(項目26)
前記方法中、電流が約400〜約1000A/m2の密度に少なくとも実質的に維持され
る、項目1〜23のいずれか1項に記載の方法。
(項目27)
前記方法中、電流が約400〜約600A/m2の密度に少なくとも実質的に維持される
、項目1〜23のいずれか1項に記載の方法。
(項目28)
前記方法中、電流が約425〜約575A/m2の密度に少なくとも実質的に維持される
、項目1〜23のいずれか1項に記載の方法。
(項目29)
前記方法中、電流が約450〜約550A/m2または約475〜約525A/m2の密
度に少なくとも実質的に維持される、項目1〜23のいずれか1項に記載の方法。
(項目30)
前記方法中、電流が一定値に少なくとも実質的に維持される、項目1〜29のいずれか1
項に記載の方法。
(項目31)
前記方法中、電圧が一定値に少なくとも実質的に維持される、項目1〜29のいずれか1
項に記載の方法。
(項目32)
硫酸リチウムを含む水性組成物を、少なくとも一部の前記硫酸リチウムが水酸化リチウム
に変換されるのに適した条件下で電気分解または電気透析に供することであって、ここで
、前記電気分解または前記電気透析中、前記硫酸リチウムを含む水性組成物は約1〜約4
の値を有するpHに少なくとも実質的に維持される、こと
前記水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法。
(項目33)
前記リチウム化合物を含む前記水性組成物が電気分解に供される、項目32に記載の方法
。
(項目34)
前記リチウム化合物を含む前記水性組成物がモノポーラまたはバイポーラ膜電解プロセス
に供される、項目32に記載の方法。
(項目35)
前記リチウム化合物を含む前記水性組成物がモノポーラまたはバイポーラ3コンパートメ
ント膜電解プロセスに供される、項目32に記載の方法。
(項目36)
前記電気分解中、前記pHが約2〜約4の値に少なくとも実質的に維持される、項目33
、34または35に記載の方法。
(項目37)
前記電気分解中、前記pHが約2の値に少なくとも実質的に維持される、項目33、34
または35に記載の方法。
(項目38)
前記リチウム化合物を含む前記水性組成物が電気透析に供される、項目32に記載の方法
。
(項目39)
モノポーラまたはバイポーラ3コンパートメント膜電解セル内で行なわれる、項目32に
記載の方法。
(項目40)
前記電気透析中、前記pHが約1〜約2の値に少なくとも実質的に維持される、項目38
または39に記載の方法。
(項目41)
3コンパートメント膜電解セル内で行なわれる、項目32〜37のいずれか1項に記載の
方法。
(項目42)
モノポーラまたはバイポーラ3コンパートメント膜電解セル内で行なわれる、項目32〜
37のいずれか1項に記載の方法。
(項目43)
前記リチウム化合物を含む前記水性組成物を中央コンパートメント内に、水酸化リチウム
を含む水性組成物を陰極コンパートメント内に、酸を含む水性組成物を陽極コンパートメ
ント内に導入することにより行なわれる、項目32〜42のいずれか1項に記載の方法。
(項目44)
前記方法中、前記水酸化リチウムを含む水性組成物が、約35〜約70g/Lの水酸化リ
チウム濃度に少なくとも実質的に維持される、項目43に記載の方法。
(項目45)
前記方法中、前記水酸化リチウムを含む水性組成物が、約45〜約65g/Lの水酸化リ
チウム濃度に少なくとも実質的に維持される、項目43に記載の方法。
(項目46)
前記方法中、前記酸を含む水性組成物が、約20〜約40g/Lの硫酸濃度に少なくとも
実質的に維持された硫酸を含む水性組成物である、項目43〜45のいずれか1項に記載
の方法。
(項目47)
前記方法中、前記酸を含む水性組成物が、約25〜約35g/Lの硫酸濃度に少なくとも
実質的に維持された硫酸を含む水性組成物である、項目43〜45のいずれか1項に記載
の方法。
(項目48)
前記リチウム化合物を含む前記水性組成物が、硫酸リチウム、塩化リチウム、フッ化リチ
ウム、炭酸リチウム、重炭酸リチウム、酢酸リチウム、ステアリン酸リチウムまたはクエ
ン酸リチウムを含むものである、項目43〜45のいずれか1項に記載の方法。
(項目49)
前記リチウム化合物を含む前記水性組成物が硫酸リチウムを含むものである、項目48に
記載の方法。
(項目50)
前記方法中、前記硫酸リチウムを含む水性組成物が、約10〜約20g/Lの硫酸リチウ
ム濃度に少なくとも実質的に維持される、項目49に記載の方法。
(項目51)
前記方法中、前記硫酸リチウムを含む水性組成物が、約13〜約17g/Lの硫酸リチウ
ム濃度に少なくとも実質的に維持される、項目49に記載の方法。
(項目52)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約20〜約80℃の値に少なく
とも実質的に維持される、項目49〜51のいずれか1項に記載の方法。
(項目53)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約20〜約60℃の値に少なく
とも実質的に維持される、項目49〜51のいずれか1項に記載の方法。
(項目54)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約30〜約40℃の値に少なく
とも実質的に維持される、項目49〜51のいずれか1項に記載の方法。
(項目55)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約50〜約60℃の値に少なく
とも実質的に維持される、項目49〜51のいずれか1項に記載の方法。
(項目56)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約46〜約54℃の値に少なく
とも実質的に維持される、項目49〜51のいずれか1項に記載の方法。
(項目57)
前記方法中、電流が約400〜約1500A/m2の密度に少なくとも実質的に維持され
る、項目32〜56のいずれか1項に記載の方法。
(項目58)
前記方法中、電流が約400〜約1200A/m2の密度に少なくとも実質的に維持され
る、項目32〜56のいずれか1項に記載の方法。
(項目59)
前記方法中、電流が約400〜約1000A/m2の密度に少なくとも実質的に維持され
る、項目32〜56のいずれか1項に記載の方法。
(項目60)
前記方法中、電流が約400〜約600A/m2の密度に少なくとも実質的に維持される
、項目32〜56のいずれか1項に記載の方法。
(項目61)
前記方法中、電流が約425〜約575A/m2の密度に少なくとも実質的に維持される
、項目32〜56のいずれか1項に記載の方法。
(項目62)
前記方法中、電流が約450〜約550A/m2の密度に少なくとも実質的に維持される
、項目32〜56のいずれか1項に記載の方法。
(項目63)
前記方法中、電流が一定値に少なくとも実質的に維持される、項目32〜56のいずれか
1項に記載の方法。
(項目64)
前記方法中、電圧が一定値に少なくとも実質的に維持される、項目32〜56のいずれか
1項に記載の方法。
(項目65)
前記方法中に使用される陽極液がアンモニアを含むものである、項目1〜64のいずれか
1項に記載の方法。
(項目66)
前記方法中に使用される陽極液がアンモニアを含むものであり、それによりアンモニウム
塩が生じる、項目1〜64のいずれか1項に記載の方法。
(項目67)
さらに、アンモニアを陽極またはその隣接部に添加することを含み、前記陽極は前記方法
に使用されるものである、項目1〜64のいずれか1項に記載の方法。
(項目68)
さらに、アンモニアを陽極またはその隣接部に添加し、それによりアンモニウム塩を生じ
させることを含み、ここで、前記陽極は前記方法に使用されるものである、項目1〜64
のいずれか1項に記載の方法。
(項目69)
さらに、アンモニアを前記方法に使用される陽極液中に添加することを含む、項目1〜6
4のいずれか1項に記載の方法。
(項目70)
さらに、アンモニアを前記方法に使用される陽極液中に添加し、それによりアンモニウム
塩を生じさせることを含む、項目1〜64のいずれか1項に記載の方法。
(項目71)
前記アンモニウム塩が(NH4)2SO4である、項目66、68および70のいずれか
1項に記載の方法。
(項目72)
リチウム化合物を含む水性組成物を、少なくとも一部の前記リチウム化合物が水酸化リチ
ウムに変換されるのに適した条件下で電気分解または電気透析に供すること、
前記水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法。
(項目73)
3コンパートメント膜電解セル内で行なわれる、項目72に記載の方法。
(項目74)
前記リチウム化合物を含む前記水性組成物を中央コンパートメント内に、水酸化リチウム
を含む水性組成物を陰極コンパートメント内に、NH3を含む水性組成物を陽極コンパー
トメント内に導入することにより行なわれる、項目72に記載の方法。
(項目75)
前記リチウム化合物を含む前記水性組成物が、硫酸リチウム、塩化リチウム、フッ化リチ
ウム、炭酸リチウム、重炭酸リチウム、酢酸リチウム、ステアリン酸リチウムまたはクエ
ン酸リチウムを含むものである、項目72または73に記載の方法。
(項目76)
前記リチウム化合物を含む前記水性組成物が硫酸リチウムを含むものである、項目75に
記載の方法。
(項目77)
前記リチウム化合物を含む前記水性組成物がさらにNa+を含むものである、項目72〜
76のいずれか1項に記載の方法。
(項目78)
前記方法中、前記硫酸リチウムを含む水性組成物の温度が約20〜約80℃の値に少なく
とも実質的に維持される、項目75または76に記載の方法。
(項目79)
前記方法中に使用される陽極液がアンモニアを含むものである、項目72または73に記
載の方法。
(項目80)
前記方法中に使用される陽極液がアンモニアを含むものであり、それによりアンモニウム
塩が生じる、項目72または73に記載の方法。
(項目81)
さらに、アンモニアを陽極またはその隣接部に添加することを含み、前記陽極は前記方法
に使用されるものである、項目72または73に記載の方法。
(項目82)
さらに、アンモニアを陽極またはその隣接部に添加し、それによりアンモニウム塩を生じ
させることを含み、ここで、前記陽極は前記方法に使用されるものである、項目72また
は73に記載の方法。
(項目83)
さらに、アンモニアを前記方法に使用される陽極液中に添加することを含む、項目72ま
たは73に記載の方法。
(項目84)
さらに、アンモニアを前記方法に使用される陽極液中に添加し、それによりアンモニウム
塩を生じさせることを含む、項目72または73に記載の方法。
(項目85)
前記アンモニウム塩が(NH4)2SO4である、項目80、82および84のいずれか
1項に記載の方法。
(項目86)
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、前記硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、2コンパートメ
ントメンブレンプロセスを含む第1のエレクトロメンブレンプロセスに供し、第1のリチ
ウム低減水性流と第1の水酸化リチウム富化水性流を得ること;ならびに
前記第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製され
るのに好適な条件下で、3コンパートメントメンブレンプロセスを含む第2のエレクトロ
メンブレンプロセスに供し、第2のリチウム低減水性流と第2の水酸化リチウム富化水性
流を得ること;ならびに
前記水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法。
(項目87)
前記第1のエレクトロメンブレンプロセス中、水酸化リチウムを調製するための前記硫酸
リチウムおよび/または重硫酸リチウムの変換を所定の程度まで進行させる、項目86に
記載の方法。
(項目88)
前記第1のエレクトロメンブレンプロセスが2コンパートメントモノポーラまたはバイポ
ーラ膜電解プロセスを含む、項目86または85に記載の方法。
(項目89)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセスが、陽イオン交換膜
によって陰極液コンパートメントと隔てられた陽極液コンパートメントを備えた第1の電
気化学セル内で行なわれる、項目88に記載の方法。
(項目90)
前記陽イオン交換膜がペルフルオリネートスルホン酸を含むものである、項目89に記載
の方法。
(項目91)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、硫酸リチウムお
よび/または重硫酸リチウムを含む水性流が前記陽極液コンパートメント内に導入され、
前記第1のリチウム低減水性流が前記陽極液コンパートメントから取り出され、前記第1
の水酸化リチウム富化水性流が前記陰極液コンパートメントから取り出される、項目89
または90に記載の方法。
(項目92)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記硫酸リチウ
ムおよび/または重硫酸リチウムの水酸化リチウムへの変換を、ヒドロキシド電流効率が
それ以上少なくとも実質的に維持されなくなり、そのため低下するまで進行させる、項目
91に記載の方法。
(項目93)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記硫酸リチウ
ムおよび/または重硫酸リチウムの水酸化リチウムへの変換を、前記陽極液コンパートメ
ントにおけるpHが約0.4〜約1.0の値になるまで進行させる、項目91に記載の方
法。
(項目94)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記硫酸リチウ
ムおよび/または重硫酸リチウムの水酸化リチウムへの変換を、前記陽極液コンパートメ
ントにおけるpHが約0.5〜約0.7の値になるまで進行させる、項目91に記載の方
法。
(項目95)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陰極液コンパ
ートメントにおいて、水酸化リチウムが約2M〜約4Mの濃度に少なくとも実質的に維持
される、項目91〜94のいずれか1項に記載の方法。
(項目96)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陰極液コンパ
ートメントにおいて、水酸化リチウムが約3Mの濃度に少なくとも実質的に維持される、
項目91〜94のいずれか1項に記載の方法。
(項目97)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、硫酸リチウムお
よび/または重硫酸リチウムを含む前記水性流が前記陽極液コンパートメント内に約20
℃〜約100℃の温度で導入される、項目91〜96のいずれか1項に記載の方法。
(項目98)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、硫酸リチウムお
よび/または重硫酸リチウムを含む前記水性流が前記陽極液コンパートメント内に約80
℃の温度で導入される、項目91〜96のいずれか1項に記載の方法。
(項目99)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第1のリチ
ウム低減水性流が前記陽極液コンパートメントから約60℃〜約85℃の温度で取り出さ
れる、項目91〜98のいずれか1項に記載の方法。
(項目100)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第1のリチ
ウム低減水性流が前記陽極液コンパートメントから約60℃の温度で取り出される、項目
91〜98のいずれか1項に記載の方法。
(項目101)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第1の電気
化学セル内の温度が約60℃〜約85℃の値に少なくとも実質的に維持される、項目89
〜100のいずれか1項に記載の方法。
(項目102)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第1の電気
化学セル内の温度が約80℃の値に少なくとも実質的に維持される、項目89〜100の
いずれか1項に記載の方法。
(項目103)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、電流密度が約0
.5kA/m2〜約6kA/m2の値に少なくとも実質的に維持される、項目88〜10
2のいずれか1項に記載の方法。
(項目104)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、電流密度が約3
kA/m2〜約5kA/m2の値に少なくとも実質的に維持される、項目88〜102の
いずれか1項に記載の方法。
(項目105)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、電流密度が約4
kA/m2の値に少なくとも実質的に維持される、項目88〜102のいずれか1項に記
載の方法。
(項目106)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、電圧が約3V〜
約8Vの値に少なくとも実質的に維持される、項目88〜105のいずれか1項に記載の
方法。
(項目107)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、電圧が約5V〜
約10Vの値に少なくとも実質的に維持される、項目88〜105のいずれか1項に記載
の方法。
(項目108)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、電圧が約4V〜
約6Vの値に少なくとも実質的に維持される、項目88〜105のいずれか1項に記載の
方法。
(項目109)
前記第1の電気化学セルが約200m2〜約2000m2のセル面積を有する、項目89
〜108のいずれか1項に記載の方法。
(項目110)
前記第1の電気化学セルが約400m2〜約500m2のセル面積を有する、項目89〜
108のいずれか1項に記載の方法。
(項目111)
前記第2のエレクトロメンブレンプロセスが3コンパートメントモノポーラまたはバイポ
ーラ膜電解プロセスを含む、項目86〜110のいずれか1項に記載の方法。
(項目112)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスが、陰イオン交換膜
によって中央コンパートメントと隔てられた陽極液コンパートメントおよび陽イオン交換
膜によって前記中央コンパートメントと隔てられた陰極液コンパートメントを備えた第2
の電気化学セル内で行なわれる、項目111に記載の方法。
(項目113)
前記陽イオン交換膜がスルホン化ポリテトラ−フルオロエチレンを含むものである、項目
112に記載の方法。
(項目114)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第1のリチ
ウム低減水性流が前記中央コンパートメント内に導入され、前記第2のリチウム低減水性
流が前記中央コンパートメントから取り出され、前記第2の水酸化リチウム富化水性流が
前記陰極液コンパートメントから取り出される、項目112または113に記載の方法。
(項目115)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスがさらに、前記陽極
液コンパートメント内で硫酸を生成させ、前記陽極液コンパートメントから硫酸含有水性
流を取り出すことを含む、項目114に記載の方法。
(項目116)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記陰イオン交
換膜がプロトン阻止膜である、項目115に記載の方法。
(項目117)
前記プロトン阻止膜がFumatech FABである、項目116に記載の方法。
(項目118)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陽極液コンパ
ートメントにおいて、前記硫酸が約0.1M〜約2Mの硫酸濃度に少なくとも実質的に維
持される、項目115〜117のいずれか1項に記載の方法。
(項目119)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陽極液コンパ
ートメントにおいて、前記硫酸が、約0.7M〜約1.2Mに等しいか、またはそれより
低い硫酸濃度に少なくとも実質的に維持される、項目115〜117のいずれか1項に記
載の方法。
(項目120)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陽極液コンパ
ートメントにおいて、前記硫酸が、約0.8Mに等しいか、またはそれより低い硫酸濃度
に少なくとも実質的に維持される、項目115〜117のいずれか1項に記載の方法。
(項目121)
前記3コンパートメント膜電解プロセスの前記陰極液コンパートメントにおいて、前記水
酸化リチウムが約1M〜約3Mの濃度に少なくとも実質的に維持される、項目115〜1
20のいずれか1項に記載の方法。
(項目122)
前記3コンパートメント膜電解プロセスの前記陰極液コンパートメントにおいて、前記水
酸化リチウムが約2Mの濃度に少なくとも実質的に維持される、項目115〜120のい
ずれか1項に記載の方法。
(項目123)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第1のリチ
ウム低減水性流が前記中央コンパートメント内に約40℃〜約85℃の温度で導入される
、項目115〜122のいずれか1項に記載の方法。
(項目124)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第1のリチ
ウム低減水性流が前記中央コンパートメント内に約60℃の温度で導入される、項目11
5〜122のいずれか1項に記載の方法。
(項目125)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第2のリチ
ウム低減水性流が前記陽極液コンパートメントから約40℃〜約80℃の温度で取り出さ
れる、項目115〜124のいずれか1項に記載の方法。
(項目126)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第2のリチ
ウム低減水性流が前記陽極液コンパートメントから約60℃の温度で取り出される、項目
115〜124のいずれか1項に記載の方法。
(項目127)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第2の電気
化学セル内の温度が約50℃〜約70℃の値に少なくとも実質的に維持される、項目11
5〜124のいずれか1項に記載の方法。
(項目128)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第2の電気
化学セル内の温度が約60℃の値に少なくとも実質的に維持される、項目115〜126
のいずれか1項に記載の方法。
(項目129)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、電流密度が約0
.5kA/m2〜約5kA/m2の値に少なくとも実質的に維持される、項目115〜1
28のいずれか1項に記載の方法。
(項目130)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、電流密度が約1
kA/m2〜約約(about of about)1kA/m2の値に少なくとも実質
的に維持される、項目115〜128のいずれか1項に記載の方法。
(項目131)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、電圧が約5V〜
約9Vの値に少なくとも実質的に維持される、項目115〜130のいずれか1項に記載
の方法。
(項目132)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、電圧が約6V〜
約8Vの値に少なくとも実質的に維持される、項目115〜130のいずれか1項に記載
の方法。
(項目133)
前記第2の電気化学セルが約1000m2〜約4000m2のセル面積を有する、項目1
15〜132のいずれか1項に記載の方法。
(項目134)
前記第2の電気化学セルが約2000m2〜約3000m2のセル面積を有する、項目1
15〜132のいずれか1項に記載の方法。
(項目135)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスがさらに、アンモニ
アを前記陽極液コンパートメント内に導入し、前記陽極液コンパートメント内で硫酸アン
モニウムを生成させ、硫酸アンモニウム含有水性流を前記陽極液コンパートメントから取
り出すことを含む、項目134に記載の方法。
(項目136)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記陰イオン交
換膜がプロトン阻止膜でない、項目135に記載の方法。
(項目137)
前記陰イオン交換膜がAstom AHA膜である、項目136に記載の方法。
(項目138)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陽極液コンパ
ートメントにおいて、前記硫酸アンモニウムが約0.5M〜約4Mの硫酸アンモニウム濃
度に少なくとも実質的に維持される、項目135〜137のいずれか1項に記載の方法。
(項目139)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陽極液コンパ
ートメントにおいて、前記硫酸アンモニウムが約3Mの硫酸アンモニウム濃度に少なくと
も実質的に維持される、項目135〜137のいずれか1項に記載の方法。
(項目140)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陰極液コンパ
ートメントにおいて、前記水酸化リチウムが約1M〜約3Mの濃度に少なくとも実質的に
維持される、項目135〜139のいずれか1項に記載の方法。
(項目141)
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陰極液コンパ
ートメントにおいて、前記水酸化リチウムが約2Mの濃度に少なくとも実質的に維持され
る、項目135〜139のいずれか1項に記載の方法。
(項目142)
さらに、少なくとも一部の前記第2のリチウム低減水性流を前記第1のエレクトロメンブ
レンプロセスに再利用することを含む、項目86〜141のいずれか1項に記載の方法。
(項目143)
前記第2のリチウム低減水性流が、前記第2のエレクトロメンブレンプロセス中、前記第
2の電気化学セルの前記中央コンパートメントにおけるpHが約2〜約12の値に達した
場合に前記第1のエレクトロメンブレンプロセスに再利用される、項目142に記載の方
法。
(項目144)
前記第2のリチウム低減水性流が、前記第2のエレクトロメンブレンプロセス中、前記第
2の電気化学セルの前記中央コンパートメントにおけるpHが約3〜約10の値に達した
場合に前記第1のエレクトロメンブレンプロセスに再利用される、項目142に記載の方
法。
(項目145)
さらに、前記再利用された第2のリチウム低減水性流を、前記陽極液コンパートメントに
おけるpHが約0.5〜約0.8の値になるまで前記2コンパートメントモノポーラまた
はバイポーラ膜電解プロセスに供し、次いで、再度、前記第1のリチウム低減水性流を前
記第2のエレクトロメンブレンプロセスに供することを含む、項目144に記載の方法。
(項目146)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陽極液コンパ
ートメントおよび/または前記3コンパートメントモノポーラまたはバイポーラ膜電解プ
ロセスの前記中央コンパートメントにおけるpHが少なくとも実質的に維持される、項目
145に記載の方法。
(項目147)
pHが、前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセスの電流密度
、前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスの電流密度、前記
第1のリチウム低減水性流の流速および前記第2のリチウム低減水性流の流速の少なくと
も1つを調整することにより少なくとも実質的に維持される、項目146に記載の方法。
(項目148)
前記所定の程度が、前記水性組成物中に含まれた前記硫酸リチウムおよび/または重硫酸
リチウムの約30〜約60%の消費を含む、項目87〜147のいずれか1項に記載の方
法。
(項目149)
前記所定の程度が、前記水性組成物中に含まれた前記硫酸リチウムおよび/または重硫酸
リチウムの約35〜約45%の消費を含む、項目87〜147のいずれか1項に記載の方
法。
(項目150)
前記所定の程度が、前記水性組成物中に含まれた前記硫酸リチウムおよび/または重硫酸
リチウムの約38〜約42%の消費を含む、項目87〜147のいずれか1項に記載の方
法。
(項目151)
前記水性組成物が硫酸リチウムを含むものであり、前記所定の程度が、前記水性組成物中
に含まれた前記硫酸リチウムの約30〜約50%の消費を含む、項目87〜147のいず
れか1項に記載の方法。
(項目152)
前記水性組成物が硫酸リチウムを含むものであり、前記所定の程度が、前記水性組成物中
に含まれた前記硫酸リチウムの約35〜約45%の消費を含む、項目87〜147のいず
れか1項に記載の方法。
(項目153)
前記水性組成物が硫酸リチウムを含むものであり、前記所定の程度が、前記水性組成物中
に含まれた前記硫酸リチウムの約38〜約42%の消費を含む、項目87〜147のいず
れか1項に記載の方法。
(項目154)
硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、前記硫酸リチウムおよ
び/または重硫酸リチウムの水酸化リチウムへの変換に好適な条件下で、陽イオン交換膜
によって陰極液コンパートメントと隔てられた陽極液コンパートメントを備えた第1の電
気化学セル内で行なわれる2コンパートメントモノポーラまたはバイポーラ膜電解プロセ
スに供し、第1のリチウム低減水性流と第1の水酸化リチウム富化水性流を得ること;
前記第1のリチウム低減水性流を、少なくともさらに一部の水酸化リチウムが調製され
るのに好適な条件下で、陰イオン交換膜によって中央コンパートメントと隔てられた陽極
液コンパートメントおよび陽イオン交換膜によって前記中央コンパートメントと隔てられ
た陰極液コンパートメントを備えた第2の電気化学セル内で行なわれる3コンパートメン
トモノポーラまたはバイポーラ膜電解プロセスに供し、第2のリチウム低減水性流と第2
の水酸化リチウム富化水性流を得ること;ならびに
前記水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法。
(項目155)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、水酸化リチウム
を調製するための前記硫酸リチウムおよび/または重硫酸リチウムの消費を所定の程度ま
で進行させる、項目154に記載の方法。
(項目156)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、硫酸リチウムお
よび/または重硫酸リチウムを含む水性流が前記陽極液コンパートメント内に導入され、
前記第1のリチウム低減水性流が前記陽極液コンパートメントから取り出され、前記第1
の水酸化リチウム富化水性流が前記陰極液コンパートメントから取り出され;
前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、前記第1のリ
チウム低減水性流が前記中央コンパートメント内に導入され、前記第2のリチウム低減水
性流が前記中央コンパートメントから取り出され、前記第2の水酸化リチウム富化水性流
が前記陰極液コンパートメントから取り出される、
項目154または155に記載の方法。
(項目157)
さらに、少なくとも一部の前記第2のリチウム低減水性流を前記2コンパートメントモノ
ポーラまたはバイポーラ膜電解プロセスに再利用することを含む、項目156に記載の方
法。
(項目158)
前記第2のリチウム低減水性流が、前記3コンパートメントモノポーラまたはバイポーラ
膜電解プロセス中、前記第2の電気化学セルの前記中央コンパートメントにおけるpHが
約3〜約10の値に達した場合に前記2コンパートメントモノポーラまたはバイポーラ膜
電解プロセスに再利用される、項目157に記載の方法。
(項目159)
前記第2のリチウム低減水性流が、前記3コンパートメントモノポーラまたはバイポーラ
膜電解プロセス中、前記第2の電気化学セルの前記中央コンパートメントにおけるpHが
約5〜約8の値に達した場合に前記2コンパートメントモノポーラまたはバイポーラ膜電
解プロセスに再利用される、項目158に記載の方法。
(項目160)
さらに、前記再利用された第2のリチウム低減水性流を、前記陽極液コンパートメントに
おけるpHが約0.5〜約0.8の値になるまで前記第1のエレクトロメンブレンプロセ
スに供し、次いで、再度、前記第1のリチウム低減水性流を前記第2のエレクトロメンブ
レンプロセスに供することを含む、項目159に記載の方法。
(項目161)
前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセスの前記陽極液コンパ
ートメントおよび/または前記3コンパートメントモノポーラまたはバイポーラ膜電解プ
ロセスの前記中央コンパートメントにおけるpHが少なくとも実質的に維持される、項目
160に記載の方法。
(項目162)
pHが、前記2コンパートメントモノポーラまたはバイポーラ膜電解プロセスの電流密度
、前記3コンパートメントモノポーラまたはバイポーラ膜電解プロセスの電流密度、前記
第1のリチウム低減水性流の流速および前記第2のリチウム低減水性流の流速の少なくと
も1つを調整することにより少なくとも実質的に維持される、項目161に記載の方法。
(項目163)
さらに、少なくとも一部の前記第2の水酸化リチウム富化水性流を前記第1のエレクトロ
メンブレンプロセスに再利用することを含む、項目1〜162のいずれか1項に記載の方
法。
(項目164)
連続プロセスとして操作される、項目86〜163のいずれか1項に記載の方法。
(項目165)
半連続プロセスとして操作される、項目86〜163のいずれか1項に記載の方法。
(項目166)
さらに、第1の水素含有流を前記第1の電気化学セルの前記陰極液コンパートメントから
取り出すことを含む、項目90〜165のいずれか1項に記載の方法。
(項目167)
さらに、第2の水素含有流を前記第2の電気化学セルの前記陰極液コンパートメントから
取り出すことを含む、項目90〜166のいずれか1項に記載の方法。
(項目168)
さらに、第1の酸素含有流を前記第1の電気化学セルの前記陽極液コンパートメントから
取り出すことを含む、項目90〜167のいずれか1項に記載の方法。
(項目169)
さらに、第2の酸素含有流を前記第2の電気化学セルの前記陽極液コンパートメントから
取り出すことを含む、項目90〜168のいずれか1項に記載の方法。
(項目170)
水酸化リチウムの炭酸リチウムへの変換が:
前記水酸化リチウムを含む水性組成物をCO2と、前記CO2を前記組成物中にスパー
ジングすることにより反応させ(前記スパージングは約10〜約12.5のpHで行なわ
れる)、それにより、前記炭酸リチウムを含む沈殿物を得ること;
少なくとも一部の前記沈殿物を清澄器内に挿入して重炭酸リチウムを含む上清みと前記
炭酸リチウムを含む固形分とを得、前記固形分を前記上清みから分離すること;および
前記上清みを、前記重炭酸リチウムが炭酸リチウムに少なくとも部分変換されるように
少なくとも約85℃の温度で加熱すること
により行なわれる、項目1〜169のいずれか1項に記載の方法。
(項目171)
前記上清みを、前記重炭酸リチウムが炭酸リチウムに少なくとも部分変換され、含有され
た溶存炭酸リチウム(あれば)が沈殿されるように少なくとも約85℃の前記温度で加熱
すること
を含む、項目170に記載の方法。
(項目172)
前記スパージング中、前記pHが約10〜約12.5の値に少なくとも実質的に維持され
る、項目170または171に記載の方法。
(項目173)
前記スパージング中、前記pHが約10.5〜約12.0の値に少なくとも実質的に維持
される、項目170または171に記載の方法。
(項目174)
前記スパージング中、前記pHが約10.5〜約11.5の値に少なくとも実質的に維持
される、項目170または171に記載の方法。
(項目175)
前記スパージング中、前記pHが約10.7〜約11.3の値に少なくとも実質的に維持
される、項目170または171に記載の方法。
(項目176)
前記スパージング中、前記pHが約10.8〜約11.2または約10.9〜約11.1
の値に少なくとも実質的に維持される、項目170または171に記載の方法。
(項目177)
前記スパージング中、前記pHが約11の値に少なくとも実質的に維持される、項目17
0または171に記載の方法。
(項目178)
前記上清みを少なくとも約87℃の温度で加熱する、項目170〜177のいずれか1項
に記載の方法。
(項目179)
前記上清みを少なくとも約89℃の温度で加熱する、項目170〜177のいずれか1項
に記載の方法。
(項目180)
前記上清みを少なくとも約91℃の温度で加熱する、項目170〜177のいずれか1項
に記載の方法。
(項目181)
前記上清みを少なくとも約93℃の温度で加熱する、項目170〜177のいずれか1項
に記載の方法。
(項目182)
前記上清みを少なくとも約95℃の温度で加熱する、項目170〜177のいずれか1項
に記載の方法。
(項目183)
前記上清みを少なくとも約97℃の温度で加熱する、項目170〜177のいずれか1項
に記載の方法。
(項目184)
前記上清みを約85℃〜約105℃の温度で加熱する、項目170〜177のいずれか1
項に記載の方法。
(項目185)
前記上清みを約90℃〜約100℃の温度で加熱する、項目170〜177のいずれか1
項に記載の方法。
(項目186)
前記上清みを約92℃〜約98℃の温度で加熱する、項目170〜177のいずれか1項
に記載の方法。
(項目187)
前記上清みを約93℃〜約97℃の温度で加熱する、項目170〜177のいずれか1項
に記載の方法。
(項目188)
前記上清みを約94℃〜約96℃の温度で加熱する、項目170〜177のいずれか1項
に記載の方法。
(項目189)
前記上清みを約95℃の温度で加熱する、項目170〜177のいずれか1項に記載の方
法。
(項目190)
前記方法中、前記水酸化リチウムを含む水性組成物が、約30〜約70g/Lの水酸化リ
チウム濃度に少なくとも実質的に維持される、項目170〜189のいずれか1項に記載
の方法。
(項目191)
前記方法中、前記水酸化リチウムを含む水性組成物が、約40〜約60g/Lの水酸化リ
チウム濃度に少なくとも実質的に維持される、項目170〜190のいずれか1項に記載
の方法。
(項目192)
前記方法中、前記水酸化リチウムを含む水性組成物が、約48〜約55g/Lの水酸化リ
チウム濃度に少なくとも実質的に維持される、項目170〜190のいずれか1項に記載
の方法。
(項目193)
前記スパージングが約15〜約30℃の温度で行なわれる、項目170〜192のいずれ
か1項に記載の方法。
(項目194)
前記方法中、前記上清みが、加熱される場合、約1〜約10g/LのLi濃度に少なくと
も実質的に維持される、項目170〜193のいずれか1項に記載の方法。
(項目195)
前記方法中、前記上清みが、加熱される場合、約2〜約6g/LのLi濃度に少なくとも
実質的に維持される、項目170〜193のいずれか1項に記載の方法。
(項目196)
前記方法中、前記上清みが、加熱される場合、約3〜約5g/LのLi濃度に少なくとも
実質的に維持される、項目170〜193のいずれか1項に記載の方法。
(項目197)
酸焙焼リチウム含有材料を、Li+および少なくとも1種類の金属イオンを含む水性組成
物が得られるように水で浸出させること;
Li+および前記少なくとも1種類の金属イオンを含む前記水性組成物を塩基と約4.
5〜約6.5のpHが得られるように反応させ、それにより前記少なくとも1種類の金属
イオンを少なくとも1種類の水酸化物の形態で少なくとも部分沈殿させて、前記少なくと
も1種類の水酸化物を含む沈殿物と、Li+を含んでおり、低減された含量の前記少なく
とも1種類の金属イオンを有する水性組成物とが得られるようにし、前記水性組成物を前
記沈殿物から分離すること;
任意選択で、Li+を含んでおり、前記低減された含量の前記少なくとも1種類の金属
イオンを有する前記水性組成物を別の塩基と約9.5〜約11.5のpHが得られるよう
に反応させ、任意選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくと
も1種類の金属イオンを任意選択で少なくとも1種類の炭酸塩の形態で少なくとも部分沈
殿させて、前記少なくとも1種類の炭酸塩を任意選択的に含む沈殿物と、Li+を含んで
おり、低減された含量の前記少なくとも1種類の金属イオンを有する、水性組成物とが得
られるようにし、前記水性組成物を前記沈殿物から分離すること;
Li+を含んでおり、低減された含量の前記少なくとも1種類の金属イオンを有する前
記水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが前記組成物から少な
くとも部分除去され、それによりリチウム化合物を含む水性組成物が得られるように接触
させること;
前記リチウム化合物を含む前記水性組成物を項目1〜196のいずれか1項に規定した
電気透析または電気分解に供すること;ならびに
前記水酸化リチウムを炭酸リチウムに変換すること
を含む、炭酸リチウムの調製方法。
(項目198)
前記Li+および少なくとも1種類の金属イオンを含む水性組成物を前記塩基と約5.0
〜約6.2のpHが得られるように反応させる、項目197に記載の方法。
(項目199)
前記Li+および少なくとも1種類の金属イオンを含む水性組成物を前記塩基と約5.2
〜約6.0のpHが得られるように反応させる、項目197に記載の方法。
(項目200)
前記Li+および少なくとも1種類の金属イオンを含む水性組成物を前記塩基と約5.4
〜約5.8のpHが得られるように反応させる、項目197に記載の方法。
(項目201)
前記Li+および少なくとも1種類の金属イオンを含む水性組成物を石灰と反応させる、
項目197〜200のいずれか1項に記載の方法。
(項目202)
前記塩基と約4.5〜約6.5のpHが得られるように反応させる前記水性組成物中に含
まれた前記少なくとも1種類の金属イオンが、Fe2+、Fe3+およびAl3+から選
択される、項目197〜201のいずれか1項に記載の方法。
(項目203)
前記塩基と約4.5〜約6.5のpHが得られるように反応させる前記水性組成物中に含
まれた前記少なくとも1種類の金属イオンがFe3+を含む、項目197〜201のいず
れか1項に記載の方法。
(項目204)
前記塩基と約4.5〜約6.5のpHが得られるように反応させる前記水性組成物中に含
まれた前記少なくとも1種類の金属イオンがAl3+を含む、項目197〜201のいず
れか1項に記載の方法。
(項目205)
前記塩基と約4.5〜約6.5のpHが得られるように反応させる前記水性組成物がAl
3+とFe3+を含むものである、項目197〜204のいずれか1項に記載の方法。
(項目206)
前記沈殿物中に含まれた前記少なくとも1種類の水酸化物が、Al(OH)3およびFe
(OH)3から選択される、項目197〜205のいずれか1項に記載の方法。
(項目207)
前記沈殿物が、Al(OH)3およびFe(OH)3である少なくとも2種類の水酸化物
を含むものである、項目197〜205のいずれか1項に記載の方法。
(項目208)
約4.5〜約6.5のpHが得られるように使用される前記塩基が石灰である、項目19
7〜207のいずれか1項に記載の方法。
(項目209)
前記石灰が、約15重量%〜約25重量%の濃度を有する水性組成物として供給される、
項目208に記載の方法。
(項目210)
前記方法がさらに、塩基と約4.5〜約6.5のpHが得られるように反応させるLi+
および前記少なくとも1種類の金属イオンを含む前記水性組成物を少なくとも約350m
Vの酸化電位に維持することを含む、項目197〜209のいずれか1項に記載の方法。
(項目211)
前記水性組成物が、O2を含むガスを該組成物中にスパージングすることにより少なくと
も約350mVの酸化電位に少なくとも実質的に維持される、項目210に記載の方法。
(項目212)
前記ガスが空気である、項目211に記載の方法。
(項目213)
Li+を含んでおり、前記低減された含量の前記少なくとも1種類の金属イオンを有する
前記水性組成物を前記別の塩基と約9.5〜約11.5のpHが得られるように反応させ
ることを含む、項目197〜212のいずれか1項に記載の方法。
(項目214)
Li+を含んでおり、前記低減された含量の前記少なくとも1種類の金属イオンを有する
前記水性組成物を前記別の塩基と約10〜約11のpHが得られるように反応させること
を含む、項目197〜213のいずれか1項に記載の方法。
(項目215)
Li+を含んでおり、前記低減された含量の前記少なくとも1種類の金属イオンを有する
前記水性組成物を前記別の塩基と約10〜約10.5のpHが得られるように反応させる
ことを含む、項目197〜212のいずれか1項に記載の方法。
(項目216)
Li+を含んでおり、前記低減された含量の前記少なくとも1種類の金属イオンを有する
前記水性組成物を前記別の塩基と約9.8〜約10.2のpHが得られるように反応させ
ることを含む、項目197〜212のいずれか1項に記載の方法。
(項目217)
約9.5〜約11.5のpHが得られるように使用される前記塩基がNaOHである、項
目197〜216のいずれか1項に記載の方法。
(項目218)
前記少なくとも1種類の金属炭酸塩が、Na2CO3、NaHCO3および(NH4)2
CO3から選択される、項目197〜216のいずれか1項に記載の方法。
(項目219)
Li+を含んでおり、前記低減された含量の前記少なくとも1種類の金属イオンを有する
前記水性組成物を前記別の塩基と、前記水性組成物中の前記少なくとも1種類の金属イオ
ンの含量が所定の値より下に低減されるのに充分な時間にわたって反応させる、項目19
7〜216のいずれか1項に記載の方法。
(項目220)
前記反応が、Ca2+の含量が約250mg/Lより下に低減されるのに充分な時間にわ
たって行なわれる、項目219に記載の方法。
(項目221)
前記反応が、Ca2+の含量が約200mg/Lより下に低減されるのに充分な時間にわ
たって行なわれる、項目219に記載の方法。
(項目222)
前記イオン交換樹脂がカチオン樹脂である、項目197〜221のいずれか1項に記載の
方法。
(項目223)
前記イオン交換樹脂が、二価および/または三価の金属イオンに対して実質的に選択的で
あるカチオン樹脂である、項目197〜221のいずれか1項に記載の方法。
(項目224)
前記イオン交換樹脂との接触が、前記組成物のCa2+の含量を約10mg/Lより下に
低減させることを可能にするものである、項目197〜221のいずれか1項に記載の方
法。
(項目225)
前記イオン交換樹脂との接触が、前記組成物のCa2+の含量を約5mg/Lより下に低
減させることを可能にするものである、項目197〜221のいずれか1項に記載の方法
。
(項目226)
前記イオン交換樹脂との接触が、前記組成物のCa2+の含量を約1mg/Lより下に低
減させることを可能にするものである、項目197〜221のいずれか1項に記載の方法
。
(項目227)
前記イオン交換樹脂との接触が、前記組成物のCa2+の含量を約0.5mg/Lより下
に低減させることを可能にするものである、項目197〜221のいずれか1項に記載の
方法。
(項目228)
前記酸焙焼リチウム含有材料を水で、Li+と以下の金属:鉄、アルミニウム、マンガン
およびマグネシウムから選択される少なくとも3種類の金属イオンとを含む前記水性組成
物が得られるように浸出させる、項目197〜227のいずれか1項に記載の方法。
(項目229)
前記酸焙焼リチウム含有材料を水で、Li+とAl3+、Fe2+、Fe3+、Mg2+
、Ca2+およびMn2+から選択される少なくとも4種類の金属イオンとを含む前記水
性組成物が得られるように浸出させる、項目197〜227のいずれか1項に記載の方法
。
(項目230)
水酸化リチウムの炭酸リチウムへの変換が:
前記水酸化リチウムを含む水性組成物をCO2と、前記CO2を前記組成物中にスパー
ジングすることにより反応させ(前記スパージングは約10〜約12.5のpHで行なわ
れる)、それにより、前記炭酸リチウムを含む沈殿物を得ること;
少なくとも一部の前記沈殿物を清澄器内に挿入し、重炭酸リチウムを含む上清みと前記
炭酸リチウムを含む固形分とを得、前記固形分を前記上清みから分離すること;および
前記上清みを、前記重炭酸リチウムが炭酸リチウムに少なくとも部分変換されるように
少なくとも約85℃の温度で加熱すること
により行なわれる、項目197〜229のいずれか1項に記載の方法。
(項目231)
前記上清みを、前記重炭酸リチウムが炭酸リチウムに少なくとも部分変換され、含有され
た溶存炭酸リチウム(あれば)が沈殿されるように少なくとも約85℃の前記温度で加熱
することを含む、項目230に記載の方法。
(項目232)
前記スパージング中、前記pHが約10〜約12.5の値に少なくとも実質的に維持され
る、項目230または231に記載の方法。
(項目233)
前記スパージング中、前記pHが約10.5〜約12.0の値に少なくとも実質的に維持
される、項目230または231に記載の方法。
(項目234)
前記スパージング中、前記pHが約10.5〜約11.5の値に少なくとも実質的に維持
される、項目230または231に記載の方法。
(項目235)
前記スパージング中、前記pHが約10.7〜約11.3の値に少なくとも実質的に維持
される、項目230または231に記載の方法。
(項目236)
前記スパージング中、前記pHが約10.8〜約11.2または約10.9〜約11.1
の値に少なくとも実質的に維持される、項目230または231に記載の方法。
(項目237)
前記スパージング中、前記pHが約11の値に少なくとも実質的に維持される、項目23
0または231に記載の方法。
(項目238)
前記上清みを少なくとも約87℃の温度で加熱する、項目230〜237のいずれか1項
に記載の方法。
(項目239)
前記上清みを少なくとも約89℃の温度で加熱する、項目230〜237のいずれか1項
に記載の方法。
(項目240)
前記上清みを少なくとも約91℃の温度で加熱する、項目230〜237のいずれか1項
に記載の方法。
(項目241)
前記上清みを少なくとも約93℃の温度で加熱する、項目230〜237のいずれか1項
に記載の方法。
(項目242)
前記上清みを少なくとも約95℃の温度で加熱する、項目230〜237のいずれか1項
に記載の方法。
(項目243)
前記上清みを少なくとも約97℃の温度で加熱する、項目230〜237のいずれか1項
に記載の方法。
(項目244)
前記上清みを約85℃〜約105℃の温度で加熱する、項目230〜237のいずれか1
項に記載の方法。
(項目245)
前記上清みを約90℃〜約100℃の温度で加熱する、項目230〜237のいずれか1
項に記載の方法。
(項目246)
前記上清みを約92℃〜約98℃の温度で加熱する、項目230〜237のいずれか1項
に記載の方法。
(項目247)
前記上清みを約93℃〜約97℃の温度で加熱する、項目230〜237のいずれか1項
に記載の方法。
(項目248)
前記上清みを約94℃〜約96℃の温度で加熱する、項目230〜237のいずれか1項
に記載の方法。
(項目249)
前記上清みを約95℃の温度で加熱する、項目230〜237のいずれか1項に記載の方
法。
(項目250)
前記方法中、前記水酸化リチウムを含む水性組成物が、約30〜約70g/Lの水酸化リ
チウム濃度に少なくとも実質的に維持される、項目230〜249のいずれか1項に記載
の方法。
(項目251)
前記方法中、前記水酸化リチウムを含む水性組成物が、約40〜約60g/Lの水酸化リ
チウム濃度に少なくとも実質的に維持される、項目230〜249のいずれか1項に記載
の方法。
(項目252)
前記方法中、前記水酸化リチウムを含む水性組成物が、約48〜約55g/Lの水酸化リ
チウム濃度に少なくとも実質的に維持される、項目230〜249のいずれか1項に記載
の方法。
(項目253)
前記スパージングが約15〜約30℃の温度で行なわれる、項目230〜252のいずれ
か1項に記載の方法。
(項目254)
前記方法中、前記上清みが、加熱される場合、約1〜約10g/LのLi濃度に少なくと
も実質的に維持される、項目230〜253のいずれか1項に記載の方法。
(項目255)
前記方法中、前記上清みが、加熱される場合、約2〜約6g/LのLi濃度に少なくとも
実質的に維持される、項目230〜253のいずれか1項に記載の方法。
(項目256)
前記方法中、前記上清みが、加熱される場合、約3〜約5g/LのLi濃度に少なくとも
実質的に維持される、項目230〜253のいずれか1項に記載の方法。
(項目257)
前記第1のエレクトロメンブレンプロセスが電気分解である、項目86に記載の方法。
(項目258)
前記第1のエレクトロメンブレンプロセスが電気透析である、項目86に記載の方法。
(項目259)
前記第2のエレクトロメンブレンプロセスが電気分解である、項目86、257または2
58に記載の方法。
(項目260)
前記第2のエレクトロメンブレンプロセスが電気透析である、項目86、257または2
58に記載の方法。
容易に自明となろう。
件の選択が、行なわれる具体的な作業または操作に依存し得ることを意味するが、その選
択は充分に当業者の技能の範囲内であり得る。本明細書に記載の方法はすべて、所望の生
成物が得られるのに充分な条件下で実施される。
派生形は、本明細書で用いる場合、記載の特長、要素、成分、群、整数および/または工
程の存在を指定するが、記載していない他の特長、要素、成分、群、整数および/または
工程の存在を排除しないオープンエンドの用語であることを意図する。また、前述のこと
は、同様の意味を有する語、例えば、用語“including(〜を含む)”、“ha
ving(〜を有する)”およびその派生形にも適用される。用語“consistin
g(〜からなる)”およびその派生形は、本明細書で用いる場合、記載の特長、要素、成
分、群、整数および/または工程の存在を指定するが、記載していない他の特長、要素、
成分、群、整数および/または工程の存在を排除するクローズド用語であることを意図す
る。用語“consisting essentially of(本質的に〜からなる
)”は、本明細書で用いる場合、記載の特長、要素、成分、群、整数および/または工程
ならびに該特長、要素、成分、群、整数および/または工程の基本的な新規の特長(1つ
もしくは複数)に実質的に影響しないものの存在を指定することを意図する。
に変化しないような、被修飾語の妥当な偏差量を意味する。このような度合の用語は、被
修飾語の少なくとも±5%または少なくとも±10%の偏差を包含していると解釈された
い(この偏差によって、該用語が修飾している語の意味が否定されないならば)。
も1種類の金属の少なくとも1つの型イオンをいう。例えば、該少なくとも1種類の金属
イオンはMX+であり得る。この例では、MX+は金属Mのイオンであり、この場合、X
+は金属Mの特定の一形態または一酸化状態である。したがって、MX+は、少なくとも
1種類の金属(M)の少なくとも1つの型(酸化状態X+)のイオンである。例えば、M
Y+は金属Mの別の型のイオンであってもよく、この場合、XとYは異なる整数である。
、スパージング、加熱、電気透析、電気分解など)中に維持されるpHまたはpH範囲の
値に言及するときに本明細書で用いる場合、該pHまたは該pH範囲の値が、該方法また
はその一部分中の時間の少なくとも75、80、85、90、95、96、97、98ま
たは99%の時間、維持されることをいう。
、スパージング、加熱、電気透析、電気分解など)中に維持される濃度または濃度範囲の
値に言及するときに本明細書で用いる場合、該濃度または該濃度範囲の値が、該方法また
はその一部分中の時間の少なくとも75、80、85、90、95、96、97、98ま
たは99%の時間、維持されることをいう。
、スパージング、加熱、電気透析、電気分解など)中に維持される温度または温度範囲の
値に言及するときに本明細書で用いる場合、該温度または該温度範囲の値が、該方法また
はその一部分中の時間の少なくとも75、80、85、90、95、96、97、98ま
たは99%の時間、維持されることをいう。
、スパージング、加熱、電気透析、電気分解など)中に維持される酸化電位または酸化電
位範囲の値に言及するときに本明細書で用いる場合、該酸化電位または該酸化電位範囲の
値が、該方法またはその一部分中の時間の少なくとも75、80、85、90、95、9
6、97、98または99%の時間、維持されることをいう。
、電気透析、電気分解など)中に維持される電流または電流範囲の値に言及するときに本
明細書で用いる場合、該電流または該電流範囲の値が、該方法またはその一部分中の時間
の少なくとも75、80、85、90、95、96、97、98または99%の時間、維
持されることをいう。
、電気透析、電気分解など)中に維持される電圧または電圧範囲の値に言及するときに本
明細書で用いる場合、該電圧または該電圧範囲の値が、該方法またはその一部分中の時間
の少なくとも75、80、85、90、95、96、97、98または99%の時間、維
持されることをいう。
換膜(1種類または複数種)およびイオン種に対する駆動力として電位差が使用されるプ
ロセスをいう。エレクトロメンブレンプロセスは、例えば(膜)電気透析または(膜)電
気分解であり得る。例えば、エレクトロメンブレンプロセスは(膜)電気分解であり得る
。
いる。
はリチウム含有鉱石、リチウム化合物またはリチウム含有産業再利用物であり得る。例え
ば、リチウム含有鉱石は、例えば、α−スポジュメン、β−スポジュメン、リチア雲母、
ペグマタイト、葉長石、ユークリプタイト、アンブリゴナイト、ヘクトライト、ジャダラ
イト、スメクタイト、クレイまたはその混合物であり得る。リチウム化合物は、例えば、
LiCl、Li2SO4、LiHCO3、Li2CO3、LiNO3、LiC2H3O2
(酢酸リチウム)、LiF、ステアリン酸リチウムまたはクエン酸リチウムであり得る。
また、リチウム含有材料はリチウム含有産業再利用物、例えば、リチウム電池、他のリチ
ウム生成物またはその誘導体であってもよい。
、その純度レベル、反応の規模ならびにあらゆるパラメータに応じて異なる(これらが互
いに従属的であり得るため)ことが認識され得、反応条件を、収率が最適化されるように
相応に調整することができよう。
該重炭酸リチウムが炭酸リチウムに少なくとも部分変換されるように少なくとも約85℃
の温度で加熱し、含有された溶存炭酸リチウム(あれば)を沈殿させることを含むもので
あり得る。
化リチウムであり得る。例えば、出発物質は、本開示において記載の方法によって生成さ
れる水酸化リチウムであり得る。
水酸化リチウムを含む水性組成物をCO2と、該CO2を該組成物中にスパージングす
ることにより反応させ(該スパージングは約10〜約12.5のpHで行なわれる)、そ
れにより、炭酸リチウムを含む沈殿物を得ること;
少なくとも一部の該沈殿物を清澄器内に挿入して重炭酸リチウムを含む上清みと該炭酸
リチウムを含む固形分とを得、該固形分を該上清みから分離すること;および
該上清みを、該重炭酸リチウムが炭酸リチウムに少なくとも部分変換されるように少な
くとも約85℃の温度で加熱すること
により行なわれ得る。
はリチウム含有鉱石、リチウム化合物またはリチウム含有産業再利用物であり得る。例え
ば、リチウム含有鉱石は、例えば、α−スポジュメン、β−スポジュメン、リチア雲母、
ペグマタイト、葉長石、ユークリプタイト、アンブリゴナイト、ヘクトライト、スメクタ
イト、クレイまたはその混合物であり得る。リチウム化合物は、例えば、LiCl、Li
2SO4、LiHCO3、Li2CO3、LiNO3、LiC2H3O2(酢酸リチウム
)、ステアリン酸リチウム、クエン酸リチウムまたはLiFであり得る。また、リチウム
含有材料はリチウム含有産業再利用物、例えば、リチウム電池、他のリチウム生成物また
はその誘導体であってもよい。
応体比、流速、反応体純度、電流密度、電圧、保持時間、pH、酸化/還元電位、ベッド
体積、使用される樹脂の型および/または再利用率などは、いくつかの要素、例えば、出
発物質の性質、その純度レベル、反応の規模ならびに前述のすべてのパラメータに応じて
異なる(これらが互いに従属的であり得るため)ことが認識され得、反応条件を、収率が
最適化されるように相応に調整することができよう。
上清みを少なくとも約85℃の温度で加熱することを含む場合、該方法はさらに、含有さ
れた溶存炭酸リチウム(あれば)沈殿させることを含んでいてもよい。
、約10.5〜約11.5、約10.7〜約11.3、約10.8〜約11.2、約10
.9〜約11.1または約11の値に少なくとも実質的に維持され得る。
少なくとも約93℃、少なくとも約95℃、少なくとも約97℃、約85℃〜約105℃
、約90℃〜約100℃、約92℃〜約98℃、約93℃〜約97℃、約94℃〜約96
℃、または約95℃の温度で加熱され得る。
〜約60g/Lまたは約48〜約55g/Lの水酸化リチウム濃度に少なくとも実質的に
維持され得る。
の温度で行なわれ得る。
は約3〜約5g/LのLi濃度に維持され得る。
2〜約3、または約2〜約4の値に少なくとも実質的に維持され得る。例えば、電気分解
中、pHは約1〜約4、約2〜約4または約2の値に少なくとも実質的に維持され得る。
例えば、電気透析中、pHは約1〜約4または約1〜約2の値に少なくとも実質的に維持
され得る。
電気分解はモノポーラまたはバイポーラ3コンパートメント電解セル内で行なわれ得る。
ーラ3コンパートメント電解セル内で行なわれ得る。
イポーラ3コンパートメント電気透析セル内で行なわれ得る。
イポーラ膜電解プロセスに供され得る。
イポーラ3コンパートメント膜電解プロセスに供され得る。
析プロセスに供され得る。
ートメント電気透析プロセスに供され得る。
パートメントまたは陽極コンパートメントと隔てられた電解セル内で行なわれ得る。
裂させ(H+とOH−)、例えば低濃度で、酸と塩基溶液を生成させる膜である。
る。例えば、電気分解は、モノポーラまたはバイポーラ膜とバイポーラ電極を備え付けた
3コンパートメントセルを備えた電解スタックを使用することにより行なわれ得る。例え
ば、かかる電極は、陰極電極でガス状水素(H2)を、および陽極電極でガス状酸素(O
2)または塩素ガス(Cl2)を発生させるのに有効である。例えば、かかる電極は、水
分子を分裂させるのに有効である。
i2SO4、LiHCO3、Li2CO3、LiNO3、LiC2H3O2(酢酸リチウ
ム)、ステアリン酸リチウムまたはクエン酸リチウム)を含む水性組成物を中央コンパー
トメント内に、水酸化リチウムを含む水性組成物を陰極コンパートメント内に導入し、酸
(例えば、HCl、H2SO4、HNO3または酢酸)を含む水性組成物を陽極コンパー
トメント(または酸コンパートメント)内に生成させることにより行なわれる。当業者で
あれば、例えばLiClが中央コンパートメント内に導入される場合、陽極コンパートメ
ント、例えばモノポーラまたはバイポーラ膜電解セル内にHClが発生することは理解さ
れ得よう。例えば、LiFが中央コンパートメント内に使用される場合、陽極コンパート
メント内にHFが発生する。例えば、Li2SO4が中央コンパートメント内に使用され
る場合、陽極コンパートメント内にH2SO4が発生する。例えば、LiHCO3が中央
コンパートメント内に使用される場合、陽極コンパートメント内にH2CO3が発生する
。例えば、LiNO3が中央コンパートメント内に使用される場合、陽極コンパートメン
ト内にHNO3が発生する。例えば、LiC2H3O2が中央コンパートメント内に使用
される場合、陽極コンパートメント内に酢酸が発生する。例えば、ステアリン酸リチウム
が中央コンパートメント内に使用される場合、陽極コンパートメント内にステアリン酸が
発生する。例えば、クエン酸リチウムが中央コンパートメント内に使用される場合、陽極
コンパートメント内にクエン酸が発生する。
硫酸リチウム(Li2SO4)、重硫酸リチウム(LiHSO4)、重炭酸リチウム(L
iHCO3)、炭酸リチウム(Li2CO3)、硝酸リチウム(LiNO3)、酢酸リチ
ウム(LiC2H3O2)、ステアリン酸リチウムおよび/またはクエン酸リチウムを含
むもの、本質的にこれらからなるもの、またはこれらからなるものであり得る。例えば、
リチウム化合物は、硫酸リチウムおよび/または重硫酸リチウムを含むもの、本質的にこ
れらからなるもの、またはこれらからなるものであり得る。
も含むものであり得る。
化リチウムを含む水性組成物を陰極コンパートメント内に導入し、硫酸を含む水性組成物
を陽極コンパートメント内に生成させることにより行なわれる。
モニウムおよび/またはNH4OHを含むものであり得る。例えば、該方法中に使用され
る陽極液は、アンモニア、重硫酸アンモニウム、硫酸アンモニウムおよび/またはNH4
OHを含むものであり、それによりアンモニウム塩を生じさせるものであり得る。
液状のアンモニア、例えばNH3および/またはNH4OHを陽極液コンパートメント内
、酸コンパートメント内、陽極液中、陽極またはその隣接部に添加することを含むもので
あり得、ここで、該陽極は該方法に使用されるものである。
ント内、陽極またはその隣接部の陽極液中に添加し、それによりアンモニウム塩を生じさ
せることを含むものであり得、ここで、該陽極は該方法に使用されるものである。
る陽極液コンパートメント内または陽極液中に添加すること含むものであり得る。
る陽極液中に添加し、それによりアンモニウム塩を生じさせることを含むものであり得る
。
5M〜約2.5Mであり得る。
または約1.5M〜約3.5Mの濃度であり得る。
たは約1.5M〜約3.5Mの濃度であり得る。
〜約1.5または約−0.25〜約1.0の値に維持される。
ンモニア:硫酸のモル比で添加され得る。
i2SO4、LiHCO3、Li2CO3、LiNO3、LiC2H3O2(酢酸リチウ
ム)、ステアリン酸リチウムまたはクエン酸リチウム)を含む水性組成物を中央コンパー
トメント内に、水酸化リチウムを含む水性組成物を陰極コンパートメント内に、NH3を
含む水性組成物を陽極コンパートメント内に導入することにより行なわれる。例えば、N
H3を含む水性組成物が陽極コンパートメント内に導入される場合、プロトン阻止膜が必
要とされない場合があり得、例えば約80℃の温度で実行可能であり、例えば低抵抗を有
するものであり得る膜が使用され得る。例えば、リチウム化合物を含む水性組成物はさら
にNa+を含むものであり得る。
0g/L、約40〜約90g/L、約35〜約70g/L、約40〜約66g/L、約4
5〜約65g/L、約48〜約62g/Lまたは約50〜約60g/Lの水酸化リチウム
濃度に少なくとも実質的に維持され得る。
、約2〜約4M、約2.5〜約3.5M、約2.7〜約3.3M、約2.9〜約3.1M
または約3Mの水酸化リチウム濃度に少なくとも実質的に維持され得る。
、約40〜約100g/L、約60〜約90g/L、約20〜約40g/L、約20〜約
50g/L、約25〜約35g/L、または約28〜約32g/Lの硫酸濃度に少なくと
も実質的に維持され得る。
.2〜約3M、約0.3〜約2M、約0.3〜約1.5M、約0.4〜約1.2M、約0
.5〜約1Mまたは約0.75Mの硫酸濃度に少なくとも実質的に維持され得る。
、約0.6M〜約1.3M、約0.65〜約0.85M、約0.7M〜約1.2M、約0
.8M〜約1.1M、約8.5M〜約1.05Mまたは約0.9M〜約1.0M、約20
〜約50g/Lまたは約35〜約70g/Lの硫酸濃度に少なくとも実質的に維持され得
る。
/L、約5〜約25g/L、約10〜約20g/L、または約13〜約17g/Lの硫酸
リチウム濃度に少なくとも実質的に維持され得る。
M、約0.4〜約2.5M、約0.5〜約2Mまたは約0.6〜約1.8Mの硫酸リチウ
ム濃度に少なくとも実質的に維持され得る。
M、約0.4〜約2.5M、約0.5〜約2Mまたは約0.6〜約1.8Mのスルフェー
ト(SO4 2−)濃度に少なくとも実質的に維持され得る。
ナトリウムとリチウムの総重量に対して約1〜約30%、約1〜約25%、約5〜約25
%、約10〜約25%(重量基準)のナトリウムを含むものであり得る。
むものであり得る。Li:Na(g/g)の比は約2:1〜約10:1または約3:1〜
約5:1であり得る。
約80℃、約20〜約60℃、約30〜約40℃、約35〜約65℃、約40〜約60℃
、約35〜約45℃、約55〜約65℃、約50〜約60℃、約50〜約70℃、または
約46〜約54℃であり得る。
約60℃、約30〜約40℃、約50〜約60℃、または約46〜約54℃の値に少なく
とも実質的に維持され得る。当業者であれば、かかる温度は、電解セルに選択された膜の
関数として異なり得ることが理解され得よう。
約80℃、約20〜約60℃、約30〜約40℃、約35〜約65℃、約40〜約60℃
、約35〜約45℃、約55〜約65℃、約50〜約70℃、約50〜約60℃、または
約46〜約54℃の値に少なくとも実質的に維持され得る。例えば、Asahi AAV
または同様の陰イオン交換膜が電気透析または電気分解中に使用される場合、硫酸リチウ
ムを含む水性組成物の温度は約40℃の値に少なくとも実質的に維持され得る。例えば、
Fumatech FABまたは同様の陰イオン交換膜が電気透析または電気分解中に使
用される場合、硫酸リチウムを含む水性組成物の温度は約60℃の値に少なくとも実質的
に維持され得る。
たは電気分解中に使用され得る。Nafion 902、Fumatech FKBまた
はNeosepta CMBのような他の膜がヒドロキシド濃度に使用され得る。
内に導入される場合、硫酸リチウムを含む水性組成物の温度は約20〜約100℃、約2
0〜約95℃、約20〜約90℃、約45〜約95℃、約65〜約95℃、約20〜約8
0℃ 約20〜約80℃、約75〜約85℃、約20〜約60℃、約30〜約40℃、約
35〜約65℃、約40〜約60℃、約35〜約45℃、約55〜約65℃、約50〜約
60℃、約50〜約70℃または約46〜約54℃の値に少なくとも実質的に維持され得
る。
0〜約6000A/m2、約3500〜約5500A/m2.約4000〜約5000A
/m2、約400〜約3000A/m2、約500〜約2500A/m2、約1000〜
約2000A/m2 約400〜約1200A/m2、約400〜約1000A/m2、
約300〜約700A/m2、約400〜約600A/m2、約425〜約575A/m
2、約450〜約550A/m2、または約475〜約525A/m2の密度に少なくと
も実質的に維持され得る。
250mA/cm2、約75〜約200mA/cm2または約100〜約175mA/c
m2の密度に少なくとも実質的に維持され得る。
40A/m2、約70〜約130A/m2、約80〜約120A/m2、または約90〜
約110A/m2の密度に少なくとも実質的に維持され得る。
〜約1200A/m2、約400〜約1000A/m2、約400〜約600A/m2、
約425〜約575A/m2または約450〜約550A/m2の密度に少なくとも実質
的に維持され得る。
に維持され得る。
V〜約8V、約5.5V〜約6.5Vまたは約6Vの値に少なくとも実質的に維持され得
る。
8V、約5.5V〜約6.5Vまたは約6Vの値に少なくとも実質的に維持され得る。
。
。
とも実質的に維持され得る。例えば、セル電圧は約1.0V〜約8.5V、約1.0V〜
約3.0V、約2.0V〜約3.0V、約3.0V〜約8.5V、約6.5V〜約8V、
約5.5V〜約6.5Vまたは約6Vの値に少なくとも実質的に維持され得る。
約90%、約60%〜約85%、約60%〜約70%、約60%〜約80%、約65%〜
約85%、約65%〜約80%、約65%〜約75%、約70%〜約85%または約70
%〜約80%であり得る。
60%〜約90%、約60%〜約70%、約60%〜約80%、約65%〜約85%、約
65%〜約80%、約65%〜約75%、約70%〜約85%または約70%〜約80%
であり得る。
55%〜約90%、約60%〜約85%、約65%〜約80%、約85%〜約95%また
は約70%〜約80%であり得る。
約60%〜約85%、約65%〜約80%または約70%〜約80%であり得る。
はLiHSO4とH2SO4を含む混合物が得られ得る。例えば、Li2SO4は、電気
透析を行なうことにより混合物から少なくとも部分回収され得る。
.8〜約6.5、約5.0〜約6.2、約5.2〜約6.0、約5.4〜約5.8または
約5.6のpHが得られるように反応され得る。
れ得る。
含まれる該少なくとも1種類の金属イオンは、Fe2+、Fe3+およびAl3+から選
択され得る。
含まれる該少なくとも1種類の金属イオンにはFe3+が含まれ得る。
含まれる該少なくとも1種類の金属イオンにはAl3+が含まれ得る。
含まれる該少なくとも1種類の金属イオンにはFe3+とAl3+が含まれ得る。
Fe(OH)3から選択され得る。
酸化物を含むものであり得る。
。
れ得る。
と約4.5〜約6.5のpHが得られるように反応させる水性組成物を少なくとも約35
0mVの酸化電位に維持することを含むものであり得る。
少なくとも約350mVの酸化電位に少なくとも実質的に維持され得る。例えば、ガスは
空気であり得る。あるいはまた、ガスはO2であり得る。
オンを有する水性組成物を別の塩基と、約9.5〜約11.5のpH、約10〜約11、
約10〜約10.5、約9.8〜約10.2または約10が得られるように反応させるこ
とを含むものであり得る。
OHまたはLiOHであり得る。
り得る。
H4)2CO3から選択され得る。
HCO3の混合物であり得る。
る水性組成物は別の塩基と、該水性組成物中の該少なくとも1種類の金属イオンの含量が
所定の値より下に低減されるのに充分な時間にわたって反応され得る。例えば、該少なく
とも1種類の金属イオンは、Mg2+、Ca2+およびMn2+から選択され得る。例え
ば、該反応は、Ca2+の含量が約250mg/L、約200mg/L、約150mg/
L、または約100mg/Lより下に低減されるのに充分な時間にわたって行なわれ得る
。例えば、該反応は、Mg2+の含量が約100mg/L、約50mg/L、約25mg
/L、約20mg/L、約15mg/Lまたは約10mg/Lより下に低減されるのに充
分な時間にわたって行なわれ得る。
択的であるカチオン樹脂であり得る。
mg/L、約1mg/L、または約0.5mg/Lより下に低減させることを可能にする
ものであり得る。
mg/L、約1mg/L、または約0.5mg/Lより下に低減させることを可能にする
ものであり得る。
の全二価イオン含量を約10mg/L、約5mg/L、約1mg/Lまたは約0.5mg
/Lより下に低減させることを可能にするものであり得る。
ンガンおよびマグネシウムから選択される少なくとも3種類の金属イオンとを含む水性組
成物が得られるように浸出され得る。
Mg2+、Ca2+、Cr2+、Cr3+、Cr6+、Zn2+およびMn2+から選択
される少なくとも3種類の金属イオンとを含む水性組成物が得られるように浸出され得る
。
Mg2+、Ca2+、Cr2+、Cr3+、Cr6+、Zn2+およびMn2+から選択
される少なくとも4種類の金属イオンとを含む水性組成物が得られるように浸出され得る
。
、または約11〜約12の値に少なくとも実質的に維持され得る。
酸リチウムおよび/または重硫酸リチウムの消費は所定の程度まで進行され得る。
重硫酸リチウムを含む水性組成物は、該リチウム化合物、例えば硫酸リチウムおよび/ま
たは重硫酸リチウムの水酸化リチウムへの変換が所定の程度まで進行するのに好適な条件
下で第1のエレクトロメンブレンプロセスに供される。本開示の具体的な方法に対する好
適な所定の程度の選択は、当業者によってなされ得よう。例えば、リチウム化合物、例え
ば硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物は、水酸化リチウムを調
製するためのリチウム化合物、例えば硫酸リチウムおよび/または重硫酸リチウムの消費
に好適な条件下で、1つまたはそれより多くの競合する副反応が所定の程度まで進行する
まで、例えば、水酸化リチウムの調製がそれ以上効率的でなくなるような程度まで進行す
るまで第1のエレクトロメンブレンプロセスに供される。例えば、第1のエレクトロメン
ブレンプロセスが、陽イオン交換膜によって陰極液コンパートメントと隔てられた陽極液
コンパートメントを備えた第1の電気化学セル内で行なわれる2コンパートメントモノポ
ーラまたはバイポーラ膜電解プロセスである場合、リチウム化合物、例えば硫酸リチウム
および/または重硫酸リチウムの水酸化リチウムへの変換は、ヒドロキシド電流効率がそ
れ以上効率的でなくなるまで、例えば、ヒドロキシド電流効率がそれ以上少なくとも実質
的に維持されなくなり、そのため低下するまで進行され得る。例えば、第1のエレクトロ
メンブレンプロセスが、陽イオン交換膜によって陰極液コンパートメントと隔てられた陽
極液コンパートメントを備えた第1の電気化学セル内で行なわれる2コンパートメントモ
ノポーラまたはバイポーラ膜電解プロセスである場合、リチウム化合物、例えば硫酸リチ
ウムおよび/または重硫酸リチウムの水酸化リチウムへの変換は、陽極液コンパートメン
トにおけるpHが約0.4〜約1.2、約0.5〜約0.8、約0.5〜約0.7または
約0.6の値になるまで進行され得る。
パートメントと隔てられた陽極液コンパートメントを備えた第1の電気化学セル内で行な
われる2コンパートメントモノポーラまたはバイポーラ膜電解プロセスである場合、リチ
ウム化合物、例えば硫酸リチウムおよび/または重硫酸リチウムの水酸化リチウムへの変
換は、水性組成物中に含まれた硫酸リチウムおよび/または重硫酸リチウムの特定量が消
費されるまで進行され得る。
酸リチウムの総量に対して該水性組成物中に含まれた硫酸リチウムおよび/または重硫酸
リチウムの約30〜約60重量%または約30〜約50重量%の消費が含まれ得る。例え
ば、所定の程度には、水性組成物中に含まれた硫酸リチウムおよび/または重硫酸リチウ
ムの約35〜約45重量%の消費が含まれ得る。例えば、所定の程度には、水性組成物中
に含まれた硫酸リチウムおよび/または重硫酸リチウムの約38〜約42%の消費が含ま
れ得る。例えば、水性組成物は硫酸リチウムを含むものであり得、所定の程度には、該水
性組成物中に含まれた硫酸リチウムの約30〜約50%の消費が含まれ得る。例えば、水
性組成物は硫酸リチウムを含むものであり得、所定の程度には、該水性組成物中に含まれ
た硫酸リチウムの約35〜約45%の消費が含まれ得る。例えば、水性組成物は硫酸リチ
ウムを含むものであり得、所定の程度には、該水性組成物中に含まれた硫酸リチウムの約
38〜約42%の消費が含まれ得る。
、例えば3コンパートメントモノポーラまたはバイポーラ膜電解プロセスを含むもの、本
質的に該プロセスからなるもの、または該プロセスからなるものであり得る。
、例えば2コンパートメントモノポーラまたはバイポーラ膜電解プロセスを含むもの、本
質的に該プロセスからなるもの、または該プロセスからなるものであり得る。
、例えば3コンパートメントバイポーラ膜電解プロセスを含むもの、本質的に該プロセス
からなるもの、または該プロセスからなるものであり得る。
、例えば2コンパートメントバイポーラ膜電解プロセスを含むもの、本質的に該プロセス
からなるもの、または該プロセスからなるものであり得る。
パートメント膜電解プロセスは、陽イオン交換膜によって陰極液コンパートメントと隔て
られた陽極液コンパートメントを備えた第1の電気化学セル内で行なわれ得る。
的にこれからなるもの、またはこれからなるもの、例えば、Nafion(商標)324
陽イオン交換膜または苛性ソーダ濃縮に使用される他の膜、例えば、FuMA−Tech
FKBもしくはAstom CMB陽イオン交換膜であり得る。本開示の具体的な方法
に対する好適な陽イオン交換膜の選択は、当業者によってなされ得よう。
パートメント膜電解プロセス中、リチウム化合物、例えば硫酸リチウムおよび/または重
硫酸リチウムを含む水性流が陽極液コンパートメント内に導入され得、第1のリチウム低
減水性流が陽極液コンパートメントから取り出され得、第1の水酸化リチウム富化水性流
が陰極液コンパートメントから取り出され得る。
パートメント内では、水酸化リチウムは約2M〜約4M、約2.5〜約3.5M、約2.
8〜約3.2Mまたは約3Mの濃度に少なくとも実質的に維持され得る。
化合物、例えば硫酸リチウムおよび/または重硫酸リチウムを含む水性流は陽極液コンパ
ートメント内に約10℃〜約100℃、約10℃〜約100℃、約10℃〜約90℃、約
20℃〜約85℃または約80℃の温度で導入され得る。
チウム低減水性流が陽極液コンパートメントから約20℃〜約100℃、約20℃〜約8
5℃、約20℃〜約85℃、約60℃〜約85℃、約70℃〜約85℃または約80℃の
温度で取り出され得る。
気化学セル内の温度は約60℃〜約110℃、約60℃〜約100℃、約60℃〜約90
℃、約60℃〜約85℃、約75℃〜約85℃、約50〜約70℃、約55〜約65℃ま
たは約80℃の値に少なくとも実質的に維持され得る。
流密度は約0.1kA/m2〜約8000kA/m2、0.5kA/m2〜約6kA/m
2、約1kA/m2〜約6kA/m2、約2kA/m2〜約6kA/m2または約3kA
/m2〜約5kA/m2の値に少なくとも実質的に維持され得る。例えば、電流密度は、
約3kA/m2、約4kA/m2および約5kA/m2から選択される値に少なくとも実
質的に維持され得る。例えば、電流密度は約4kA/m2の値に少なくとも実質的に維持
され得る。
圧は約3V〜約8V、約5V〜約10V、約4V〜約6V、約4〜約5または約4.5の
値に少なくとも実質的に維持され得る。
00m2、約400m2〜約500m2または約430m2の表面積を有するものであり
得る。
、例えば2コンパートメントモノポーラまたはバイポーラ膜電解プロセスを含むもの、本
質的に該プロセスからなるもの、または該プロセスからなるものであり得る。
、例えば3コンパートメントモノポーラまたはバイポーラ膜電解プロセスを含むもの、本
質的に該プロセスからなるもの、または該プロセスからなるものであり得る。
パートメント膜電解プロセスは、陰イオン交換膜によって中央コンパートメントと隔てら
れた陽極液コンパートメントおよび陽イオン交換膜によって該中央コンパートメントと隔
てられた陰極液コンパートメントを備えた第2の電気化学セル内で行なわれ得る。
的にこれからなるもの、またはこれからなるもの、例えば、Nafion(商標)324
陽イオン交換膜または苛性ソーダ濃縮に使用される他の膜、例えばFuMA−Tech
FKBもしくはAstom CMB陽イオン交換膜であり得る。本開示の具体的な方法に
対する好適な陽イオン交換膜の選択は、当業者によってなされ得よう。
パートメント膜電解プロセス中、第1のリチウム低減水性流が中央コンパートメントに導
入され得、第2のリチウム低減水性流が中央コンパートメントから取り出され得、第2の
水酸化リチウム富化水性流が陰極液コンパートメントから取り出され得る。
パートメント膜電解プロセスはさらに、陽極液コンパートメント内で硫酸などの酸を生成
させ、該陽極液コンパートメントから硫酸含有水性流などの酸含有水性流を取り出すこと
を含むものであり得る。
得よう。例えば、当業者には、例えば、硫酸などの酸が共生成されるプロセスにはプロト
ン阻止膜が有用であり得ることが認識されよう。例えば、3コンパートメントモノポーラ
またはバイポーラ膜電解プロセスにおいて、陰イオン交換膜はプロトン阻止膜であり得る
。例えば、プロトン阻止膜はFumatech FAB、Astom ACMまたはAs
ahi AAV陰イオン交換膜などであり得る。
パートメントにおいて、硫酸などの酸は約0.1M〜約2Mの硫酸などの酸濃度に少なく
とも実質的に維持され得る。例えば、3コンパートメントモノポーラまたはバイポーラ膜
電解プロセスの陽極液コンパートメントにおいて、硫酸は約0.5M〜約1.5M、約0
.7M〜約1.2M、または約0.8Mの(can be)硫酸濃度に少なくとも実質的
に維持され得る。
化リチウムは約1M〜約5.0M、約1M〜約4.0M、約1.5M〜約2.5M、約1
.8M〜約2.2Mまたは約2Mの濃度に少なくとも実質的に維持され得る。
チウム低減水性流は中央コンパートメント内に約20℃〜約85℃、約40℃〜約85℃
、約40℃〜約75℃、約50℃〜約70℃、約50℃〜約65℃または約60℃の温度
で導入され得る。
チウム低減水性流が陽極液コンパートメントから約20℃〜約80℃、約30℃〜約70
℃、約40℃〜約80℃または約60℃の温度で取り出され得る。
気化学セル内の温度は約30℃〜約90℃、約40℃〜約85℃、約50℃〜約80℃、
約50℃〜約70℃、約50℃〜約65℃または約60℃の値に少なくとも実質的に維持
され得る。
流密度は約0.5kA/m2〜約5kA/m2、約1kA/m2〜約2kA/m2、約3
kA/m2〜約5kA/m2、約4kA/m2または約1.5kA/m2の値に少なくと
も実質的に維持され得る。
圧は約5V〜約9V、約6V〜約8V、約6.5V〜約7.5Vまたは約7Vの値に少な
くとも実質的に維持され得る。
3000m2または約2700m2のセル面積を有するものであり得る。
バイポーラ膜電解プロセスはさらに、アンモニアを陽極液コンパートメント内に導入し、
該陽極液コンパートメント内で硫酸アンモニウムなどのアンモニウム化合物を生成させ、
硫酸アンモニウム含有水性流などのアンモニウム化合物含有水性流を該陽極液コンパート
メントから取り出すことを含むものであり得る。
得よう。例えば、当業者には、硫酸などの酸が共生成されない方法では、プロトン阻止膜
でない陰イオン交換膜が有用であり得る(例えば、プロトン阻止膜より高温に耐え得る、
および/または低抵抗を有するものであり得るため)ことが認識されよう。例えば、3コ
ンパートメントモノポーラまたはバイポーラ膜電解プロセスにおいて、陰イオン交換膜は
プロトン阻止膜でないものであり得る。例えば、陰イオン交換膜は、Astom AHA
陰イオン交換膜FuMA−Tech FAPなどの膜であり得る。
パートメントにおいて、硫酸アンモニウムなどのアンモニウム化合物は、約0.5M〜約
5M、約1M〜約4Mまたは約3Mの硫酸アンモニウムなどのアンモニウム化合物濃度に
少なくとも実質的に維持され得る。
パートメントにおいて、水酸化リチウムは約1M〜約4.0M、約1.5M〜約2.5M
または約2Mの濃度に少なくとも実質的に維持され得る。
エレクトロメンブレンプロセスに再利用することを含むものであり得る。例えば、より高
濃度の水酸化リチウムを得るために2コンパートメントモノポーラまたはバイポーラ膜電
解セルを再使用することが可能である。また、当業者には、水酸化リチウムを調製するた
めの連続プロセスもまた有用であり得ることも認識されよう。
の電気化学セルの中央コンパートメント内のpHが約2〜約12、約3〜約10、約4〜
約9、約5〜約8または約8の値に達した場合、第1のリチウム低減水性流のpHを約0
.4〜約1.2、約0.5〜約0.8、約0.5〜約0.7または約0.6の値よりも上
に制御するために第1のエレクトロメンブレンプロセスに再利用され得る。
トメントにおけるpHが約0.4〜約1.2、約0.5〜約0.8、約0.5〜約0.7
または約0.6の値になるまで第1のエレクトロメンブレンプロセスに供し、次いで、再
度、第1のリチウム低減水性流を第2のエレクトロメンブレンプロセスに供することを含
むものであり得る。
パートメントおよび/または3コンパートメントモノポーラまたはバイポーラ膜電解プロ
セスの中央コンパートメントにおけるpHは少なくとも実質的に維持され得る。例えば、
pHは、2コンパートメントモノポーラまたはバイポーラ膜電解プロセスの電流密度、3
コンパートメントモノポーラまたはバイポーラ膜電解プロセスの電流密度、第1のリチウ
ム低減水性流の流速および第2のリチウム低減水性流の流速の少なくとも1つを調整する
ことにより少なくとも実質的に維持され得る。
ウムおよび/または重硫酸リチウムの水酸化リチウムへの変換は所定の程度まで進行され
得る。
化合物、例えば硫酸リチウムおよび/または重硫酸リチウムを含む水性流が陽極液コンパ
ートメント内に導入され得、第1のリチウム低減水性流が陽極液コンパートメントから取
り出され得、第1の水酸化リチウム富化水性流が陰極液コンパートメントから取り出され
得;3コンパートメントモノポーラまたはバイポーラ膜電解プロセス中、第1のリチウム
低減水性流が中央コンパートメントに導入され得、第2のリチウム低減水性流が中央コン
パートメントから取り出され得、第2の水酸化リチウム富化水性流が陰極液コンパートメ
ントから取り出され得る。
メントモノポーラまたはバイポーラ膜電解プロセスに再利用することを含むものであり得
る。
認識されよう。
るいはまた、例えば、該方法を連続プロセスまたは半連続プロセスとして操作してもよい
。例えば、当業者であれば、2コンパートメントモノポーラまたはバイポーラ膜電解プロ
セスの陽極液コンパートメントおよび/または3コンパートメントモノポーラまたはバイ
ポーラ膜電解セルの中央コンパートメントにおけるpHは、2コンパートメントモノポー
ラまたはバイポーラ膜電解プロセスおよび/または3コンパートメントモノポーラまたは
バイポーラ膜電解プロセスの電流密度および/またはプロセス間を流れる流れの流速を、
例えば本明細書に記載のようにして調整することにより少なくとも実質的に維持され得る
ことが認識され得よう。
パートメントおよび/または3コンパートメントモノポーラまたはバイポーラ膜電解プロ
セスの中央コンパートメントにおけるpHは少なくとも実質的に維持され得る。
流密度、3コンパートメントモノポーラ膜電解プロセスの電流密度、第1のリチウム低減
水性流の流速および第2のリチウム低減水性流の流速の少なくとも1つを調整することに
より少なくとも実質的に維持され得る。
なされ得よう。好適な電流密度および/または好適な流速の選択は、当業者によってなさ
れ得よう。
流を第1のエレクトロメンブレンプロセスに再利用することを含むものであり得る。
素含有流を取り出すことを含むものであり得る。例えば、該方法はさらに、第2の電気化
学セルの陰極液コンパートメントから第2の水素含有流を取り出すことを含むものであり
得る。例えば、該方法はさらに、第1の電気化学セルの陽極液コンパートメントから第1
の酸素含有流を取り出すことを含むものであり得る。例えば、該方法はさらに、第2の電
気化学セルの陽極液コンパートメントから第2の酸素含有流を取り出すことを含むもので
あり得る。
であり得る。
体が本明細書に組み込まれる)に記載の方法を使用することにより得られ得る。
、β−スポジュメン、リチア雲母、ペグマタイト、葉長石、アンブリゴナイト、ヘクトラ
イト、ジャダライト、スメクタイト、クレイまたはその混合物であり得る。
最後に加熱したβ−スポジュメンであり得る。
可溶性が非常に低い)で形成され得る。次いで、これをスラリー状にし、CO2をスパー
ジングして(例えば、オートクレーブ内で)炭酸リチウムを水溶性の重炭酸リチウムに変
換させ、約85〜約95℃の温度で加熱してCO2を追い出すと、さらに純粋な炭酸リチ
ウムを再沈殿させることができる。高純度グレードを得るために、この重炭酸塩工程を繰
り返してもよい。β−スポジュメンを水酸化ナトリウムとともに焼成して水酸化リチウム
(これは精製が必要であり得る)を浸出させることも可能である。
添加することにより、または希釈することにより制御され得る。ORPは、空気のスパー
ジングで先に示したようにして制御され得る。
5〜約6.5のpHが得られるように反応させ、それにより、沈殿物が得られるように該
少なくとも1種類の金属イオンを少なくとも1種類の水酸化物の形態で少なくとも部分沈
殿させる場合、該少なくとも1種類の金属イオンの金属はFe、Al、Cr、Znまたは
その混合物であり得る。
る水性組成物を別の塩基と約9.5〜約11.5のpHが得られるように反応させ、任意
選択で少なくとも1種類の金属炭酸塩と反応させ、それにより少なくとも1種類の金属イ
オンを少なくとも部分沈殿させる場合、該少なくとも1種類の金属イオンの金属はMn、
Mg、Caまたはその混合物であり得る。
る水性組成物をイオン交換樹脂と、少なくとも1種類の金属イオンが少なくとも部分除去
されるように接触させる場合、該少なくとも1種類の金属イオンはMg2+、Ca2+ま
たはその混合物であり得る。
図1に示すように、水酸化リチウムは、例えば、かかる方法を使用することにより、予
備浸出させたリチウム含有材料を出発物質として使用することにより得られ得る。例えば
、酸焙焼β−スポジュメンなどの種々の鉱石浸出物が使用され得る。図1に示す方法は炭
酸リチウムを生成させるためにも使用され得る。別の実施形態によれば、出発物質はリチ
ウム化合物、例えば、硫酸リチウム、塩化リチウムまたはフッ化リチウムであり得る。か
かる場合、該方法は、より短いものとなり得、タイトルが「膜電解」のボックスから開始
され得る。
酸焙焼β−スポジュメン(ARβ−スポジュメン)
重液選別(DMS)精鉱の比が異なるもので構成した。サンプルは75/25および50
/50として識別した。前者のサンプルは約75重量%の浮揚精鉱と約25重量%のDM
S精鉱を含有するものにした。後者のサンプルは、2種類の精鉱を質量基準で実質的に等
しく含有するものにした。供給原料サンプルのアッセイデータを表1にまとめる。この2
つのサンプルは非常に類似した分析プロフィールを有していた。75/25サンプルは5
0/50サンプルよりも高レベルのFe、Mn、Mg、CaおよびKを有していた。どち
らのサンプルもARβ−スポジュメンの典型的な組成を有するものであった。
表1.ARβ−スポジュメンサンプルのアッセイデータ
精鉱浸出(CL)および一次不純物除去(PIR)
中に含まれた硫酸リチウムを溶解させること、および2)供給原料固形分からリチウムと
ともに共浸出される主要不純物をプロセス溶液から除去することであった。
スポジュメンを、振動フィーダに備え付けた供給原料ホッパーを用いて添加した。各反応
器には、以下のもの:オーバーヘッドミキサーモータ(0.5hp)(4−ブレードピッ
チインペラーが取り付けられている)、pHおよびORP(酸化還元電位)用プローブを
備え付けた。PIR反応器にはまた、インペラーの真下にエアスパージャーも配置した。
プロセススラリーを1つの反応器から次の反応器にオーバーフローポートを介して重力に
より流動させた。CL反応器のオーバーフローポートは槽の有効容積が約32Lとなるよ
うに設定した。PIR反応器は各々、約14Lの有効容積を有していた。PIR Tan
k 3(槽列の最後の反応器)からのオーバーフローを濾過ステーションにポンプ輸送し
た。
ュメンサンプルを約85時間の操作で浸出させた。一方の供給原料から他方の供給原料へ
の切換えは操作の37時間目に行なった。ポンプがCL反応器からオーバーフローし始め
たときを操作の時間点ゼロとした。
30〜約45分間混合した。リチウムが、所望でない脈石金属、例えば、鉄、アルミニウ
ム、ケイ素、マンガンおよびマグネシウムなどとともに抽出された。したがって、得られ
たスラリー(CLスラリー)には、可溶化Li+(リチウムイオン)が含有された固形分
組成物および水性(液状)組成物ならびに上記の金属の可溶化イオンが含まれていた。C
LスラリーのpHとORPをモニタリングしたが制御しなかった。あるいはまた、pHを
、いくらかの塩基、いくらかの酸をさらに添加することにより、または希釈することによ
り最後に制御してもよい。また、ORPも、空気のスパージングで先に示したようにして
制御してもよい。CLスラリーを重力によりPIR Tank 1に流動させた。択一的
に、PIR Tank 1内に導入する前に、水性組成物を固形分組成物と分離してもよ
い。かかる場合、水性組成物(本実施例の場合のように完全CLスラリーではなく)がT
ank 1内に挿入され得る。
CL/PIR固形分残渣を洗浄したときに得られた第1洗浄排液画分)が存在していた。
Wash 1の初期再利用率を、CLに必要な水添加量の約50%に設定した。37時間
の操作後、この量は、プロセスへの水添加量の60%を構成するまで増大した。この洗浄
液流には平均で約12g/LのLi(約95g/LのLi2SO4)が含有されていた。
水性組成物からFe、AlおよびSiを実質的に除去するために行なった。このプロセス
において、精鉱浸出スラリー(水性組成物と固形分組成物を含む)のpHを、3つのPI
R槽への石灰スラリーの添加によって約5.6まで上げた。石灰は、約20wt%の濃度
を有するスラリーとして添加した。CLスラリーを、かくして沈殿物と水性組成物に変換
させた。Fe、AlおよびSiなどの不純物は不溶性の金属水酸化物として少なくとも実
質的に沈殿し、沈殿物中にみられたが、リチウムイオンは水性組成物中に実質的にみられ
た。PIR回路の保持時間は約45〜約60分間であった。プロセススラリーの酸化電位
を約350mVまたはそれより上に維持するために空気をPIR槽内にスパージングした
。このレベルで、第一鉄(Fe2+)形態で存在する鉄が、かかるpHでの沈殿に適した
形態である第二鉄(Fe3+)に酸化され易くなり得る。かくして、例えばFe、Alお
よびSiの金属水酸化物を含む沈殿物を得、最後に、リチウムイオンを含む水性組成物と
分離した。PIRでは、pHが、このように、いくらかの塩基、いくらかの酸をさらに添
加することにより、または希釈することにより制御され得る。ORPは、空気のスパージ
ングで先に示したようにして制御され得る。
ターで濾過した。濾液(リチウムイオンを含んでおり、低減された含量の上記の金属(F
e、AlおよびSiなど)を有する水性組成物)を二次不純物除去(SIR)に進めた。
PIR濾過ケークで3回分の洗浄排液を得た。最初の洗浄液画分は、2回目以降の2回分
の洗浄液とは別に収集した。最初の洗浄液流は、含有されたリチウムを回収するための供
給原料水流の一部としてCLプロセスに再利用した。Wash 2および3画分を合わせ
、溶液として保存した。この溶液が、リチウム単位を回収するための石灰スラリー構成に
使用され得る。
浄液画分を再利用してCL槽に戻し、浸出のための水添加量の半分を構成した。結果とし
てリチウム含有量は、回路全体を通して約18g/L(約142.6g/LのLi2SO
4)まで増加した。37.5時間目、再利用率は、浸出のための水の60%を構成するま
で増大し、リチウム含有量は約25g/L(約198g/LのLi2SO4)まで増大し
た。PIRの最初の洗浄液のリチウム含有量は約12〜約15g/L(約95g/L〜約
118.8g/LのLi2SO4)の範囲であった。
槽3内のスラリーのORPは、操作中、実質的に安定であり、約350mVより上であっ
た。CLおよびPIRの鉄含有量を図4に示す。10時間目および54時間目、PIR3
のpHは約5.6の値付近であったが、まだPIR3液中の鉄含有量は増大した。
らも、実行全体を通してCL槽内において漸増レベルを示した。鉄レベルは、PIR3で
は実行の大部分で、CLで観察された増大に関係なく約5mg/Lより下に維持された。
PIR3におけるアルミニウムは、最初の40時間で約10mg/L未満であり、次いで
、残りの操作時間では約20〜約65mg/Lの範囲であった。
率は、固形分アッセイに基づいて計算している。この物質収支は、ARβ−スポジュメン
供給原料中に存在するリチウム全体の約82%が二次不純物除去(SIR)に進められた
ことを示す。具体的には、約79%のリチウム抽出率が75/25ブレンドで得られ、5
0/50ブレンドでは約86%であった。浸出されなかったか、または沈殿したかのいず
れかであるアルミニウム部分および鉄部分は、それぞれ合計で約96%および約99%で
あった。他の試験では、ARβ−スポジュメンから約95%の抽出収率が得られ得ること
が示されている。
表2.CL回路およびPIR回路の物質収支
二次不純物除去
含量の上記の金属(Fe、AlおよびSiなど)を有する水性組成物)に対して行ない、
Ca、MgおよびMn不純物を実質的に沈殿させて除去した。SIR回路への供給原料の
添加は、操作6時間目(CL槽からのオーバーフローの6時間後)に開始した。4つの処
理槽をカスケード状に配列する(図2参照)。槽容積は、実行中、槽のオーバーフローポ
ートを変えることにより約11.8〜約17.5Lに調整され得る。槽はすべて、バッフ
ル付きであり、オーバーヘッドミキサーによって撹拌する。すべての槽においてpH、O
RPおよび温度をモニタリングした。
pHを約10まで上げた。このpH調整後、供給原料中の標的不純物レベルに対して過剰
の炭酸ナトリウム(Na2CO3)を第3槽に添加し、残留している二価の不純物を不溶
性炭酸塩に変換した。第3槽からのスラリーを清澄器にポンプ輸送した。アンダーフロー
固形分を濾過によって取り出して回収し、一方、オーバーフロー溶液は1000L容トー
ト内に収集した。
マンガンおよびカルシウムが含まれていた。実質的にすべてのクロムならびに約98%を
超える鉄およびアルミニウムが最初のPIR槽(PIR1)内に実質的に沈殿した。PI
Rの次の2つの槽(PIR2およびPIR3)で起こった沈殿は最小限であった。SIR
の最初の槽(SIR1)により、溶液中に実質的に残留している唯一の不純物はマグネシ
ウムとカルシウムであった。他のすべての元素は約1mg/L未満であった。ほとんどの
沈殿はSIR1内で起こったが、SIR2でのさらなる保持時間によりマグネシウム含有
量が約40から約20mg/Lまで低下した。SIR2からSIR4までで、マグネシウ
ム含有量およびカルシウム含有量は、さらなる保持時間とともに着実な低下を示した。S
IR4の不純物レベルは、パイロットプラント実行中、平均すると約1mg/L Mn、
約14mg/L Mgおよび約241mg/L Caであった。しかしながら、主要パラ
メータの最適化により、約200mg/L Caおよび約2mg/L Mgという低レベ
ルが達成された。
御した。最初に、SIR2に対して選択したpHは約10であった。操作の30時間目、
SIR2におけるpHを約10.5まで上げた。SIR2におけるpHが約10に低下し
た50時間目における2時間を除き、残りの実行ではpHは約10.5のままであった。
2つの期間で得られた平均pH値は約10.1および約10.5であり、得られた水酸化
ナトリウム消費量は、それぞれ1時間あたり約0.022および約0.024kg水酸化
ナトリウムであった。全水酸化ナトリウム消費量は、約1000kgの炭酸リチウム当量
(LCE)あたり約10キログラムの水酸化ナトリウム溶液であった。
液は水酸化ナトリウムによって10より上にpH調整されているが、炭酸ナトリウムはま
だ投与されていない。マグネシウム含有量は調整後の方が低いが、そのレベルは緩徐な下
降傾向を示し、この傾向は設定ポイントの変更前に始まるようである。後にパイロットプ
ラントにおいて、すべてのSIR槽で保持時間を長くしており、このこともまた沈殿成績
の改善に寄与したかもしれないことに注意されたい。
よび9にプロットする。これらの図は、不純物含有量(MgとCaのみ)を、サンプルを
採取した時点で使用された炭酸ナトリウムの投与量と関連付けている。さらに、データを
各サンプルの時間点における全SIR回路の保持時間に対してプロットする。試験した範
囲内では、炭酸ナトリウムが増加するにつれて、金属含有量が減少した。最低不純物含有
量もまた、長い回路保持時間に対応していたことに注意されたい。炭酸ナトリウムの投与
量を、炭酸ナトリウムの添加前に存在していたカルシウム不純物のモル過剰分として示す
(SIR2によるアッセイを使用)。データにより、溶液中のCa含有量は約200mg
/Lより下に低減され得ることが示された。
れたときにアッセイした。SIR4排出物を100L容清澄器内にポンプ輸送し、清澄器
からのオーバーフローを0.5μmの渦巻形カートリッジフィルターに通して濾過し、次
いで1000L容プラスチックトート内に収集した。これらのトートを、バルク供給原料
のカルシウム含有量のイオン交換(IX)を確認するために再度アッセイした。トートを
サンプル採取したとき、明褐色固形物が各トートの底に観察された。アッセイにより、回
路の最後の槽(SIR4)から排出された溶液からトート内で未混合の状態で存在してい
る溶液までで、カルシウム含有量の有意な低下が明らかになった。両方の流れの平均アッ
セイの比較を以下の表4に示す。
表4.SIR排出物に対するエージングの効果
ムおよびすべてのマンガンが固形分に報告されたことを示す。リチウムの固形分への分配
は、全SIRリチウム回収率が約99.1%であることから約0.9%である。
表5.SIR回路の物質収支
イオン交換
よびMgの含有量をさらに低減させる。IX回路は、二価および三価の金属イオンに選択
的であるナトリウム形態で使用され得るカチオン樹脂であるPurolite(商標)S
950が充填された3つのカラムを含む。Purolite(商標)S950は、アミノ
ホスホン酸系樹脂担持マクロ多孔質架橋ポリマーを含むものである。これは、重金属カチ
オンの除去に使用され得る。高pHでは、これは第2族の金属カチオン(Mg、Caおよ
びBa)ならびにCd、NiおよびCoの除去に活性であり得る。高pHでは、二価の金
属カチオンは一価の金属カチオン(例えば、Li、Na、K)よりも優先的に吸収される
。二価の金属カチオン(Ca2+およびMg2+など)および/または三価の金属カチオ
ンを実質的に選択的に除去するのに好適であり得る任意のイオン交換樹脂が本開示におい
て択一的に使用され得る。あるいはまた、1種類より多くの型の樹脂を使用して種々の金
属カチオンを選択的に除去してもよい。したがって、異なる金属カチオンに対して異なる
イオン交換樹脂を使用してもよい。
tion)プロセス(図2および10参照)であった。回路のIXカラムのうちの2つを
CaとMgの除去に関与させ、一方、3番目のカラムでは樹脂再生サイクルを実施する。
IX回路内の溶液フローおよび進み−遅れ再生操作の模式図を図10に示す。Caおよび
Mgの負荷は進みおよび遅れと表示した2つのカラムで行なわれ、CaおよびMgの溶液
中含有量がともに約10mg/Lより下になった排出液をもたらす。負荷されたカラムは
ストリッピング段階と再生段階を受けた後、次の負荷サイクルの遅れカラムとして再導入
される。カラムは透明なPVC管で構築した。各カラムは約15cmの直径および約76
cmの高さを有するものであった。各カラムのベッド体積は約10Lであった。
もとにしており、進み−遅れカラム構成は、遅れ排出液中のCaおよびMgの含有量が各
カチオンに対して確立された約10mg/Lである確立された上限を超える前に75ベッ
ド体積(BV)の供給原料溶液を処理するように設計した。75BVの供給原料溶液を処
理した後、進みカラムと遅れカラム内の樹脂の合計吸収能は、CaおよびMgの含有量が
各々約10mg/Lより下である最終排出液をもたらすのには充分でないかもしれなかっ
た。この時点で負荷サイクルは終了する。進みカラムは再生段階に進展する。遅れカラム
は進みポジションを取る。再生されたカラムは遅れカラムとなる。
ラムの洗浄を伴った。この溶液は遅れカラムに送られる。供給原料洗浄段階に続いて、約
2MのHClを用いた酸ストリッピングを行なう。これにより、吸収されたCa、Mg、
Liおよび他の金属カチオンが樹脂から除去される。樹脂はこのとき酸形態である。続い
て、残留HCl(水性)をカラムからすすぎ洗浄するための酸洗浄段階が行なわれる。次
いで、カラムに約2MのNaOHを通過させることにより樹脂をNa形態に変換する(再
生段階)。最終工程は、逆浸透(RO)水を用いてカラムから過剰のNaOHを洗い流す
ことを伴う。樹脂はこのとき再生され、次の負荷サイクルの遅れポジションに進展する準
備ができた状態である。酸ストリッピングサイクルからの排出液は別途収集した。酸洗浄
、再生および再生液洗浄サイクルからの排出液はすべて、同じドラム内に捕集した。
タにより、Liがカラムから最初に溶出された後、CaおよびMgが溶出されることが示
された。Li画分を別途に捕集することが可能であり得、その結果、塩化リチウム溶液が
生成する。
表6.IXパイロット操作パラメータ
クルでの供給原料溶液の平均Li、CaおよびMg含有量を表7にまとめる。
表7.IX−平均供給原料溶液中Li、CaおよびMg含有量
約832mL/分(約49.9L/時)であった。サイクル1は、75BVの供給原料溶
液が進み−遅れカラムを通過した唯一のサイクルであった。
プロットしたサイクル1のCa負荷曲線を図11に示す。また、このプロットには、供給
原料溶液中の平均Ca含有量および本実施例の遅れ排出液中のCa含有量について選択し
た限界(約10mg/L)もプロットしている。進みカラムのCaの貫流点は7.5BV
の時点に存在した。進み排出液のCa含有量は、75BV後で約82.3mg/Lであり
、進みカラムがCaの負荷容量に達していないことを示した。遅れカラムのCaの貫流点
は約35BVの時点に存在した。遅れ排出液中のCa含有量は60BV目と65BV目の
間で約10mg/Lより上に増加した。遅れ排出液が約10mg/L Caより上ではあ
るが、サイクル1の負荷段階を75BV目の時点まで継続することを決定した。65から
75BV目の時点までの排出液を200L容ドラムに転送し、サイクル1の主生成物溶液
とは別に維持した。転送した溶液は、後で、得られた併合溶液中のCa含有量が約10m
g/Lを超えていない可能性があると判定された場合に、サイクル1の主生成物と合わせ
た。
の平均Mg含有量および例えば、遅れ排出液中のMg含有量の上限(約10mg/L)も
このプロットに含めている。進みカラムのMgの貫流点は7.5BV目に存在した。75
BV後、進み排出液のMg含有量は約9.5mg/Lであった。遅れカラムのMgの貫流
点は52.5BV目に存在した。75BV後、遅れ排出液のMg含有量は、この実施例に
よれば、IX生成物溶液中Mgについて選択した限界レベルより充分下の約0.8mg/
Lであった。
終了しなければならなかった。図13に、各IXサイクルでの遅れ排出液のCa含有量を
累積BVに対してプロットしている。サイクル2の場合、進みカラムおよび遅れカラムの
Caの貫流点は、それぞれ<約7.5BVおよび約23BVに存在した。約68BV後、
サイクル2を終了した。遅れ排出液中のCaは、約60BV後に約13mg/Lに達した
。サイクル3の遅れカラムでのCaの貫流点は最初の5BV以内に存在した。サイクル3
は約30BV後に終了した。30BV目の時点における遅れ排出液中のCaの含有量は約
7.7mg/Lであった。
このサイクルでの進みカラムおよび遅れカラムでのCaの貫流点は、それぞれ<約7.5
BVおよび約7.5BVに存在した。サイクル4の遅れ排出液のCa含有量データの外挿
により、生成物溶液が、60BV後、>約10mg/LのCa含有量を有し得ることが示
された。
ている。遅れ排出液中のMg含有量は約10mg/Lのレベルに近いレベルに決して近づ
かなかったことが明白である。
トしている。また、このプロットには、供給原料溶液の平均Li含有量も含めている。デ
ータにより、実質的にLiは樹脂に負荷されていないことが示された。
含有量を累積BVに対してプロットしている。データは、Liが最初に樹脂からストリッ
ピングされ、例えば約0.5〜約1.5BVの範囲で上限含有量に達することを示す。樹
脂からのCaおよびMgの溶出は1BVあたりで始まり、ともに、例えば約2BVで上限
含有量に達する。3種類の金属は3BV後に樹脂から溶出する。サイクル3および4での
CaおよびMgのプロフィールは同様であった。
により生成した硫酸リチウム流には約39.1kgのLiが含有されていた(これは、S
IRおよびIXを受けなかったPIR PLSサンプル中の100%のリチウム単位を含
む)。下流プロセスでロスがないと仮定して生成され得る炭酸リチウムの相当質量は約1
87.7kgであり得る。
を表8にまとめる。Li含有量は約15.7〜約21.9g/Lの範囲であった。Caお
よびMgの含有量の範囲はそれぞれ約2.4〜約5.7mg/Lおよび<約0.07〜約
0.2mg/Lであった。注目すべき他の構成成分は、それぞれ平均約3.5g/Lおよ
び約0.1g/LのNaおよびKであった。また、アッセイした元素で、分析手法の検出
限界未満のものも表8に記載している。
表8.IX生成物溶液アッセイ
。約2.7%のLiがストリッピング/再生のプロセス溶液中で損なわれた。このプロセ
スで、供給原料溶液中に含有されていたCaの約97.6%およびMgの約99.0%が
除去された。
0mg/Lより下まで低減させることにより、プロセスの目的を果たしていた。さらに、
高品質の硫酸リチウム溶液が生成された。
表9.IXの物質収支
より、各サンプルにα−スポジュメンとβ−スポジュメンの両方が含まれていることが示
された。2つの供給原料サンプル(75/25および50/50)の各々で生じたCL/
PIR残渣のSQ−XRDデータを表10にまとめる。α−スポジュメンの存在は、第三
者の供給元によって実施された相転移工程(α−スポジュメンの酸焙焼)が100%効率
的でなかったことを示す。この形態で存在するLi(あれば)は、したがって、湿式製錬
プロセスに化学的に利用され得ない。相転移工程(α−スポジュメンからβ−スポジュメ
ンへの変換)の効率は100%ではなく、したがって、湿式製錬プロセスへの供給原料中
の含有Liのパーセンテージはα−スポジュメンとしてのものであることに注意されたい
。
表10.2つのCL/PIR残渣型のSQ−XRDデータ
利用可能ではなく、その結果、偽低Li回収率値がもたらされる。
回収率を計算した。この計算のデータを表11にまとめる。すべての排出プロセス流中の
全Liは約63.2kgであった。これには、β−スポジュメンとして存在するCL/P
IR残渣中の約11.7kgのLiが含まれていた。したがって、調整全排出Li値は約
51.6kgになる。プロセス全体で回収可能な全Liは約46.9kgであった。その
ため、調整全Li回収率は約95.8%と計算される。
表11.調整全Li回収率
えば、高品質水酸化リチウムおよび/または高品質炭酸リチウムの溶液の作製におけるリ
チウム源として使用され得る。また、この高グレード硫酸リチウム溶液は、他の高グレー
ドリチウム生成物の生成における供給原料としても使用され得る。
実施例2
電気分解:Li2SO4のLiOHへの変換.
I.序論
ド基の逆移動が低減される(高電流効率がもたらされる)ように設計されたスルホン酸交
換基を有する強化過フッ素化二層膜である。これは、高当量ポリマー層を陰極に対向して
配置することにより行なわれ得る。また、これは高温で使用され得る。例えばあまり高価
でない一部の択一的な陽イオン交換膜、例えば、Nafion 902、Fumatec
h FKBおよびNeosepta CMBもまた、本開示の方法に好適であり得る。
陰イオン交換膜は、例えば酸濃縮用途に使用される、弱塩基性のプロトン阻止膜である。
この膜は約40℃で試験した。本明細書において試験した第2の陰イオン交換膜はFum
atech FAB膜であった。この膜は、優れた機械的安定性を有する酸安定性プロト
ン阻止膜であり、高温に耐え得るものである。これは約60℃で試験した。高い操作温度
では、例えば、電解法に進める前に必要とされるプロセス供給原料溶液の冷却が少なくて
よいとともに、溶液および膜の導電率が上がることにより全体エネルギー消費が少なくな
り得る。また、これにより、例えば、晶出ループ内の水酸化リチウム流に必要とされる加
熱量および溶解工程に戻される供給原料に必要とされる加熱量が低減され得る。
II.実験
膜を備え付けたElectrocell MPセルにおいて行なった。供給原料ループは
、周囲を600ワットテープヒーターで覆われた約5リットル容断熱ガラス製レザーバか
らなるものであった。溶液を、Iwaki(商標)WMD−30LFX遠心循環ポンプで
循環させた。溶液のpH、流速、温度、および供給口圧力(セルへの)をすべてモニタリ
ングし、制御した。また、溶液の導電率もモニタリングした。必要な場合は酸(または塩
基)を供給原料溶液にpH制御のために、蠕動ポンプおよびレザーバとしてメスシリンダ
ーを用いて添加した。
製レザーバを備えたものであった。溶液を、上記のものと同様のポンプで循環させた。溶
液の流速、温度および供給口圧力もモニタリングし、制御した。希釈用水(濃度調整のた
め)をレザーバに直接、流速調整可能な蠕動ポンプを用いて添加した。このレザーバでは
、より大型のポリプロピレン製捕集レザーバ内へのオーバーフローを許容し、次いで、こ
こから溶液を蠕動ポンプによって循環させてガラス製レザーバに戻した。陰極液ループは
陽極液ループと実質的に同様にした。
陰極: H2O+e−→1/2H2+OH−
陽極: H2O→1/2O2+2H++2e−
体をヒュームフード内に入れた。
て分析した。また、選択サンプルを陰イオン(スルフェート)および陽イオン(リチウム
とナトリウム)について、イオンクロマトグラフィーによって分析した。
III.結果および考察
Nafion 324/Asahi AAV膜を約40℃で用いた実験.
に、この実験で使用したパラメータをまとめる。両実験では、一定の約6.8ボルトを印
加した。この電圧は最初に、これらの膜の操作条件に関する先の経験に基づいて選択した
。
表12:AAVでの結果のまとめ.*IC分析の前に、添加されたNaをサンプルの中和
に使用したKOHによって補正。
(約0.25M硫酸)で開始し、電気分解中、上昇した。酸強度は、約1Mに達した後、
希釈用水の添加によってこの値で一定に保持したが、塩基濃度は上昇させ続けた。濃度お
よび得られた電流効率のグラフを図18に示す。
は約62%であり、最終酸強度は約0.97Mであった。
維持された。これにはpH制御下での水酸化リチウムの定量が必要とされ、また、これは
、陽イオン交換膜が陰イオン交換膜よりも効率的に機能を果たしていたことを示す。この
pHを維持するために必要とされる水酸化リチウムの量は投入量の約18%を占め、予測
どおり、塩基の電流効率と酸の電流効率の差に近い。全体電流密度は、理論リチウム取り
出しの約33%で約108mA/cm2であった。
4モル/モルLi+Na(Nafion 324膜を越えて塩基コンパートメント内)お
よび約1.6モル/モルスルフェート(Asahi AAV膜を越えて酸コンパートメン
ト内)と測定した。
定に維持され、塩基濃度は、最初は高値(約2.85M)が使用され、約3.63Mまで
上昇した。また、使用される出発供給原料がより少なく、そのため、より高度な枯渇が起
こり得た。このような条件下では、供給原料のpHを約4.0に維持するために必要とさ
れる水酸化リチウムはより少なく(電流の約6%に相当)、両方の膜の効率は互いに近か
ったが、Nafion 324膜の効率はAAV膜よりも高い状態が維持されていたこと
を示す。濃度および得られた電流効率のグラフを図19に示す。
、この場合も、供給原料のpHを維持するために必要とされる水酸化リチウムの量(約6
%)に充分に相当する。この実験での全体電流密度は、理論リチウム取り出しの約62%
で約105mA/cm2の先の実行と非常に類似していた。Nafion 324を越え
る水移動率は約7.0モル/モルLi+Naで同様であった。Asahi AAVを越え
る水移動は約−2.7モル/モルスルフェートと測定された(すなわち、水移動は、使用
した低酸濃度のため、酸から供給原料にであった)。
Nafion324/Fumatech FAB膜を約60℃で用いた実験.
初期ベースライン試験
表13に、プロセスの可変量を操作したときの種々の効果を調べるために使用した最初の
3つの実験の結果をまとめる。
表13:FABでの結果のまとめ.*IC分析の前に、添加されたNaをサンプルの中和
に使用したKOHによって補正。
まで上昇させた後、希釈用水の添加によって一定に保持した。初期水酸化リチウム強度は
約3.08Mであり、およそ3.5Mまで上昇した後、同様に希釈用水の添加によって一
定に保持した。濃度および得られた電流効率のグラフを図20に示す。
の添加が必要とされた(FAB膜はNafion 324よりも効率的であった)が、後
に、酸強度が約2倍に増大し、供給原料コンパートメント内へのプロトン逆移動が増大し
たため、水酸化リチウムの添加が必要とされた(Nafion 324がより効率的にな
った)。セルは、Asahi AAV膜での実験と同じ定電圧(セルにおいて約6.8V
)下で実行した。酸の全体電流効率は約65%および塩基の電流効率は約70%と測定さ
れた。
のプロフィールのグラフを図21に示す。
後、残りの実験の間にわたって緩徐な低下がみられた。理論によって制限されることを望
まないが、この増大は、FAB膜の抵抗の低下が補助される期間中での硫酸強度の増大と
関連していると考えられる。FAB膜の導電率は、そのpHに依存性であり得(例えば、
FAB膜は、ほぼ中性の硫酸ナトリウム溶液中で約50Ωcm2の抵抗を有し得るが、約
0.5Mの硫酸溶液中では約16Ωcm2まで低下し得(どちらも約25℃での測定値)
、これは該膜によって分けられた2つの溶液の関数である、すなわち、供給原料のpHと
酸の濃度の両方の関数である。実験中の中間点に存在する電流密度および導電率のピーク
は、2日間の実験の2日目の開始時に溶液温度が設定ポイント約60℃を超えたことによ
るものであり、その後、落ち着いた。
原料を処理するために必要とされた時間の長さのためであった。一晩連続して実行され得
、より大容量が終了まで処理されることが可能となり得るように装置を改良した。次の実
験はこの様式で実行し、例えば電流密度と効率を上げようと試みて他の変形を行なった。
酸濃度および塩基濃度は、大部分の時間、高効率を伴う低濃度で実行することを目的とし
て低濃度で開始され、次いで、水の添加を停止することにより、両濃度を所望の値まで上
げた。行なったその他の変更は、FAB膜の抵抗を下げようと試みて低pH(pH約3ま
たはそれより下)の供給原料で実行することであった。
および塩基濃度は、導電率が低くなり得、低電流密度に寄与し得るが、観察されたすべて
の低減の説明となるのに充分大きなものではない。理論によって制限されることを望まな
いが、後の実行後のセルの解体における観察結果は、主な寄与がNafion N324
膜の表面の汚損であり得ることを示唆する。この汚損は、膜表面(供給原料側)における
カーボネート形成と思われ、おそらく、システムが実行されていない時間中に形成されて
いる。作業中に後で取り出した膜は少量の白色沈殿物を有しており、これは、酸で容易に
除去された(ガスが形成された)。これが、高pHの供給原料で実行したときに形成され
たのかどうか、またはセルを排液し、空気中の二酸化炭素が膜表面(高pHを有する)で
反応したときに形成されたのかどうかは不明である。いずれの場合も、システムを低pH
で実行した場合、低電流密度は問題であるようにはみえなかった。
タの設定により、約2より下のpHは記録されなかった)。実験は、夜間、推定電荷量で
止まるように設定した。しかしながら、プロセスの効率が推定していたよりもわずかに良
好であったため、セルでの実行を継続し、供給原料はほぼ完全に枯渇した(約99.7%
のLi取り出し)。ほぼ完全な枯渇が可能であったが、電流密度は急落した。また、完全
な枯渇は、システム内の不純物(あれば)が無理に膜を通過して移動するため、膜に対し
て有害であり得る。また、リチウム/ナトリウム濃度がプロトン移動と同等になったため
、実験終了時のpHも劇的に上昇した。この時点で、スルフェート濃度は約18mMであ
り、ほとんどがビスルフェートとして存在していた。
.6Mであった。低濃度により、酸生成では約77%および塩基生成では約73%の高い
全体電流効率がもたらされた。実行過程で計算された濃度および電流効率を図23に示す
。
のpHにも依存性である。高濃度の水酸化リチウムでは、陽イオン膜を越えるヒドロキシ
ル種の高度な逆移動がもたらされ、したがって低電流効率がもたらされる。同様に、供給
原料溶液のpHが低いほど、より多くのプロトンが、陰極液コンパートメント内への移動
に関してリチウムイオンとの競合に利用可能となり、同様に低電流効率がもたらされる。
また、水酸化リチウム濃度は、供給原料を終了まで実行することによっても影響された。
低電流の期間中、低濃度供給原料から塩基への大量の浸透水シフトとともに低電流効率が
存在したであろう。この効果は、約8.3mol水/mol移動リチウム/ナトリウムと
測定された比較的高い水移動に反映される。
酸生成物の濃度が高いほど、より多くのプロトンが陰イオン膜を越えて供給原料コンパー
トメント内に移動し、酸の電流効率の低下ならびに供給原料のpHの低下がもたらされる
(これは、上記に論考した苛性ソーダ電流効率に影響を及ぼす)。
、先の実験を繰り返して行なった。図24は、酸濃度が実験全体を通して約0.9〜約1
.0Mに維持されたことを示す。塩基は約2.4Mから開始し、実行全体を通してほぼ約
3Mまで上昇させた。酸生成および塩基生成の電流効率は、それぞれ約77%および約7
5%であった。
較的低いことを示す。電流密度は2回目の実行(856−34)とより類似していたが、
この実行を856−34より早く終了したため(約99.7%ではなく約91%のリチウ
ム取り出し)、平均電流密度はかなり高くなり、約83mA/cm2であった。
スルフェートの約60%が溶液中でビスルフェートとして存在し、溶液中のプロトンは約
0.015Mだけである。
低供給原料pHでのN324/FABでの実行(生成実行)
した。試験の概要を表14に示す。大容量を使用し、システムを定酸濃度および低供給原
料pHで実行することにより先の実行の電流密度を増大させる試みを行なった。低供給原
料pHで実行することにより、高pH(>約3)の供給原料で実行した場合にみられたよ
うな実行間でなんら膜汚損の問題はなかった。しかしながら、酸の電流効率および塩基の
電流効率はどちらも低下した。これらの実行におけるその他の違いは、さらなる電圧をセ
ルに印加したことであった:約6.8Vではなく約7.8V。この変更は856−49中
の早期に行ない、約55mA/cm2から約95mA/cm2への電流密度の増大がもた
らされた。電力消費の詳細の測定には、より高値の電圧が使用される。
表14:FABでの生成実行の概要.*IC分析の前に、添加されたNaをサンプルの中
和に使用したKOHによって補正。
原料のpHを低下させることは、プロセスの電流効率に有害であった。供給原料のpHは
、商業プラントの状況の方がこのような実験室の実験よりも良好に制御され得る。より長
時間の実行では、実験の開始前に、硫酸を供給原料に添加してそのpHを約10から約3
に下げた。これは、全容量の供給原料に対して行ない、次いで、供給原料のpHは、操作
中、低下し続けた。しかしながら、プラントでは、実験が継続されるにつれて、より少量
(smaller heal)の供給原料溶液が酸性化され得、pH約10の供給原料が
より多く添加され得る。プロセスをバッチ様式ではなく連続的に実行した場合、同様の有
益性が得られる。このような実験から、実験終了時の供給原料中の酸の過半量は酸での前
処理によるものであったことが推定される。供給原料を連続的に添加することによりプロ
トン濃度は約0.15Mから約0.075Mまで低下され得、これにより、測定される電
流効率が増大し得る。
ったが、得られた結果は非常に一貫しており、再現可能であった。塩基の電流効率および
水移動におけるわずかな変化は、供給原料のpHの変更によるものである。試験中、約2
5Lの水酸化リチウムと約45Lの硫酸が生成した。
III.結論
afion 324陽イオン交換膜とAsahi AAVまたはFumatech FA
Bのいずれかの陰イオン交換膜を用いた電気分解を使用して、高効率で成功裡に回収され
得ることが示された。どちらの陰イオン膜も酸生成では効率的であったが、FAB膜は、
同様の電流効率で、より高い酸濃度が許容された。また、FAB膜は高温(約60℃)で
の実行が可能であり、したがって、これにより、例えば、必要とされる冷却量が低減され
得る。このような考察に基づき、N324とFABの組合せを使用する以下のプロセスを
規定した。
N324/FAB膜を使用するプロセス
・ 硫酸は約0.75Mの濃度で生成
・ 水酸化リチウムは約3.2Mの濃度で生成
・ 平均電流密度は約100mA/cm2
・ 電流効率は約75%
・ セル電圧は約6V(計算については以下を参照)
・ 供給原料から塩基への水移動は約8mol水/molカチオン
・ 供給原料から酸への水移動は<約1mol水/molカチオン
を有すると予測され得る。
、電極と膜の間に非常に大きなフロー間隙(約10mm)を有しており、これは、より大
型のプラントセルではかなり縮小され得る。間隙は典型的には約2mmまで縮小され得、
これにより全セル電圧から約1.8Vが除かれる(それぞれ、酸、塩基および供給原料の
導電率、約275mS/cm、約400mS/cmおよび約70mS/cmに基づいて)
。この低減セル電圧および予測電流効率を使用すると、プロセスに必要とされ得る電力消
費は約8.9kWh/kg LiOHであり得る(約3.2Mの溶液中)。約3メートル
トン/時のLiOHを生産するプラントでは、プラントは約4500m2のセル面積を含
むものであり得、これは、中程度のサイズの塩素アルカリプラントに匹敵する大型の電気
化学的プラントであり得る。高pHで実行する場合以外、膜または電極について安定性の
問題はみられなかった。
概要
は約60℃の温度で、Nafion 324陽イオン交換膜とAsahi AAVまたは
Fumatech FABのいずれかの陰イオン交換膜を用いた電気分解を使用して、高
効率で成功裡に回収され得ることが示された。どちらの場合も、硫酸が共生成物として生
成された。
リチウム生成に対して非常に良好な効率を有し、約70%を超える電流効率で約3.6M
までのヒドロキシドを作製した。低濃度での高効率が可能であることが示されたが、陰イ
オン膜の非効率性によってこのニーズが制限される。理論によって制限されることを望ま
ないが、低酸効率によって供給原料溶液のpHが有効に低下し、生成した一部の水酸化リ
チウムがpHを維持するのに使用されること、または陽イオン膜を越えるプロトンとリチ
ウム/ナトリウムとの競合のいずれかがもたらされる。これにより、プロセスの効率が有
効に2つの膜の最低効率に等しくなる。
膜は選択的ではなく、したがって、生成する塩基には、供給原料中にみられるものとほぼ
同じ比のナトリウムイオンが含有されている。また、塩基には、約2mM(約200pp
m)のスルフェートも含有されていた。
方の組み込みでも同様の電流密度の約100mA/cm2を得ることが可能であった。し
かしながら、AAV膜では、酸濃度が約0.5Mより上である場合、得られた電流効率は
約65%未満であった。FAB酸効率の方が、より酸濃度に依存性であり、約0.9Mの
酸濃度で約75%の電流効率が得られた。酸効率はこの値よりかなり上で低下した。
あった(高pHでのその高抵抗のため)。AAV膜のものと同様の電流密度を得るために
は、低供給原料pHを維持することが必要であった。これは、生成される酸の強度を増大
させ、したがって陰イオン膜を越えて供給原料コンパートメント内へのプロトンの逆移動
も増大させること、または低供給原料pHで実行することのいずれかによって行なった。
どちらの条件でも、供給原料中のプロトン/Li比が増大し、したがって陰極液コンパー
トメント内へのプロトン競合も増大することにより、酸生成ならびに水酸化リチウムの生
成について低電流効率がもたらされることがわかった。
・ 硫酸は約0.75Mの濃度で生成
・ 水酸化リチウムは約3.2Mの濃度で生成
・ 平均電流密度は約100mA/cm2
・ 電流効率は約75%
・ セル電圧は約6V(該プロセス用に設計されたセル内)
・ 供給原料から塩基への水移動は約8mol水/molカチオン
・ 供給原料から酸への水移動は<約1mol水/molカチオン
を有すると予測され得る。
的なプロセスもまた使用され得、該プロセスの詳細を少なくとも一部の有益性とともに以
下に示す。
実施例3
LiOHのLi2CO3への変換
路(LC)と重炭酸リチウム分解回路(DC)を備えたものであった。プロセス溶液と接
触する設備はすべて、ガラス、プラスチックまたはテフロン(登録商標)のいずれかで作
製されたものにした。該流体の高い腐食性および品質に敏感な性質のため、該プロセスに
金属は導入しなかった。
使用した。供給原料中の選択金属の含有量を表15に示す。Li含有量は、このように約
14g/L〜約15.5g/Lの範囲であった(またはLiOHの含有量が約48.3g
/L〜約53.5g/Lの範囲であった)。
表15
水酸化リチウム溶液の選択アッセイデータ
鎖型4L容Pyrex(登録商標)反応器内で実施した。反応器には、オーバーヘッドイ
ンペラー、スパージャー、レベル制御装置、pHプローブおよび熱電対を備え付けた。例
えば、バープ型スパージャーがCO2の添加に使用され得る。スパージャーはインペラー
の下方に配置した。例えば、このスパージャーの下方設置により、ガスの充分な分散が確
実となり得る。CO2フローは、ソレノイドバルブを用いて反応スラリーのpHによって
制御した。
LC清澄器まで連続的にポンプ輸送され、清澄器で固形分が沈降し、溶液相は、連続的に
オーバーフローさせてLC反応器内に戻され得る。清澄器の固形分は清澄器のアンダーフ
ローからシフトベースで収集され、Whatman(登録商標)#3ろ紙に通して濾過さ
れた。濾過ケークは3連で、高温の大量の逆浸透水で洗浄され、次いで、約105〜約1
10℃に設定した炉内のPyrex(登録商標)トレイ上で乾燥された。回収された濾液
はLC回路に戻された。
て約3Lの一定容量に維持された。LC回路のブリードラインにより、LC清澄器オーバ
ーフローはDC反応器に進められた。DC回路のスキームを図334に示す。DCプロセ
スは閉鎖型4L容Pyrex(登録商標)反応器内で実施した。反応器は電熱マントル内
に入れ、オーバーヘッドインペラー、pHプローブおよび熱電対を備え付けた。DC反応
器内の溶液は、重炭酸リチウムを分解するため、および溶液の残りの炭酸リチウムを推進
させるために約95℃まで加熱された。得られたスラリーは、加熱した清澄器にポンプ輸
送された。ブリード液は清澄器の上部から取り出され、DC濾液ドラム内に収集された。
DC反応器内のスラリーレベルは、DCブリード管供給口を清澄器内に固定レベルで配置
し、ブリードポンプをDC反応器への供給原料のものより大きな流速に設定することによ
り維持した。粘りが生じたポンプはシフトベースで回収した。濾過ケークは、LC反応器
の固形分と同じ様式で処理された。得られた固形分により二次炭酸リチウム生成物が提示
された。このDC固形分流を一次カーボネート流とは別に維持し、独立して特性評価した
。
パイロットプラント操作
日間連続して実行した。毎時間、示度を読み取り、LC反応器およびDC反応器内の温度
およびpHならびに供給原料、CO2および消費溶液の投入速度および排出速度をモニタ
リングした。LC回路のブリード液およびDC回路のブリード液のグラブサンプルを4時
間毎に収集し、リチウム分析のための原子吸光分光分析(Li−AASと称する)に供し
た。これらのアッセイにより、プロセスの性能に関する速やかなフィードバックが示され
た。複合サンプルをLCブリード流およびDCブリード流から4時間毎に収集し、12時
間目の複合サンプルに合わせた。複合サンプルをLi−AASに関して分析し、一連の他
の元素は誘導結合プラズマ(ICPスキャン)を用いて分析した。供給原料のグラブサン
プルは毎日採取し、Li−AASおよびICPスキャンアッセイに供した。
60mL/分に増加させ、LiOHの炭素化効率に対する保持時間の効果を観察した。パ
イロットプラントの操作条件を表16に示す。
表16:パイロットプラントの操作条件
.9kgの生成物がLC反応器から、および約2.6kgがDC反応器から収集された。
パイロットプラント実行中に生成したLi2CO3固形分の質量を表17および18にま
とめる。
表17 LC回路から収集された炭酸リチウム固形分
表18 DC回路から収集された炭酸リチウム固形分
し(または約50.8g/Lの水酸化リチウム)、約1.39g/Lのリチウムを含有す
る約161リットルの消費Li2CO3溶液が生成した(または約7.39g/Lの炭酸
リチウム)。毎日使用した材料の質量および容量を表19にまとめる。
表19 パイロットプラント操作に使用した材料
結果および考察
ーを開始し、1時間半以内に反応スラリーのpHが約12.6から設定ポイントの約pH
11.0まで低下した。
の新鮮水酸化リチウム溶液の添加を開始し、反応スラリーのpHを、CO2(ガス)の制
御添加によって約pH11.0の値に維持した。
ド液をDC反応器に進めた。LC反応器からのブリード溶液には約3.5〜約4g/Lの
Liが炭酸リチウムとして含有されているであろうことが予測された。LC回路のオーバ
ーフロー中のLi含有量は4g/Lあたりで上下した。図34に、含有量値を経過時間に
対してプロットしている。
0にまとめる。LCブリード液中含有量と、LC供給原料溶液中のもの(表15)との比
較により、NaとKの含有量のLCプロセスによる影響は最小限にすぎないことが示され
た。
表20:LC回路ブリード液の複合サンプル中の選択金属の含有量
90mg/Lであった。DCプロセスでは、炭酸リチウム溶液中のLi含有量の相当な枯
渇が観察された(LCブリード中では約2800〜約4760mg/LのLiと比べて)
。DC回路からのブリード液中の選択金属についてのアッセイ結果を表21にまとめる。
LCプロセスと同様、DCプロセスにおいて観察されたNaとKの含有量の変化は最小限
であった(表20および表21のLCブリード液とDCブリード液を比べて)。
表21:DC回路からのブリード液の複合サンプル中の選択金属の含有量
ている。
び二酸化炭素ガス使用量に関するデータをまとめる。また、バッチ期間または連続様式期
間で使用された物質および供給原料の流速の漸増を伴った試験で使用された物質に関する
データも表22に含めている。二酸化炭素は、パイロットプラント全体で約90.2%の
効率で利用された。LC反応器への供給原料の流速を約30から約60mL/分に上げる
ことは、CO2利用効率に対してほとんど影響はなかった。
表22:二酸化炭素の利用に関するデータ
にまとめる。
は、炭酸リチウムに必要とされる約99.9%純度の規格を満たしていた。バッチ「LC
固形分バッチ12」および「LC固形分バッチ13R」のLi2CO3固形分は、該固形
分のNaとKの含量を低減させようと試みてリパルプ(re−pulped)し、再洗浄
した。乾燥生成物をアッセイに供した。リパルプした炭酸リチウムに含有されていたNa
とKの量は有意に下がっていた。この洗浄試験から、NaとKは、さらに洗浄することに
よって炭酸リチウム固形分から除去することができるということになる。
表23 LC回路から収集されたLi2CO3固形分のアッセイ結果
表24:DC回路から収集されたLi2CO3固形分のアッセイ結果
表25:複合Li2CO3生成物のアッセイデータ
中の粒子の約80%が約57μmより小さいものであるのに対して、LC生成物では約8
0%が約104μmより小さいものである。
チウムの約88%が炭酸リチウム固形分に変換されたことが明白である。ナトリウムおよ
びカリウムは、炭酸リチウムとともには沈殿しない。
表26 物質収支の概要:
リチウムを高純度で高品質の炭酸リチウムに変換するのに有効な方法であることが実証さ
れた。実際、プロセスの平均二酸化炭素利用効率は約90%であった。また、水酸化リチ
ウムからの炭酸リチウム生成は連続様式で操作され得ることも実証された。i)水酸化リ
チウムの炭素化とii)重炭酸リチウムの分解および沈殿を含む炭酸リチウム生成プロセ
スは効率的であることが示された。(i)および(ii)では、ともに高グレードの炭酸
リチウム生成物が生成された。パイロットプラントでは、>99.9%のLi2CO3グ
レードを有する約12.5kgの炭酸リチウム固形分が生成された。LiOHからLi2
CO3で得られたLi変換は約88%であった。ナトリウムとカリウムはLi2CO3と
共沈殿しなかった。
実施例4
酸を中和するためにアンモニアを使用する択一的方法.
まれる)において、水酸化リチウムが、硫酸リチウムプロセス流から約40℃または約6
0℃の温度で、Nafion 324陽イオン交換膜とAsahi AAVまたはFum
atech FABのいずれかの陰イオン交換膜を用いた電気分解を使用して、高効率で
成功裡に回収され得ることを示した。どちらの場合も、硫酸が共生成物として生成された
。硫酸ではなく硫酸アンモニウムが生成される択一的方法も有用であり得、本開示におい
て、その実行可能性を実証する作業を詳述する。試験は、高抵抗性プロトン阻止Fuma
tech(商標)FAB膜をNeosepta(商標)AHA膜に置き換えたこと以外は
US61/788292の場合と同様の電解セルを用いて行なった。AHA膜は、Ast
om(商標)(日本)で製造され、高温安定性(約80℃)を有し、スルフェート移動に
対して良好な電気抵抗を有する陰イオン膜である。
した場合、先の試験で得られた最高値と適合した。非常に高効率での塩生成が最初は可能
であった。しかしながら、バッチ処理が進むにつれて、ヒドロキシドの非効率性(約20
%)により供給原料のpHの上昇が引き起こされ、供給原料中のヒドロキシドが、AHA
膜を越えるスルフェート移動と競合した。
用する連続プロセスは以下の特徴を有することが予測され得、以下の表27に、既知の硫
酸法での結果と比較する。
表27.硫酸法と硫酸アンモニウム法の比較
流から約40℃または約60℃の温度で、Nafion 324陽イオン交換膜とAsa
hi AAVまたはFumatech FABのいずれかの陰イオン交換膜を用いた電気
分解を使用して、高効率で成功裡に回収され得ることが示されていた。どちらの場合も、
硫酸が共生成物として生成された。硫酸の生成により、例えば、システムにおける陰イオ
ン膜の選択、得られ得る酸濃度および操作温度が限定され得る。
るプロトン阻止膜、例えば、Fumatech FAB膜または同様の膜では、例えば、
水酸化リチウムの調製方法で得られる電流密度が限定され得る。しかしながら、このよう
な膜は、約60℃の温度に限定され得る。
M)を生成させることができ、例えば、ビスルフェートの緩衝能および溶液中へのアンモ
ニアの溶解能のため、陽極液溶液を非酸性にすることが可能である。この様式では、例え
ばプロトン阻止陰イオン交換膜が必要とされ得ず、約80℃の温度で実行することが可能
であり、かつ低抵抗を有するべきである択一的な膜、例えば、Neosepta AHA
膜を使用することができる。
膜面積が縮小される)、低電圧(それにより電力消費が低減される)またはこの2つの組
合せのいずれかでの操作が可能となり得る。また、該方法では、例えば、別の市販物質を
生成させることができる。硫酸アンモニウムは、肥料の一成分として販売することができ
、硫酸よりも高い価値を有するはずである。また、該方法では、例えば、電気分解中に供
給原料からより多くの水が除去され、それにより、より広範な供給原料変換でより効率的
な操作が可能になることが予測される。また、該方法により、例えば、溶液の冷却があま
り必要とされない高温でのプロセスの操作が可能になり得る。また、溶液および膜も、こ
のような高温では抵抗性が低く、電力消費が低減される。
AHA(Astom Corp.)膜に置き換え、セルの「酸」コンパートメントのpH
を制御するためにアンモニアを使用する、このシステムで行なった試験を以下にまとめる
。
られているが、陰イオン膜をNeosepta AHA(Astom Corp.)膜で
置き換えたElectrocell MPセルで行なった。
US61/788292)で使用したものと同様にした。pH制御装置によりソレノイド
バルブを作動させ、このバルブにより、陽極液レザーバへのアンモニアガスの直接添加が
可能であった。DSA−O2コーティングは高pHでは除去される場合があり得るため、
陽極液のpHが約5より上に上がらないように注意した。先に行なった分析に加え、アン
モニウムイオンも、陽イオンイオンクロマトグラフィーによって分析した。実験設定の他
のすべての態様は、既報のものと同じにした。
電圧および水移動に対する温度、電流密度、供給原料の交換、酸/塩濃度、塩基濃度およ
びpH制御ストラテジーの効果を評価した。濃度範囲および電流効率を表28にまとめる
。最初の2つの実験では、塩基と酸/塩の濃度をその開始値から上昇させた。2つ目の実
験は2日間にわたって実行し、より多くのスルフェート除去量が得られた。この場合、セ
ットアップの容量制限のため、約90%より多くの除去を得るためには供給原料に水を添
加しなければならなかった。残りの実験では、ほぼ一定の塩濃度および塩基濃度を維持し
ようと試みて(連続生成のシミュレーション)、水は、酸コンパートメントと塩基コンパ
ートメントのみに添加した。実験856−81〜856−86は、ほぼ一定の酸(約2.
5〜3Mのスルフェート)および塩基(約2.8〜3.1Mのヒドロキシド)下で実行し
、さまざまな温度および電流密度の効果を調べた。最後の2つの実験では、得られる供給
原料のpHの問題を解決しようと試みて、酸コンパートメントの制御pHをさまざまに変
えた。
表28:硫酸アンモニウム生成の結果のまとめ.スルフェート電流効率(CE)は各生成
物流について報告.
率と等しいはずである。表28に示すように、一部の実験では約8%までの不一致がみら
れる。理論によって制限されることを望まないが、この誤差の大部分は、おそらく、例え
ば、高濃度の溶液を取り扱った場合にセットアップ内に保持されることによる容量測定誤
差によるものである。
856−71に関するものであり;図38A〜Gは実験856−78に関するものであり
;図39A〜Gは実験856−81に関するものであり;図40A〜Fは実験856−8
4に関するものであり、図41A〜Gは実験856−86に関するものであり;図42A
〜Gは実験856−88に関するものであり;図43は、実験856−90に関するもの
である。以下のセクションで、本試験およびプロセス態様の結果をさらに論考する。
水酸化リチウムの生成
試験全体を通してかなり一貫性があり、約150mA/cm2で約80%よりわずかに下
の数値が得られ、高電流密度では約80%を超えるまで上昇した。最後の実験では、水酸
化リチウム濃度を約3.5Mまで上昇させると電流効率が約7%低下した。これらの実験
では、先の試験とは異なり、供給原料のpHが常に約7より大きく、プロトン移動(あれ
ば)が排除されたため、効率は主にヒドロキシドの逆移動である。しかしながら、アンモ
ニウム移動に付随するいくらかの非効率性がみられ得る。図39Dに示すように、水酸化
物の組成は大部分が水酸化リチウム/水酸化ナトリウムであり、リチウムとナトリウムの
比は供給原料中にみられるものと同様であった。
硫酸アンモニウムの生成
3Mのスルフェートに維持され、これにより約90%の電流効率がもたらされた。効率の
低下はアンモニウムの逆移動では説明され得なかった。硫酸アンモニウムを低濃度にした
最初の実験では、供給原料中にアンモニウムはごくわずかしかみられず(<約20mM)
、これは約1%未満の電荷量の説明となる。アンモニウム濃度を上げた場合、アンモニウ
ム濃度は約100mMまで上がり、これは、なお約2%未満の電荷量である。さらなる分
析により、残りの電荷量が、供給原料から酸へのヒドロキシド移動によるものであったこ
とが示唆される。N324膜を越えるヒドロキシドの逆移動により供給原料のpHの増大
が引き起こされた。実験856−78は除去パーセントがより大きくなるまで実行したた
め、実験は、より高いヒドロキシド濃度でより長時間実行され、それにより、AHA膜を
越えるスルフェートの電流効率が低下した。この効果のさらなる詳細およびその結果を次
のセクションで論考する。
硫酸リチウム供給原料の枯渇
ップの制限(および大型バッチに必要とされる時間)のため、ほとんどの実験は約80%
変換後に終了した。図39Gに示すように、硫酸リチウム濃度は、水移動の量のため、試
験終了時において依然として高かった。水移動が起こらなかったら、この最終スルフェー
ト濃度は約0.35Mになっていたであろう。
示のように、実験終了時であっても、ヒドロキシドが塩基からN324膜を越えて逆移動
するため、ヒドロキシド濃度が上がりつつある。実験終了時までには、ヒドロキシド濃度
がスルフェート濃度と同様になり、これによってプロセスの効率が低下した。最終的に、
供給原料から酸コンパートメントに移動するヒドロキシドの量は、塩基から移動する量と
等しくなり、ヒドロキシド濃度は安定状態に達する。この濃度は約1Mのヒドロキシド濃
度に近くなり得る。
低い酸pH(陽極液pH)での実験的試行
料のpHが上昇した。この問題を回避するために使用され得る制御方法の一例は、硫酸を
供給原料に添加してそのpHを約7〜10に維持することである。ヒドロキシド生成効率
が約80%であるため、約20%の電荷量に相当する酸が必要とされ得る。
設定ポイントを修正することもできよう。この場合、供給原料のpHが特定の測定設定ポ
イント(例えば、約9.5、約9.7または約10)より上になったら、酸へのアンモニ
アの添加が停止される。酸側のpHが低下すると、供給原料のpHが必要とされる設定ポ
イントより下に下がるまでプロトンの逆移動が可能になる。次いで、アンモニアを酸に添
加してpHを上げ、プロセスを繰り返す。上記の方法によりプロセスの自己補正が可能に
なり、外添の硫酸が全く必要でない。高塩濃度の溶液のpH測定は、ナトリウム(および
リチウム)イオンが例えばpH測定値を妨害することがあり得るため、不正確な場合があ
る得ることは認識されよう。典型的には、pH測定値は、実際のpHとは異なる;典型的
にはアルカリ塩溶液では低く、酸では高いいくつかのpH単位であってもよい。例えば、
制御アルゴリズムとしてpHを使用する場合は、この効果が較正および相殺されるように
注意を払わなければならないことは認識されよう。本開示に示すグラフは、そのように測
定したものである。
約2.5M硫酸アンモニウムを用いて開始し、さらなるアンモニアの添加なしで実行した
。図42Bに示すように、供給原料中のヒドロキシド濃度は、実行のほぼ半分過ぎまでは
上がり続け、次いで、濃度はわずかに下がり始めた。これは、図42Cに示すように、供
給原料のpH測定値が約10および酸のpH測定値が約0.5で起こった。しかしながら
、依然として、供給原料のpHの上昇が排除されるのに充分なプロトン移動はなかった。
また、いくらかの変換が起こった時点は、供給原料中のすべてのスルフェートがビスルフ
ェートに変換され、それによりいくらかの遊離酸が生成する時点に対応する。図42Eに
示すように、アンモニウム濃度は、約1.9molの電荷量(約2.5M(NH4)HS
O4)のときにスルフェート濃度と等しくなった。
した。図43に示すように、供給原料のpHはわずかに上昇し、次いで安定した後、約7
のpHまで低下したが、酸のpHは下がり続けた。記録された酸の−0.25のpHあた
りで、供給原料のpHが急速に下がり始め、アンモニアの添加を再開した。酸のpHは、
プロトンの逆移動が限界になり、供給原料のpHが上がり始める時点まで再び上昇した。
アンモニアの添加再開する直前および再開を終了した後の酸のサンプルを採取した。添加
前のサンプルは、約0.6Mのプロトンを有する約3.4Mのスルフェートと分析された
(約3.1MのNH4HSO4+約0.3MのH2SO4を示す)。アンモニアの添加後
、溶液は再度、約3.4Mのスルフェートになったが、約3.3Mビスルフェートおよび
約0.1Mのスルフェートを含有しており、遊離のプロトンが中和されたことが示された
。
。ヒドロキシド生成、供給原料のスルフェート除去および酸性スルフェート生成の電流効
率(表28に示す)は、より密接に釣り合っていた。しかしながら、苛性ソーダ強度は、
この実行ではわずかに高く、全体電流効率は約73%に近くなった。
た同じスルフェート濃度の溶液の濃度のほぼ半分であり(すなわち、(NH4)2SO4
ではなくNH4HSO4)、これによりアンモニウムの逆移動の量が低減され得、したが
って塩基へのアンモニウム移動の量が低減され得る。
セル電圧および水移動
matech FAB膜を除いたときに得られ得る潜在的に高い電流密度および低いセル
電圧であった。
必要とされる電流作業で得られたセル電圧範囲を示す。先の作業では、約7.8Vの一定
のセル電圧を使用し、約100mA/cm2の平均電流密度が得られた。したがって、低
電圧で高電流密度が得られた。約2mmの溶液間隙を有するセルでの実行は約60℃で約
4.6Vと低かった。供給原料が高導電率で実行され得るため、Prodcellから市
販のセルへの変更は少ないことは認識されよう。セルを約80℃で実行することにより、
約200mA/cm2で実行した場合、セル電圧は約0.6V下がった。しかしながら、
主な改善が溶液の導電率にあり、市販のセルが有する溶液間隙はより狭いため、この影響
は市販のセルでは少ないかもしれない。
表29:セル電圧範囲および水移動の数値.
約22molの水/mol硫酸リチウム移動)であった。これは、一定の供給原料濃度を
維持し、したがってシステムが完全連続プロセスで実行されることを可能にするために必
要とされる水のほぼ半分である。供給原料流に対して逆浸透ユニットを組み込んで残りの
水を除去し、それにより供給原料が充分に変換されるようにすることが可能であり得る。
低酸pHで実行した実験では、随伴する水移動は少なかった。理論によって制限されるこ
とを望まないが、この効果は、おそらく、プロトンの逆移動に随伴するいくらかの水移動
および酸への低浸透によるものである。スルフェート濃度は2つの溶液においてほぼ同じ
であったが、最後の2つの実験ではアンモニウムはずっと少なかった。
、この数値を電流効率で除算する必要がある。酸中のスルフェート1モル数に対してでは
、この数値は、2を乗算し、電流効率で除算する必要がある。
酸アンモニウムを約3Mまたはそれより高い濃度で生成させ得る、水酸化リチウムを約3
Mの濃度で生成させ得る、約150mA/cm2の平均電流密度を有するものであり得る
、ヒドロキシド生成について約80%の電流効率を有するものであり得る、カスタム設計
セルでは約4.6Vのセル電圧を有するものであり得る、約8molの水/mol陽イオ
ンの供給原料から塩基への水移動を有するものであり得る、および例えば酸に関して低p
Hを使用した場合は約12molまたはそれより少ない水/molスルフェートの供給原
料から酸/塩への水移動を有するものであり得る。
iOHを生産するプラントに必要とされるセル面積が約35%より大きく低減され得る。
また、例えば、約8.9kWh/kg LiOH〜約6.4kWh/kg LiOH(約
3M溶液中)の商業的設計のセルの電力消費が低減され得る。また、例えば、供給原料の
pH制御レジメン(regime)によっては約8〜10メートルトン/時の硫酸アンモ
ニウム(乾燥重量ベース)が生成され得る。
プロセス全体に影響する場合があり得、安定な操作をもたらすために異なる制御ストラテ
ジーを使用してもよい。例えば、3つの異なる制御ストラテジーが使用され得る:
に制御するために使用され得る。この方法には、例えばさらなる制御回路が必要とされ、
例えば硫酸の購入が必要とされ得る。購入したさらなる硫酸を硫酸アンモニウムに変換す
る。水酸化リチウムの生成はなお約80%の電流効率であり得、硫酸アンモニウムは約9
0%〜100%であり得る。非効率性は、AHAを越えるアンモニウムの逆移動であり得
る。この選択肢は、例えば、適当な硫酸供給元および生成する硫酸アンモニウムの販路が
存在する場合に有用であり得る。
4を越えるヒドロキシドのものと適合するまで供給原料のpHを上昇させてもよい。これ
により、例えば、水酸化リチウム効率と硫酸アンモニウム効率の両方が同じになり得る。
実施するのは最も簡単であり得るが、例えば、高pH溶液中および高温での陰イオン交換
膜の安定性を考慮することが必要であり得る。例えば、塩基安定性の陰イオン交換膜が使
用され得る。
ようなものにしてもよい。供給原料のpHが上昇したら、酸/塩に添加するアンモニアの
量を止めて、充分なプロトンがAHAを越えて移動し、供給原料のpHの低下がもたらさ
れるまで陽極でプロトンを生成させ、次いで、再度アンモニアの添加を行なう。この方法
の場合も、水酸化リチウムの生成と硫酸アンモニウムの生成が適合するが、AHAにおけ
るpHが低く維持され得る。また、これは、例えば、低アンモニウム濃度で酸/塩が実行
されるという利点を有する。例えば、約3Mのスルフェート溶液は、約ゼロのpHでは約
2.5Mの重硫酸アンモニウムを有する約0.5Mの硫酸を含むものであり得るが、約4
のpHでは、ほとんど約6Mの硫酸アンモニウムを含むものであり得る。これにより、例
えば、AHA膜でのアンモニウムの逆移動の量が低減され得る。次いで、例えば、酸/塩
溶液をアンモニアで後中和し、必要とされる約3Mの(NH4)2SO4溶液を作製して
もよい。また、例えば、高スルフェート濃度も使用され得る。
実施例5
Li2SO4のLiOHへのさらなる関連変換
実施例
ウムを調製するためのものである。図44を参照されたい。これに例示した方法では、リ
チウム化合物、例えば硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物を、
水酸化リチウムを調製するためのリチウム化合物、例えば硫酸リチウムおよび/または重
硫酸リチウムの消費に好適な条件下で、第1のエレクトロメンブレンプロセス、例えば2
コンパートメントモノポーラ膜電解プロセスなどの2コンパートメントメンブレンプロセ
スを含む第1のエレクトロメンブレンプロセスに供し、任意選択で、このとき、水酸化リ
チウムを調製するためのリチウム化合物、例えば硫酸リチウムおよび/または重硫酸リチ
ウムの消費を所定の程度まで進行させる。図44を参照されたい。2コンパートメントモ
ノポーラ膜電解プロセスなどの2コンパートメントメンブレンプロセスは、陽イオン交換
膜18などの膜によって陰極液コンパートメント16と隔てられた陽極液コンパートメン
ト14を備えた第1の電気化学セル12内で行なわれ得る。
に関して本明細書で用いる場合、水性組成物中に存在しているリチウム化合物、例えば硫
酸リチウムおよび/または重硫酸リチウムの量の低減をいうことは認識されよう。例えば
、当業者であれば、図44に示したものなどの2コンパートメントモノポーラ膜電解プロ
セス中、陽極20では水(H2O)がプロトン(H+)と酸素ガス(O2)に変換され得
、陰極22では水がヒドロキシドイオン(OH−)と水素ガス(H2)に変換され得、リ
チウム化合物、例えば硫酸リチウムおよび/または重硫酸リチウムを含む水性組成物中に
最初に存在していたリチウムイオン(Li+)が、電位差により陽極液コンパートメント
14から陽イオン交換膜18などの膜を越えて陰極液コンパートメント16内に推進され
得ることが容易に理解され得よう。第1のリチウム低減水性流24および第1の水酸化リ
チウム富化水性流26がそれにより得られ、これらは、図44に示すように、それぞれ、
第1の電気化学セル12の陽極液コンパートメント14および陰極液コンパートメント1
6から取り出され得る。Li+イオンが電流のため膜18を通り抜けて移動し、それによ
りLi2SO4がLiOHに変換される。
に示すように、それぞれ第1の電気化学セル12の陽極液コンパートメント14および陰
極液コンパートメント16から取り出され得る。あるいはまた、電気分解反応の生成物と
して生成した酸素および/または水素ガスを、例えば水溶液中に残留させ、それぞれ第1
の電気化学セル12の陽極液コンパートメント14および陰極液コンパートメント16か
ら、それぞれ第1のリチウム低減水性流24および第1の水酸化リチウム富化水性流26
の一成分として取り出してもよい。
ウムを含む水性流29は、リチウム化合物、例えば硫酸リチウムおよび/または重硫酸リ
チウムを第1の電気化学セル12の陽極液コンパートメント14に導入するために使用さ
れ得る。
の水酸化リチウムが調製されるのに好適な条件下で、第2のエレクトロメンブレンプロセ
ス、例えば3コンパートメント膜電解プロセスなどの3コンパートメントメンブレンプロ
セスを含む第2のエレクトロメンブレンプロセスに供され得る。図44に示すように、3
コンパートメント膜電解プロセスなどの3コンパートメントメンブレンプロセスは、陰イ
オン交換膜36などの膜によって中央コンパートメント34と隔てられた陽極液コンパー
トメント32および陽イオン交換膜40などの膜によって中央コンパートメント34と隔
てられた陰極液コンパートメント38を備えた第2の電気化学セル30内で行なわれ得る
。
電解プロセス中、陽極42では水(H2O)がプロトン(H+)と酸素ガス(O2)に変
換され得、陰極44では水がヒドロキシドイオン(OH−)と水素ガス(H2)に変換さ
れ得、第1のリチウム低減水性流24中に最初に存在していたリチウムイオン(Li+)
が、電位差により中央コンパートメント34から陽イオン交換膜40などの膜を越えて陰
極液コンパートメント38内に推進され得、第1のリチウム低減水性流24中に最初に存
在していた硫酸イオン(SO4 2−)が、電位差により中央コンパートメント34から陰
イオン交換膜36などの膜を越えて陽極液コンパートメント32内に推進され得ることが
容易に理解され得よう。第2のリチウム低減水性流46および第2の水酸化リチウム富化
水性流48がそれにより得られ、これらは、図44に示すように、それぞれ第2の電気化
学セル30の中央コンパートメント34および陰極液コンパートメント38から取り出し
てもよい。実際、第2のリチウム低減水性流46は陽極液コンパートメント14内に搬送
され得るが、第2の水酸化リチウム富化水性流48は陰極液コンパートメント16内に搬
送され得る。
ム低減水性流は第2の電気化学セル30の中央コンパートメント34内に導入され得、第
2のリチウム低減水性流46は第2の電気化学セル30の中央コンパートメント34から
取り出され得、第2の水酸化リチウム富化水性流48は第2の電気化学セル30の陰極液
コンパートメント38から取り出され得る。
液コンパートメント32内で硫酸を生成させることを含むものであり得る。図44に示す
ように、硫酸含有水性流である流れ50が、かくして第2の電気化学セル30の陽極液コ
ンパートメント32から取り出され得る。
第2の電気化学セル30の陽極液コンパートメント32内に、例えば流れ52から導入し
、第2の電気化学セル30の陽極液コンパートメント32内で硫酸アンモニウムを生成さ
せることを含むものであり得る。図44に示すように、硫酸アンモニウム含有水性流であ
る流れ50が、かくして第2の電気化学セル30の陽極液コンパートメント32から取り
出され得る。
に示すように、それぞれ第2の電気化学セル30の陽極液コンパートメント32および陰
極液コンパートメント38から取り出され得る。あるいはまた、電気分解反応の生成物と
して生成した酸素および/または水素ガスを、例えば水溶液中に残留させ、それぞれ第2
の電気化学セル30の陽極液コンパートメント32および陰極液コンパートメント38か
ら、それぞれ流れ50および第2の水酸化リチウム富化水性流48の一成分として取り出
してもよい。
コンパートメント16、第2の電気化学セル30の陰極液コンパートメント38および/
または第2の電気化学セル30の陽極液コンパートメント62内に導入するために流れ5
8、流れ60および流れ62などの他の流れが使用され得ることが認識されよう。例えば
、かかる流れは、例えばpHを維持するため、もしくは変化させるために酸(例えば、H
2SO4)および/または塩基(例えば、LiOH)を添加するため、および/または例
えば方法10の電気化学セル12、30のコンパートメント内の濃度を維持するため、も
しくは変化させるために水を添加するために使用され得る。また、当業者には、かかる試
薬および/または溶媒を、図44に示す電気化学セル12、30の種々のコンパートメン
ト内に、図44に図示しているものまたは図示していないもののいずれかである他の流れ
の一成分として、電気化学セル12、30のコンパートメント内の反応体(例えば、Li
2SO4、LiHSO4、LiOH、NH3、NH4HSO4、(NH4)2SO4)の
pHおよび/または濃度などのパラメータが維持されるように、または変化するように導
入してもよいことも認識されよう。
性流46を第1のエレクトロメンブレンプロセスに再利用することを含むものであり得る
。例えば、図44に示すように、第2のリチウム低減水性流46は、第1の電気化学セル
12の陽極液コンパートメント14内に導入され得る。例えば、該少なくとも一部の第2
のリチウム低減水性流46は、第2の電気化学セル30から第1の電気化学セル12に適
当な導管を経由してポンプによって送られ得る。
チウム富化水性流48を第1のエレクトロメンブレンプロセスに再利用することを含むも
のであり得る。例えば、図44に示すように、少なくとも一部の第2の水酸化リチウム富
化水性流48は、第1の電気化学セル12の陰極液コンパートメント16内に流れ58の
一成分として導入され得る。当業者には、該少なくとも一部の第2の水酸化リチウム富化
水性流48を第1の電気化学セル12の陰極液コンパートメント16内に導入する択一的
な様式が可能であることが認識されよう。例えば、該少なくとも一部の第2の水酸化リチ
ウム富化水性流48を、別個の流れとして陰極液コンパートメント16内に導入してもよ
い。例えば、該少なくとも一部の第2の水酸化リチウム富化水性流48は、第2の電気化
学セル30から第1の電気化学セル12に適当な導管を経由してポンプによって搬送され
得る。
SO4および/またはLiHSO4の消費に関して所定の一定の程度に達した場合(例え
ば、電流効率の低下によって観察される)、あるいは陽極液コンパートメント14内の陽
極液のpH(例えば、pHメータによって測定されるpH)が所定の値より下になった場
合、陽極液コンパートメント14の内容物(流れ24)はセル30の中央コンパートメン
ト34に搬送され得る。セル12内では、陽極液コンパートメント14におけるpHは下
がる傾向を有し得、したがって反応の効率が下がるか、またはそれ以上効率的でなくなる
と、流れ24はコンパートメント34内に移送され、そこでは、pHは、電気分解の効率
が下がるか、またはそれ以上効率的でなくなる一定点に達するまで上がる傾向を有し得る
ことが観察された。かかる場合、流れ46はコンパートメント14内に搬送され得、そこ
ではpHは下がる。コンパートメント14と34間でのLi2SO4および/またはLi
HSO4の移送は、同じ搬送手段で行なっても異なる搬送手段で行なってもよい。かかる
手段は、ポンプを結合した導管であり得る。当業者であれば、本開示の方法では、出発溶
液(または供給原料溶液)(例えば、Li2SO4および/またはLiHSO4の水溶液
)のpHに応じて、出発溶液が、まず2コンパートメントモノポーラ膜電解プロセスセル
内で(例えば、pHが中性または塩基性である場合)、次いで3コンパートメントモノポ
ーラ膜電解プロセスで処理され得ることが理解され得よう。あるいはまた、出発溶液は、
まず3コンパートメントモノポーラ膜電解プロセスセル内で(例えば、pHが中性または
酸性である場合)、次いで2コンパートメントモノポーラ膜電解プロセスセル内で処理さ
れ得る。
ト16に搬送され得、そこでLiOHがさらに富化され得る。
方法を半連続プロセスまたは連続プロセスとして操作してもよい。
いが、pH、温度、電流密度、電圧、電流効率および濃度が、例えば、当該技術分野で知
られた手段によってモニタリングされ得ることは認識されよう。本開示の方法における具
体的なパラメータをモニタリングするための好適な手段の選択は、当業者によってなされ
得よう。かかるパラメータもまた、当業者によって、例えば、自身の共通一般知識に鑑み
て、および本開示を参照することにより維持および/または変更され得る。
り、それは、図45に示す2コンパートメント構成では、陽極反応により酸素とプロトン
が生成し、これが陽極液溶液のpHの低下をもたらすためである。陽イオン膜を通過する
電荷移動に関してプロトンがリチウムイオン移動と競合するため、2コンパートメントセ
ルを使用する場合の陽イオンの充分な除去は非効率的となり得る。とはいえ、硫酸リチウ
ムなどのリチウム化合物の重硫酸リチウムへの部分変換は2コンパートメント膜電解セル
で可能であるのがよい。
溶液のpHを、半分までのスルフェートのビスルフェートへの変換(すなわち、25%変
換)時にプロトン濃度が約0.01Mとなるように緩衝する。この濃度の時点で、Naf
ion 324(N324)膜でのプロトンによる非効率性は無視してよいものになる。
溶液のpHは約0.9または0.1Mよりほんの少し上のプロトン濃度であることが示さ
れている。この場合、プロトンはリチウムイオンよりも可動性であるため、N324膜を
通過するプロトン移動はおそらく有意であり、これにより、例えば水酸化リチウム生成の
電流効率が低下し得る。そのため、硫酸リチウムの完全な変換は可能ではなく、本開示に
まとめた試験作業では、変換の関数としての効率を測定することに焦点を当てた。
スを用いて部分変換された後(さらなるリチウムを水酸化リチウムに変換するため)、こ
の溶液は次いで、3コンパートメント膜電解プロセスに送られ得る。本明細書では、供給
原料溶液がより低いpHを有する場合のプロセスの操作を検討するため、2コンパートメ
ント作業で生成する溶液を両方のプロセスによって処理する試験も報告する。
一般的な実験の詳細
びNafion 324膜を備え付けたICI FM−01ラボ用電解セル(64cm2
,ICI Chemicals,UK)において行なった。3コンパートメント作業は、
先の試験で使用した3コンパートメント膜電解セルに同様に備え付けたElectroc
ell MPセル(100cm2)において行ない、実験設定の他の態様は、他の出願(
US61/636,869;US61/755,151;US61/788,292;P
CT/CA2013/000398)に既報のものと同じにした。
実施例5A:2コンパートメント膜電解セル試行
として用いて行なった。この実行の主目的は、変換(ビスルフェート/スルフェート)の
関数としての電流効率を評価することであったため、試験を、陰極液コンパートメント内
で約2M LiOHを用いて行なった。これは、先の作業で得られた約3M濃度よりも低
い。しかしながら、約3M濃度では、ヒドロキシド濃度における少しの変動が水酸化リチ
ウムの電流効率をかなり低下させ得る。対照的に、約2Mの濃度付近でのヒドロキシド濃
度における少しの変動は水酸化リチウム電流効率に大きく影響せず、したがって、効率の
変化(あれば)は一般的に、供給原料からのプロトン移動に起因するものであり得る。
6〜48は、表30にまとめた実験に関するプロットである:図46A〜46Dは実験番
号856−96に関するものであり;図47A〜47Dは実験番号856−99に関する
ものであり;図48A〜48Dは実験番号879−1に関するものである。2コンパート
メントセルを使用した実験の結果およびこれらの実行のプロセスの態様を以下に論考する
。
示されるように供給原料から除去された。水が供給原料から除去されるにつれて、硫酸イ
オン濃度は約1.7Mから約2.3Mまで富化され、これにより、供給原料からのリチウ
ムイオン移動とともに、供給原料中の硫酸イオンに対するリチウムイオンの比が電気分解
開始時の約2強から終了時の約1未満まで変化する。この実行では、約50%よりわずか
に多くの変換が行なわれ、そのため、最終陽極液溶液には重亜硫酸リチウムのみと少量の
硫酸が含有されている。
価した。図46Bは、陰極液中のヒドロキシド生成の累積電流効率および供給原料からの
陽イオン減少を示す。図示のように、電流効率は、サンプル採取時に約35%変換と約4
5%変換の間で低下し始める。累積電流効率の変化は小さいように見えるが、増分電流効
率の変化(図示せず)はかなりである。この変化は、測定した供給原料のpHが約0.6
に達すると起こるようである。
856−96)、約4kA/m2(実験番号856−99)および約5kA/m2(実験
番号879−1)の電流密度で行なった3回の実行の結果を示す。これらの実行でのヒド
ロキシドの電流効率は、実行の初期段階では約80%に近かった。電流効率が下がり始め
る時点は、高電流密度を使用して行なった実行の方がわずかに遅く(すなわち、より高率
変換時)に存在するようであった。
表30:硫酸リチウム供給原料を用いた2コンパートメント実行の特徴。
どの実行での電圧は高値から始まり、実行が進行するにつれて低下した。図47Aにおい
て、ヒドロキシド濃度は実行過程で約1.9Mから約2.4Mまで上がり、これにより、
陰極液コンパートメント内では電圧降下が低減された。
隙を約2mmまで狭くできるより大型の市販のセルでは、水酸化リチウムを含む約3M水
溶液である陰極液溶液を使用した場合、全体セル電圧は約4.5〜5Vとなり得ることが
推定される。したがって、約4kA/m2の電流密度で実行される2コンパートメント膜
電解プロセスの電力消費は約7kWh/kg(LiOH含有3M溶液)であり得る。これ
は、プロセスが約1.5kA/m2の電流密度で実行されることだけを除いて、硫酸アン
モニウムを共生成させる3コンパートメントセルに必要とされることが観察される電力と
同等である。
iOHプラントで変換させた場合、約400mA/cm2の電流密度で実行されるセル面
積は約430m2であり得る。残りの約60%の硫酸リチウムは次いで、本明細書におい
て論考しているように3コンパートメントセルによって処理され得る。セル面積の推定値
は、以下、本明細書において3コンパートメント作業の論考の後に、さらに論考する。
実施例5B:硫酸リチウム/重硫酸リチウムの変換を伴う3コンパートメント膜電解セル
試行
の生成に有用である。利用可能なプロセス溶液の量が少ないため、試験の条件を適正に規
定するために、2つの初期実行を、合成的に作製した重硫酸リチウム/硫酸リチウム溶液
を用いて行なった。2コンパートメント作業による最終溶液を再混合し、いくらかの水酸
化リチウムの添加によって約42%変換溶液に調整した。起こり得るヒドロキシド濃度効
果を排除するため、水酸化リチウム濃度を約2Mに低下させた。
A.硫酸アンモニウムを生成させるためのN324/AHA3コンパートメントセル
,292;PCT/CA2013/000398)で使用した3コンパートメントセルを
本試験の試験作業に再利用し、Nafion N324陽イオン交換膜とAstom A
HA陰イオン交換膜を含めた。図49A〜Dは、この実験に関するプロットである。3コ
ンパートメントセルを使用し、硫酸アンモニウムを共生成させた実験の結果およびこのプ
ロセスの態様をこのセクションで論考する。
ルフェート)を含有する開始溶液をセル内で約200mA/cm2の電流密度で実行し、
硫酸リチウムの除去により水酸化リチウム/水酸化ナトリウムが陰極液中に、硫酸アンモ
ニウムが陽極液中に生成した(アンモニアは供給原料にpH制御下で添加した)。水は供
給原料から移動したが、図49Aに示した濃度を実質的に維持するため、さらなる水を陽
極液と陰極液に添加した。実験は、供給原料からのスルフェートの約93%除去を伴って
実行された。
ェートがリチウムよりも効率的に除去されるためである)、図49Bに示すように、実験
終了時までに約2よりほんの少し上に達した。そのため、供給原料中のビスルフェートの
パーセンテージは実行全体を通して、溶液の大部分がスルフェートとして存在するまで低
下した。セル電圧は、ほぼ実行終了時(供給原料が枯渇し始めたとき)まで約7Vで相当
に一定であった。
り効率的なスルフェート除去が確認される。ヒドロキシド生成の効率は約72%であった
が、スルフェート除去は約114%であった。100%より高いスルフェート除去は、「
スルフェート」がスルフェート(SO4 2−)として膜を通過して移動するが、このよう
なpHでは一部の移動がビスルフェート(HSO4 −)としてのはずであると仮定した計
算のためである。
B.硫酸を生成させるためのN324/FAB3コンパートメントセル
FAB膜要素に置き換えて再構築し、硫酸を陽極液中に生成させる同様の試験を行なっ
た。図50A〜Dは、この実験に関するプロットである。3コンパートメントセルを使用
し、硫酸を共生成させた実験の結果およびこのプロセスの態様をこのセクションで論考す
る。
より多くの水を陽極液に添加した。電流効率(図50B)および供給原料のpH(図50
C)において同様の傾向が観察された。この場合、低電流密度(約100mA/cm2)
を使用したためスルフェートは約73%しか除去されず、実験実行全体にわたって起こっ
た変換は実施例5B、セクションAで論考した実験よりも少なかった。
。理論によって制限されることを望まないが、これは、おそらくFAB膜の高い抵抗のた
めであった。
;US61/755,151;US61/788,292;PCT/CA2013/00
0398)と比べて約10%〜15%低かった。セルを解体し、N324膜内に破れが観
察された。この破れはガスケット領域に存在し、問題が引き起こされたはずはなかった。
理論によって制限されることを望まないが、この破れは、プラスチックフレームの(高温
での)わずかな変形が何度も復元したことによって形成されたのかもしれない。新たな実
行を新たなN324膜要素を用いて行ない、電流効率はわずかに改善された。最終実行は
、重硫酸リチウム/硫酸リチウム溶液をより高pHの硫酸リチウム溶液に置き換えて行な
い、電流効率が正常近くまで改善された。理論によって制限されることを望まないが、供
給原料の低pHは3コンパートメントでの生成に影響するようである。電流効率は、供給
原料のpHが上昇したため目立って上がらず、これは予測され得たことであった。
ように、供給原料中のカルシウムもまた効率の低下を引き起こし得る。
組み込んだ方法は、硫酸リチウムを水酸化リチウムに変換するために有用であることが示
された。2コンパートメントセルは、約40%変換までの水酸化物の生成において効率的
である。また、本試験により、残りの溶液を3コンパートメントセルで処理した場合、ヒ
ドロキシド生成で約10〜15%の電流効率の低下が起こることも示された。硫酸アンモ
ニウムまたは硫酸のいずれかを共生成させるプロセスは、ヒドロキシド形成と同様に挙動
することが観察された。
トルトンのLiOHの生成に必要とされるセル総面積を有意に減少させる。2コンパート
メントセルは約400mA/cm2の高電流密度で操作されるため、このプロセスの電力
コストは同様であり得る。当業者であれば、低電流密度の使用により電力量は低減され得
るが、必要とされるセル面積は増大し得ることが認識され得よう。
表31:種々のプロセスのセル面積および電力
密度のために得られる。しかしながら、当業者には、このような電流密度ではDSA−O
2陽極の寿命が短くなることが認識されよう。
トプロセスのためのセル面積がわずかに増大し得る。しかしながら、この非効率性は、溶
液が2コンパートメントシステムから、3コンパートメントセルを実行する別個のシステ
ムに供給される溶液の逐次処理を前提としている。あるいはまた、両方の型のセルを同じ
溶液で実行してもよく、したがって、プロセスは、必要とされる任意のpHで実行され得
、溶液のpHは、例えば、一方または他方のセルで処理するパーセンテージを変更するこ
とにより上下され得る。例えば、pHを下げる必要がある場合、2コンパートメントセル
の電流密度が上げられ得る、および/または3コンパートメントセルの電流密度が下げら
れ得る。Fumatech FAB膜を用いて硫酸を生成させる場合、例えば、FAB膜
を導電性に維持してプロトン移動を最小限にするために、pHは1.5あたりに制御され
得る。
た問題点の1つは、苛性ソーダ電流効率がスルフェート除去よりもずっと低いために供給
原料のpHの上昇が停止することであった。本発明の方法において使用される2コンパー
トメントセルは、供給原料全体のpHをもっと低いpHに維持するために使用され得るも
のである。
プロセス)の併用により、大量の水が供給原料から除去されるため、より良好な供給原料
溶液の利用が可能となり得、より連続的な操作が許容される可能性がある。
ではなく、その理解を補助することを意図した。当業者には、本開示に対して、本明細書
に記載の開示内容の範囲から逸脱することなく種々の変形を行なうことができ、かかる変
形は本文書に包含されることが意図されていることが自明であろう。
とされるセル総面積が小さいことにより、低コストでLi2SO4および/またはLiH
SO4をLiOHに変換するために有効であることが観察された。2コンパートメントモ
ノポーラまたはバイポーラ膜電解プロセスと2コンパートメントモノポーラまたはバイポ
ーラ膜電解プロセスを併用することにより、かかる高電流効率が可能になり、それにより
、電流および空間の観点においてかかる経済性がもたらされることがわかった。
者に自明であることは理解されよう。したがって、上記の記載および添付の図面は具体例
として限定しない意味で解釈されたい。
Claims (10)
- 水酸化リチウムを調製するためのシステムであって、該システムは、
電気化学セルを含み、該電気化学セルが、陰イオン交換膜によって中央コンパートメントと隔てられた陽極コンパートメントと、陽イオン交換膜によって該中央コンパートメントと隔てられた陰極コンパートメントとを規定し、該中央コンパートメントが、リチウム化合物を含む水性組成物を受け取る少なくとも1つの入り口を含み、該陰極コンパートメントが、少なくとも1つの陰極を含み、該陰極が、水酸化リチウム富化水性組成物を生成するように構成されており、該陽極コンパートメントが、少なくとも1つの陽極を含み、
該システムが、pHプローブと、該リチウム化合物を含む該水性組成物のpHを約1〜約4に少なくとも維持するための酸または塩基を受け取るための少なくとも1つの入り口とをさらに含み、「約」は示される値の±10%を意味する、システム。 - 前記電気化学セルが、モノポーラ電解セルである、請求項1に記載のシステム。
- 前記pHプローブと、前記リチウム化合物を含む前記水性組成物のpHを少なくとも維持するための酸または塩基を受け取るための前記少なくとも1つの入り口とが、約2〜約4に維持され、「約」は示される値の±10%を意味する、請求項2に記載のシステム。
- 前記pHプローブと、前記リチウム化合物を含む前記水性組成物のpHを少なくとも維持するための酸または塩基を受け取るための前記少なくとも1つの入り口とが、約2に維持され、「約」は示される値の±10%を意味する、請求項2または3に記載のシステム。
- 前記電気化学セルが、バイポーラ電解セルである、請求項1に記載のシステム。
- 前記pHプローブと、前記リチウム化合物を含む前記水性組成物のpHを少なくとも維持するための酸または塩基を受け取るための前記少なくとも1つの入り口とが、約1〜約2に維持され、「約」は示される値の±10%を意味する、請求項5に記載のシステム。
- 前記陰極コンパートメントが、水酸化リチウムを含む水性組成物を受け取るための少なくとも1つの入り口をさらに含む、請求項1〜6のいずれか一項に記載のシステム。
- 前記陰極コンパートメントが、酸を含む水性組成物を受け取るための少なくとも1つの入り口をさらに含む、請求項1〜7のいずれか一項に記載のシステム。
- 前記システムが、温度計と、前記リチウム化合物を含む前記水性組成物を約20℃〜約80℃の温度に少なくとも維持するための温度制御装置とをさらに含み、「約」は示される値の±10%を意味する、請求項1〜8のいずれか一項に記載のシステム。
- 前記システムが、前記電気化学セルの電流を約400〜約3000A/m 2 に少なくとも維持するための電流計を含む電源をさらに含み、「約」は示される値の±10%を意味する、請求項1〜9のいずれか一項に記載のシステム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361894655P | 2013-10-23 | 2013-10-23 | |
US61/894,655 | 2013-10-23 | ||
JP2019131809A JP6860626B2 (ja) | 2013-10-23 | 2019-07-17 | 炭酸リチウム、水酸化リチウムおよび硫酸リチウムの調製のための方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019131809A Division JP6860626B2 (ja) | 2013-10-23 | 2019-07-17 | 炭酸リチウム、水酸化リチウムおよび硫酸リチウムの調製のための方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021113150A true JP2021113150A (ja) | 2021-08-05 |
JP7143466B2 JP7143466B2 (ja) | 2022-09-28 |
Family
ID=52992081
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016549599A Active JP6335316B2 (ja) | 2013-10-23 | 2014-10-23 | 炭酸リチウムの調製のためのプロセス |
JP2017203947A Active JP6559754B2 (ja) | 2013-10-23 | 2017-10-20 | 炭酸リチウム、水酸化リチウムおよび硫酸リチウムの調製のための方法 |
JP2019131809A Active JP6860626B2 (ja) | 2013-10-23 | 2019-07-17 | 炭酸リチウム、水酸化リチウムおよび硫酸リチウムの調製のための方法 |
JP2021053234A Active JP7143466B2 (ja) | 2013-10-23 | 2021-03-26 | 炭酸リチウム、水酸化リチウムおよび硫酸リチウムの調製のための方法 |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016549599A Active JP6335316B2 (ja) | 2013-10-23 | 2014-10-23 | 炭酸リチウムの調製のためのプロセス |
JP2017203947A Active JP6559754B2 (ja) | 2013-10-23 | 2017-10-20 | 炭酸リチウム、水酸化リチウムおよび硫酸リチウムの調製のための方法 |
JP2019131809A Active JP6860626B2 (ja) | 2013-10-23 | 2019-07-17 | 炭酸リチウム、水酸化リチウムおよび硫酸リチウムの調製のための方法 |
Country Status (10)
Country | Link |
---|---|
US (3) | US10144990B2 (ja) |
EP (1) | EP3060522B1 (ja) |
JP (4) | JP6335316B2 (ja) |
KR (4) | KR102445712B1 (ja) |
CN (2) | CN105849047B (ja) |
AU (2) | AU2014339705B2 (ja) |
CA (3) | CA3185410A1 (ja) |
CL (1) | CL2016000980A1 (ja) |
DK (1) | DK3060522T3 (ja) |
WO (1) | WO2015058287A1 (ja) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013159194A1 (en) | 2012-04-23 | 2013-10-31 | Nemaska Lithium Inc. | Processes for preparing lithium hydroxide |
RS57299B1 (sr) | 2012-05-30 | 2018-08-31 | Nemaska Lithium Inc | Postupci za dobijanje litijum karbonata |
US9695050B2 (en) | 2012-11-02 | 2017-07-04 | Terra Co2 Technologies Ltd. | Methods and systems using electrochemical cells for processing metal sulfate compounds from mine waste and sequestering CO2 |
WO2014138933A1 (en) | 2013-03-15 | 2014-09-18 | Nemaska Lithium Inc. | Processes for preparing lithium hydroxide |
EP3060699B1 (en) | 2013-10-23 | 2018-05-02 | Nemaska Lithium Inc. | Processes and systems for preparing lithium hydroxide |
WO2015058287A1 (en) * | 2013-10-23 | 2015-04-30 | Nemaska Lithium Inc. | Processes for preparing lithium carbonate |
US10544512B2 (en) | 2014-02-24 | 2020-01-28 | Nemaska Lithium Inc. | Methods for treating lithium-containing materials |
KR102559772B1 (ko) | 2015-08-27 | 2023-07-25 | 네마스카 리튬 인코포레이션 | 리튬 함유 물질 처리 방법 |
CL2015003609A1 (es) * | 2015-12-11 | 2016-07-29 | Propipe Maquinarias Ltda | Sistema y proceso secuencial electrolitico para aumentar la concentración de litio presente en salmueras que reemplaza pozas o piscinas de evaporación y que evita la perdida de agua por evaporación, recupera una fracción como agua industrial y el resto la incorpora nuevamente a un salar |
GB201602259D0 (en) | 2016-02-08 | 2016-03-23 | Bateman Advanced Technologies Ltd | Integrated Lithium production process |
WO2017139852A1 (en) * | 2016-02-18 | 2017-08-24 | Li-Technology Pty Ltd | Lithium recovery from phosphate minerals |
US11289700B2 (en) | 2016-06-28 | 2022-03-29 | The Research Foundation For The State University Of New York | KVOPO4 cathode for sodium ion batteries |
CA2940509A1 (en) * | 2016-08-26 | 2018-02-26 | Nemaska Lithium Inc. | Processes for treating aqueous compositions comprising lithium sulfate and sulfuric acid |
CN106315629B (zh) * | 2016-08-30 | 2018-01-30 | 山东瑞福锂业有限公司 | 一种利用电池级碳酸锂沉锂母液回收制备高纯碳酸锂的工艺 |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
KR101887175B1 (ko) * | 2016-12-23 | 2018-08-10 | 주식회사 포스코 | 리튬 화합물의 제조 방법 |
KR101888181B1 (ko) * | 2016-12-23 | 2018-08-13 | 주식회사 포스코 | 수산화리튬 및 탄산리튬의 제조방법 |
EP3634608B8 (en) * | 2017-05-08 | 2024-07-31 | Evoqua Water Technologies LLC | Water treatment of sodic, high salinity, or high sodium waters for agricultural applications |
CN106976894B (zh) * | 2017-05-10 | 2018-10-23 | 东北大学 | 一种氯化锂电转化直接制备碳酸锂的方法 |
KR20200059192A (ko) * | 2017-06-08 | 2020-05-28 | 어반 마이닝 피티와이 엘티디 | 리튬을 회수하는 방법 |
CN107473242B (zh) * | 2017-09-19 | 2019-03-05 | 江西赣锋锂业股份有限公司 | 一种利用碳酸锂制备高纯氧化锂的方法 |
CN107540005B (zh) * | 2017-10-13 | 2019-03-22 | 山东鲁北企业集团总公司 | 一种连续沉锂槽及电池级碳酸锂连续沉锂工艺 |
WO2019084311A1 (en) * | 2017-10-26 | 2019-05-02 | International Battery Metals, Ltd. | MODULAR EXTRACTION APPARATUS |
CN107640779A (zh) * | 2017-11-15 | 2018-01-30 | 天元锂电材料河北有限公司 | 锂辉石制取碳酸锂工艺 |
CN111867980B (zh) | 2017-11-22 | 2021-10-01 | 内玛斯卡锂业有限公司 | 制备各种金属的氢氧化物和氧化物以及其衍生物的方法 |
CN108640131A (zh) | 2018-04-28 | 2018-10-12 | 四川思达能环保科技有限公司 | 锂矿石制备碳酸锂的方法及系统 |
DE102018005586A1 (de) | 2018-07-17 | 2020-01-23 | Manfred Koch | Ein neuer integrierter Prozess für die Herstellung von Kathodenmaterial für Batterien |
CN110451534A (zh) * | 2018-08-06 | 2019-11-15 | 南方科技大学 | 一种锂盐的提纯装置、提纯系统和提纯方法 |
CN110817904B (zh) * | 2018-08-14 | 2021-07-20 | 比亚迪股份有限公司 | 单水合氢氧化锂及其制备方法和用途以及锂离子电池正极材料和锂离子电池 |
CN109411742A (zh) * | 2018-10-24 | 2019-03-01 | 浙江晨阳新材料有限公司 | 制备锂电池材料的方法 |
JP6533859B1 (ja) * | 2018-10-29 | 2019-06-19 | 株式会社アサカ理研 | 炭酸リチウムの製造装置 |
US11634826B2 (en) * | 2018-12-21 | 2023-04-25 | Mangrove Water Technologies Ltd. | Li recovery processes and onsite chemical production for Li recovery processes |
CN109650414B (zh) * | 2019-01-18 | 2020-01-14 | 成都开飞高能化学工业有限公司 | 高杂质锂源制备电池级、高纯级的氢氧化锂和碳酸锂的方法及系统 |
CN113348030A (zh) * | 2019-01-28 | 2021-09-03 | 乔治·罗伯特·理查森 | CO2、NOx和SO2的化学封存 |
JP7051242B2 (ja) | 2019-02-06 | 2022-04-11 | 株式会社タチエス | 車両用ヘッドレスト |
CN109761415A (zh) * | 2019-02-19 | 2019-05-17 | 北京中科康仑环境科技研究院有限公司 | 一种碳酸氢铵沉钴废水的资源化处理工艺 |
CN109680295B (zh) * | 2019-02-22 | 2019-11-22 | 北京廷润膜技术开发股份有限公司 | 一种工业级碳酸锂固体制备氢氧化锂的方法 |
EP3972937A4 (en) * | 2019-05-22 | 2023-07-26 | Nemaska Lithium Inc. | PROCESSES FOR THE PRODUCTION OF HYDROXIDES AND OXIDES OF DIFFERENT METALS AND THEIR DERIVATIVES |
CN110436679B (zh) * | 2019-07-31 | 2023-12-29 | 杭州蓝然环境技术股份有限公司 | 碳酸锂洗水资源化综合利用的装置及其方法 |
KR102182845B1 (ko) * | 2019-08-23 | 2020-11-25 | 부경대학교 산학협력단 | 황산리튬으로부터 탄산리튬 제조방법 |
CN110482763A (zh) * | 2019-09-11 | 2019-11-22 | 北京中科瑞升资源环境技术有限公司 | 含盐废水的资源化耦合集成系统和资源化方法 |
CN112575339B (zh) * | 2019-09-27 | 2022-04-15 | 天齐锂业(江苏)有限公司 | 锂辉石制备氢氧化锂的方法及去除钠钾的方法 |
KR102059858B1 (ko) * | 2019-11-01 | 2019-12-27 | 한국지질자원연구원 | 염수로부터 리튬을 회수하는 방법 |
EP4081668A4 (en) * | 2020-03-06 | 2023-10-11 | The Board of Regents of The Nevada System of Higher Education on behalf of the University of Nevada, Las Vegas | RECOVERY OF LITHIUM FROM LITHIUM SALTS DISSOLVED IN IONIC LIQUIDS |
CN113694733B (zh) * | 2020-05-20 | 2022-11-25 | 国家能源投资集团有限责任公司 | 一种基于双极膜电渗析装置的锂分离方法 |
KR102242686B1 (ko) | 2020-12-14 | 2021-04-21 | 한국지질자원연구원 | 리튬농축액 제조방법 및 이로부터 제조된 리튬농축액을 이용한 리튬화합물 제조방법 |
US20240055680A1 (en) * | 2020-12-16 | 2024-02-15 | Battelle Energy Alliance, Llc | Methods of recovering lithium from a lithium-containing material, and related systems |
CN113636578B (zh) * | 2021-09-10 | 2023-05-26 | 宜春银锂新能源有限责任公司 | 一种锂云母制备碳酸锂提高品质的工艺 |
US12030016B2 (en) | 2021-12-16 | 2024-07-09 | Capture6 Corp | Systems and methods for direct air carbon dioxide capture |
FR3139563A1 (fr) * | 2022-09-08 | 2024-03-15 | Eurodia Industrie | Procédé de préparation d’hydroxyde de lithium, et installation pour la mise en œuvre du procédé |
CN116837229B (zh) * | 2023-08-31 | 2023-11-28 | 中国科学院过程工程研究所 | 一种基于流动电极电化学选择性提锂的系统及方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012504545A (ja) * | 2008-11-17 | 2012-02-23 | ケメタル・フット・コーポレイション | 水溶液からのリチウムの回収 |
JP2012234732A (ja) * | 2011-05-02 | 2012-11-29 | Asahi Kasei Corp | リチウム回収方法 |
Family Cites Families (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA659894A (en) | 1963-03-19 | N. Glew David | Aqueous solution treatment | |
CA504477A (en) | 1954-07-20 | B. Ellestad Reuben | Method of extracting lithium values from spodumene ores | |
US2331838A (en) | 1938-06-22 | 1943-10-12 | Bolidens Gruv Ab | Method of recovering lithium from minerals |
GB530028A (en) | 1938-06-22 | 1940-12-03 | Bolidens Gruv Ab | Method of recovering lithium from minerals |
US2516109A (en) | 1948-09-16 | 1950-07-25 | Metalloy Corp | Method of extracting lithium values from spodumene ores |
US2793941A (en) | 1949-03-21 | 1957-05-28 | Nelson N Estes | Apparatus for growing crystals |
US2882243A (en) | 1953-12-24 | 1959-04-14 | Union Carbide Corp | Molecular sieve adsorbents |
US2872393A (en) * | 1954-12-03 | 1959-02-03 | Olin Mathieson | Production of lithium hydroxide |
GB841989A (en) | 1955-06-03 | 1960-07-20 | Ronald Herbert Henry Morley | Improvements in and relating to methods of extracting lithium from petalite, products of those methods and applications of those products |
GB845511A (en) | 1956-01-03 | 1960-08-24 | Permutit Co Ltd | Improvements relating to the production of metal hydroxides |
US3007771A (en) | 1956-11-30 | 1961-11-07 | American Potash & Chem Corp | Manufacture of lithium carbonate |
US3214362A (en) | 1961-01-09 | 1965-10-26 | Ionics | Electrolysis of aqueous electrolyte solutions and apparatus therefor |
JPS5138822B1 (ja) * | 1968-08-13 | 1976-10-23 | ||
US3597340A (en) | 1968-11-05 | 1971-08-03 | Lithium Corp | Recovery of lithium as lioh.h20 from aqueous chloride brines containing lithium chloride and sodium chloride |
SU310538A1 (ja) | 1969-08-04 | 1974-08-05 | Институт неорганической химии , электрохимии Грузинской ССР | |
US3857920A (en) | 1971-07-29 | 1974-12-31 | Department Of Health Education | Recovery of lithium carbonate |
US3899403A (en) | 1973-11-01 | 1975-08-12 | Hooker Chemicals Plastics Corp | Electrolytic method of making concentrated hydroxide solutions by sequential use of 3-compartment and 2-compartment electrolytic cells having separating compartment walls of particular cation-active permselective membranes |
US3959095A (en) * | 1975-01-31 | 1976-05-25 | Hooker Chemicals & Plastics Corporation | Method of operating a three compartment electrolytic cell for the production of alkali metal hydroxides |
JPS51113108A (en) | 1975-03-28 | 1976-10-06 | Sawafuji Electric Co Ltd | Automatic voltage control system in brushless generator |
US4036713A (en) | 1976-03-04 | 1977-07-19 | Foote Mineral Company | Process for the production of high purity lithium hydroxide |
JPS5948870B2 (ja) * | 1977-09-13 | 1984-11-29 | 旭硝子株式会社 | 水酸化リチウムの製造方法 |
US4207297A (en) | 1978-03-27 | 1980-06-10 | Foote Mineral Company | Process for producing high purity lithium carbonate |
US4273628A (en) | 1979-05-29 | 1981-06-16 | Diamond Shamrock Corp. | Production of chromic acid using two-compartment and three-compartment cells |
US4287163A (en) | 1979-05-29 | 1981-09-01 | Saline Processors, Inc. | Process for recovering lithium from brine by salting out lithium sulfate monohydrate |
US4391680A (en) | 1981-12-03 | 1983-07-05 | Allied Corporation | Preparing alkali metal hydroxide by water splitting and hydrolysis |
US4561945A (en) | 1984-07-30 | 1985-12-31 | United Technologies Corporation | Electrolysis of alkali metal salts with hydrogen depolarized anodes |
US4723962A (en) | 1985-02-04 | 1988-02-09 | Lithium Corporation Of America | Process for recovering lithium from salt brines |
US4999095A (en) | 1985-05-03 | 1991-03-12 | Allied-Signal Inc. | Recovery of mixed acids from mixed salts |
US4707234A (en) | 1985-10-25 | 1987-11-17 | Toyo Soda Manufacturing Co., Ltd. | Method for separating an acid and an alkali from an aqueous solution of a salt |
CA1272982A (en) * | 1985-11-14 | 1990-08-21 | Donald Lorne Ball | Method for the recovery of lithium from solutions by electrodialysis |
US4806215A (en) | 1988-07-27 | 1989-02-21 | Tenneco Canada Inc. | Combined process for production of chlorine dioxide and sodium hydroxide |
DE3834807A1 (de) * | 1988-10-13 | 1990-05-10 | Kali Chemie Ag | Verfahren zur herstellung von kohlensauren salzen von alkalimetallen |
US4961909A (en) | 1989-11-09 | 1990-10-09 | Comino Ltd. | Process for the manufacture of copper arsenate |
DE4009410A1 (de) * | 1990-03-23 | 1991-09-26 | Basf Ag | Verfahren zur elektrochemischen spaltung von alkali sulfaten |
US5198080A (en) | 1990-06-08 | 1993-03-30 | Tenneco Canada Inc. | Electrochemical processing of aqueous solutions |
US5129936A (en) | 1990-07-30 | 1992-07-14 | Wilson Harold W | Processes for the preparation of acid fortified paramagnetic iron sulfate salt compounds for use in the treatment of agricultural soils |
JP2535748B2 (ja) | 1991-03-04 | 1996-09-18 | 工業技術院長 | リチウム回収方法 |
US5098532A (en) | 1991-05-24 | 1992-03-24 | Ormiston Mining And Smelting Co. Ltd. | Process for producing sodium hydroxide and ammonium sulfate from sodium sulfate |
SE500107C2 (sv) | 1991-06-26 | 1994-04-18 | Eka Nobel Ab | Förfarande för framställning av klordioxid |
IT1248564B (it) | 1991-06-27 | 1995-01-19 | Permelec Spa Nora | Processo di decomposizione elettrochimica di sali neutri senza co-produzione di alogeni o di acido e cella di elettrolisi adatta per la sua realizzazione. |
US5246551A (en) | 1992-02-11 | 1993-09-21 | Chemetics International Company Ltd. | Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine |
SE511003C2 (sv) | 1992-03-16 | 1999-07-19 | Eka Chemicals Ab | Förfarande och apparat för framställning av svavelsyra och alkalimetallhydroxid |
FI94063C (fi) | 1993-08-17 | 1995-07-10 | Kemira Oy | Menetelmä alkalimetalli- tai ammoniumperoksodisulfaattisuolojen ja alkalimetallihydroksidin samanaikaiseksi valmistamiseksi |
US5830422A (en) | 1995-06-23 | 1998-11-03 | Ormiston Mining And Smelting Co. Ltd. | Method for production of sodium bicarbonate, sodium carbonate and ammonium sulfate from sodium sulfate |
US6514640B1 (en) | 1996-04-23 | 2003-02-04 | Board Of Regents, The University Of Texas System | Cathode materials for secondary (rechargeable) lithium batteries |
US5788943A (en) | 1996-09-05 | 1998-08-04 | The Hall Chemical Company | Battery-grade nickel hydroxide and method for its preparation |
JP2001508925A (ja) | 1997-06-23 | 2001-07-03 | パシフィック・リシアム・リミテッド | リチウムの回収および精製 |
US6004445A (en) | 1997-06-30 | 1999-12-21 | Electrosynthesis Company, Inc. | Electrochemical methods for recovery of ascorbic acid |
CA2242890A1 (en) | 1997-09-11 | 1999-03-11 | Takayuki Araki | Method for preparing nickel fine powder |
US6048507A (en) | 1997-12-09 | 2000-04-11 | Limtech | Process for the purification of lithium carbonate |
DE19809420A1 (de) | 1998-03-05 | 1999-09-09 | Basf Ag | Verfahren zur Herstellung von hochreinen Lithiumsalzen |
EP1044927B1 (en) | 1998-06-10 | 2012-07-25 | Sakai Chemical Industry Co., Ltd. | Nickel hydroxide particles and production and use thereof |
US6331236B1 (en) | 1998-07-21 | 2001-12-18 | Archer Daniels Midland Company | Electrodialysis of salts for producing acids and bases |
JP2000129364A (ja) | 1998-10-27 | 2000-05-09 | Toshiba Corp | 金属の回収方法 |
US6547836B1 (en) | 1998-11-10 | 2003-04-15 | Sqm Salar S.A. | Process for obtaining monohydrated lithium sulfate from natural brines |
US6627061B2 (en) | 1999-05-05 | 2003-09-30 | Archer-Daniels-Midland Company | Apparatus and process for electrodialysis of salts |
US7390466B2 (en) | 1999-07-14 | 2008-06-24 | Chemetall Foote Corporation | Production of lithium compounds directly from lithium containing brines |
DE19940069A1 (de) | 1999-08-24 | 2001-03-08 | Basf Ag | Verfahren zur elektrochemischen Herstellung eines Alkalimetalls aus wäßriger Lösung |
DE10030093C1 (de) * | 2000-06-19 | 2002-02-21 | Starck H C Gmbh | Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden oder basischen Metallcarbonaten |
US6747065B1 (en) | 2000-09-01 | 2004-06-08 | Chemical Products Corporation | System and method for producing high purity colloidal silica and potassium hydroxide |
CA2319285A1 (en) | 2000-09-13 | 2002-03-13 | Hydro-Quebec | A method for neutralizing and recycling spent lithium metal polymer rechargeable batteries |
US6375824B1 (en) | 2001-01-16 | 2002-04-23 | Airborne Industrial Minerals Inc. | Process for producing potassium hydroxide and potassium sulfate from sodium sulfate |
RU2196735C1 (ru) | 2001-07-20 | 2003-01-20 | Закрытое акционерное общество "Экостар-Наутех" | Способ получения моногидрата гидроксида лития высокой степени чистоты из материалов, содержащих карбонат лития |
TW511306B (en) | 2001-08-20 | 2002-11-21 | Ind Tech Res Inst | Clean process of recovering metals from waste lithium ion batteries |
NZ520452A (en) | 2002-10-31 | 2005-03-24 | Lg Chemical Ltd | Anion containing mixed hydroxide and lithium transition metal oxide with gradient of metal composition |
EP1651573B1 (en) | 2003-07-24 | 2014-03-19 | Veolia Water Solutions & Technologies Support | Method for treatment of acidic wastewater |
AU2006298627B2 (en) | 2005-10-03 | 2011-06-30 | Metso Outotec Finland Oy | Method for processing nickel bearing raw material in chloride-based leaching |
JP4211865B2 (ja) | 2006-12-06 | 2009-01-21 | 戸田工業株式会社 | 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 |
US20110044882A1 (en) * | 2008-04-22 | 2011-02-24 | David Buckley | Method of making high purity lithium hydroxide and hydrochloric acid |
JP2009270189A (ja) * | 2008-05-07 | 2009-11-19 | Kee:Kk | 高純度水酸化リチウムの製法 |
JP5087790B2 (ja) | 2008-06-17 | 2012-12-05 | 住友金属鉱山株式会社 | アルミニウム含有水酸化ニッケル粒子の製造方法 |
JP5251401B2 (ja) | 2008-09-29 | 2013-07-31 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質及びその製造方法、並びに非水系電解質二次電池 |
AU2012261548B2 (en) * | 2008-11-17 | 2013-02-21 | Rockwood Lithium Inc. | Recovery of lithium from aqueous solutions |
DE102009010264B4 (de) | 2009-02-24 | 2015-04-23 | Süd-Chemie Ip Gmbh & Co. Kg | Verfahren zur Aufreinigung lithiumhaltiger Abwässer bei der kontinuierlichen Herstellung von Lithiumübergangsmetallphosphaten |
FI121785B (fi) | 2009-03-11 | 2011-04-15 | Outotec Oyj | Menetelmä litiumbikarbonaatin puhdistamiseksi |
JP2011031232A (ja) * | 2009-08-04 | 2011-02-17 | Kee:Kk | 水酸化リチウムの製造方法 |
AU2010341402B2 (en) | 2010-01-07 | 2014-01-30 | Tianqi Lithium Corporation | Process for the production of lithium carbonate |
US8936770B2 (en) | 2010-01-22 | 2015-01-20 | Molycorp Minerals, Llc | Hydrometallurgical process and method for recovering metals |
CA2789771C (en) | 2010-02-17 | 2022-06-14 | Simbol Mining Corp. | Highly pure lithium carbonate prepared using reverse osmosis |
FI122188B (fi) | 2010-03-18 | 2011-09-30 | Outotec Oyj | Hydrometallurginen menetelmä metallisen nikkelin valmistamiseksi |
WO2011133165A1 (en) * | 2010-04-23 | 2011-10-27 | Simbol Mining Corp. | A process for making lithium carbonate from lithium chloride |
FI122831B (fi) | 2010-05-25 | 2012-07-31 | Outotec Oyj | Menetelmä spodumeenin käsittelemiseksi |
WO2011156861A1 (en) | 2010-06-15 | 2011-12-22 | The University Of Queensland | Method of recovering a metal |
US8431005B1 (en) * | 2010-06-24 | 2013-04-30 | Western Lithium Corporation | Production of lithium and potassium compounds |
CN103097587B (zh) | 2010-06-30 | 2017-10-24 | 史蒂文·C·阿门多拉 | 锂金属的电解产物 |
EP2603620A4 (en) | 2010-08-12 | 2016-10-12 | Res Inst Ind Science & Tech | PROCESS FOR EXTRACTION OF LITHIUM OF HIGH PURITY FROM A LITHIUM-BASED SOLUTION BY ELECTROLYSIS |
KR101126286B1 (ko) * | 2010-08-12 | 2012-03-20 | 재단법인 포항산업과학연구원 | 고순도 탄산리튬의 제조 방법 |
CN102020295B (zh) | 2010-12-22 | 2012-07-25 | 四川天齐锂业股份有限公司 | 高纯碳酸锂的制备方法 |
HUE044184T2 (hu) | 2011-01-25 | 2019-10-28 | Univ Queensland | Javított ércfeldolgozási eljárás |
AU2012230776A1 (en) * | 2011-03-24 | 2013-10-31 | New Sky Energy, Inc. | Sulfate-based electrolysis processing with flexible feed control, and use to capture carbon dioxide |
US10128501B2 (en) | 2011-06-07 | 2018-11-13 | Sumitomo Metal Mining Co., Ltd. | Nickel composite hydroxide and manufacturing method thereof, cathode active material for nonaqueous-electrolyte secondary battery and manufacturing method thereof, and nonaqueous-electrolyte secondary battery |
JP6007601B2 (ja) | 2011-06-23 | 2016-10-12 | 東ソー株式会社 | マンガン酸化物の製造方法 |
CN102408411B (zh) | 2011-09-19 | 2014-10-22 | 北京康辰药业股份有限公司 | 一种含喹啉基的羟肟酸类化合物及其制备方法、以及含有该化合物的药物组合物及其应用 |
KR101405488B1 (ko) * | 2012-01-06 | 2014-06-13 | 주식회사 포스코 | 염수 용존 물질의 추출 방법 및 이를 이용한 시스템 |
KR101370633B1 (ko) * | 2012-02-10 | 2014-03-10 | 주식회사 포스코 | 리튬 화합물 회수 장치, 리튬 화합물의 회수 방법 및 리튬 화합물의 회수 시스템 |
JP5138822B1 (ja) | 2012-02-23 | 2013-02-06 | 株式会社アストム | 高純度水酸化リチウムの製造方法 |
CN104245587A (zh) | 2012-03-19 | 2014-12-24 | 奥图泰(芬兰)公司 | 用于回收碳酸锂的方法 |
JP5406955B2 (ja) | 2012-03-22 | 2014-02-05 | 日鉄鉱業株式会社 | 炭酸リチウムを製造する方法 |
JPWO2013153692A1 (ja) * | 2012-04-13 | 2015-12-17 | 旭化成株式会社 | リチウム回収方法 |
WO2013159194A1 (en) | 2012-04-23 | 2013-10-31 | Nemaska Lithium Inc. | Processes for preparing lithium hydroxide |
JP5770675B2 (ja) | 2012-04-26 | 2015-08-26 | 古河機械金属株式会社 | 硫化リチウムの製造方法 |
RS57299B1 (sr) * | 2012-05-30 | 2018-08-31 | Nemaska Lithium Inc | Postupci za dobijanje litijum karbonata |
FI124088B (fi) | 2012-06-05 | 2014-03-14 | Outotec Oyj | Menetelmä ja laitteisto puhtaan litiumpitoisen liuoksen valmistamiseksi |
WO2014040138A1 (en) | 2012-09-14 | 2014-03-20 | The University Of Queensland | Resin scavenging of nickel and cobalt |
JP6359018B2 (ja) | 2012-10-10 | 2018-07-18 | ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH | 使用済みガルバニ電池のリチウム遷移金属酸化物含有部分からの、湿式冶金法によるリチウム、ニッケル、コバルトの回収方法 |
CN102874850B (zh) * | 2012-10-25 | 2014-03-19 | 西安三瑞实业有限公司 | 一种用外热式回转炉进行锂矿石酸化焙烧系统及焙烧方法 |
CN103086405B (zh) * | 2013-01-05 | 2013-12-25 | 阿坝中晟锂业有限公司 | 一种电池级碳酸锂的清洁化生产方法 |
WO2014138933A1 (en) * | 2013-03-15 | 2014-09-18 | Nemaska Lithium Inc. | Processes for preparing lithium hydroxide |
EP3060699B1 (en) * | 2013-10-23 | 2018-05-02 | Nemaska Lithium Inc. | Processes and systems for preparing lithium hydroxide |
WO2015058287A1 (en) * | 2013-10-23 | 2015-04-30 | Nemaska Lithium Inc. | Processes for preparing lithium carbonate |
EP3077555A1 (en) | 2013-12-03 | 2016-10-12 | The University Of Queensland | Copper processing method |
US10544512B2 (en) | 2014-02-24 | 2020-01-28 | Nemaska Lithium Inc. | Methods for treating lithium-containing materials |
AU2015330958B2 (en) | 2014-10-10 | 2019-11-28 | Li-Technology Pty Ltd | Recovery process |
JP2016162601A (ja) | 2015-03-02 | 2016-09-05 | Jx金属株式会社 | リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池 |
KR101711854B1 (ko) | 2015-05-13 | 2017-03-03 | 재단법인 포항산업과학연구원 | 수산화리튬 및 탄산리튬의 제조 방법 |
KR102559772B1 (ko) | 2015-08-27 | 2023-07-25 | 네마스카 리튬 인코포레이션 | 리튬 함유 물질 처리 방법 |
GB201602259D0 (en) | 2016-02-08 | 2016-03-23 | Bateman Advanced Technologies Ltd | Integrated Lithium production process |
DE102016103100A1 (de) | 2016-02-23 | 2017-08-24 | Outotec (Finland) Oy | Verfahren und Vorrichtung zur thermischen Behandlung von körnigen Feststoffen |
DE102016104738A1 (de) | 2016-03-15 | 2017-09-21 | Outotec (Finland) Oy | Verfahren und Vorrichtung zur thermischen Behandlung von körnigen Feststoffen |
CN106365181B (zh) | 2016-08-26 | 2018-03-09 | 成都开飞高能化学工业有限公司 | 一种利用含较高杂质富锂溶液制备电池级碳酸锂的方法 |
CN106315625B (zh) | 2016-08-26 | 2018-07-10 | 成都开飞高能化学工业有限公司 | 复合生产高纯单水氢氧化锂、高纯碳酸锂和电池级碳酸锂的方法 |
CA2940509A1 (en) | 2016-08-26 | 2018-02-26 | Nemaska Lithium Inc. | Processes for treating aqueous compositions comprising lithium sulfate and sulfuric acid |
WO2018087697A1 (en) | 2016-11-09 | 2018-05-17 | Avalon Advanced Materials Inc. | Methods and systems for preparing lithium hydroxide |
KR20200059192A (ko) | 2017-06-08 | 2020-05-28 | 어반 마이닝 피티와이 엘티디 | 리튬을 회수하는 방법 |
KR20200060695A (ko) | 2017-06-08 | 2020-06-01 | 어반 마이닝 피티와이 엘티디 | 폐 리튬-기반 배터리 및 다른 공급물로부터 코발트, 리튬 및 기타 금속의 회수 방법 |
EP3638819A4 (en) | 2017-06-14 | 2021-01-27 | Urban Mining Pty Ltd | PROCESS FOR THE PRODUCTION OF COBALT AND ASSOCIATED OXIDES FROM VARIOUS CHARGING MATERIALS |
EP3642374B1 (en) | 2017-06-22 | 2022-11-30 | Metso Outotec Finland Oy | Method of extracting lithium compound(s) |
WO2019059654A1 (ko) | 2017-09-19 | 2019-03-28 | 주식회사 엘지화학 | 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지 |
CN111867980B (zh) | 2017-11-22 | 2021-10-01 | 内玛斯卡锂业有限公司 | 制备各种金属的氢氧化物和氧化物以及其衍生物的方法 |
CN109694957B (zh) | 2019-02-26 | 2020-12-18 | 中国科学院城市环境研究所 | 一种利用离子液体萃取锂离子电池浸出液金属离子的方法 |
-
2014
- 2014-10-23 WO PCT/CA2014/000768 patent/WO2015058287A1/en active Application Filing
- 2014-10-23 CN CN201480070317.0A patent/CN105849047B/zh active Active
- 2014-10-23 CA CA3185410A patent/CA3185410A1/en active Pending
- 2014-10-23 KR KR1020207036715A patent/KR102445712B1/ko active IP Right Grant
- 2014-10-23 DK DK14854916.5T patent/DK3060522T3/da active
- 2014-10-23 AU AU2014339705A patent/AU2014339705B2/en active Active
- 2014-10-23 EP EP14854916.5A patent/EP3060522B1/en active Active
- 2014-10-23 CA CA2996154A patent/CA2996154C/en active Active
- 2014-10-23 KR KR1020167013647A patent/KR102132463B1/ko active IP Right Grant
- 2014-10-23 CN CN201811202193.3A patent/CN109250733B/zh active Active
- 2014-10-23 US US15/031,746 patent/US10144990B2/en active Active
- 2014-10-23 JP JP2016549599A patent/JP6335316B2/ja active Active
- 2014-10-23 KR KR1020207019384A patent/KR102195934B1/ko active IP Right Grant
- 2014-10-23 CA CA2928224A patent/CA2928224C/en active Active
- 2014-10-23 KR KR1020227032061A patent/KR102614113B1/ko active IP Right Grant
-
2016
- 2016-04-23 CL CL2016000980A patent/CL2016000980A1/es unknown
-
2017
- 2017-10-20 JP JP2017203947A patent/JP6559754B2/ja active Active
-
2018
- 2018-06-22 AU AU2018204540A patent/AU2018204540B2/en active Active
- 2018-11-09 US US16/185,973 patent/US11697861B2/en active Active
-
2019
- 2019-07-17 JP JP2019131809A patent/JP6860626B2/ja active Active
-
2021
- 2021-03-26 JP JP2021053234A patent/JP7143466B2/ja active Active
-
2023
- 2023-06-25 US US18/213,844 patent/US20230416874A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012504545A (ja) * | 2008-11-17 | 2012-02-23 | ケメタル・フット・コーポレイション | 水溶液からのリチウムの回収 |
JP2012234732A (ja) * | 2011-05-02 | 2012-11-29 | Asahi Kasei Corp | リチウム回収方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6860626B2 (ja) | 炭酸リチウム、水酸化リチウムおよび硫酸リチウムの調製のための方法 | |
US20240229266A1 (en) | Processes for preparing lithium hydroxide | |
US11254582B2 (en) | Processes for preparing lithium carbonate | |
CA2964106C (en) | Processes for preparing lithium hydroxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220914 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7143466 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |