[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021176890A - タンパク質のpeg化に用いるための添加物系 - Google Patents

タンパク質のpeg化に用いるための添加物系 Download PDF

Info

Publication number
JP2021176890A
JP2021176890A JP2021123154A JP2021123154A JP2021176890A JP 2021176890 A JP2021176890 A JP 2021176890A JP 2021123154 A JP2021123154 A JP 2021123154A JP 2021123154 A JP2021123154 A JP 2021123154A JP 2021176890 A JP2021176890 A JP 2021176890A
Authority
JP
Japan
Prior art keywords
reaction
peg
protein
pegylation
additive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021123154A
Other languages
English (en)
Other versions
JP7257457B2 (ja
Inventor
マシュー・アール・ヒッキー
R Hickey Matthew
アントニオ・ラミレス
Ramirez Antonio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bristol Myers Squibb Co
Original Assignee
Bristol Myers Squibb Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol Myers Squibb Co filed Critical Bristol Myers Squibb Co
Publication of JP2021176890A publication Critical patent/JP2021176890A/ja
Application granted granted Critical
Publication of JP7257457B2 publication Critical patent/JP7257457B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/50Fibroblast growth factor [FGF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/64Relaxins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endocrinology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】タンパク質のPEG化に用いるための添加物系を提供する。【解決手段】添加物系は、単体で、または3,5−ジアミノ安息香酸などの芳香族アミンと、または塩化アンモニウムもしくは酢酸アンモニウムなどのアンモニウム塩との組み合わせで用いられるp−アミノ安息香酸ヒドラジドを含む。本開示の添加物の組み合わせは、上昇した反応速度、高い収率、および結合反応に競合するのに必要とされるアミノオキシ−PEG当量の減少などのいくつかの利益を提供する。典型的な反応は、添加物または添加物系を、タンパク質およびアミノオキシ−PEG試薬の溶液と合わせることによって進行させることができる。溶液をpH4に調整し、20−25℃で、完了するまで、一般には24時間以内、攪拌を行わずに保つ。【選択図】図6

Description

(関連出願の相互参照)
本願は、仮特許出願第62/258644号(2015年11月23日出願)の利益を主張し、その教示は引用によって本明細書に具体的に援用される。
本開示はタンパク質のPEG化反応に用いるための、改良された添加物系に関する。特に、本開示はp−アセチルフェニルアラニン残基を含むタンパク質とアミノオキシ−PEG化合物との間の結合反応のための添加物を特定する。
タンパク質のPEG化は、ポリエチレングリコール誘導体を治療用タンパク質に結合させて、クリアランス率を減少させ、タンパク質分解酵素および免疫系の認識からの立体遮蔽を提供することによって、その安定性および薬物動態を改善することに関わる結合方法である(Roberts, M.J. et al., Adv. Drug Delivery Rev, 54:459(2002))。一般に、PEG化技術は2種類、すなわち無作為および部位特異的な結合に分類することができる。無作為なPEG化によってPEG化試薬はリシンまたはシステインなどの反応性アミノ酸に任意に結合され、PEG化生成物の混合物を生じる。一方で、部位特異的な結合は、タンパク質に結合するPEG残基の位置および数を制御するために、天然の官能基(例えば、NまたはC末端基)または非天然アミノ酸(例えば、p−アセチルフェニルアラニン−pAcF)の一義的な反応性を利用する。PEG化試薬とpAcF残基との間のケトキシム形成などの部位特異的な結合反応は、遺伝暗号の拡張によって基質タンパク質に組み込まれる(Liu,C.C.et al.,Annu. Rev. Biochem., 79:413 (2010); Tian, F. et al.,‘‘Accelerants for the modification of non−natural amino acids and non−natural amino acid polypeptides’’,米国特許第7,468,458号(2008年12月23日出願))。これらおよび証明された有用性に関わらず、ケトキシムの形成に基づく結合は遅い速度および不完全な変換に悩まされている(Crisalli, P. et al., J. Org. Chem., 78:1184(2013))。ケトキシム形成を改良するための試みとしては、過剰量のPEG化試薬の使用、高温または毒性触媒の高濃度が挙げられる。これらの溶液は、しかしながら、生成物から過剰量のPEG化試薬または毒性触媒を除去するステップをさらに含み、しばしばタンパク質の安定性を損なう。さらに、古い方法は添加物を用いない、変性剤(尿素)を用いる、および/またはアセチルヒドラジド(AcNHNH)を添加物として用いる。AcNHNHおよび関連する構造は、PCT出願第WO2007/056448号において定義されている。
当技術分野において今必要であるのは、失速に影響する機構的原理を調べることによって、および反応を加速させ、低いPEG:タンパク質のモル比での高変換を促進する新たな添加物を特定することによって、pAcF残基を含むタンパク質(レラキシンおよびFGF21)のPEG化の収率および速度を向上させる新たな方法である。この方法は経済的であり、かなり少量のPEG化剤で高い変換率を促進し、高い反応温度および遺伝毒性物質を除去する必要性を回避する、より早い反応を促進するべきである。
第一の実施態様において、本開示はタンパク質のPEG化反応のための改良された添加物系であって、p−アミノ安息香酸ヒドラジドを単体で、または芳香族アミンもしくはアンモニウム塩との組み合わせで含む前記添加物系を提示する。
別の実施態様において、本開示はPEG化タンパク質を得るための方法であって、以下のステップ:タンパク質、PEG試薬、および添加物系を特定すること;およびタンパク質を溶解させ、次いで、添加物系の存在下でPEG試薬と組み合わせて、PEG化タンパク質を高収率で得ることを含む前記方法を提示する。
さらなる実施態様において、本開示は治療を必要とする対象の治療に用いるための、前記実施態様に記述された方法によって得られるPEG化タンパク質を含む医薬組成物を提示する。
ケトキシム形成の一般的なメカニズム。 20kDaのPEG−OA試薬による、レラキシン(水中の4mg/mL)のPEG化のクロマトグラム。 空気の連続気流に曝された場合の、水中での20kDa PEG−OAの分解の時間経過。 インサイチュIRおよびH NMRスペクトルを用いたアセチルヒドラジドの安定性試験。 添加物スクリーニングのためのモデル反応。反応条件:室温(23℃)、1.0mLの酢酸緩衝液(20mM、pH4.0)中に、1(3.6mmol)および2(3.6mmol)。
異なる添加物について観測された相対速度(krel)。アセチルヒドラジド(krel〜2)を四角の中に示す。 (a)1当量のピラゾールアミン(赤);(b)1当量のMCH(青);(c)1当量のピラゾールアミンおよび1当量のMCH(緑)の存在下で、ジペプチド1とO−ベンジルヒドロキシルアミン(2)との反応の時間経過。添加物の非存在下で得られた反応プロファイルは、グレーで示す。 ジペプチド1(a)と、(b)1当量のMCH(緑);(c)1当量のMCHおよび1当量のピラゾールアミン(グレー);(d)1当量のピラゾールアミン(赤)とを含むサンプルのH NMRスペクトルの芳香族領域。MCHとピラゾールアミン添加物との相乗効果によって、1つの添加物のみを含むサンプルと比較して活性な中間体を高濃度で含む混合物生じる。 左:30当量のPABHおよび1.2当量の20kDaのPEG−OAによるジペプチド1のPEG化;ヒドラゾン中間体は緑の点として示す。右:ジペプチドを30当量のPABHで一晩平衡化した後、1.2当量のPEG化試薬を加えたPEG化反応。 左:ジペプチド1のPEG化のための、ヒドラゾン濃度対PABHの当量のプロット;青の点はピラゾールアミンを除く反応混合物を示す。中央:PABHおよびピラゾールアミンの異なる組み合わせの、反応速度への影響。右:PABHおよびピラゾールアミンを含む反応混合物中の、ジペプチド1およびそのヒドラゾン誘導体の最終濃度。
添加物の総当量およびピラゾールアミン:PABH比に対する、反応終了時における残留したジペプチド1のプロット。 左:(a)30当量のアセチルヒドラジド(青);(b)30当量のMCH(赤)の存在下での、20kDa PEG−OA(1.5当量)とレラキシンの反応の時間経過;添加物の非存在下で得た反応プロファイルはグレーで示す。中央:(a)30当量のピラゾールアミン(青);(b)30当量のMCH(赤);(c)10当量のMCH(紫);(d)30当量のピラゾールアミンおよび10当量のMCH(緑);(e)30当量のMCHおよび30当量のピラゾールアミンの存在下での、PEG−OA(1.5当量)とレラキシンの反応の時間経過。右:(a)40℃;(b)10℃;(c)25℃における、30当量のピラゾールアミンおよび10当量のMCHの存在下での、PEG−OA(1.5当量)とレラキシンの反応の時間経過。 左:6Mの尿素中の(a)30当量のMPCHおよび30当量のピラゾールアミン(緑);(b)30当量のPHおよび30当量のピラゾールアミン(青);および(c)30当量のMCHおよび30当量のピラゾールアミン(赤)の存在下での、20kDaのPEG−OA(1.2当量)とレラキシンとの反応の時間経過。右:(a)30当量のPHおよび60当量のピラゾールアミン(青);(b)30当量のアセチルヒドラジドおよび60当量のピラゾールアミン(緑);および(c)30当量のPABHおよび60当量のピラゾールアミン(赤)の存在下での、PEG−OA(1.2当量)とレラキシンとの反応の時間経過。 終点においてMCHによって加速する、レラキシンのPEG化のHRMS解析。オキシムのピークは残留したレラキシンと重なる。レラキシンのピークについての0.04分の遅れは、遅く溶出する不純物によるものというよりは、クロマトグラフィーの挙動に対する反応マトリクスの影響によるものである。 左:6Mの尿素と、(a)30当量のMCHおよび30当量のピラゾールアミン(赤);(b)30当量のMCH、30当量のピラゾールアミン、および30当量のNHOH(青)の存在下での、20kDaのPEG−OA(1.2当量)とレラキシンの反応の時間経過。右:6Mの尿素と、30当量のMCHおよび30当量のピラゾールアミン(青)の存在下での、PEG−OA(1.2当量)とのレラキシンの減少の時間経過;オキシムのピーク(赤)が反応中に増大し、PEG−OA分解からヒドロキシルアミンの同時形成が示唆される。
左:30当量のPABHと(a)60当量のエチレンジアミン(グレー);(b)60当量の3,5−ジアミノ安息香酸(緑);(c)60当量のm−フェニレンジアミン(青);および60当量のピラゾールアミン(赤)の存在下での、20kDaのPEG−OA(1.2当量)とレラキシンの反応の時間経過。右:(a)30当量のPABHおよび60当量の3,5−ジアミノ安息香酸(緑);および(b)60当量のPABHおよび120当量のNHCl(青)の存在下での、PEGOA(1.2当量)とレラキシンの反応の時間経過。 予備的PEG化スクリーニングのためのスキーム。 レラキシンおよびFGF21の異なるアミンによるPEG化のスキーム。 総当量対アミン:PABH比対FGF21の最終濃度の曲率プロットで示す、o−およびm−フェニレンジアミンのPEG化の結果。左:o−フェニレンジアミン。右:m−フェニレンジアミン。 添加物の総当量対アミン:PABH比、並びにPABHおよび3,5−ジアミノ安息香酸を用いたPEG化の変換のプロット。左:30kDaのPEG−OAとFGF21。右:20kDaのPEG−OAとレラキシン。
左:120当量の塩および60当量のPABH触媒の存在下での、(a)6Mの尿素(緑);(b)NHCl(グレー);および(c)(NHSOを用いた、20kDaのPEG−OA(1.2当量)とレラキシンとの反応の時間経過。 添加物の非存在下(青)、および(a)120当量のNHCl(赤)、(b)60当量のアセチルヒドラジド(グレー)、および(c)60当量のアセチルヒドラジドおよび120当量のNHCl(緑)の存在下での、20kDaのPEG−OA(1.2当量)とレラキシンの反応の時間経過。 左:120当量のNHClを加える前および後(それぞれ、青および赤)のレラキシンのUVスペクトル。右:芳香族残基を赤で強調した、レラキシンのアミノ酸配列。 左:120当量のNHClを加える前および後(それぞれ、青および紫)のレラキシンのIRスペクトル。右:構造変化の暫定的な帰属を含む、120当量のNHClを加えた後のIRスペクトルの挿入図。 120当量のNHClを加える前および後(それぞれ、赤および青)のレラキシンの15N NMR HSQCスペクトル。
120当量のNHClを加える前(青)および後(それぞれ、青および緑)のレラキシンの近UV CDスペクトル。 市販のPABHに存在する可能性のある不純物の構造。
本出願の他の箇所で特に明記されていない限り、以下の用語が本明細書で用いられ、以下の意味を有するものとする。
略称
PEG:ポリエチレングリコール
PEG−OA:ポリエチレングリコール−オキシアミン
mPEG:メトキシポリエチレングリコール
MCH:モルホリン 4−カルボヒドラジド
MPCH:4−メチルピペラジン−1−カルボヒドラジド
PH:ピバルヒドラジド
PABH:p−アミノ安息香酸ヒドラジド
PMBH:p−メトキシ安息香酸ヒドラジド
本明細書で用いられる単数形「a」、「an」および「the」は、文脈から明らかにそうでないと示されない限り、複数の指示対象を含むことに注意すべきである。特に明示されない限り、本明細書で用いられる全ての技術および化学用語は、当業者によって通常理解されるのと同じ意味を有する。特に言及されない限り、本明細書に記載される全ての範囲は特定の端点を含む。以下の用語を下に示す。
約:用語「約」は本明細書において、およそ、ざっと、近く、またはその辺りを意味して用いられる。用語「約」が数値範囲と組み合わせて用いられる場合、記載される数値範囲の上および下の境界を拡張することによってその範囲を変更する。一般に、用語「約」は本明細書において、5パーセントの上下(高低)の分散だけ、記載された値の上下の数値を修正して用いられる。
添加物系:用語「添加物系」は本明細書において、「触媒化合物」を意味し、単体、または組み合わせのいずれかを意味して用いられる。例えば、p−アミノ安息香酸ヒドラジド単体、または芳香族アミン、すなわち3,5−ジアミノ安息香酸、O−フェニレンジアミン、1−ピリジン−2−イル−エチルアミン、2−(ジメチルアミノ)エチルヒドラジン、m−フェニレンジアミンもしくは2−ピコリルアミンとの組み合わせ、またはアンモニウム塩、すなわち酢酸アンモニウムもしくは塩化アンモニウムとの組み合わせである。好ましい触媒化合物としては、p−アミノ安息香酸ヒドラジドと3,5−ジアミノ安息香酸との組み合わせ、またはp−アミノ安息香酸ヒドラジドと塩化アンモニウムとの組み合わせが挙げられる。
含む:用語「含む」は「含有する」を意味し、例えば、Xを「含む」組成物はもっぱらXから構成されてもよく、または、例えばX+Yのように、追加のものを含んでもよい。
PEG:用語「PEG」は、本開示の文脈で用いられる場合、ポリエチレングリコールまたは誘導体化ポリエチレングリコールをいう。
PEG化またはPEG化方法:用語「PEG化」または「PEG化方法」は、ポリエチレングリコール(PEG)ポリマー鎖を、他の分子、本開示の文脈においては、pーアセチルフェニルアラニン(pAcF)残基を含むタンパク質、例えば、これらに限定はされないが、レラキシンおよびFGF21に結合させる方法をいう。
結合:本明細書で用いられる用語「結合」(conjugation)は、p−アセチルフェニルアラニン残基を含むタンパク質と、アミノオキシ−PEG化合物との結合反応をいう。
これは一般に、PEGの活性化、および活性化PEG中間体を直接、標的タンパク質/ペプチド、または後で活性化され、標的タンパク質/ペプチドに結合されるリンカーと結合させることに関する(Abuchowski, A. et al., J. Biol. Chem., 252:3571 (1977) and J. Biol. Chem., 252:3582 (1977), Zalipsky et al. in Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications, Chapters 21 and 22, Harris, J.M., ed., Plenum Press, NY(1992)を参照されたい)。PEG分子が結合していないタンパク質は、未結合または遊離と称されうるが、PEG分子を含むポリペプチドはまた、結合またはPEG化タンパク質としても知られていることに注意されたい。
PEG試薬またはPEG化試薬:PEG化反応を補助する試薬。
当然のことながら、任意の示される例示的な実施態様は、1つ以上のさらなる例示的な実施態様と組み合わせることができる。
第1の局面において、本開示はタンパク質のPEG化反応のための改良された添加物系であって、p−アミノ安息香酸ヒドラジドを単体で、または芳香族アミンまたはアンモニウム塩との組み合わせで含む前記添加物系を提示する。
第1の局面の第1の実施態様において、芳香族アミンは3,5−ジアミノ安息香酸、O−フェニレンジアミン、1−ピリジン−2−イル−エチルアミン、2−(ジメチルアミノ)エチルヒドラジン、m−フェニレンジアミンおよび2−ピコリルアミンから成る群から選択される。
第1の局面の第2の実施態様において、アンモニウム塩は酢酸アンモニウムおよび塩化アンモニウムから成る群から選択される。
第1の局面の第3の実施態様において、好ましい添加物系の組み合わせとしては、p−アミノ安息香酸ヒドラジドと3,5−ジアミノ安息香酸、またはp−アミノ安息香酸ヒドラジドと塩化アンモニウムが挙げられる。
第1の局面の第4の実施態様において、反応はp−アセチルフェニルアラニン残基を含むタンパク質とアミノオキシ−PEG化合物との結合反応である。
第1の局面の第5の実施態様において、添加物系は結合反応速度を増大させ、高収率の結合生成物を提供し、結合反応の競合に必要とされるアミノオキシ−PEG等価物の減少を促進する。
第2の局面において、本開示はPEG化タンパク質を得るための方法であって、以下のステップ:タンパク質、PEG試薬、および添加物系を特定すること;並びにタンパク質を溶解させ、次いで、添加物系の存在下でPEG試薬を組み合わせて、PEG化タンパク質を高収率で得ることを含む前記方法を提示する。
第2の局面の第1の実施態様において、タンパク質は、pAcF残基を含むレラキシンまたはFGF21である。
第2の局面の第2の実施態様において、PEG試薬と合わせた可溶化タンパク質溶液を、約4のpHで維持する。
第2の局面の第3の実施態様において、反応混合物を約20℃から約25℃の範囲の温度で維持する。
第2の局面の第4の実施態様において、添加物系としては、p−アミノ安息香酸ヒドラジド単体、または3,5−ジアミノ安息香酸などの芳香族アミン、または酢酸アンモニウムもしくは塩化アンモニウムなどのアンモニウム塩との組み合わせが挙げられる。
第2の局面の第5の実施態様において、高品質のp−アミノ安息香酸ヒドラジドと塩化アンモニウムとの組み合わせの添加物が、PEG化タンパク質の大規模生産における使用に好ましい。
第2の局面の第6の実施態様において、PEG試薬はPEG−OA、およびアミノオキシ基を有する他のPEG誘導体から成る群から選択される。
第3の局面において、本開示は第2の局面に列挙された方法によって得られるPEG化タンパク質を含む医薬組成物、および治療を必要とする対象の治療に用いるための実施態様を提示する。
実施例
本開示はここで特定の実施態様に関連して記述され、これらはその範囲を限定することを意図するものではない。それどころか、本開示は特許請求の範囲内に含まれうる全ての代替物、変更物、および等価物を含有する。したがって、特定の実施態様を含む以下の実施例は、本開示の1つの実施を例示し、これは実施例が特定の実施態様を例示するためのものであり、その方法および概念的局面が、最も有用で容易に理解される記述であると考えられるものを提供するために提示されていると理解されるべきである。
カルボニル基とヒドロキシルアミン誘導体との反応の一般的な機構は、小分子反応物については周知である(Jencks, W.P., Prog. Phys. Org. Chem., 2:63 (1964)、およびそこで援用される引用)。この方法は酸に触媒され、一般的に、多段階平衡反応に先行して脱水を必要とする。ケチミンは、1,3−アリル歪みのため、アルジミンよりも遅い速度で形成されるが、単純なアルキルオキシアミンの場合、ケトン−ケチミン平衡は大きく脱水にシフトする(図1)。
実施例1
反応の失速の潜在的な原因としての、PEG化試薬の分解を調べるための研究
PEG化の失速の潜在的な原因の1つとして、PEG化試薬の分解が挙げられる。PEG試薬はUV活性ではないため、反応中のその存在を追跡するための別の検出方法が必要である。蒸発光散乱検出は、ネブライザーを介してHPLC移動相を通過して、溶媒を除去することを含む。検出器内のレーザービームから回折光を形成するあらゆる固体粒子は、シグナルを生じる。この方法によって、光を回折することのできる固体を形成するあらゆる化合物を検出することができる。PEG化試薬は高分子量固体であるため、ELS検出を用いたHPLC解析の優れた候補である。これは図2において証明される。UVでの追跡を緑で示し、ELSでの追跡を黒で示す。上部のクロマトグラム(緑)は210nmにおけるUVでの追跡であり、黒のクロマトグラムは、UV検出と連続して得られた同じ混合物のELCでの追跡である。明らかに、下部の黒色の追跡は、特に、後で溶出するPEGに基づく化合物について、多くの情報を提供する。
後期溶出ピークはUV活性ではなく、反応の開始時においても存在していなかった。これはPEG化試薬の競合的な分解であると示唆される。確かに、この化合物は、PEG化試薬の溶液が空気に曝された時に生成した(図3)。20kDaのPEG−OA試薬の変換率は、〜4mg/mLの濃度において、>97%であり、PEG化において反応しない副生成物を生じた。
この分解は、PEG化試薬が溶媒中に溶解したガスと反応した結果であるため、分解速度と濃度には逆相関があるはずである。この仮説は、30−40mg/mLのより反応に関連する濃度において、20kDaのPEG−OAのサンプルがより安定である(<5%の分解)という観察結果と一致する。分析中のサンプルの安定性を確保するために、この計画の分析作業にいくらかの影響が生じうるが、より反応に関連する条件下における最小限の分解によって、空気によるPEGの分解が観測された反応失速の強力な原因ではないという結論が導かれる。PEG化試薬の安定性はまた、PEG化を活性化するために用いる添加物の存在中においても研究した。これらの実験は、標的のPEGをレラキシンに対して1.2当量加えるという、予想される反応濃度において行った。全ての場合において、PEG化試薬の分解は最小限であった。
PEG化の失速は、反応加速添加物としてのアセチルヒドラジドの大過剰量の存在下で生じるため、反応条件下におけるこのヒドラジドの安定性を、インサイチュIRおよびH NMR分光法によって試験した。この研究によって、アセチルヒドラジドが安定であることが示され、反応を促進するために必要な過剰量は、平衡反応の存在、および無触媒のバックグラウンドプロセスと比較して反応加速がわずかであることに関連している可能性が最も高いことが示唆される(図4)。
実施例2
ジペプチドモデル系(DMS)を用いた、添加物のスクリーニング研究
レラキシン中のpAcFケトン反応点とアルコキシアミンとの反応を加速させる添加物を見つけるための最初の試みは、脱水によって対応するイミノ誘導体の形成を促進することができる、活性化X−NH部位を含む市販の化合物のスクリーニングに関する。これらの添加物の選択のための最小要件は、水性溶媒中の実際のタンパク質のPEG化を促進するために用いられる温度、緩衝液およびpH条件下における、それらの十分な安定性および溶解性であった。分析工程を単純化し、HPLC−UVおよびNMR分光法による反応の追跡を容易にするために、ジペプチドAla−pAcF(1)とO−フェニルヒドロキシルアミン(2、図5参照)との縮合を、添加物の選択を導きうるモデル変換として選択した。後のステップにおいて、モデル反応を改良する添加物を、レラキシンおよびFGF21のPEG化において試験する。図5において、添加物のスクリーニングのためのモデル反応を示す。反応条件:1.0mL 酢酸緩衝液(20mM、pH4.0)中に、1(3.6mmol)および2(3.6mmol)、室温(23℃)。
X−NH部位のX置換基の性質に応じて、アニリン、ヒドラジン、ヒドラジドおよびヒドラジンカルボキサミンの4つの一般的なカテゴリーに分類される50個の添加物について、反応速度および変換率を評価した。観測した速度を、添加物なしで測定した速度(krel=1)に対して標準化した。アセチルヒドラジド(krel〜2)は、ベースライン許容性能を確立するための基準添加物であり;krel>2および高変換率(>95%)を生じる添加物のみを、その後のレラキシンおよびFGF21のPEG化における応用および最適化において考慮する。結果のまとめを図6に示す。この反応は、タンパク質のPEG化条件を模倣して、攪拌せずに室温においてHPLCバイアル中で行われ、さらなるサンプル操作を避けるため、分割量をHPLC自動サンプラーによって定期的に採取した。
ヒドラジド(青色)およびヒドラジンカルボキサミド(緑)が最善の結果を示した。一般に、アニリン(赤)はジペプチドの完全な変換を生じたが、反応を加速しなかった。さらに、ほどんどのアニリンは、高程度の望まないエピマー化を促進した。ヒドラジン(黄色)は反応条件下で、大量のヒドラゾンを形成し、さらなる研究から除外した。芳香族ヒドラジドおよび二級ヒドラジンカルボキサミンは、最大で5倍、速度を加速し、ジペプチドの消費がおよそ95%で失速した高変換率を示した。特に、スクリーニングによって、モルホリン−4−カルボヒドラジド(MCH、4)およびp−アミノ安息香酸ヒドラジド(PABH、7)が、変換を促進する最適な試薬であることが発見された。それらの性能、pH4における溶解性、市販での入手可能性およびコストに基づいて、PABHおよびMCHを、レラキシンおよびFGF21のPEG化においてさらに評価した(以下参照)。
Figure 2021176890
この情報から、反応の失速を回避するための試みとして、以下の3つの局面に焦点をあてた:(a)可変量の添加物の添加、(b)カオトロピック剤の効果、および(c)添加物の組み合わせ。最初に、反応性の内在的な傾向を確認するため、モデルジペプチドおよびアセチルヒドラジドを用いて研究を行った。様々な分量のアセチルヒドラジドにおける反応速度を追跡することによって添加物の飽和特性が明らかになり、高濃度の試薬において、速度の上昇が閾値に達することが示唆された(スキーム1)。
Figure 2021176890
さらに、アセチルヒドラジドの濃度が増加するとより高いレベルでの失速が促進され、これは、多段階連続可逆性イミン転移反応に関する一般的な機構と一致する。加速性の添加物の存在下において、そのような機構によって見かけの平衡を脱水にシフトさせることで、より高い変換を達成しうる可能性が示された。反応溶媒を変化させることによってこの平衡を変更させる実験的な試みは成功しなかった。例えば、6M尿素またはNHClの添加は反応を加速せず、元の変換率にも影響しなかった。いくつかのアニリンのスクリーニングによって、反応を加速しない完全な変換が生じ、これらのアニリンと加速性の添加物との組み合わせによって、基質のさらなる変換を促進することができることが予測された。実際に、アセチルヒドラジドおよびピラゾールアミン9の混合物の使用によって、より早い反応プロファイルと完全に近い変換がもたらされた(図6)。ジペプチド、ピラゾールアミン、MCH添加物の等モル量を含む混合物、またはMCHおよびピラゾールアミンの混合物のH NMR解析によって、混合物を含むサンプルについて、イミンおよびヒドラゾン中間体の相乗的な増加が示され、加速性の添加物およびアニリンの組み合わせによる正の効果は、反応中間体への平衡経路のシフトと相関があることが示唆された(図8)。
ヒドラジドおよびアニリン部位の両方を含む添加物である、PABHを用いた、同様のH NMRスペクトル実験で、単一のヒドラゾン中間体の形成の阻害が示され、これはDFT計算と一致する。中性条件下において、B3LYP/6−31G(d)レベルの理論の計算によると、pAcFおよびPABH間のヒドラゾン構造の形成の方が、同形のイミンよりも〜3kcal/mol有利である(スキーム2)。
Figure 2021176890
アミノ酸−NH(pKa〜9)のプロトン化は、ヒドラゾン形成を〜9kcal/mol支持する。二重プロトン化(pKa:アニリン〜2.5、ヒドラジド<2)によって、イミン形成を〜1.0kcal/mol有利にする。反応はそのような低いpH値では行われないが、DFT計算によって、脱水はpH変化およびH結合効果に対して大きく影響されやすいことが示される。
PABHによるジペプチド1のPEG化の間、ヒドラゾン中間体を追跡することができた(図9)。ジペプチド1とPABHの混合物を、PEG化試薬なしで一晩平衡化させたコントロール実験によって、ヒドラゾンの形成、並びに20kDaのPEG−OAの添加に応じた素早い消費による、目的の生成物の生成が示された。さらに、アミン添加物(例えば、ピラゾールアミン、図10)の存在下でのヒドラゾン形成実験によって、ヒドラゾン形成の程度が反応に用いたピラゾールアミン:PABH比に関連していることが示唆された。興味深いことに、ヒドラゾン形成の程度は、単純な様式で反応速度または変換率には相関していない。モデルジペプチド系において、1:1のピラゾールアミン:PABH比がヒドラゾン形成に最適であった。しかしながら、反応速度の場合では、最適条件はアミン:ヒドラジドが1:2の比と一致した。アミンに対して多い分量のヒドラジドが必要であるのは、ヒドラジドがアミン添加物よりもはるかに高い反応速度を示すことが観測された、予備的スクリーニングによっても支持される。一方で、3:1の比のアミン:ヒドラジドがジペプチドの変換に最適であり、これは(a)低アミン:ヒドラジド比における反応の最後に、かなりの量のヒドラゾン中間体が残留していることの観測、および(b)ヒドラジド添加物の「キッカーチャージ」の添加の後で検出される反応の可逆性と一致する。前記に提示される実験において、総当量はPBAHおよびピラゾールアミンの合計である。添加物の総当量の変化の効果は、アミン:ヒドラジド比、並びに組み合わせた添加物の総当量の両方を変化させて行った一連の実験によって調べた。結果を図11にまとめる。図中の曲率は、アミンとヒドラジドとの協同効果が複雑であり、反応条件の最適化には添加物の総当量だけではなく、両者の比についての考察が必要でありうることを示唆している。
実施例3
添加物がタンパク質−レラキシンおよびFGF21のPEG化を加速した
20kDaのPEG−OAの当量数を最大で1.2当量に減少させ、反応率および生成物の品質を下げることなく、室温での反応時間を短縮することを目的として、モデル系で得られた教訓をレラキシンおよびFGF21のPEG化に応用した。この目的のため、レラキシンとのモデル反応で同定された添加物を、大まかな実験から最初に発展させた反応条件下で試験した。1.5当量のPEG−OAによる、レラキシン(20mM AcONa中に21mg/mL、pH4.0)のPEG化は、30当量のアセチルヒドラジドまたはMCHの存在下で、室温、24時間後に良好な変換率(〜90%)を示した。触媒の非存在下で同一条件下において、反応は有意に低い変換率(〜75%)を示した。モデル系研究と一致して、PEG化は添加物によって加速され、MCHとの反応は、アセチルヒドラジドとの反応よりも2倍速かった。さらに、図6において提示される平衡は、以下の観測によって裏付けを得た:(a)触媒反応が同様の変換率において停止する、(b)一度停止すると、30当量の過剰な添加物の添加によって変換量が減少する、および(c)一度停止すると、0.5当量のPEG−OAの添加によって、反応が高い変換率(〜95%)を示す。モデル反応におけるアニリンについて見られた傾向は、レラキシンのPEG化についても説明される:30当量のピラゾールアミンの添加によって、加速されることなくレラキシン出発物質の大半が変換され、MCHとピラゾールアミンの組み合わせによって、たった8時間で95%の変換率が得られた。反応条件を最適化する試みは、変数間の複雑な相互作用を明らかにし、より深い洞察を得るためにDoE研究を適用することを促進した(実施例4)。例えば、30当量のピラゾールアミンと混合したMCHの分量が多くても少なくても変換率は改善されず、より高い温度の使用は迅速な反応を促進しなかった(図12)。PEG−OAの充填量を1.2当量に減少させると、添加物MCH、MPCH(5)またはPH(6)の存在下において1.5当量について最適化した条件下で、〜85−90%の変換率において失速が生じた。しかしながら、モデル系における無視できる効果とは対照的に、6Mの尿素中のMCHの使用によって、反応の完了は最大で〜95%に改善された(図12)。
しかしながら、PEG化反応を完了まで進行させることによって、レラキシン出発物質と同じ保持時間を有するが、PEG化試薬の存在下では未反応な不純物の形成が明らかになった。HRMS実験によって、不純物がpAcFのN末端残基のオキシムに一致することが示され、NHOHの電位によって不純物がPEG化に対して非生産的であることが確認された(図13)。NHOHの供給源を説明するために、2つの仮説を設定した、すなわち:(a)PEG化試薬中に混入した不純物として存在していること、および(b)PEG化反応の過程で形成すること。PEG−OAの詳細な分析によって、出発物質中のNHOHの量は<0.05ppmであることが証明され、第一の仮説は反証された。反応中のPEG化試薬の分解に一致して、オキシム不純物の形成を追跡すると、PEG化の間に明確な増加が示された(図14)。添加物4−9の体系的なHRMS実験によって、MCHおよびMPCHがPEG−OAの分解を促進し、一方でアセチルヒドラジド、PH、PABH、PMBHおよびピラゾールアミンは促進しなかったことが示された。そのため、PABHによって触媒されるPEG化の最適化において、PABHはMCHと同程度の変換率を示すため(図6)、コストは後者よりもはるかに低い(1U$/g対60U$/g)。最適化された条件は、30当量のPABHおよび60当量のピラゾールアミンを用いた。これらの結果を、後にDoE研究によって確認する。
モデル系におけるスクリーニングの間に観測される反応の変換におけるアニリンの効果の改訂によって、ピラゾールアミンに加えて、3つのアミンが完了するレベルを改善させることができることが示された。これらはm−フェニレンジアミン、エチレンジアミン、および3,5−ジアミノ安息香酸であった。1.2当量のPEG−OAおよび30当量のPABHを用いて、60当量のアミンを加えると〜95%の変換率が得られた(図19)。添加物の化学量論比が低いほど、短い時間で低い変換率(〜90%)が生じるが、24時間で徐々に高い変換率が得られた。
実施例4
異なる添加物の組み合わせの相互作用を評価するためのDoE研究
4つの変数、すなわち(a)ヒドラジドの特定、(b)アミンの特定、(c)添加物の総当量、および(d)用いた添加物のアミン:ヒドラジド比を考慮したDOE法を用いて、レラキシンおよびFGF21のPEG化について、アミンとヒドラジド添加物との相互作用をさらに調べた。研究はレラキシンおよびFGF21について行い、アミン:ヒドラジドのモル比、並びに速度および変換率におけるPEG−OAの添加量の効果を調べ、モデル系において以前に同定した様々なアミンを解析した(図6)。これらの実験の結果によって、アミン:ヒドラジド比間の複雑な相互作用が示され、反応の最適化にはアミン並びに基質タンパク質の種類について慎重な検討を必要とすることが示唆された。
スクリーニングの第一段階において(表1)、レラキシンおよびFGF21の両方のPEG化について、PABH、アセチルヒドラジドおよびピバルヒドラジドを、ピラゾールアミンとの組み合わせで用いた(図17)。PEG−OAの当量および尿素の濃度もまた考察した。本スクリーニングにおける添加物系のほとんどが良好な機能を発揮した。前記の研究(図7および12)と一致して、2:1 アミン:ヒドラジド系が高い変換率を促進するのに最良であった。ピバルヒドラジドは高い変換率および速い反応速度を促進することができる優れたヒドラジド添加物であるが、PABHを用いた時には存在しなかった新たな不純物が反応混合物中に観測された。
Figure 2021176890
このスクリーニングをFGF21を用いて繰り返し、同様の結果を得た(表2)。PABHが反応を促進する顕著な添加物であることが示され、この構想の目的の1つは、広い範囲のタンパク質系に用いることのできる一般的なPEG化方法を開発することであったため、さらなる研究のためにPABHを選択した。ヒドラジド成分としてPABHを使用する根拠は、既知の強力な突然変異誘発剤であるアセチルヒドラジドとは異なり、AMES試験において陰性であるという事実によってさらに支持される(Bhide, S.V. et al., Cancer Lett., 23:235 (1984))。
Figure 2021176890
ヒドラジドとしてPABHを選択した後、レラキシンおよびFGF21タンパク質の両方を用いて、広範囲のアミンとの組み合わせでスクリーニングした(スキーム3)。これらの実験について、以下の考察を行った:(a)モデル系において以前試験したアミン(図5)をスクリーニングし、(b)添加物の総当量(ヒドラジドとアミンの合計)を20から120の範囲とし、(c)反応時間を24時間に制限する。
Figure 2021176890
最初のDOEスクリーニングをPABHおよびピラゾールアミンを用いて行ったため、どのアミン(またはアミンの種類)がPABHとの添加物系において用いるのに最適化を決定することが主な関心事であった。レラキシンおよびFGF21のスクリーニングからの実験結果を以下にまとめた(それぞれ、表3および4)。
Figure 2021176890
Figure 2021176890
レラキシンのPEG化についての結果は、様々なアミン間で一致しており、一般に変換率はかなり高い。一方で、FGF21については、3,5−ジアミノ安息香酸が、1.0および3.0の両方のアミン:PABH比において、PEG化の良好な促進剤であるように見える。総当量と比を一定に維持することで、アミンが変換率に与える影響をより正確に把握することができる。レラキシンについて、このデータを表5に表す。
Figure 2021176890
レラキシンについて、アミン添加物の影響は明らかであるが、観測された全体的な変換率が高いことを考えると、この影響はやはり低い。FGF21については、影響はより大きい(表6)。
Figure 2021176890
これらのデータから、変換率が、PABHとの組み合わせで用いられるアミンの特性に大きく依存することは明らかである。これらの条件がPEG化反応に最適な条件を必ずしも反映していないことをふまえて、我々は変換を並び替えて、FGF21との組み合わせの上位5つの添加剤のリストを作成した(表7)。
Figure 2021176890
エチレンジアミンおよび3,5−ジアミノ安息香酸が、スクリーニングされた条件下でのFGF21のPEG化についての上位2つの化合物であった。3,5−ジアミノ安息香酸は、比較的高価でなく、容易に結晶固体が入手可能であるため、アミン:PABHの組み合わせに好ましい添加物であると考えた。総当量対アミン:PABH比の詳細な解析によって、さらなる裏付けが得られる。モデル系において観測されるように、2つの添加物の協同効果は非常に複雑である。実際に、モデル系において観測された曲率は、レラキシンおよびFGF21のPEG化についてより顕著であった。FGF21についてのデータおよび傾向を、図19に示す。アニリンであるo−およびm−フェニレンジアミンは、FGF21のPEG化において用いられた場合、良好な添加物であった。興味深いことに、残存するタンパク質の最終濃度に対する総当量およびアミン:PBAH比のプロットからは完全に異なる結果が得られた。これらの2つの添加物間の構造的な違いは、アミノ基の配向のみである。
z軸は反応混合物中のFGF21の最終濃度であるので、理想的な条件はプロット中でz軸の値が最小であるものである。試薬の電荷のわずかな違いを許容することのできる安定した方法として、平坦なプロットまたは谷または井戸を有するプロットが理想的である。この前提を満たす添加物の1つが3,5−ジアミノ安息香酸である(図20)。
レラキシンのPEG化に用いる場合、3,5−ジアミノ安息香酸もまた、妥当な反応時間で高い変換率を生じる。図20の比較(左および右)によって、増加した変換率がタンパク質の特性にもまた関連していることが示される。
実施例5
単純なアンモニウム塩の使用
pH4におけるアミン添加物の有用な効果を踏まえて、我々は単純なアンモニウム塩もまた、レラキシンのPEG化を向上させることができると考えた。この目的のため、様々な分量のPABHおよびNHOAcまたはNHClを用いた一連の実験を行い、60当量のPABHおよび120当量のNHClの組み合わせの優位性が明らかになり、最も良好な変換率が10時間で得られた(97%、表8)。興味深いことに、NHClの存在下におけるモデルジペプチドの反応の再試験によって、NHClが存在しない場合に観測されたプロファイルと同一のプロファイルが得られ、これによってNHClの効果はレラキシンの構造変化に関連しうることが示唆された。確かに、尿素または(NHSOなどの既知のカオトロピック剤の添加によって、同様の結果が得られた(図21)。NHClの正の効果は一般的であると考えられ、ヒドラジド添加物を含まない、またはアセチルヒドラジドの存在下におけるレラキシンのPEG化において再現する(図22)。
Figure 2021176890
NHClの効果の原因をよりよく理解するための分光学的実験によって、溶液中で塩がレラキシンの立体構造を変化させていることが示唆された。UVスペクトル解析によっては、120当量のNHClを添加した際の芳香族残基(260−290nm)の吸光度の変化を検出することはできなかったが(図23)、IR分光分析によってアミドII結合のH結合に構造的な修飾が存在することが示唆された(図24)。おそらく、UV分析によって芳香族残基の変化が検出できなかったことは、溶媒に残基を大きく露出しており、いずれの有意な分子内相互作用も存在しない、レラキシンの遠位部位のアミノ酸Tyr(Y)、Phe(F)、およびTrp(W)に起因する。
レラキシンの構造上のわずかな変化は、NHClの添加時にタンパク質のフォールディングが高い割合でランダムコイルになる(図25)ことと一致する、15N NMR HSQC分光学研究においてさらなる裏付けが存在し、近UV CD解析によって、レラキシンの三次構造の指紋領域における小さな変化が示され、これは二量体化の接触面の変化が原因である可能性がある(図26)。
実施例6
典型的な方法および結果
本明細書に報告された研究に基づいて、PABHおよびNHClの組み合わせが大スケールにおける使用に推奨された。様々なタンパク質系での結果を以下の表に示す。
Figure 2021176890
PEG化反応においてPABHを用いた場合の1つの考慮点は、市販の試薬の純度が販売会社ごとに同じでないことである。大スケールにおける98%のPABHの使用によって、クロマトグラフィー中に目的の生成物と同時に溶出する不純物のピークが生じた。これらの不純物を単離して、これらの構造がPABH中に存在するヒドラジドおよびアミド不純物であることを確認した(図27)。
反応において高い当量を用いるため、この試薬中の少量の不純物であっても影響を及ぼしうる。そこで、入手可能な最高純度のPABHを購入することが推奨される。
実施例7
典型的なスクリーニング方法
添加物の使用は操作上は単純である。FGF21 G1を30kDaのPEG−OAでPEG化することによって、代表的な実施例を生じる。
Figure 2021176890
方法
pH4の20mM NaOAc、6M 尿素中の、FGF21(1.0mL、20.3mg/mL、1.04μmol)の溶液を、きれいな1.5mLのバイアル中で固体のNHCl(6.7mg、124.8μmol)に加えた。全ての固体が溶解するまで、混合物をゆっくりと攪拌した。別のバイアルに、MPEG 30kDa(39.0mg、1.26μmol)およびPABH(4.7mg、31.2μmol)を合わせた。タンパク質溶液を、第一バイアルから、PEG化試薬およびPABHを含む第二バイアルに移し、混合物を固体が溶解するまでゆっくりと攪拌した(約20分)。pHを測定し、必要であれば、0.1M HClを用いて混合物をpH4に調整した。
典型的な反応混合物は均一な溶液であるため、反応溶液を20−25℃で攪拌せずに放置した。反応の進行をELSまたは280nmのUV検出のいずれかを用いて、HPLCで追跡した。反応の完了を、外部標準に対してHPLC分析によって評価した。
実施例8
PEG化条件の比較
この取り組みの最終的な目的は、この研究の開始時における方法、並びに文献での「最新の」条件に対して、新たなPEG化方法の有用性を実証することであった。これは主に推奨される添加物の組み合わせを使用することによって、市販の高価なPEG化試薬の節約量を定量化することである。表11は、レラキシンおよびFGF21 G1のPEG化、並びにPABH添加物によって触媒されるPEG化に用いるための元の条件を含む。
Figure 2021176890
レラキシン化合物についてのコスト削減の可能性は、用いるPEG 20kDaの分量に単に関係しており、いずれの方法においても変換率および収率は同等である。しかしながら、第一世代のFGF21アセットのPEG化に関して、節約はかなり劇的である。PEG添加量の50%より多い減少と合わせて、反応収率の13%の増加によって、生産に関連するコストは全体で70%減少する。PABHおよびNHClのコストはいずれも、PEG化試薬と比べてきわめて低いため、これらの使用は全体的な生産コストを最小にすることに寄与する。以下の表において、我々はこれらと共にアセチルヒドラジドを用いて、PABHの条件を比較する。
Figure 2021176890
本開示における添加物系の利点のいくつかを以下に列挙する:
1)非常に高価なPEG化試薬のかなり少ない分量(1.5−2.5当量に対して1.2当量)での高い変換率の促進。以下の表に、従来の方法(標準的な条件)からの改善点を強調する比較を示す。
Figure 2021176890

2つの添加物の組み合わせは、反応速度および変換率を大きく上昇させ、元の条件と比べて、PEGの添加量の大幅な減少を可能にした。
2)高い反応温度の必要性を回避する、より速い反応の促進。高温を避けることによって、反応中のタンパク質の構造変化および安定性に関する懸念が減少する。
3)アセチルヒドラジド(AMES陽性)をPABH(予備的実験においてAMES陰性)に変更。最終生成物において、遺伝毒性物質および関連する対照の使用の排除。
医薬組成物
本開示に従って合成したPEG化タンパク質はさらに、さらなる薬学的に許容可能な担体または当技術分野において既知の溶媒との混合、または組み合わせによる注入に適切でありうる。本発明の生成物の製剤化に薬学的に許容可能な担体としては、食塩水、ヒト血清アルブミン、ヒト血漿タンパク質などが含まれる。本発明はまた、前記の結合体および薬学的に許容可能な添加物および/または担体を含む医薬組成物に関する。そのような薬学的に許容可能な担体は、水性または非水性溶液、懸濁液、およびエマルジョンでありうる。非水性溶媒の例としては、プロピレングリコール、ポリエチレングリコール、オリーブ油などの植物油、オレイン酸エチルなどの注入可能な有機エステルが挙げられる。水性担体としては、生理食塩水および緩衝液溶媒などの、水、アルコール/水溶液、エマルジョンまたは懸濁液が挙げられる。非経口溶剤としては、塩化ナトリウム溶液、リンガーデキストリン、デキストロース、および塩化ナトリウム、乳酸リンガー液または不揮発性油が挙げられる。静脈内溶剤としては、液体、栄養補充剤、リンガーデキストロースに基づくものなどの電解質補充剤が挙げられる。例えば、抗菌剤、抗酸化剤、キレート剤、不活性化ガスなどの、防腐剤および他の添加物もまた存在しうる。本開示に従って調製したタンパク質結合体は、薬学的に許容可能な担体または当技術分野において既知の溶剤と共に、注入に適切な医薬組成物として製剤化されうる。例えば、WO97/09996、WO97/40850、WO98/58660、およびWO99/07401(これらのそれぞれは、その全体が引用によって本明細書に援用される)を参照されたい。
本開示は前記の開示に限定されず、本開示の本質的な特性から逸脱することなく、他の特定の形態において具体化することができることが、当業者には明らかである。そのため、本開示は全ての点において、例示的で限定されないと考えられるのが望ましく、そのため、前記の開示ではなく、付属の特許請求の範囲についての記載、並びに特許請求の範囲の均等物の意味および範囲内で行われる全ての変更は、その中に含まれると意図される。

Claims (14)

  1. タンパク質のPEG化反応のための改良された添加物系であって、p−アミノ安息香酸ヒドラジドを単体で、または芳香族アミンもしくはアンモニウム塩との組み合わせを含む前記添加物系。
  2. 前記芳香族アミンが、3,5−ジアミノ安息香酸、o−フェニレンジアミン、1−ピリジン−2−イル−エチルアミン、2−(ジメチルアミノ)エチルヒドラジン、m−フェニレンジアミンおよび2−ピコリルアミンから成る群から選択される、請求項1に記載の添加物系。
  3. 前記アンモニウム塩が酢酸アンモニウムおよび塩化アンモニウムから成る群から選択される、請求項1に記載の添加物系。
  4. 好ましい系の組み合わせが、p−アミノ安息香酸ヒドラジドと3,5−ジアミノ安息香酸、またはp−アミノ安息香酸ヒドラジドと塩化アンモニウムを含む、請求項1に記載の添加物系。
  5. 前記反応が、p−アセチルフェニルアラニン残基を含むタンパク質とアミノオキシ−PEG化合物との間の結合反応である、請求項1に記載の添加物系。
  6. 添加物系が結合反応速度を増大させ、高収率の結合生成物を提供し、結合反応の完了に必要とされるアミノオキシ−PEGの当量の減少を促進する、請求項1に記載の添加物系。
  7. PEG化タンパク質を得るための方法であって、以下のステップ:
    (a)タンパク質、PEG試薬、および添加物系を特定すること;および
    (b)タンパク質を溶解させ、次いで、添加物系の存在下でPEG試薬を合わせて、PEG化タンパク質を高収率で得ること
    を含む前記方法。
  8. 前記タンパク質がp−アセチルフェニルアラニン残基を含むレラキシンまたはFGF21である、請求項7に記載の方法。
  9. PEG試薬と合わせた可溶化タンパク質溶液を、約4のpHで維持する、請求項7に記載の方法。
  10. 反応混合物を約20℃から約25℃の範囲の温度で維持する、請求項7に記載の方法。
  11. 前記添加物系が、p−アミノ安息香酸ヒドラジドを単体で、または3,5−ジアミノ安息香酸などの芳香族アミンとの組み合わせ、または酢酸アンモニウムもしくは塩化アンモニウムなどのアンモニウム塩との組み合わせで含む、請求項7に記載の方法。
  12. 高品質のp−アミノ安息香酸ヒドラジドと塩化アンモニウムとの前記添加物の組み合わせが、PEG化タンパク質の大規模生産に用いるのに好ましい、請求項11に記載の方法。
  13. 前記PEG試薬が、PEG−OAおよびアミノオキシ基を有する他のPEG誘導体を含む群から選択される、請求項6に記載の方法。
  14. 治療を必要とする対象の治療に用いるための、請求項7から13に記載の方法によって得られるPEG化タンパク質を含む医薬組成物。
JP2021123154A 2015-11-23 2021-07-28 タンパク質のpeg化に用いるための添加物系 Active JP7257457B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562258644P 2015-11-23 2015-11-23
US62/258,644 2015-11-23
JP2018526713A JP6921821B2 (ja) 2015-11-23 2016-11-22 タンパク質のpeg化に用いるための添加物系

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018526713A Division JP6921821B2 (ja) 2015-11-23 2016-11-22 タンパク質のpeg化に用いるための添加物系

Publications (2)

Publication Number Publication Date
JP2021176890A true JP2021176890A (ja) 2021-11-11
JP7257457B2 JP7257457B2 (ja) 2023-04-13

Family

ID=57589163

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018526713A Active JP6921821B2 (ja) 2015-11-23 2016-11-22 タンパク質のpeg化に用いるための添加物系
JP2021123154A Active JP7257457B2 (ja) 2015-11-23 2021-07-28 タンパク質のpeg化に用いるための添加物系

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018526713A Active JP6921821B2 (ja) 2015-11-23 2016-11-22 タンパク質のpeg化に用いるための添加物系

Country Status (16)

Country Link
US (3) US10617765B2 (ja)
EP (2) EP3380487B1 (ja)
JP (2) JP6921821B2 (ja)
KR (1) KR102688003B1 (ja)
CN (2) CN108350025B (ja)
CY (1) CY1123699T1 (ja)
DK (1) DK3380487T3 (ja)
ES (1) ES2827776T3 (ja)
HR (1) HRP20201832T1 (ja)
HU (1) HUE052634T2 (ja)
LT (1) LT3380487T (ja)
PL (1) PL3380487T3 (ja)
PT (1) PT3380487T (ja)
RS (1) RS61072B1 (ja)
SI (1) SI3380487T1 (ja)
WO (1) WO2017091568A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108350025B (zh) * 2015-11-23 2023-02-21 百时美施贵宝公司 用于蛋白质聚乙二醇化的添加剂体系
JP7441826B2 (ja) * 2018-09-11 2024-03-01 アンブルックス,インコーポレイテッド インターロイキン-2ポリペプチド抱合物およびその使用
CN111484551B (zh) * 2020-03-19 2022-02-11 北京翼方生物科技有限责任公司 一种聚乙二醇修饰的重组人碱性成纤维细胞生长因子

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515881A (ja) * 2005-11-08 2009-04-16 アンブルックス,インコーポレイテッド 非天然アミノ酸、および非天然アミノ酸ポリペプチドを修飾するための促進剤

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535571A1 (de) 1995-09-14 1997-03-20 Boehringer Mannheim Gmbh Pharmazeutische Kombinationspräparate und deren Verwendung zur Behandlung von Hämodialysepatienten
TWI240627B (en) 1996-04-26 2005-10-01 Chugai Pharmaceutical Co Ltd Erythropoietin solution preparation
EP0885613A1 (de) 1997-06-21 1998-12-23 Roche Diagnostics GmbH Verwendung von modifizierten Hämoglobinen zur Behandlung von Anämien und Kombinationspräparate umfassend Erythropoietin und modifiziertes Hämoglobin
DE19734293A1 (de) 1997-08-08 1999-02-11 Boehringer Mannheim Gmbh Verwendung von pharmazeutischen Kombinationspräparaten enthaltend Erythropoietin und Eisenpräparate zur Behandlung von rheumatischen Erkrankungen
DE602005025090D1 (de) * 2004-03-17 2011-01-13 Anticancer Inc Methoden zur steigerung der protein polyethylenglykol (peg) konjugation
TW200722521A (en) * 2005-06-01 2007-06-16 Alza Corp Novel bioconjugation reactions for acylating polyethylene glycol reagents
CN107501407B (zh) * 2007-03-30 2022-03-18 Ambrx公司 经修饰fgf-21多肽和其用途
CA2899448C (en) 2013-01-30 2021-10-26 Avelas Biosciences, Inc. Selective delivery molecules and methods of use
WO2014176284A1 (en) 2013-04-22 2014-10-30 Avelas Biosciences, Inc. Selective drug delivery compositions and methods of use
CN114805532A (zh) 2014-10-24 2022-07-29 百时美施贵宝公司 修饰的fgf-21多肽及其用途
CN108350025B (zh) * 2015-11-23 2023-02-21 百时美施贵宝公司 用于蛋白质聚乙二醇化的添加剂体系

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515881A (ja) * 2005-11-08 2009-04-16 アンブルックス,インコーポレイテッド 非天然アミノ酸、および非天然アミノ酸ポリペプチドを修飾するための促進剤

Also Published As

Publication number Publication date
SI3380487T1 (sl) 2020-11-30
PL3380487T3 (pl) 2020-12-28
CN115819494A (zh) 2023-03-21
CN108350025B (zh) 2023-02-21
CY1123699T1 (el) 2022-03-24
RS61072B1 (sr) 2020-12-31
KR102688003B1 (ko) 2024-07-23
US20200276319A1 (en) 2020-09-03
US10617765B2 (en) 2020-04-14
US11213589B2 (en) 2022-01-04
WO2017091568A8 (en) 2018-01-04
HRP20201832T1 (hr) 2021-01-08
JP2019503994A (ja) 2019-02-14
CN108350025A (zh) 2018-07-31
WO2017091568A1 (en) 2017-06-01
US20190351065A1 (en) 2019-11-21
US20220160883A1 (en) 2022-05-26
DK3380487T3 (da) 2020-12-07
ES2827776T3 (es) 2021-05-24
EP3789395A1 (en) 2021-03-10
HUE052634T2 (hu) 2021-05-28
EP3380487A1 (en) 2018-10-03
EP3380487B1 (en) 2020-09-02
JP6921821B2 (ja) 2021-08-18
KR20180081610A (ko) 2018-07-16
LT3380487T (lt) 2020-12-28
JP7257457B2 (ja) 2023-04-13
PT3380487T (pt) 2020-10-29

Similar Documents

Publication Publication Date Title
JP2021176890A (ja) タンパク質のpeg化に用いるための添加物系
Otake et al. N‐methylated peptide synthesis via generation of an Acyl N‐methylimidazolium cation accelerated by a Brønsted acid
Singudas et al. A phthalimidation protocol that follows protein defined parameters
Přibylka et al. Environmentally friendly SPPS II: scope of green fmoc removal protocol using NaOH and its application for synthesis of commercial drug triptorelin
Mondal et al. Late‐Stage Halogenation of Peptides, Drugs and (Hetero) aromatic Compounds with a Nucleophilic Hydrazide Catalyst
Fiore et al. Orthogonal dual thiol–chloroacetyl and thiol–ene couplings for the sequential one-pot assembly of heteroglycoclusters
US20220372141A1 (en) Methods of conjugating an agent to a thiol moiety in a protein that contains at least one trisulfide bond
Guthrie et al. Ketoxime peptide ligations: oxidative couplings of alkoxyamines to N-aryl peptides
Špačková et al. Fast and Cost‐Efficient 17O‐Isotopic Labeling of Carboxylic Groups in Biomolecules: From Free Amino Acids to Peptide Chains
Byun et al. Preparation of polymer-bound pyrazolone active esters for combinatorial chemistry
Almaliti et al. Orthogonal Deprotection Strategy of Fmoc Provides Improved Synthesis of Sensitive Peptides: Application to Z-Arg-Lys-AOMK
Fu et al. Regioselective oxidative cleavage of conjugated dienes to access α, β-unsaturated nitriles
Damer et al. Rh‐Catalyzed Hydroamination of Allenes: Asymmetric N‐Allylation of Amino Acids and Peptides
KR101692992B1 (ko) 고리형 펩타이드의 사전 활성화 합성방법 및 이에 따라 합성된 고리형 펩타이드
US8357820B2 (en) Process for producing N-protected amino acid
Easton et al. N-Methylation of carbamate derivatives of α-amino acids
Sosa Alfaro Modification of Heme Proteins for Reactivity and Mechanistic Studies
Sornay et al. Investigating Multicomponent Approaches for the Site-Selective Conjugation of Native Proteins
Arrigoni et al. Morpholine Prevents the Formation of Aspartimide from β-allyl ester aspartic acid during Fmoc Cleavage in SPPS of Stapled Peptides
CN113444139A (zh) 聚乙二醇化含d-氨基酸多肽的合成与酶解的促进
Scheck Development of a Biomimetic Transamination Reaction for the N-terminal Labeling of Proteins and Peptides
Vasbinder Asymmetric peptide catalysts for enantioselective acylation reactions and carbon-carbon bond-forming reactions
Ferritto et al. Solution Phase Combinatorial Libraries of Small Organic Molecules Alfredo Paio and Pierfausto Seneci

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230403

R150 Certificate of patent or registration of utility model

Ref document number: 7257457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150