[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021048227A - Component built-in multi-layer board and programmable logic controller - Google Patents

Component built-in multi-layer board and programmable logic controller Download PDF

Info

Publication number
JP2021048227A
JP2021048227A JP2019169355A JP2019169355A JP2021048227A JP 2021048227 A JP2021048227 A JP 2021048227A JP 2019169355 A JP2019169355 A JP 2019169355A JP 2019169355 A JP2019169355 A JP 2019169355A JP 2021048227 A JP2021048227 A JP 2021048227A
Authority
JP
Japan
Prior art keywords
layer
built
component
heat
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019169355A
Other languages
Japanese (ja)
Inventor
広志 遠藤
Hiroshi Endo
広志 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2019169355A priority Critical patent/JP2021048227A/en
Publication of JP2021048227A publication Critical patent/JP2021048227A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To achieve miniaturization by incorporating an electrical component that requires heat dissipation to the outside in a multilayer board while ensuring heat dissipation of the electrical component.SOLUTION: A built-in component multi-layer board includes a multilayer board body formed by alternately stacking a plurality of base material layers and a plurality of metal layers, a heat dissipation-required built-in component which is an electrical component that is connected to the metal layer, is built in the multilayer board body, and requires heat dissipation to the outside of the multilayer board body, a heat dissipation layer that is connected to a metal layer to which the heat dissipation-required built-in component is connected from among a plurality of metal layers, and is provided outside the multilayer board body, and has flexibility and a sufficient area to dissipate heat from the heat dissipation-required built-in component, and an exposed component that is exposed to the outside from the surface layer of the multilayer board body, and is arranged so as to overlap with at least a part of the heat dissipation-required built-in component in the thickness direction of the multilayer board body.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、例えばPLC等の電気機器を構成する多層基板であって、放熱が必要な電気部品を内蔵した部品内蔵多層基板、及びその部品内蔵多層基板を用いたプログラマブルロジックコントローラに関する。 An embodiment of the present invention relates to a multi-layer board constituting an electric device such as a PLC, a multi-layer board having built-in components incorporating electric components requiring heat dissipation, and a programmable logic controller using the multi-layer board having built-in components.

近年、例えばプログラマブルロジックコントローラ(Programmable Logic Controller、以下、PLCと称する)の分野等においては、PLCの高性能化に伴い使用する電気部品が増える一方で、多品種小ロット生産の需要の高まりによって工場内に設置するPLCの数が増大している。そのため、多数のPLCを工場内の限られたスペースに効率良く配置するため、PLCの省スペース化・小型化のニーズが高まっている。 In recent years, for example, in the field of programmable logic controllers (hereinafter referred to as PLCs), while the number of electrical parts used has increased with the improvement of PLC performance, factories have increased the demand for high-mix low-lot production. The number of PLCs installed inside is increasing. Therefore, in order to efficiently arrange a large number of PLCs in a limited space in a factory, there is an increasing need for space saving and miniaturization of PLCs.

そこで、このような工場設備に用いられるPLC等においては、PLC内部の電気部品を高密度で配置することで機器全体の省スペース化を図り、ひいては工場設備の小型化・省スペース化を図ることが必要となっている。このような要求に応えるべく電気部品を高密度で配置するために、例えばPALAP(登録商標)等のように複数の層を積層した多層基板の内部に電気部品を内蔵することが可能な部品内蔵多層基板に関する技術が発展している。 Therefore, in PLCs and the like used in such factory equipment, the space of the entire equipment should be reduced by arranging the electrical parts inside the PLC at a high density, and eventually the factory equipment should be miniaturized and space-saving. Is needed. In order to arrange electrical components at high density in order to meet such demands, built-in components that can incorporate electrical components inside a multilayer board in which a plurality of layers are laminated, such as PALAP (registered trademark). Technology related to multilayer boards is developing.

このような部品内蔵多層基板においては、電解コンデンサ等のようにサイズが比較的大きく物理的に多層基板に内蔵できない電気部品や、例えばコネクタ等のように外部に露出させる必要がある部品については多層基板の表層に配置するが、MCU等の集積回路やFET等のように小型で薄い電気部品については多層基板の内部に設けることができる。これにより、多層基板の表層に設ける部品と、多層基板に内蔵する電気部品とを、多層基板の厚み方向に重なるように配置することで、多層基板の投影面積つまり多層基板全体の設置面積を減らすことができ、その結果、多層基板全体の小型化を図ることができ、ひいては機器全体の小型化を図ることができる。 In such a multi-layer board with built-in components, electrical components that are relatively large in size and cannot be physically incorporated in the multi-layer board, such as electrolytic capacitors, and components that need to be exposed to the outside, such as connectors, are multi-layered. Although it is arranged on the surface layer of the substrate, small and thin electric components such as integrated circuits such as MCUs and FETs can be provided inside the multilayer substrate. As a result, the components provided on the surface layer of the multilayer board and the electrical components built in the multilayer board are arranged so as to overlap each other in the thickness direction of the multilayer board, thereby reducing the projected area of the multilayer board, that is, the installation area of the entire multilayer board. As a result, the size of the entire multilayer board can be reduced, and the size of the entire device can be reduced.

しかしながら、物理的に多層基板内に内蔵可能な小型で薄い電気部品であっても、その電気部品の発熱が大きかったり、複数の電気部品が高密度で配置されて全体としての発熱が大きかったりする場合には、その発熱を多層基板の外部に放熱する必要がある。そのため、従来構成では、このように放熱が必要な場合には、電気部品を多層基板内に内蔵せずに表層に配置するか、又は内蔵する場合であっても放熱板を表層に設けて放熱を確保する必要があった。そのため、このような場合には多層基板の投影面積の削減には繋がらず、したがって、多層基板全体の小型化を図り難かった。 However, even if it is a small and thin electric component that can be physically incorporated in a multilayer board, the heat generation of the electric component is large, or a plurality of electric components are arranged at high density and the heat generation as a whole is large. In that case, it is necessary to dissipate the heat generation to the outside of the multilayer board. Therefore, in the conventional configuration, when heat dissipation is required in this way, the electric components are arranged on the surface layer without being built in the multilayer board, or even if they are built in, a heat dissipation plate is provided on the surface layer to dissipate heat. It was necessary to secure. Therefore, in such a case, the projected area of the multilayer board is not reduced, and therefore, it is difficult to reduce the size of the entire multilayer board.

特開2016−171202号公報Japanese Unexamined Patent Publication No. 2016-171202

本発明は上記課題を鑑みてなされたものであり、その目的は、外部への放熱を要する電気部品の放熱を確保しつつ多層基板内に内蔵することで小型化を図ることができる部品内蔵多層基板、及びその部品内蔵多層基板を用いたプログラマブルロジックコントローラを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to ensure miniaturization by incorporating in a multilayer substrate while ensuring heat dissipation of electrical components that require heat dissipation to the outside. An object of the present invention is to provide a programmable logic controller using a substrate and a multilayer substrate having built-in components thereof.

本構成の部品内蔵多層基板は、複数の基材層と複数の金属層とを交互に重ねて構成された多層基板本体と、前記金属層に接続されて前記多層基板本体内に内蔵された、前記多層基板本体の外部への放熱を要する電気部品である要放熱内蔵部品と、複数の前記金属層のうち前記要放熱内蔵部品が接続された前記金属層に接続されて前記多層基板本体の外部に設けられるとともに、柔軟性及び前記要放熱内蔵部品の放熱を行うために十分な面積を有して構成された放熱層と、前記多層基板本体の表層から外部に露出して設けられ、前記多層基板本体の厚み方向において前記要放熱内蔵部品の少なくとも一部と重なって配置された露出部品と、を備える。 The component-embedded multilayer board having the present configuration includes a multilayer board main body formed by alternately stacking a plurality of base material layers and a plurality of metal layers, and a multilayer board main body connected to the metal layer and built in the multilayer board main body. A component with a built-in heat dissipation, which is an electrical component that requires heat dissipation to the outside of the multilayer board main body, and a metal layer to which the component with a built-in heat dissipation is connected among a plurality of the metal layers are connected to the outside of the multilayer board main body. A heat-dissipating layer configured with flexibility and a sufficient area to dissipate heat from the heat-dissipating built-in component, and a heat-dissipating layer exposed to the outside from the surface layer of the multilayer board body. It includes exposed parts arranged so as to overlap at least a part of the heat-dissipating built-in parts in the thickness direction of the substrate body.

この構成によれば、部品内蔵多層基板は、要放熱内蔵部品で発生した熱を、放熱層によって多層基板本体の外部に放熱することができる。これにより、多層基板本体の内部に熱が蓄積することを抑制でき、その結果、要放熱内蔵部品で発生した熱が部品内蔵多層基板の動作等に悪影響を与えることを抑制できる。 According to this configuration, the component-embedded multilayer board can dissipate the heat generated by the component requiring heat dissipation to the outside of the multilayer board main body by the heat dissipation layer. As a result, it is possible to suppress the accumulation of heat inside the main body of the multilayer board, and as a result, it is possible to prevent the heat generated in the component having a built-in heat dissipation from adversely affecting the operation of the multilayer board having the built-in component.

更に本構成によれば、要放熱内蔵部品と露出部品との少なくとも一部が多層基板本体の厚み方向において重なるように配置されている。このため、要放熱内蔵部品と露出部品とを例えば表層から外部に露出する態様で並べて配置した場合に比べて、多層基板本体の投影面積を小さくすることができる。更には、放熱層は、柔軟性を有していることからいわゆるフレキシブル基板として構成することができる。これにより、放熱層を、例えば任意の形状に曲げたり折りたたんだりして配置することが可能となる。したがって、放熱層51を配置する際に、放熱層51が邪魔になり難く、その結果、比較的自由なレイアウトが可能となる。 Further, according to this configuration, at least a part of the heat-dissipating built-in component and the exposed component is arranged so as to overlap in the thickness direction of the multilayer substrate main body. Therefore, the projected area of the multilayer substrate main body can be reduced as compared with the case where the heat-dissipating built-in component and the exposed component are arranged side by side so as to be exposed to the outside from the surface layer, for example. Further, since the heat radiating layer has flexibility, it can be configured as a so-called flexible substrate. This makes it possible to arrange the heat radiating layer by bending or folding it into an arbitrary shape, for example. Therefore, when arranging the heat radiating layer 51, the heat radiating layer 51 is less likely to get in the way, and as a result, a relatively free layout is possible.

このように、本構成によれば、多層基板本体の外部への放熱を要する要放熱内蔵部品の放熱を確保しつつこの要放熱内蔵部品を多層基板本体内に内蔵することで、多層基板本体の投影面積の小型化を図ることができ、ひいては部品内蔵多層基板全体の小型化を図ることができる。 As described above, according to this configuration, by incorporating the heat-dissipating built-in component in the multilayer board body while ensuring the heat dissipation of the heat-dissipating built-in component that requires heat dissipation to the outside of the multilayer board body, the multilayer board body The projected area can be miniaturized, and the entire multilayer board with built-in components can be miniaturized.

また、本構成において、放熱層の少なくとも片面又は両面は、絶縁性を有する保護層に覆われている。これによれば、部品内蔵多層基板を電気機器に組み込む際に、作業者が直接放熱層に触れてしまい、放熱層を誤って損傷させてしまうこと等を抑制することができる。また、この構成によれば、放熱層が金属製の部材等に直接接してしまい、放熱層と金属製の部材とが導通してしまうことを抑制できる。 Further, in this configuration, at least one or both sides of the heat radiating layer is covered with a protective layer having an insulating property. According to this, when the multi-layer board with built-in components is incorporated into an electric device, it is possible to prevent an operator from directly touching the heat radiating layer and accidentally damaging the heat radiating layer. Further, according to this configuration, it is possible to prevent the heat radiating layer from coming into direct contact with the metal member or the like and causing the heat radiating layer and the metal member to conduct with each other.

また、本構成において、放熱層の端部は、多層基板本体とは異なる外部の部材に接続される。外部の部材は、例えば部品内蔵多層基板が設けられるPLC等の電気機器の筐体自体又は筐体内に設置される構造物であって、例えば金属製の部品である。これによれば、要放熱内蔵部品から生じた熱は、放熱層から放熱されるとともに、放熱層を介して外部の部材からも放熱される。これにより、更に効率的に要放熱内蔵部品から生じた熱を放熱することができる。したがって、放熱層の面積も低減することができ、ひいては部品内蔵多層基板全体の小型化を図ることができる。 Further, in this configuration, the end portion of the heat radiating layer is connected to an external member different from the multilayer board main body. The external member is, for example, a housing itself of an electric device such as a PLC provided with a multi-layer board having a built-in component or a structure installed in the housing, and is, for example, a metal component. According to this, the heat generated from the heat-dissipating built-in component is dissipated from the heat-dissipating layer and also from an external member via the heat-dissipating layer. As a result, the heat generated from the heat-dissipating built-in component can be dissipated more efficiently. Therefore, the area of the heat radiating layer can also be reduced, and as a result, the size of the entire multilayer board with built-in components can be reduced.

放熱層の端部は、要放熱内蔵部品が接続された金属層とは異なる金属層に接続されていても良い。この構成によれば、上記構成と同様の作用効果が得られる。更に、この構成によれば、放熱層を、例えば表層から露出して設けられた露出部品の上方を跨ぐように配置することができる。これによれば、従来であれば活用し難かった露出部品の上方の空間に放熱層を配置するとで、空間を有効活用することでき、ひいては部品内蔵多層基板の更なる小型化を図ることができる。 The end portion of the heat radiating layer may be connected to a metal layer different from the metal layer to which the heat radiating built-in component is connected. According to this configuration, the same action and effect as the above configuration can be obtained. Further, according to this configuration, the heat radiating layer can be arranged so as to straddle the upper part of the exposed component provided so as to be exposed from the surface layer, for example. According to this, by arranging the heat radiating layer in the space above the exposed parts, which was difficult to utilize in the past, the space can be effectively utilized, and by extension, the multi-layer board with built-in components can be further miniaturized. ..

また、放熱層は、要放熱内蔵部品が接続された金属層と一体に形成することができる。これによれば、多層基板本体を例えばPALAP(登録商標)等の一括積層プロセス技術を用いて製造する際に、要放熱内蔵部品が設けられた金属層と放熱層とを同一の工程で形成することができる。そのため、要放熱内蔵部品が設けられた金属層と放熱層とを別体に構成して後から接合する場合に比べて、製造に関する手間を削減することができ、その結果、生産性の向上を図ることができる。また、要放熱内蔵部品が設けられた金属層と放熱層との境界部分にハンダ付け等による接合部が生じないため、要放熱内蔵部品が設けられた金属層と放熱層との境界部分の強度を高く保つことができる。 Further, the heat dissipation layer can be integrally formed with the metal layer to which the heat dissipation built-in component is connected. According to this, when the multilayer substrate main body is manufactured by using a batch lamination process technology such as PALAP (registered trademark), the metal layer provided with the heat dissipation built-in component and the heat dissipation layer are formed in the same process. be able to. Therefore, compared to the case where the metal layer provided with the heat-dissipating built-in component and the heat-dissipating layer are separately formed and joined later, the labor related to manufacturing can be reduced, and as a result, the productivity is improved. Can be planned. In addition, since a joint is not formed at the boundary between the metal layer provided with the heat-dissipating built-in component and the heat-dissipating layer by soldering or the like, the strength of the boundary between the metal layer provided with the heat-dissipating built-in component and the heat-dissipating layer is strong. Can be kept high.

また、放熱層は、多層基板本体の周囲から複数方向へ延び出ているように構成することができる。すなわち、部品内蔵多層基板は、多層基板本体の周囲から複数方向へ延び出た複数の放熱層を備えていても良い。これによれば、要放熱内蔵部品で発生した熱を、複数の放熱層によって放熱する構成であるため、1つ1つの放熱層の表面積を小さくすることができる。そのため、放熱層を配置する際に1つ1つの放熱層が更に邪魔になり難く、その結果、部品内蔵多層基板をより自由なレイアウトで配置することが可能となる。 Further, the heat radiating layer can be configured to extend in a plurality of directions from the periphery of the multilayer substrate main body. That is, the component-embedded multilayer board may include a plurality of heat radiating layers extending from the periphery of the multilayer board main body in a plurality of directions. According to this, since the heat generated by the heat-dissipating built-in component is dissipated by the plurality of heat-dissipating layers, the surface area of each heat-dissipating layer can be reduced. Therefore, when arranging the heat radiating layers, each heat radiating layer is less likely to be an obstacle, and as a result, the multi-layer board with built-in components can be arranged in a more free layout.

第1実施形態による部品内蔵多層基板の適用例であるプログラマブルロジックコントローラの概略構成の一例を示す図The figure which shows an example of the schematic structure of the programmable logic controller which is the application example of the multilayer board with built-in component by 1st Embodiment. 第1実施形態による部品内蔵多層基板の一例を概略的に示す断面図A cross-sectional view schematically showing an example of a multilayer board with built-in components according to the first embodiment. 第1実施形態による部品内蔵多層基板の一例を概略的に示すものであって、要放熱内蔵部品を露出させた状態で示す平面図An example of a multi-layer board with built-in components according to the first embodiment is schematically shown, and is a plan view showing a state in which heat-dissipating built-in components are exposed. 第2実施形態による部品内蔵多層基板の一例を概略的に示す断面図A cross-sectional view schematically showing an example of a multilayer board with built-in components according to the second embodiment. 第3実施形態による部品内蔵多層基板の一例を概略的に示すものであって、要放熱内蔵部品を露出させた状態で示す平面図An example of a multi-layer board with built-in components according to the third embodiment is schematically shown, and is a plan view showing a state in which heat-dissipating built-in components are exposed. 第4実施形態による部品内蔵多層基板の一例を概略的に示す断面図A cross-sectional view schematically showing an example of a multilayer board with built-in components according to a fourth embodiment.

以下、複数の実施形態について図面を参照して説明する。なお、各実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。 Hereinafter, a plurality of embodiments will be described with reference to the drawings. In each embodiment, substantially the same configuration is designated by the same reference numerals and the description thereof will be omitted.

(第1実施形態)
第1実施形態について図1〜図3を参照して説明する。図2及び図3に示す部品内蔵多層基板10は、例えば図1に示すPLC1等の電気機器に適用することができるものである。PLC1は、図1に示すように、筐体2、操作部3、電源部4、構造物5、及び部品内蔵多層基板10を備えている。
(First Embodiment)
The first embodiment will be described with reference to FIGS. 1 to 3. The component-embedded multilayer board 10 shown in FIGS. 2 and 3 can be applied to an electric device such as the PLC1 shown in FIG. 1, for example. As shown in FIG. 1, the PLC 1 includes a housing 2, an operation unit 3, a power supply unit 4, a structure 5, and a multi-layer board 10 with built-in components.

筐体2は、例えば金属製で箱状に構成されている。操作部3は、ユーザからの操作入力を受けるものである。電源部4は、外部の商用電源等に接続されて、部品内蔵多層基板10に駆動用の電力を供給する。構造物5は、例えば筐体2の一部を構成するものであり、放熱性の良好な例えば金属製の部材で構成されている。部品内蔵多層基板10は、PCLの主要な電子回路すなわち論理回路を構成するものであり、筐体2の内部に設けられている。部品内蔵多層基板10は、操作部3に接続される信号線11と、電源部4に接続される電力線12と、構造物5に接続される放熱構造部50と、を備えている。 The housing 2 is made of metal, for example, and has a box shape. The operation unit 3 receives an operation input from the user. The power supply unit 4 is connected to an external commercial power source or the like to supply driving power to the component-embedded multilayer board 10. The structure 5 constitutes, for example, a part of the housing 2, and is made of, for example, a metal member having good heat dissipation. The component-embedded multilayer board 10 constitutes a main electronic circuit, that is, a logic circuit of the PCL, and is provided inside the housing 2. The component-embedded multilayer board 10 includes a signal line 11 connected to the operation unit 3, a power line 12 connected to the power supply unit 4, and a heat radiating structure unit 50 connected to the structure 5.

部品内蔵多層基板10は、例えばPALAP(登録商標)等の一括積層プロセス技術を用いて製造することができる。部品内蔵多層基板10は、図2に示すように、多層基板本体20と、少なくとも1つの内蔵部品30と、少なくとも1つの露出部品40と、放熱構造部50と、を備えている。 The component-embedded multilayer board 10 can be manufactured by using a batch laminating process technique such as PALAP (registered trademark). As shown in FIG. 2, the component-embedded multilayer board 10 includes a multilayer board main body 20, at least one built-in component 30, at least one exposed component 40, and a heat radiating structure portion 50.

多層基板本体20は、複数の基材層21と、複数の金属層22と、を交互に重ねて構成されている。なお、以下の説明において、部品内蔵多層基板10の厚み方向、多層基板本体20の厚み方向、及び基材層21及び金属層22の積層方向は、いずれも同一方向を意味する。また、部品内蔵多層基板10の厚み方向に対する直角方向を、部品内蔵多層基板10又は多層基板本体20若しくは基材層21及び金属層22の面方向と称する。また、図面では、説明を容易にするため実際の縮尺に対して厚み方向の寸法を大幅に誇張して描いている。 The multilayer substrate main body 20 is configured by alternately stacking a plurality of base material layers 21 and a plurality of metal layers 22. In the following description, the thickness direction of the component-embedded multilayer board 10, the thickness direction of the multilayer board main body 20, and the stacking direction of the base material layer 21 and the metal layer 22 all mean the same direction. Further, the direction perpendicular to the thickness direction of the component-embedded multilayer board 10 is referred to as the surface direction of the component-embedded multilayer board 10 or the multilayer board main body 20, the base material layer 21, and the metal layer 22. Further, in the drawing, the dimensions in the thickness direction are greatly exaggerated with respect to the actual scale for easy explanation.

本実施形態において、複数の基材層21は、多層基板本体20の厚み方向の一方側から順にそれぞれ第1基材層211、第2基材層212、第3基材層213、第4基材層214、及び第5基材層215と称する。そして、各基材層211、212、213、214、215のうち、多層基板本体20の厚み方向の最も外側に位置する層つまり外部に露出して多層基板本体20の外側表面を構成する層、この場合、第1基材層211及び第5基材層215を、それぞれ表層211、215と称する。 In the present embodiment, the plurality of base material layers 21 are the first base material layer 211, the second base material layer 212, the third base material layer 213, and the fourth base material layer 21, respectively, in order from one side in the thickness direction of the multilayer substrate main body 20. It is referred to as a material layer 214 and a fifth base material layer 215. Then, among the base material layers 211, 212, 213, 214, and 215, the layer located on the outermost side in the thickness direction of the multilayer substrate main body 20, that is, the layer exposed to the outside and forming the outer surface of the multilayer substrate main body 20. In this case, the first base material layer 211 and the fifth base material layer 215 are referred to as surface layers 211 and 215, respectively.

各基材層211、212、213、214、215のうち少なくとも表層211、215に挟まれた中間の基材層212、213、214は、絶縁性を有する樹脂材料であって寸法精度及び接着性に優れた例えばポリイミド等の熱可塑性樹脂で構成されている。また、これら中間の基材層212、213、214の厚み寸法は、それぞれ柔軟性を有する程度の厚み寸法に設定されている。 Of the respective base material layers 211, 212, 213, 214, and 215, at least the intermediate base material layers 212, 213, and 214 sandwiched between the surface layers 211 and 215 are resin materials having an insulating property, and have dimensional accuracy and adhesiveness. It is made of a thermoplastic resin such as polyimide, which has excellent properties. Further, the thickness dimensions of the base material layers 212, 213, and 214 in between these are set to such a thickness dimension that each has flexibility.

なお、表層211、215は、中間の基材層212、213、214と同様にポリイミド等の熱可塑性樹脂によって柔軟性を有する程度の厚み寸法で構成しても良いし、柔軟性を有さない厚み寸法すなわち剛性を有するように構成しても良い。また、表層211、215は、例えばガラスエポキシ樹脂等で構成しても良い。また、本実施形態の場合、表層211、215のうち表層211は、部品内蔵多層基板10を設置した場合における重力方向の上側に位置しており、この表層211については、例えばシリコーン樹脂等の柔軟性及び弾性を有する樹脂材料で構成することもできる。 It should be noted that the surface layers 211 and 215 may be configured to have a thickness such that they have flexibility due to a thermoplastic resin such as polyimide, like the intermediate base material layers 212, 213 and 214, and have no flexibility. It may be configured to have a thickness dimension, that is, rigidity. Further, the surface layers 211 and 215 may be made of, for example, a glass epoxy resin or the like. Further, in the case of the present embodiment, of the surface layers 211 and 215, the surface layer 211 is located on the upper side in the direction of gravity when the component-embedded multilayer substrate 10 is installed, and the surface layer 211 is flexible such as, for example, a silicone resin. It can also be made of a resin material having properties and elasticity.

本実施形態において、複数の金属層22は、多層基板本体20の厚み方向の一方側この場合、表層211側から順にそれぞれ第1金属層221、第2金属層222、第3金属層223、及び第4金属層224と称する。各金属層221、222、223、224は、例えば銅やアルミ、金等の導電性及び熱伝達性に優れた金属の層で構成されている。各金属層221、222、223、224は、例えば図3に示すように、配線パターン23又は放熱用パターン24のいずれか一方又は両方を有して構成されている。 In the present embodiment, the plurality of metal layers 22 are on one side in the thickness direction of the multilayer substrate main body 20, in this case, the first metal layer 221, the second metal layer 222, the third metal layer 223, and the like, respectively, from the surface layer 211 side. It is referred to as a fourth metal layer 224. Each metal layer 221, 222, 223, 224 is composed of a metal layer having excellent conductivity and heat transfer, such as copper, aluminum, and gold. Each metal layer 221, 222, 223, 224 is configured to have either or both of the wiring pattern 23 and the heat dissipation pattern 24, for example, as shown in FIG.

配線パターン23は、各電気部品30、40の電気信号や電力を伝達するための配線用のパターンである。放熱用パターン24は、電気部品30の放熱用のいわゆるベタパターンであり、その線径は配線パターン23よりも十分に太い。すなわち、放熱用パターン24は、配線パターン23よりも電気抵抗が小さい。なお、放熱用パターン24は、例えば各電気部品30、40を接地するための接地用のパターンと兼用しても良い。 The wiring pattern 23 is a wiring pattern for transmitting electric signals and electric power of the electric components 30 and 40. The heat dissipation pattern 24 is a so-called solid pattern for heat dissipation of the electric component 30, and its wire diameter is sufficiently thicker than the wiring pattern 23. That is, the heat dissipation pattern 24 has a smaller electric resistance than the wiring pattern 23. The heat dissipation pattern 24 may also be used as a grounding pattern for grounding the electrical components 30 and 40, for example.

本実施形態の場合、部品内蔵多層基板10は、図2に示すように、複数の内蔵部品30を有している。内蔵部品30は、MCU等の集積回路やFET等のように小型で薄い電気部品であり、基材層211、212、213、214、215のいずれかの層に埋め込まれている。本実施形態では、内蔵部品30として第1内蔵部品31、第2内蔵部品32、及び第3内蔵部品33を有して構成されている。そして、各内蔵部品31、32、33のうち、例えば第1内蔵部品31は、多層基板本体20の外部への放熱を要する要放熱内蔵部品31として構成されている。 In the case of the present embodiment, the component-embedded multilayer board 10 has a plurality of built-in components 30 as shown in FIG. The built-in component 30 is a small and thin electric component such as an integrated circuit such as an MCU or a FET, and is embedded in any one of the base material layers 211, 212, 213, 214, and 215. In the present embodiment, the built-in component 30 includes a first built-in part 31, a second built-in part 32, and a third built-in part 33. Among the built-in parts 31, 32, 33, for example, the first built-in part 31 is configured as a heat-dissipating built-in part 31 that requires heat dissipation to the outside of the multilayer board main body 20.

この場合、要放熱内蔵部品31は、直接的又は間接的に金属層22に電気的及び熱的に接続されている。例えば要放熱内蔵部品31は、図3に示すように、入出力用の端子311、放熱用の端子312、及びサーマルパッド313を有している。各端子311のうち必要箇所については、例えば配線パターン23に接続されている。また、放熱用の端子312は、サーマルパッド313を介して放熱用パターン24に接続されている。 In this case, the heat dissipation built-in component 31 is directly or indirectly electrically and thermally connected to the metal layer 22. For example, as shown in FIG. 3, the heat-dissipating built-in component 31 has an input / output terminal 311, a heat-dissipating terminal 312, and a thermal pad 313. The necessary portion of each terminal 311 is connected to, for example, the wiring pattern 23. Further, the heat dissipation terminal 312 is connected to the heat dissipation pattern 24 via the thermal pad 313.

各露出部品40は、表層211、215から外部に露出して設けられた電気部品であり、例えば電解コンデンサ等のようにサイズが比較的大きく物理的に多層基板に内蔵できない部品や、例えばコネクタ等のように外部に露出せる必要がある部品等である。各露出部品40の図示しない接続端子は、例えば各金属層22のうちいずれかの層に接続されている。なお、以下の説明において、複数の露出部品40を区別する場合は、第1露出部品41、第2露出部品42、及び第3露出部品43と称する。 Each exposed component 40 is an electrical component that is exposed to the outside from the surface layers 211 and 215, and is a component that is relatively large in size and cannot be physically incorporated into a multilayer board, such as an electrolytic capacitor, or a connector or the like. Parts that need to be exposed to the outside, such as. A connection terminal (not shown) of each exposed component 40 is connected to, for example, one of the metal layers 22. In the following description, when a plurality of exposed parts 40 are distinguished, they are referred to as a first exposed part 41, a second exposed part 42, and a third exposed part 43.

露出部品40のうちの例えば第1露出部品41は、多層基板本体20の厚み方向において要放熱内蔵部品31の少なくとも一部と重なって配置されている。すなわちこの場合、要放熱内蔵部品31と露出部品41とは、多層基板本体20を平面視で見た場合において少なくとも一部又は全部が重なるように配置されている。 For example, the first exposed component 41 of the exposed components 40 is arranged so as to overlap with at least a part of the heat dissipation built-in component 31 in the thickness direction of the multilayer board main body 20. That is, in this case, the heat dissipation built-in component 31 and the exposed component 41 are arranged so that at least a part or all of them overlap when the multilayer board main body 20 is viewed in a plan view.

放熱構造部50は、要放熱内蔵部品31から発せられた熱を多層基板本体20の外部に放熱するための構造であり、多層基板本体20の外部に設けられている。放熱構造部50は、柔軟性を有するフレキシブル基板で構成されている。放熱構造部50は、送風装置等を用いない自然空冷によって要放熱内蔵部品31の放熱を行うことができる程度に十分な表面積を有している。 The heat radiating structure portion 50 has a structure for radiating heat generated from the heat radiating built-in component 31 to the outside of the multilayer board main body 20, and is provided outside the multilayer board main body 20. The heat radiating structure portion 50 is made of a flexible substrate having flexibility. The heat radiating structure portion 50 has a sufficient surface area so that the heat radiating built-in component 31 can be radiated by natural air cooling without using a blower or the like.

この場合、放熱構造部50の表面積とは、放熱構造部50の面方向の面積と、厚み方向の面積との合計の面積を意味する。放熱構造部50は、少なくとも要放熱内蔵部品31が設けられた金属層22、この場合、第3金属層223に熱的に接続されている。また、放熱構造部50について自然空冷によって要放熱内蔵部品31の放熱を行うことができる程度に十分な表面積とは、放熱構造部50が他の部材に熱的に接続されておらず、放熱構造部50単体で放熱を行う構成の場合においては、放熱構造部50の表面積が、放熱構造部50単体によって要放熱内蔵部品31を冷却するための例えば放熱板と同等以上の放熱性能を確保できる程度のものであることを意味する。 In this case, the surface area of the heat radiating structure portion 50 means the total area of the area of the heat radiating structure portion 50 in the surface direction and the area in the thickness direction. The heat radiating structure portion 50 is thermally connected to at least a metal layer 22 provided with a heat radiating built-in component 31, in this case, a third metal layer 223. Further, the surface area of the heat radiating structure portion 50 is sufficient to dissipate heat from the heat radiating built-in component 31 by natural air cooling because the heat radiating structure portion 50 is not thermally connected to other members and has a heat radiating structure. In the case of a configuration in which heat is radiated by the unit 50 alone, the surface area of the heat radiating structure portion 50 can secure heat dissipation performance equal to or higher than, for example, a heat radiating plate for cooling the heat radiating built-in component 31 by the heat radiating structure unit 50 alone. It means that it is a thing.

また、放熱構造部50について自然空冷によって要放熱内蔵部品31の放熱を行うことができる程度に十分な表面積とは、放熱構造部50が他の部材90等に熱的に接続されて他の部材90に熱を逃がすことができる構成の場合においては、放熱構造部50の表面積が、放熱構造部50からの放熱量と他の部材90へ逃がす熱を含めた場合に例えば放熱板と同等以上の放熱性能を確保できる程度のものであることを意味する。そのため、放熱構造部50の表面積は、放熱の対象となる要放熱内蔵部品31からの放熱量や、放熱構造部50の材質や厚み、更には他の部材90の材質や表面積等に応じて適宜設定することができる。なお、部品内蔵多層基板10がPLC1を構成するものである場合、他の部材90若しくは後述する外部の部材90は、例えば筐体2の一部を構成する又は筐体2内に設けられた構造物5とすることができる。 Further, the heat dissipation structure portion 50 has a sufficient surface area so that the heat dissipation built-in component 31 can be dissipated by natural air cooling, and the heat dissipation structure portion 50 is thermally connected to another member 90 or the like to be another member. In the case of a configuration in which heat can be released to 90, the surface area of the heat radiating structure portion 50 is equal to or larger than, for example, a heat radiating plate when the amount of heat radiated from the heat radiating structure portion 50 and the heat released to other members 90 are included. It means that the heat dissipation performance can be ensured. Therefore, the surface area of the heat radiating structure portion 50 is appropriately determined according to the amount of heat radiated from the heat radiating built-in component 31 to be radiated, the material and thickness of the heat radiating structure portion 50, and the material and surface area of the other member 90. Can be set. When the component-embedded multilayer board 10 constitutes the PLC 1, the other member 90 or the external member 90 described later constitutes, for example, a part of the housing 2 or a structure provided in the housing 2. It can be a thing 5.

本実施形態の場合、放熱構造部50は、多層基板本体20と一体に構成されている。この場合、放熱構造部50は、放熱層51と保護層52とを有して構成されている。放熱層51は、各金属層22のうち要放熱内蔵部品31が接続された金属層223に接続されている。そして、放熱層51は、多層基板本体20の外部に設けられるとともに、柔軟性及び要放熱内蔵部品31の放熱を行うために十分な表面積を有して構成されている。 In the case of this embodiment, the heat radiating structure portion 50 is integrally formed with the multilayer substrate main body 20. In this case, the heat radiating structure portion 50 includes a heat radiating layer 51 and a protective layer 52. The heat radiating layer 51 is connected to the metal layer 223 to which the heat radiating built-in component 31 of each metal layer 22 is connected. The heat dissipation layer 51 is provided outside the multilayer board main body 20 and has a sufficient surface area for flexibility and heat dissipation of the heat dissipation built-in component 31.

放熱層51は、熱伝達性が高くかつ柔軟性を有する例えば金属箔等の金属層で構成されている。本実施形態の場合、放熱層51は、各金属層22のうち要放熱内蔵部品31が接続された金属層223と同一の材料によって構成されており、かつ、要放熱内蔵部品31が接続された金属層223と一体に形成されている。すなわち、放熱層51は、要放熱内蔵部品31が接続された金属層223を形成する工程と同一の工程で形成される。この場合、放熱層51の厚み寸法は、金属層223の厚み寸法と同程度に設定されている。 The heat radiating layer 51 is made of a metal layer such as a metal foil having high heat transfer and flexibility. In the case of the present embodiment, the heat dissipation layer 51 is made of the same material as the metal layer 223 to which the heat dissipation built-in component 31 is connected among the metal layers 22, and the heat dissipation built-in component 31 is connected. It is integrally formed with the metal layer 223. That is, the heat dissipation layer 51 is formed in the same process as the step of forming the metal layer 223 to which the heat dissipation built-in component 31 is connected. In this case, the thickness dimension of the heat radiating layer 51 is set to be about the same as the thickness dimension of the metal layer 223.

また、保護層52は、電気絶縁性を有する例えば熱硬化性樹脂で構成されており、放熱層51の少なくとも一方の面を覆っている。本実施形態の場合、保護層52は、放熱層51の両面を覆う2つの保護層521、522を有して構成されている。また、保護層521、522は、それぞれ要放熱内蔵部品31が接続された金属層223を挟む基材層213、214と同一の材料によって構成されており、かつ、これらの基材層213、214と一体に形成されている。すなわち、保護層521、522は、要放熱内蔵部品31が接続された金属層223を挟む基材層213、214を形成する工程と同一の工程で形成される。この場合、第1保護層521及び第2保護層522の厚み寸法は、それぞれ第3基材層233及び第4基材層234の厚み寸法と同程度に設定されている。 Further, the protective layer 52 is made of, for example, a thermosetting resin having electrical insulation, and covers at least one surface of the heat radiating layer 51. In the case of the present embodiment, the protective layer 52 is configured to have two protective layers 521 and 522 covering both sides of the heat radiating layer 51. Further, the protective layers 521 and 522 are made of the same material as the base material layers 213 and 214 sandwiching the metal layer 223 to which the heat dissipation built-in component 31 is connected, respectively, and these base material layers 213 and 214 are formed. It is formed integrally with. That is, the protective layers 521 and 522 are formed in the same process as the steps of forming the base material layers 213 and 214 sandwiching the metal layer 223 to which the heat dissipation built-in component 31 is connected. In this case, the thickness dimensions of the first protective layer 521 and the second protective layer 522 are set to be approximately the same as the thickness dimensions of the third base material layer 233 and the fourth base material layer 234, respectively.

放熱構造部50の端部、すなわち放熱構造部50において多層基板本体20とは反対側の端部は、多層基板本体20とは異なる外部の部材90に接続されている。本実施形態の場合、外部の部材90は、部品内蔵多層基板10が設けられる例えばPLC等の電気機器の筐体自体又は筐体内に設置される構造物5等であって、例えば金属製の部品である。この場合、外部の部材90は、例えば任意の位置に配置された放熱板等で構成することができる。 The end portion of the heat radiating structure portion 50, that is, the end portion of the heat radiating structure portion 50 opposite to the multilayer board main body 20, is connected to an external member 90 different from the multilayer board main body 20. In the case of the present embodiment, the external member 90 is a housing itself of an electric device such as a PLC provided with a component-embedded multilayer board 10, or a structure 5 installed in the housing, for example, a metal component. Is. In this case, the external member 90 can be composed of, for example, a heat radiating plate arranged at an arbitrary position.

放熱構造部50の端部は、保護層52、この場合、第2保護層522が外部の部材90に接した状態で外部の部材90に固定されている。すなわち、放熱層51は、外部の部材90に直接接していない。この場合、例えばねじ等の締結部材91を放熱構造部50の端部に通して外部の部材90にねじ込むことにより、放熱構造部50の端部の保護層52が外部の部材90に接した状態で外部の部材90に固定される。これにより、放熱構造部50における放熱層51は、電気的に絶縁された状態で熱的に外部の部材90に接続されている。なお、放熱構造部50の端部は、必ずしも何らかの部材に接続されている必要はない。 The end portion of the heat radiating structure portion 50 is fixed to the external member 90 in a state where the protective layer 52, in this case, the second protective layer 522 is in contact with the external member 90. That is, the heat radiating layer 51 is not in direct contact with the external member 90. In this case, for example, by passing a fastening member 91 such as a screw through the end portion of the heat dissipation structure portion 50 and screwing it into the external member 90, the protective layer 52 at the end portion of the heat dissipation structure portion 50 is in contact with the external member 90. Is fixed to the external member 90. As a result, the heat radiating layer 51 in the heat radiating structure portion 50 is thermally connected to the external member 90 in a state of being electrically insulated. The end of the heat radiating structure portion 50 does not necessarily have to be connected to some member.

以上説明した実施形態によれば、部品内蔵多層基板10は、多層基板本体20と、要放熱内蔵部品31と、放熱層51と、露出部品40と、を備える。多層基板本体20は、複数の基材層21と複数の金属層22とを交互に重ねて構成されている。要放熱内蔵部品31は、金属層22に接続され、本実施形態の場合、第3金属層223に接続されて、多層基板本体20に内蔵されており、多層基板本体20の外部への放熱を要する電気部品である。 According to the embodiment described above, the component-embedded multilayer board 10 includes a multilayer board main body 20, a heat-dissipating built-in component 31, a heat-dissipating layer 51, and an exposed component 40. The multilayer substrate main body 20 is configured by alternately stacking a plurality of base material layers 21 and a plurality of metal layers 22. The heat-dissipating built-in component 31 is connected to the metal layer 22, and in the case of the present embodiment, is connected to the third metal layer 223 and is built in the multilayer board main body 20 to dissipate heat to the outside of the multilayer board main body 20. It is an required electrical component.

放熱層51は、複数の金属層22のうち要放熱内蔵部品31が接続された金属層22、この場合、第3金属層223に接続されている。また、放熱層51は、多層基板本体20の外部に設けられるとともに、柔軟性及び要放熱内蔵部品31の放熱を行うために十分な面積を有して構成されている。そして、露出部品40のうち少なくとも第1露出部品41は、多層基板本体20の表層から外部に露出して設けられており、多層基板本体20の厚み方向において要放熱内蔵部品31の少なくとも一部と重なって配置されている。 The heat radiating layer 51 is connected to the metal layer 22 to which the heat radiating built-in component 31 is connected among the plurality of metal layers 22, in this case, the third metal layer 223. Further, the heat dissipation layer 51 is provided outside the multilayer board main body 20 and has a sufficient area for flexibility and heat dissipation of the heat dissipation built-in component 31. At least the first exposed component 41 of the exposed components 40 is provided so as to be exposed to the outside from the surface layer of the multilayer board main body 20, and is provided with at least a part of the heat dissipation built-in component 31 in the thickness direction of the multilayer board main body 20. They are placed on top of each other.

この構成によれば、部品内蔵多層基板10は、要放熱内蔵部品31で発生した熱を、放熱層51によって多層基板本体20の外部に放熱することができる。これにより、多層基板本体20の内部に熱が蓄積することを抑制でき、その結果、要放熱内蔵部品31で発生した熱が部品内蔵多層基板10の動作等に悪影響を与えることを抑制できる。 According to this configuration, the component-embedded multilayer board 10 can dissipate the heat generated by the heat-dissipating built-in component 31 to the outside of the multilayer board main body 20 by the heat radiating layer 51. As a result, it is possible to suppress the accumulation of heat inside the multilayer board main body 20, and as a result, it is possible to prevent the heat generated in the heat dissipation built-in component 31 from adversely affecting the operation of the component-embedded multilayer board 10.

また、本実施形態によれば、要放熱内蔵部品31と露出部品40とが多層基板本体20の厚み方向において重なるように配置されている。このため、要放熱内蔵部品31と露出部品40とを例えば表層211から外部に露出する態様で並べて配置した場合に比べて、多層基板本体20の投影面積を小さくすることができる。更には、保護層52を含む放熱層51は、柔軟性を有したフレキシブル基板として構成されているため、例えば任意の形状に曲げたり折りたたんだりして配置することが可能となる。したがって、保護層52及び放熱層51を含んで構成された放熱構造部50を配置する際に、放熱構造部50が邪魔になり難く、その結果、比較的自由なレイアウトが可能となる。 Further, according to the present embodiment, the heat dissipation built-in component 31 and the exposed component 40 are arranged so as to overlap each other in the thickness direction of the multilayer board main body 20. Therefore, the projected area of the multilayer substrate main body 20 can be reduced as compared with the case where the heat radiation required built-in component 31 and the exposed component 40 are arranged side by side so as to be exposed to the outside from the surface layer 211, for example. Further, since the heat radiating layer 51 including the protective layer 52 is configured as a flexible substrate having flexibility, it can be arranged by bending or folding it into an arbitrary shape, for example. Therefore, when arranging the heat radiating structure portion 50 including the protective layer 52 and the heat radiating layer 51, the heat radiating structure portion 50 is less likely to get in the way, and as a result, a relatively free layout is possible.

このように、本実施形態によれば、多層基板本体20の外部への放熱を要する要放熱内蔵部品31の放熱を確保しつつこの要放熱内蔵部品31を多層基板本体20内に内蔵することで、多層基板本体20の投影面積の小型化を図ることができ、ひいては部品内蔵多層基板10全体の小型化を図ることができる。 As described above, according to the present embodiment, the heat-dissipating built-in component 31 that requires heat dissipation to the outside of the multilayer board main body 20 is built in the multilayer board main body 20 while ensuring the heat dissipation of the heat-dissipating built-in component 31. The projected area of the multilayer board main body 20 can be reduced, and the entire multilayer board 10 with built-in components can be reduced in size.

また、放熱層51の少なくとも片面又は両面は、絶縁性を有する保護層52に覆われている。本実施形態の場合、放熱層51の両面が、第1保護層521及び第2保護層522によって覆われている。これによれば、部品内蔵多層基板10を電気機器に組み込む際に、作業者が直接放熱層51に触れてしまい、放熱層51を誤って損傷させてしまうこと等を抑制することができる。また、この構成によれば、放熱層51が金属製の部材90等に直接接してしまい、放熱層51と金属製の部材90とが導通してしまうことを抑制できる。 Further, at least one or both sides of the heat radiating layer 51 is covered with a protective layer 52 having an insulating property. In the case of the present embodiment, both sides of the heat radiating layer 51 are covered with the first protective layer 521 and the second protective layer 522. According to this, when incorporating the component-embedded multilayer board 10 into an electric device, it is possible to prevent an operator from directly touching the heat radiating layer 51 and accidentally damaging the heat radiating layer 51. Further, according to this configuration, it is possible to prevent the heat radiating layer 51 from coming into direct contact with the metal member 90 or the like and causing the heat radiating layer 51 and the metal member 90 to conduct with each other.

また、放熱層51の端部は、多層基板本体20とは異なる外部の部材90に接続される。外部の部材90は、例えば部品内蔵多層基板10が設けられるPLC等の電気機器の筐体自体又は筐体内に設置される構造物5等であって、例えば金属製の部品である。これによれば、要放熱内蔵部品31から生じた熱は、放熱層51から放熱されるとともに、放熱層51を介して外部の部材90からも放熱される。これにより、更に効率的に要放熱内蔵部品31から生じた熱を放熱することができる。したがって、放熱層51の面積も低減することができ、ひいては部品内蔵多層基板10全体の小型化を図ることができる。 Further, the end portion of the heat radiating layer 51 is connected to an external member 90 different from the multilayer board main body 20. The external member 90 is, for example, a housing itself of an electric device such as a PLC provided with a component-embedded multilayer board 10, or a structure 5 or the like installed in the housing, and is, for example, a metal component. According to this, the heat generated from the heat-dissipating built-in component 31 is dissipated from the heat-dissipating layer 51 and also from the external member 90 via the heat-dissipating layer 51. As a result, the heat generated from the heat-dissipating built-in component 31 can be dissipated more efficiently. Therefore, the area of the heat radiating layer 51 can also be reduced, and as a result, the size of the entire multilayer board 10 with built-in components can be reduced.

また、放熱層51は、要放熱内蔵部品31が接続された金属層22、この場合、第3金属層223と一体に形成されている。これによれば、多層基板本体20を例えばPALAP(登録商標)等の一括積層プロセス技術を用いて製造する際に、放熱層51と第3金属層223とを同一の工程で形成することができる。そのため、放熱層51と第3金属層223とを別体に構成し後から接合する場合に比べて、製造に関する手間を削減することができ、その結果、生産性の向上を図ることができる。また、放熱層51と第3金属層223との境界部分にハンダ付け等による接合部が生じないため、放熱層51と第3金属層223との境界部分の強度を高く保つことができる。 Further, the heat dissipation layer 51 is integrally formed with the metal layer 22 to which the heat dissipation built-in component 31 is connected, in this case, the third metal layer 223. According to this, when the multilayer substrate main body 20 is manufactured by using a batch lamination process technique such as PALAP (registered trademark), the heat radiating layer 51 and the third metal layer 223 can be formed in the same process. .. Therefore, as compared with the case where the heat radiating layer 51 and the third metal layer 223 are separately formed and joined later, the labor related to manufacturing can be reduced, and as a result, the productivity can be improved. Further, since a joint portion due to soldering or the like does not occur at the boundary portion between the heat radiating layer 51 and the third metal layer 223, the strength of the boundary portion between the heat radiating layer 51 and the third metal layer 223 can be kept high.

なお、上記各実施形態において、放熱構造部50は、多層基板本体20と別体に構成することもできる。すなわち、この場合、放熱構造部50のうち放熱層51は、要放熱内蔵部品31が接続された金属層22、この場合、第3金属層223と別体に構成するとともにハンダ等で相互を接合し、これにより熱的及び電気的に相互に接続するようにしても良い。また、この場合、第1保護層521及び第2保護層522は、それぞれ第3基材層233及び第4基材層234に接着剤や熱溶着等によって接合する構成とることができる。 In each of the above embodiments, the heat radiating structure portion 50 can be configured separately from the multilayer substrate main body 20. That is, in this case, the heat dissipation layer 51 of the heat dissipation structure portion 50 is formed separately from the metal layer 22 to which the heat dissipation built-in component 31 is connected, in this case, the third metal layer 223, and is joined to each other by solder or the like. This may allow them to be thermally and electrically interconnected. Further, in this case, the first protective layer 521 and the second protective layer 522 can be bonded to the third base material layer 233 and the fourth base material layer 234 by adhesive, heat welding, or the like, respectively.

また、実施形態のPLC1は、上述した部品内蔵多層基板10と、この部品内蔵多層基板10を収容する筐体2と、を備え。これによれば、PLC1全体のサイズに対して大きな割合を占める部品内蔵多層基板10を上述したように小型化したものにすることで、PLC1全体の小型化・省スペース化を図ることができる。そして、PLC1の小型化・省スペース化を図ることで、工場設備の小型化・省スペース化を図ることができ、多数のPLC1を効率良く工場内に設置することができる。 Further, the PLC 1 of the embodiment includes the above-mentioned multi-layer board 10 with built-in components and a housing 2 for accommodating the multi-layer board 10 with built-in components. According to this, by reducing the size of the component-embedded multilayer board 10 which occupies a large proportion of the size of the entire PLC1 as described above, it is possible to reduce the size and space of the entire PLC1. Then, by reducing the size and space of the PLC1, it is possible to reduce the size and space of the factory equipment, and a large number of PLC1s can be efficiently installed in the factory.

(第2実施形態)
次に、第2実施形態について図4を参照して説明する。
本実施形態の多層基板本体20は、放熱構造部50の端部の接続先が、上記第1実施形態とは異なっている。本実施形態の多層基板本体20は、上記第1実施形態の多層基板本体20に対し、基材層21及び金属層22の総数が更に増加している。この場合、基材層21は、第1基材層211〜第5基材層215に加えて、第6基材層216、第7基材層217、及び第8基材層218を更に有して構成されている。また、金属層22は、第1金属層221〜第4金属層224に加えて、第5金属層225、第6金属層226、及び第7金属層227を更に有して構成されている。
(Second Embodiment)
Next, the second embodiment will be described with reference to FIG.
In the multilayer board main body 20 of the present embodiment, the connection destination of the end portion of the heat radiating structure portion 50 is different from that of the first embodiment. In the multilayer substrate main body 20 of the present embodiment, the total number of the base material layer 21 and the metal layer 22 is further increased as compared with the multilayer substrate main body 20 of the first embodiment. In this case, the base material layer 21 further includes a sixth base material layer 216, a seventh base material layer 217, and an eighth base material layer 218 in addition to the first base material layer 211 to the fifth base material layer 215. It is composed of. Further, the metal layer 22 is configured to further include a fifth metal layer 225, a sixth metal layer 226, and a seventh metal layer 227 in addition to the first metal layer 221 to the fourth metal layer 224.

この場合、第6基材層216〜第8基材層218及び第5金属層225〜第7金属層227の面積は、第1基材層211〜第5基材層215及び第1金属層221〜第4金属層224の面積よりも大きく設定されている。これにより、多層基板本体20は、第5基材層215を境界にして段差形状が形成されている。この場合、第5基材層215の一部分は外部に露出している。そのため、第5基材層215の露出した部分は表層となる。 In this case, the areas of the sixth base material layer 216 to the eighth base material layer 218 and the fifth metal layer 225 to the seventh metal layer 227 are the first base material layers 211 to the fifth base material layer 215 and the first metal layer. It is set larger than the area of the 221 to the fourth metal layer 224. As a result, the multilayer substrate main body 20 has a stepped shape with the fifth base material layer 215 as a boundary. In this case, a part of the fifth base material layer 215 is exposed to the outside. Therefore, the exposed portion of the fifth base material layer 215 becomes the surface layer.

本実施形態において、放熱構造部50の端部は、要放熱内蔵部品31が接続された層とは異なる層に接続されている。すなわち、放熱層51の端部は、要放熱内蔵部品31が接続された設けられた第3金属層223とは異なる金属層、例えば第5金属層225に接続されている。この場合、放熱層51の端部と第5金属層225とは、一体に成形しても良いし、例えばハンダ付け等によって接合しても良い。また、保護層52つまり第1保護層521及び第2保護層522は、いずれも第5基材層215に接続されている。この場合、保護層52と第5基材層215とは、一体に成形しても良いし、例えば接着剤や熱溶着等によって接合しても良い。 In the present embodiment, the end portion of the heat dissipation structure portion 50 is connected to a layer different from the layer to which the heat dissipation built-in component 31 is connected. That is, the end portion of the heat dissipation layer 51 is connected to a metal layer different from the provided third metal layer 223 to which the heat dissipation built-in component 31 is connected, for example, the fifth metal layer 225. In this case, the end portion of the heat radiating layer 51 and the fifth metal layer 225 may be integrally formed or may be joined by, for example, soldering. Further, the protective layer 52, that is, the first protective layer 521 and the second protective layer 522 are both connected to the fifth base material layer 215. In this case, the protective layer 52 and the fifth base material layer 215 may be integrally molded, or may be joined by, for example, an adhesive or heat welding.

この構成によっても、上記第1実施形態と同様の作用効果が得られる。
また、この構成によれば、図4に示すように、放熱構造部50は、例えば第5基材層215から露出して設けられた第4露出部品44の上方を跨ぐように配置することができる。これによれば、従来であれば活用し難かった露出部品40の上方の空間に放熱構造部50を配置するとで、空間を有効活用することでき、ひいては部品内蔵多層基板10の更なる小型化を図ることができる。
Even with this configuration, the same effect as that of the first embodiment can be obtained.
Further, according to this configuration, as shown in FIG. 4, the heat radiating structure portion 50 may be arranged so as to straddle the upper part of the fourth exposed component 44 which is exposed from, for example, the fifth base material layer 215. it can. According to this, by arranging the heat radiating structure portion 50 in the space above the exposed component 40, which was difficult to utilize in the past, the space can be effectively utilized, and as a result, the component-embedded multilayer board 10 can be further miniaturized. Can be planned.

(第3実施形態)
次に、第3実施形態について図5を参照して説明する。
本実施形態において、部品内蔵多層基板10は、上記各実施形態における放熱層51に換えて、複数この場合2つの放熱層61を備えている。これら複数この場合2つの放熱層61は、多層基板本体20の周囲から複数方向この場合2方向へ延び出ている。なお、放熱層61は、表面積が異なること以外は、上記各実施形態の放熱層51と同様である。すなわち、本実施形態の放熱層61も、上記各実施形態の放熱層51と同様に、両側面を保護層に挟まれて放熱構造部60を構成している。
(Third Embodiment)
Next, the third embodiment will be described with reference to FIG.
In the present embodiment, the component-embedded multilayer board 10 includes a plurality of heat dissipation layers 61 in this case instead of the heat dissipation layers 51 in each of the above embodiments. These plurality of heat dissipation layers 61 in this case extend in a plurality of directions from the periphery of the multilayer substrate main body 20 in this case in two directions. The heat radiating layer 61 is the same as the heat radiating layer 51 of each of the above embodiments except that the surface area is different. That is, the heat radiating layer 61 of the present embodiment also constitutes the heat radiating structure portion 60 with both side surfaces sandwiched between the protective layers, similarly to the heat radiating layer 51 of each of the above embodiments.

この場合、2つの放熱層61の表面積の合計は、上記各実施形態の放熱層51の表面積と同等に設定されている。すなわち、各放熱層61の表面積を合計した場合に、自然空冷によって要放熱内蔵部品31の放熱を行うことができる程度に十分な表面積となるように、各放熱層61の表面積が設定されている。なお、各放熱構造部60の端部は、第1実施形態のように外部の部材90に接続されていても良いし、第2実施形態のように多層基板本体20を構成する層のうち要放熱内蔵部品31が設けられていない他の層に接続されていても良い。 In this case, the total surface area of the two heat radiating layers 61 is set to be equal to the surface area of the heat radiating layer 51 of each of the above embodiments. That is, the surface area of each heat dissipation layer 61 is set so that when the surface areas of each heat dissipation layer 61 are totaled, the surface area is sufficient to dissipate heat from the heat dissipation built-in component 31 by natural air cooling. .. The end portion of each heat radiating structure portion 60 may be connected to an external member 90 as in the first embodiment, or is required among the layers constituting the multilayer substrate main body 20 as in the second embodiment. It may be connected to another layer in which the heat dissipation built-in component 31 is not provided.

この構成によっても、上記各実施形態と同様の作用効果が得られる。
また、本実施形態によれば、要放熱内蔵部品31で発生した熱を、複数の放熱層61によって放熱する構成であるため、1つ1つの放熱層61の表面積つまり放熱構造部60の表面積を小さくすることができる。そのため、各放熱構造部60を配置する際に1つ1つの放熱構造部60が更に邪魔になり難く、その結果、部品内蔵多層基板10をより自由なレイアウトで配置することが可能となる。
Even with this configuration, the same effects as those of the above-described embodiments can be obtained.
Further, according to the present embodiment, since the heat generated by the heat-dissipating built-in component 31 is dissipated by the plurality of heat-dissipating layers 61, the surface area of each heat-dissipating layer 61, that is, the surface area of the heat-dissipating structure portion 60 is determined. It can be made smaller. Therefore, when arranging each heat radiating structure 60, each heat radiating structure 60 is less likely to get in the way, and as a result, the component-embedded multilayer board 10 can be arranged in a more free layout.

(第4実施形態)
次に、第4実施形態について図6を参照して説明する。
本実施形態では、要放熱内蔵部品31は、放熱層51が接続されている金属層22とは異なる金属層22に設けられている。すなわち、上記各実施形態において、要放熱内蔵部品31が設けられている金属層22と、放熱層51が接続されている金属層22とは、必ずしも同一の金属層22である必要はない。本実施形態の場合、例えば、要放熱内蔵部品31は、第4金属層224に設けられており、一方で、放熱層51は、第3金属層223に接続されている。そして、要放熱内蔵部品31が設けられている第4金属層224と、放熱層51が接続されている第3金属層223とは、ビア25によって熱的に接続している。
この構成によっても、上記各実施形態と同様の作用効果が得られる。
(Fourth Embodiment)
Next, the fourth embodiment will be described with reference to FIG.
In the present embodiment, the heat dissipation built-in component 31 is provided on a metal layer 22 different from the metal layer 22 to which the heat dissipation layer 51 is connected. That is, in each of the above embodiments, the metal layer 22 provided with the heat-dissipating built-in component 31 and the metal layer 22 to which the heat-dissipating layer 51 is connected do not necessarily have to be the same metal layer 22. In the case of the present embodiment, for example, the heat dissipation built-in component 31 is provided on the fourth metal layer 224, while the heat dissipation layer 51 is connected to the third metal layer 223. The fourth metal layer 224 on which the heat-dissipating built-in component 31 is provided and the third metal layer 223 to which the heat-dissipating layer 51 is connected are thermally connected by the via 25.
Even with this configuration, the same effects as those of the above-described embodiments can be obtained.

(その他の実施形態)
なお、本発明は上記し且つ図面に記載した各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で任意に変形、組み合わせ、あるいは拡張することができる。
上記各実施形態で示した数値などは例示であり、それに限定されるものではない。
また、上記各実施形態は、適宜組み合わせることができる。
(Other embodiments)
The present invention is not limited to the above-described embodiments and the above-described embodiments, and can be arbitrarily modified, combined, or extended without departing from the gist thereof.
The numerical values and the like shown in each of the above embodiments are examples, and are not limited thereto.
In addition, each of the above embodiments can be combined as appropriate.

また、上記各実施形態において、放熱構造部50、60は、1層の放熱層51、61と、この放熱層51、61の両面側に設けられた2層の保護層52、62とで構成されていたが、この構成に限られない。すなわち、例えば放熱構造部50、60は、複数の放熱層51、61と、複数の保護層52、62とを交互に重ねて配置した構成であっても良い。
そして、これら放熱層51、61と保護層52、62を複数重ねて構成した放熱構造部50、60を、多層基板本体20から複数方向に延出させてその端部をそれぞれ異なる部位に接続しても良い。
Further, in each of the above embodiments, the heat radiating structure portions 50 and 60 are composed of one heat radiating layer 51 and 61 and two protective layers 52 and 62 provided on both sides of the heat radiating layer 51 and 61. However, it is not limited to this configuration. That is, for example, the heat radiating structure portions 50 and 60 may have a configuration in which a plurality of heat radiating layers 51 and 61 and a plurality of protective layers 52 and 62 are alternately arranged.
Then, the heat radiating structure portions 50 and 60 formed by stacking a plurality of the heat radiating layers 51 and 61 and the protective layers 52 and 62 are extended from the multilayer substrate main body 20 in a plurality of directions and their ends are connected to different portions. You may.

本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

図面中、1…プログラマブルロジックコントローラ、5…構造物(外部の部材、他の部材)10…部品内蔵多層基板、20…多層基板本体、21…基材層、211…第1基材層、表層(基材層)、212…第2基材層(基材層)、213…第4基材層(基材層)、214…第4基材層(基材層)、215…第5基材層、表層(基材層)、216…第6基材層(基材層)、217…第7基材層(基材層)、218…第8基材層、表層(基材層)、22…金属層、221…第1金属層(金属層)、222…第2金属層(金属層)、223…第3金属層(金属層)、224…第4金属層(金属層)、225…第5金属層(金属層)、226…第6金属層(金属層)、227…第7金属層(金属層)、30…電気部品、内蔵部品、31…第1内蔵部品、要放熱内蔵部品(電気部品、内蔵部品)、32…第2内蔵部品(電気部品、内蔵部品)、33…第3内蔵部品(電気部品、内蔵部品)、40…露出部品、41…第1露出部品(電気部品、露出部品)、42…第2露出部品(電気部品、露出部品)、43…第3露出部品(電気部品、露出部品)、44…第4露出部品(電気部品、露出部品)、51…放熱層、51…保護層、521…第1保護層(保護層)、522…第2保護層(保護層)、90…外部の部材 In the drawing, 1 ... programmable logic controller, 5 ... structure (external member, other member) 10 ... multi-layer substrate with built-in parts, 20 ... multi-layer substrate main body, 21 ... base material layer, 211 ... first base material layer, surface layer (Base material layer), 212 ... 2nd base material layer (base material layer), 213 ... 4th base material layer (base material layer), 214 ... 4th base material layer (base material layer), 215 ... 5th base Material layer, surface layer (base material layer), 216 ... 6th base material layer (base material layer), 217 ... 7th base material layer (base material layer), 218 ... 8th base material layer, surface layer (base material layer) , 22 ... Metal layer, 221 ... First metal layer (metal layer), 222 ... Second metal layer (metal layer), 223 ... Third metal layer (metal layer), 224 ... Fourth metal layer (metal layer), 225 ... 5th metal layer (metal layer), 226 ... 6th metal layer (metal layer), 227 ... 7th metal layer (metal layer), 30 ... electrical parts, built-in parts, 31 ... first built-in parts, heat dissipation required Built-in parts (electric parts, built-in parts), 32 ... 2nd built-in parts (electric parts, built-in parts), 33 ... 3rd built-in parts (electric parts, built-in parts), 40 ... exposed parts, 41 ... 1st exposed parts ( (Electrical parts, exposed parts), 42 ... 2nd exposed parts (electric parts, exposed parts), 43 ... 3rd exposed parts (electric parts, exposed parts), 44 ... 4th exposed parts (electric parts, exposed parts), 51 ... heat dissipation layer, 51 ... protective layer, 521 ... first protective layer (protective layer), 522 ... second protective layer (protective layer), 90 ... external member

Claims (7)

プログラマブルロジックコントローラを構成する部品内蔵多層基板であって、
複数の基材層と複数の金属層とを交互に重ねて構成された多層基板本体と、
前記金属層に接続されて前記多層基板本体内に内蔵された、前記多層基板本体の外部への放熱を要する電気部品である要放熱内蔵部品と、
複数の前記金属層のうち前記要放熱内蔵部品が接続された前記金属層に接続されて前記多層基板本体の外部に設けられるとともに、柔軟性及び前記要放熱内蔵部品の放熱を行うために十分な面積を有して構成された放熱層と、
前記多層基板本体の表層から外部に露出して設けられ、前記多層基板本体の厚み方向において前記要放熱内蔵部品の少なくとも一部と重なって配置された露出部品と、
を備える部品内蔵多層基板。
It is a multi-layer board with built-in components that composes a programmable logic controller.
A multilayer substrate body formed by alternately stacking a plurality of base material layers and a plurality of metal layers,
A component with a built-in heat dissipation, which is an electric component connected to the metal layer and built in the multilayer board main body and which requires heat dissipation to the outside of the multilayer board main body,
Of the plurality of metal layers, the metal layer to which the heat-dissipating built-in component is connected is connected to the metal layer and is provided outside the multilayer substrate main body, and is sufficient for flexibility and heat dissipation of the heat-dissipating built-in component. A heat-dissipating layer configured with an area,
An exposed component that is exposed to the outside from the surface layer of the multilayer board body and is arranged so as to overlap with at least a part of the heat dissipation built-in component in the thickness direction of the multilayer board body.
Multi-layer board with built-in components.
前記放熱層の少なくとも片面又は両面は、絶縁性を有する保護層に覆われている、
請求項1に記載の部品内蔵多層基板。
At least one or both sides of the heat radiating layer is covered with an insulating protective layer.
The multilayer board with built-in components according to claim 1.
前記放熱層の端部は、前記多層基板本体とは異なる外部の部材に接続されている、
請求項1又は2に記載の部品内蔵多層基板。
The end portion of the heat radiating layer is connected to an external member different from the multilayer board main body.
The multi-layer board with built-in components according to claim 1 or 2.
前記放熱層の端部は、前記要放熱内蔵部品が接続された前記金属層とは異なる金属層に接続されている、
請求項1又は2に記載の部品内蔵多層基板。
The end of the heat dissipation layer is connected to a metal layer different from the metal layer to which the heat dissipation built-in component is connected.
The multi-layer board with built-in components according to claim 1 or 2.
前記放熱層は、前記要放熱内蔵部品が接続された前記金属層と一体に形成されている、
請求項1から4のいずれか一項に記載の部品内蔵多層基板。
The heat dissipation layer is integrally formed with the metal layer to which the heat dissipation built-in component is connected.
The multi-layer board with built-in components according to any one of claims 1 to 4.
前記放熱層は、前記多層基板本体の周囲から複数方向へ延び出ている、
請求項1から5のいずれか一項に記載の部品内蔵多層基板。
The heat radiating layer extends in a plurality of directions from the periphery of the multilayer substrate main body.
The multi-layer board with built-in components according to any one of claims 1 to 5.
前記請求項1から6のいずれか一項に記載の部品内蔵多層基板と、
前記部品内蔵多層基板を収容する筐体と、
を備えたプログラマブルロジックコントローラ。
The multi-layer board with built-in components according to any one of claims 1 to 6.
A housing for accommodating the multi-layer board with built-in components and
Programmable logic controller with.
JP2019169355A 2019-09-18 2019-09-18 Component built-in multi-layer board and programmable logic controller Pending JP2021048227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019169355A JP2021048227A (en) 2019-09-18 2019-09-18 Component built-in multi-layer board and programmable logic controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019169355A JP2021048227A (en) 2019-09-18 2019-09-18 Component built-in multi-layer board and programmable logic controller

Publications (1)

Publication Number Publication Date
JP2021048227A true JP2021048227A (en) 2021-03-25

Family

ID=74878701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019169355A Pending JP2021048227A (en) 2019-09-18 2019-09-18 Component built-in multi-layer board and programmable logic controller

Country Status (1)

Country Link
JP (1) JP2021048227A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257286A (en) * 1991-02-08 1992-09-11 Hitachi Cable Ltd Composite printed wiring board
JPH1154939A (en) * 1997-07-31 1999-02-26 Kyocera Corp Wiring board
JPH11233904A (en) * 1998-02-18 1999-08-27 Nec Corp Printed board having heat radiating structure
JP2001111237A (en) * 1999-10-04 2001-04-20 Mitsubishi Electric Corp Multilayer printed board and electronic apparatus
JP2009088390A (en) * 2007-10-02 2009-04-23 Denso Corp Printed circuit board, method for manufacturing the printed circuit board, and electronic apparatus
JP2010287672A (en) * 2009-06-10 2010-12-24 Panasonic Corp Portable electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257286A (en) * 1991-02-08 1992-09-11 Hitachi Cable Ltd Composite printed wiring board
JPH1154939A (en) * 1997-07-31 1999-02-26 Kyocera Corp Wiring board
JPH11233904A (en) * 1998-02-18 1999-08-27 Nec Corp Printed board having heat radiating structure
JP2001111237A (en) * 1999-10-04 2001-04-20 Mitsubishi Electric Corp Multilayer printed board and electronic apparatus
JP2009088390A (en) * 2007-10-02 2009-04-23 Denso Corp Printed circuit board, method for manufacturing the printed circuit board, and electronic apparatus
JP2010287672A (en) * 2009-06-10 2010-12-24 Panasonic Corp Portable electronic apparatus

Similar Documents

Publication Publication Date Title
JP6822940B2 (en) Circuit board
JP2013540371A5 (en)
JP6783724B2 (en) Circuit board
JP5697020B2 (en) Substrate and substrate manufacturing method
US20210321539A1 (en) Electronic Control Device
JPWO2020017582A1 (en) module
JP5190811B2 (en) Power module
US7902464B2 (en) Heat sink arrangement for electrical apparatus
US20160021748A1 (en) Wiring board structure and method of manufacturing wiring board structure
KR101846203B1 (en) Electronic control device having overmolded housing
CN106170174B (en) Printed circuit board and electronic device
JP6452482B2 (en) Electronic module
KR20190099709A (en) Printed circuit board
JP2021048227A (en) Component built-in multi-layer board and programmable logic controller
JP6644743B2 (en) Circuit board and semiconductor module
KR20210018811A (en) Thermally conductive electronics packaging
WO2022004332A1 (en) Circuit structure
US9609741B1 (en) Printed circuit board and electronic apparatus
US10709008B2 (en) Power module assembly structure
JP2021027145A (en) Semiconductor module
CN216311774U (en) Electronic component module and switching power supply provided with same
JP7331591B2 (en) Electric circuit board unit and programmable logic controller
JP2007134572A (en) Power module
US11553616B2 (en) Module with power device
US20230114396A1 (en) Power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240206