[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021041634A - Method for molding laminated composite sheet comprising fiber reinforced resin sheet and resin foamed sheet - Google Patents

Method for molding laminated composite sheet comprising fiber reinforced resin sheet and resin foamed sheet Download PDF

Info

Publication number
JP2021041634A
JP2021041634A JP2019166004A JP2019166004A JP2021041634A JP 2021041634 A JP2021041634 A JP 2021041634A JP 2019166004 A JP2019166004 A JP 2019166004A JP 2019166004 A JP2019166004 A JP 2019166004A JP 2021041634 A JP2021041634 A JP 2021041634A
Authority
JP
Japan
Prior art keywords
resin
sheet
fiber
reinforced
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019166004A
Other languages
Japanese (ja)
Other versions
JP7374458B2 (en
Inventor
倫靖 鳥山
Michiyasu Toriyama
倫靖 鳥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monopost
Monopost Co Ltd
Original Assignee
Monopost
Monopost Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monopost, Monopost Co Ltd filed Critical Monopost
Priority to JP2019166004A priority Critical patent/JP7374458B2/en
Publication of JP2021041634A publication Critical patent/JP2021041634A/en
Application granted granted Critical
Publication of JP7374458B2 publication Critical patent/JP7374458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a manufacturing method capable of obtaining a laminated composite sheet molding having a uniform thickness and flatness.SOLUTION: In a method for manufacturing a laminated composite sheet, two molded fiber reinforced resin sheets 1 are brought into close contact with each of inner surfaces of a pair of molds 10 and 11 comprising a metal with a high thermal conductivity and having the same, uniform thickness. A gap between the fiber reinforced resin sheets is uniformly held, and a foamable resin mixture 2 uniformly mixed with thermoexpansible foaming particles is filled into the gap. Next, heated metal bodies 20 and 21 are brought into contact with respective outer surfaces of the molds, and they are heated simultaneously from both outer surfaces to raise the temperature to a temperature at which the fiber reinforced resin sheets are not thermally deformed. The thermoexpansible foaming particles are expanded to mold the foamable resin mixture into a foamed resin sheet 3, and at the same time, laminate and integrate with the fiber reinforced resin sheets. Then, instead of the heated metal bodies, cooled metal bodies 30 and 31 are brought into contact to simultaneously chill the mold and the laminated and integrated sheets from both outer surfaces.SELECTED DRAWING: Figure 1

Description

本発明は繊維強化樹脂シートと樹脂発泡シートから成る積層複合シートの成形方法に関し、特に、樹脂発泡シートが繊維強化樹脂シートによりサンドイッチされた積層複合シートの成形方法に関する。 The present invention relates to a method for molding a laminated composite sheet composed of a fiber-reinforced resin sheet and a resin foamed sheet, and more particularly to a method for molding a laminated composite sheet in which a resin foamed sheet is sandwiched between fiber-reinforced resin sheets.

繊維強化樹脂は、軽量で機械的強度に優れていることから、車両、船舶、航空機等の躯体や内装材、電子機器の筐体など、高い機械的強度と軽量性が求められる用途分野に用いられることが多くなっている。さらに、繊維強化樹脂成形体に多孔質である樹脂発泡成形体を組み合わせることでより軽量化が図れ、さらにはこの組み合わせによる積層複合成形体は衝撃吸収性にも優れた材料となる。そのため、これまでに繊維強化樹脂成形体と樹脂発泡成形体とから成る積層複合成形体については数多くの提案がなされている。 Since fiber reinforced plastic is lightweight and has excellent mechanical strength, it is used in application fields where high mechanical strength and light weight are required, such as the frame and interior materials of vehicles, ships, aircraft, etc., and the housing of electronic devices. It is becoming more and more popular. Further, by combining the fiber-reinforced resin molded body with the porous resin foam molded body, the weight can be further reduced, and further, the laminated composite molded body obtained by this combination becomes a material having excellent shock absorption. Therefore, many proposals have been made so far for a laminated composite molded product composed of a fiber-reinforced resin molded product and a resin foam molded product.

しかし、樹脂発泡成形体に繊維強化樹脂成形体を積層したサンドイッチ構造の積層複合成形体では、均一な肉厚や平面性を有するシート成形体が得られていなかった。これは、樹脂発泡成形体のブロックから薄肉のシートを切り出すこと困難であり、樹脂発泡成形体を薄肉のシート状に成形するには、シート全体の肉厚と密度をコントロールすることが難しいことがその要因である。一方、繊維強化樹脂成形体と樹脂発泡成形体とを同時に加熱成形することにより、積層複合成形体を成形することも提案されている。 However, in a laminated composite molded product having a sandwich structure in which a fiber-reinforced resin molded product is laminated on a resin foam molded product, a sheet molded product having a uniform wall thickness and flatness has not been obtained. This is because it is difficult to cut out a thin sheet from the block of the resin foam molded product, and it is difficult to control the wall thickness and density of the entire sheet in order to mold the resin foam molded product into a thin sheet. That is the factor. On the other hand, it has also been proposed to form a laminated composite molded product by simultaneously heat-molding a fiber-reinforced resin molded product and a resin foam molded product.

例えば、特許文献1には、未発泡状態の発泡粒子を含んだ熱可塑性樹脂層をコア層として、炭素繊維強化熱可塑性樹脂複合材料をスキン層として金型内に配置して、金型を発泡粒子の発泡開始温度以上に加熱して、熱可塑性樹脂中の発泡粒子を膨張させた後、熱可塑性樹脂の溶融温度以下に金型を冷却することで、炭素繊維強化熱可塑性樹脂サンドイッチ成形体を得ることが記載されている。しかしながら、本文献による製造方法では、コア層とスキン層を同時に加熱し、熱可塑性樹脂を溶融ないし軟化させて成形した後、冷却を行って成形体を製造している。そして、炭素繊維を強化材とするスキン層と強化材を含有せずに発泡するコア層とではその構成が異なり、成形時の加熱による膨張や冷却による収縮の挙動も異なるため、このサンドイッチ成形体では、成形時に発生する内部応力や歪が大きく、シート状に成形する場合には均一な肉厚や平面性が得られず、特に肉厚が薄い場合には均一な肉厚や平面性を有するシート成形体を得ることは困難である。 For example, in Patent Document 1, a thermoplastic resin layer containing unfoamed foam particles is arranged in a mold as a core layer, and a carbon fiber reinforced thermoplastic resin composite material is arranged as a skin layer in the mold to foam the mold. The carbon fiber reinforced thermoplastic resin sandwich molded body is formed by heating the particles above the foaming start temperature to expand the foamed particles in the thermoplastic resin and then cooling the mold below the melting temperature of the thermoplastic resin. It is stated that it will be obtained. However, in the manufacturing method according to the present document, the core layer and the skin layer are heated at the same time, the thermoplastic resin is melted or softened to be molded, and then the molded product is cooled to manufacture the molded product. The structure of the skin layer using carbon fiber as a reinforcing material and the core layer foaming without containing a reinforcing material are different, and the behavior of expansion due to heating and contraction due to cooling during molding is also different. In the case, the internal stress and strain generated during molding are large, and uniform wall thickness and flatness cannot be obtained when molding into a sheet, and particularly when the wall thickness is thin, uniform wall thickness and flatness are obtained. It is difficult to obtain a sheet molded product.

特許文献2には、アクリル樹脂及び熱可塑性ポリエステル樹脂などの合成樹脂から構成される再発泡可能な発泡芯材の表面に、熱可塑性樹脂又は未硬化の熱可塑性樹脂が含浸された繊維強化材を積層した積層体を金型の中で加熱することにより、発泡芯材を発泡させて発泡圧力で繊維強化材を金型に押し付けながら、繊維強化複合体を製造することが記載されている。しかしながら、本文献の製造方法も前記特許文献1と同様に、発泡芯材の発泡成形と繊維強化材の成型とを同時に行っているため、繊維強化複合体として肉厚の薄いシート成形体を製造する場合には、前記と同様に均一な肉厚や平面性を有するシート成形体が得られ難い。 Patent Document 2 describes a fiber reinforced material in which the surface of a refoamable foam core material composed of a synthetic resin such as an acrylic resin and a thermoplastic polyester resin is impregnated with a thermoplastic resin or an uncured thermoplastic resin. It is described that a fiber-reinforced composite is produced by heating a laminated laminate in a mold to foam a foamed core material and pressing the fiber-reinforced material against the mold with foaming pressure. However, as in the manufacturing method of Patent Document 1, since the foam molding of the foam core material and the molding of the fiber reinforced material are performed at the same time in the manufacturing method of this document, a thin sheet molded body is manufactured as a fiber reinforced composite. In this case, it is difficult to obtain a sheet molded product having a uniform wall thickness and flatness as described above.

特許文献3には、繊維強化樹脂材を成形型内に配置し、さらに熱可塑性発泡粒子を成形型内に充填し、次いでこの発泡粒子を発泡させることにより、繊維強化樹脂材と発泡粒子の融着体である樹脂発泡体とを積層一体化させて繊維強化複合発泡体を製造することが記載されている。そして、用いられる熱可塑性発泡粒子の嵩密度や加熱最大膨張率や膨張速度を特定の物を使用している。しかしながら、この製造方法においても、前記特許文献1、2と同様にコア層となる樹脂発泡体と表面層となる繊維強化樹脂材の加熱成型を同時に行っているため、やはり、前記と同様に均一な肉厚や平面性を有する肉厚の薄いシート成形体が得られ難い。 In Patent Document 3, a fiber-reinforced resin material is placed in a molding die, thermoplastic foamed particles are further filled in the molding die, and then the foamed particles are foamed to melt the fiber-reinforced resin material and the foamed particles. It is described that a fiber-reinforced composite foam is produced by laminating and integrating with a resin foam which is a body. Then, a specific material is used for the bulk density, the maximum coefficient of thermal expansion, and the expansion rate of the thermoplastic foam particles used. However, also in this manufacturing method, since the resin foam as the core layer and the fiber reinforced resin material as the surface layer are simultaneously heat-molded as in Patent Documents 1 and 2, they are also uniform as described above. It is difficult to obtain a thin sheet molded product having a large wall thickness and flatness.

特開2012−196899号公報Japanese Unexamined Patent Publication No. 2012-196899 特開2014−208420号公報Japanese Unexamined Patent Publication No. 2014-208420 特開2017−43011号公報JP-A-2017-43011

本発明の課題は、繊維強化樹脂シートをスキン層とし、樹脂発泡シートをコア層とする積層複合シートであって、肉厚が薄い場合でもでも均一な肉厚や平面性を有するシート成形体を得ることのできる製造方法の提供である。 An object of the present invention is a laminated composite sheet having a fiber-reinforced resin sheet as a skin layer and a resin foam sheet as a core layer, and a sheet molded product having a uniform wall thickness and flatness even when the wall thickness is thin. It is the provision of a manufacturing method that can be obtained.

本発明の積層複合シートの製造方法は、高熱伝導率を有する金属から成り、均一かつ同一の肉厚を持つ一対の金型のそれぞれの内面に、成形された二枚の繊維強化樹脂シートを密着させ、該繊維強化樹脂シートの間隙を均一に保持し、かつ該間隙には熱膨張性発泡粒子を均一に混合された発泡性樹脂混合物が充填された状態で前記一対の金型をセットし、次いで該金型のそれぞれの外面に加熱金属体を接触させ両外面から同時に加熱し、前記繊維強化樹脂シートを熱変形させることのない温度であって、充填された前記発泡性樹脂混合物を熱膨張性発泡粒子の熱膨張開始温度以上、最大膨張温度以下に昇温し、熱膨張性発泡粒子を膨張させ、前記発泡性樹脂混合物を樹脂発泡シートに成形すると共に前記繊維強化樹脂シートと積層一体化し、次いで加熱金属体に替えて冷却金属体を接触させ金型及び積層一体化されたシートを両外面から同時に冷却する、繊維強化樹脂シートをスキン層とし、樹脂発泡シートをコア層とする製造方法である。 In the method for producing a laminated composite sheet of the present invention, two molded fiber-reinforced resin sheets are adhered to the inner surfaces of a pair of dies having a uniform and the same wall thickness, which are made of a metal having a high thermal conductivity. The pair of dies are set in a state where the gaps between the fiber-reinforced resin sheets are uniformly maintained and the gaps are filled with a foamable resin mixture in which thermally expandable foam particles are uniformly mixed. Next, the heated metal body is brought into contact with each outer surface of the mold and heated simultaneously from both outer surfaces to thermally expand the filled foamable resin mixture at a temperature at which the fiber-reinforced resin sheet is not thermally deformed. The temperature is raised above the thermal expansion start temperature of the sex foam particles and below the maximum expansion temperature to expand the thermally expandable foam particles, and the foamable resin mixture is molded into a resin foam sheet and laminated and integrated with the fiber reinforced resin sheet. Then, instead of the heated metal body, the cooling metal body is brought into contact with the mold and the laminated and integrated sheet is simultaneously cooled from both outer surfaces. A manufacturing method in which the fiber-reinforced resin sheet is used as the skin layer and the resin foam sheet is used as the core layer. Is.

本発明の製造方法においては、繊維強化樹脂シートと樹脂発泡シートとを積層一体化する前に、予め成形された繊維樹脂強化シートを用いることを特徴とし、繊維強化熱硬化性樹脂基材又は繊維強化熱可塑性樹脂基材を加熱加圧して成形された繊維強化樹脂シートを高熱伝導性の金属から成る金型に配置して、加熱金属体により急速に加熱して、成形された繊維樹脂強化シートを熱変形させることのない温度で、繊維強化樹脂シートの間隙に充填した発泡性樹脂混合物を加熱して樹脂発泡シートに成形すると共に前記繊維強化樹脂シートと積層一体化することを特徴とするものである。 The production method of the present invention is characterized in that a preformed fiber resin reinforced sheet is used before laminating and integrating the fiber reinforced resin sheet and the resin foam sheet, and the fiber reinforced thermosetting resin base material or fiber. A fiber reinforced resin sheet formed by heating and pressurizing a reinforced thermoplastic resin base material is placed in a mold made of a highly thermally conductive metal and rapidly heated by a heated metal body to form a fiber resin reinforced sheet. The foamable resin mixture filled in the gaps between the fiber reinforced resin sheets is heated to form a resin foam sheet at a temperature that does not cause thermal deformation, and is laminated and integrated with the fiber reinforced resin sheet. Is.

前記一対の金型は、共に高熱伝導率を有する金属からなり、均一かつ同一の肉厚を持っており、各金型の外面に加熱金属体を接触させることにより、各金型は短時間で等しく均一に加熱され、金型内の二枚の繊維強化樹脂シートと発泡性樹脂組成物も短時間で均一に加熱される。そして、冷却も冷却金属を各金型外面に押し当てて、両方から同時に冷却を行うため、金型内の繊維強化樹脂シートと発泡性樹脂組成物とに加えられる熱履歴が金型の両方同じとなり、内部歪の発生が抑えられる。 The pair of molds are made of a metal having high thermal conductivity, have a uniform and the same wall thickness, and by bringing a heated metal body into contact with the outer surface of each mold, each mold can be made in a short time. It is heated equally and uniformly, and the two fiber-reinforced resin sheets and the foamable resin composition in the mold are also heated uniformly in a short time. As for cooling, the cooling metal is pressed against the outer surface of each mold to cool the mold at the same time. Therefore, the heat history applied to the fiber-reinforced resin sheet in the mold and the foamable resin composition is the same for both the molds. Therefore, the occurrence of internal distortion is suppressed.

また、前記金型を構成する高熱伝導率を有する金属とは、熱伝導率が100W/m・K(20℃)以上の金属であり、アルミニウム、銅、亜鉛、マグネシウムなどの金属を使用することができるが、アルミニウム又はジュラルミン等のアルミニウムを主成分とする合金を用いることが好ましい。 The metal having a high thermal conductivity constituting the mold is a metal having a thermal conductivity of 100 W / m · K (20 ° C.) or more, and a metal such as aluminum, copper, zinc, or magnesium should be used. However, it is preferable to use an alloy containing aluminum as a main component, such as aluminum or duralmin.

前記発泡性樹脂混合物は、成形された二枚の繊維強化樹脂シートの間隙に充填するために液状又はペースト状、或いは粉体状の樹脂混合物が好ましく、熱硬化性樹脂又は熱可塑性樹脂に熱膨張性発泡粒子が均一に混合された混合物である。熱硬化性樹脂は、通常硬化剤等が加えられた樹脂組成物として用いられ、液状又はペースト状の樹脂組成物として用いられることが多く、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂などの樹脂に熱膨張性発泡粒子を均一に混合して発泡性樹脂混合物とすることができる。熱可塑性樹脂を用いる場合は、粉砕又は乳化懸濁重合により得られた粒子による粉体状樹脂に熱膨張性発泡粒子を配合して、ブレンダーにより混合することにより発泡性樹脂混合物とすることができる。又、ポリ塩化ビニル(PVC)の微粉末樹脂にDOPなどの可塑剤を配合した塩ビペーストも使用することもできる。この塩ビペーストは加熱することにより、微粉末樹脂が可塑剤を吸収して固化される。さらに、発泡性樹脂混合物には充填材を加えることもでき、各種の無機粉末やミルドファイバーなど加えることができる。 The foamable resin mixture is preferably a liquid, paste-like, or powder-like resin mixture for filling the gap between the two molded fiber-reinforced resin sheets, and thermally expands into a thermosetting resin or a thermoplastic resin. It is a mixture in which the plastic foam particles are uniformly mixed. Thermosetting resins are usually used as resin compositions to which a curing agent or the like is added, and are often used as liquid or paste-like resin compositions, and are unsaturated polyester resins, epoxy resins, phenol resins, vinyl ester resins. The heat-expandable foamed particles can be uniformly mixed with the resin such as, to obtain a foamable resin mixture. When a thermoplastic resin is used, a foamable resin mixture can be obtained by blending heat-expandable foamed particles with a powdery resin made of particles obtained by pulverization or emulsion suspension polymerization and mixing them with a blender. .. Further, a vinyl chloride paste in which a plasticizer such as DOP is mixed with a fine powder resin of polyvinyl chloride (PVC) can also be used. When this PVC paste is heated, the fine powder resin absorbs the plasticizer and solidifies. Further, a filler can be added to the foamable resin mixture, and various inorganic powders, milled fibers and the like can be added.

また、発泡性樹脂混合物の作成において、液状又はペースト状の熱硬化性樹脂又は熱可塑性樹脂に熱膨張性発泡粒子を均一に混合する際に、発泡性樹脂混合物中に発生した気泡を脱泡することなく積層複合シートの製造に供することができる。この場合には、混合作業で発生した気泡は、二枚の繊維強化樹脂シートの間隙に充填され金型内にて加熱されることにより膨張し、樹脂発泡シートにおいて、熱膨張性発泡粒子にて形成される気泡に加算することができる。 Further, in the preparation of the foamable resin mixture, when the heat-expandable foamed particles are uniformly mixed with the liquid or paste-like thermosetting resin or the thermoplastic resin, the bubbles generated in the foamable resin mixture are defoamed. It can be used for manufacturing a laminated composite sheet without any problem. In this case, the bubbles generated in the mixing operation are filled in the gaps between the two fiber-reinforced resin sheets and expanded by being heated in the mold, and in the resin foam sheet, the heat-expandable foam particles are used. It can be added to the bubbles formed.

また、熱膨張性発泡粒子とは、粒子の表面を形成する殻の内部に発泡膨張剤を内封する粒子であり、加熱されることにより発泡膨張剤が気化し、その蒸気圧により軟化した殻が押し広げられ、粒子が膨張し、その体積が数倍〜100倍程度となるものである。殻は合成樹脂などの被膜形成物質から形成され、発泡膨張剤としては揮発性の有機溶剤が用いられている。そして、熱膨張性発泡粒子が加熱され、殻が軟化すると共に気化した発泡膨張剤の蒸気圧により殻を押し広げられ、熱膨張性発泡粒子が膨張を始める温度が熱膨張開始温度であり、さらに昇温されることにより軟化し肉厚が薄くなった殻を、気化した発泡膨張剤が透過し外部に拡散して、熱膨張性発泡粒子が収縮を始める寸前の温度が最大膨張温度である。 The heat-expandable foamed particles are particles in which a foaming expansion agent is enclosed inside a shell forming the surface of the particles. The foaming expansion agent is vaporized by heating, and the shell is softened by the vapor pressure thereof. Is expanded, the particles expand, and the volume becomes several to 100 times. The shell is formed from a film-forming substance such as a synthetic resin, and a volatile organic solvent is used as the foaming agent. Then, the temperature at which the heat-expandable foam particles are heated, the shell is softened, the shell is expanded by the vapor pressure of the vaporized foam-expanding agent, and the heat-expandable foam particles start to expand is the thermal expansion start temperature, and further. The maximum expansion temperature is the temperature at which the vaporized foam expansion agent permeates and diffuses to the outside through the shell that has been softened and the wall thickness has become thin due to the temperature rise, and the thermally expandable foam particles begin to shrink.

上記の熱膨張性発泡粒子は、熱可塑性樹脂から成る殻の内部に揮発性溶剤が内封されている粒子であることが好ましく、平均粒径は5〜300μm、好ましくは5〜150μmであることが好ましい。殻を構成する熱可塑性樹脂としてはポリ塩化ビニリデン系樹脂、アクリル系樹脂、AN系共重合体系樹脂などを使用することができ、揮発性溶剤としては低沸点炭化水素などを使用することができる。 The above-mentioned heat-expandable foamed particles are preferably particles in which a volatile solvent is sealed inside a shell made of a thermoplastic resin, and have an average particle size of 5 to 300 μm, preferably 5 to 150 μm. Is preferable. As the thermoplastic resin constituting the shell, a polyvinylidene chloride resin, an acrylic resin, an AN copolymer resin or the like can be used, and as the volatile solvent, a low boiling point hydrocarbon or the like can be used.

前記繊維強化樹脂シートは、繊維強化熱硬化性樹脂基材又は繊維強化熱可塑性樹脂基材を加熱加圧して成形されたシートである。これらの樹脂基材は、マトリクス樹脂として熱硬化性樹脂又は熱可塑性樹脂を、ガラス繊維、炭素繊維、アラミド繊維などの強化用繊維を一方向に引きそろえてロービングやヤーンとした繊維束や、繊維を織編したクロスに含浸させたものや、強化用繊維をカットしたチョップドファイバーとしてマトリックス樹脂に混合したものを樹脂基材とすることができる。 The fiber-reinforced resin sheet is a sheet formed by heating and pressurizing a fiber-reinforced thermosetting resin base material or a fiber-reinforced thermoplastic resin base material. These resin base materials are fiber bundles or fibers in which thermosetting resin or thermoplastic resin is used as a matrix resin, and reinforcing fibers such as glass fiber, carbon fiber, and aramid fiber are arranged in one direction to form roving or yarn. The resin base material can be a cloth impregnated with a woven or knitted cloth or a chopped fiber obtained by cutting a reinforcing fiber and mixed with a matrix resin.

上記の樹脂基材に用いられるマトリックス樹脂としては、各種の熱硬化性樹脂又は熱可塑性樹脂を用いることができる。熱硬化性樹脂は、前記したように通常硬化剤等が加えられた液状又はペースト状樹脂組成物として用いられることが多く、強化用繊維に含浸させ、繊維強化熱硬化性樹脂基材とすることができる。この場合、熱硬化性樹脂組成物を半硬化させるなどして、プリプリグシートとして用いることができ、各種のプリプレグシートとしても市販されている。マトリックス樹脂として熱可塑性樹脂を用いた繊維強化熱可塑性樹脂基材もスタンパブルシートとして市販されており、これらの樹脂基材を加熱加圧して繊維強化樹脂シートに成形することもできる。さらには、熱可塑性樹脂であるフェノキシ樹脂に架橋剤として酸無水物を加えた樹脂組成物をマトリクス樹脂として用いたプリプレグシートも用いることができる。これらの基材を用いた繊維強化樹脂シートとしては肉厚0.05〜1.0mmのシートに成形したものが好ましく用いられる。 As the matrix resin used for the above resin base material, various thermosetting resins or thermoplastic resins can be used. As described above, the thermosetting resin is usually used as a liquid or paste-like resin composition to which a curing agent or the like is added, and is impregnated with reinforcing fibers to form a fiber-reinforced thermosetting resin base material. Can be done. In this case, the thermosetting resin composition can be semi-cured and used as a prepreg sheet, and various prepreg sheets are also commercially available. Fiber-reinforced thermoplastic resin base materials using a thermoplastic resin as the matrix resin are also commercially available as stampable sheets, and these resin base materials can be heated and pressed to form a fiber-reinforced resin sheet. Further, a prepreg sheet using a resin composition obtained by adding an acid anhydride as a cross-linking agent to a phenoxy resin which is a thermoplastic resin as a matrix resin can also be used. As the fiber-reinforced resin sheet using these base materials, a sheet formed into a sheet having a wall thickness of 0.05 to 1.0 mm is preferably used.

また、繊維強化樹脂シートを熱変形させることのない温度としては、荷重たわみ温度の高荷重下(1.80Mpa)の温度を基準とすることができ、この温度に達しない範囲の温度である。 Further, as the temperature at which the fiber-reinforced resin sheet is not thermally deformed, the temperature under a high load (1.80 Mpa) of the deflection temperature under load can be used as a reference, and is a temperature within a range not reaching this temperature.

本発明の製造方法は、以上のような構成となっているため、本方法により成形された積層複合シートは肉厚が数mm以下の場合であっても、均一な肉厚が得られ、内部歪に伴う反りの発生もなく均一な平面性を有するシート成形体とすることができる。 Since the manufacturing method of the present invention has the above-mentioned structure, the laminated composite sheet molded by this method can obtain a uniform wall thickness even when the wall thickness is several mm or less, and the inside can be obtained. A sheet molded product having uniform flatness without the occurrence of warpage due to strain can be obtained.

繊維強化樹脂シートの製造法を示す断面模式説明図。The cross-sectional schematic explanatory drawing which shows the manufacturing method of the fiber reinforced resin sheet. 成形したシート形状が湾曲した曲面である場合の金型セットの断面模式説明図。FIG. 6 is a schematic cross-sectional explanatory view of a mold set when the formed sheet shape is a curved curved surface.

以下、本発明を実施するための形態に付、さらに詳細に説明を行う。 Hereinafter, the embodiments for carrying out the present invention will be described in more detail.

図1は、本発明の製造方法を断面模式説明図として示した。(A)は、成形済みの二枚の繊維強化樹脂シート1の間隙に、発泡性樹脂混合物2が充填され、パーティング面13でセットされた一対の金型10、11の内面で形成されるキャビティー12に配置された工程を模式的に示している。(B)は、セットされた一対の金型10、11のそれぞれの外面10a、11aに加熱金属体20、21を接触させて両外面から同時に加熱することにより、発泡性樹脂混合物2を樹脂発泡シート3に成形すると共に繊維強化樹脂シート1と積層一体化する工程を模式的に示している。(C)は、加熱金属体20、21に替えて、冷却金属体30、31を接触させて両外面から同時に冷却し、繊維強化樹脂シート1と樹脂発泡シート3が積層一体化された積層複合シート100の成形を完了する工程を模式的に示している。 FIG. 1 shows the manufacturing method of the present invention as a schematic cross-sectional explanatory view. In (A), the foamable resin mixture 2 is filled in the gap between the two molded fiber-reinforced resin sheets 1 and formed on the inner surfaces of the pair of dies 10 and 11 set on the parting surface 13. The process arranged in the cavity 12 is schematically shown. In (B), the foamable resin mixture 2 is resin-foamed by bringing the heated metal bodies 20 and 21 into contact with the outer surfaces 10a and 11a of the pair of molds 10 and 11 set and heating them simultaneously from both outer surfaces. The process of molding into the sheet 3 and laminating and integrating with the fiber reinforced resin sheet 1 is schematically shown. In (C), instead of the heated metal bodies 20 and 21, the cooling metal bodies 30 and 31 are brought into contact with each other and cooled simultaneously from both outer surfaces, and the fiber reinforced resin sheet 1 and the resin foam sheet 3 are laminated and integrated. The process of completing the molding of the sheet 100 is schematically shown.

工程(A)に示される左右一対の金型10、11の内部に配置された成型済みの二枚の繊維強化樹脂シート1と、それらの間隙に充填された発泡性樹脂混合物2は、工程(B)にて、左右一対の金型10、11を経由して、加熱金属体20、21により短時間で均等に加熱され、工程(C)にて、左右一対の金型10、11を経由して、冷却金属体30、31により短時間で均等に冷却されることにより、成形された積層複合シート100は内部歪の発生による反りのない均一の平面性を有し、肉厚が均一のシート成形体とすることができる。 The two molded fiber-reinforced resin sheets 1 arranged inside the pair of left and right dies 10 and 11 shown in the step (A) and the foamable resin mixture 2 filled in the gaps between them are formed by the step (A). In B), it is heated evenly in a short time by the heated metal bodies 20 and 21 via the pair of left and right dies 10 and 11, and in the step (C), it passes through the pair of left and right dies 10 and 11. Then, by being uniformly cooled by the cooling metal bodies 30 and 31 in a short time, the molded laminated composite sheet 100 has a uniform flatness without warpage due to the occurrence of internal strain, and the wall thickness is uniform. It can be a sheet molded product.

工程(A)において、成形済みの二枚の繊維強化樹脂シート1の間隙に、発泡性樹脂混合物2を充填し、パーティング面13でセットされた一対の金型10、11の内面で形成されるキャビティー12に配置する。具体的な手順としては、金型10、11の内面に繊維強化樹脂シート1を密着配置し、これらの樹脂シート内面に予め均一に混合された発泡性樹脂混合物2を塗布などにより配置し、次いで、金型10、11をパーティング面13で密着させてセットする。キャビティー12は、金型10、11をセットした時に、発泡性樹脂混合物2を充填する繊維強化樹脂シート1の間隙が幅tとなるように調整されている。この場合、必要によりキャビティー12に配置される繊維強化樹脂シート1の内側周辺部に肉厚tのスペーサーを配置して、繊維強化樹脂シート1の間隙幅tを維持してもよい。また、金型10、11のセットに際して、間隙幅tに合わせるために、過剰な発泡性樹脂を金型外に排出したり、不足する場合には追加したりして、発泡性樹脂混合物2の充填量の調整を行う。この間隙幅tは、成形後の樹脂発泡シート3の肉厚と一致する。間隙幅tは0.3〜10mmの範囲に調整することが好ましい。 In the step (A), the foamable resin mixture 2 is filled in the gap between the two molded fiber-reinforced resin sheets 1 and formed on the inner surfaces of the pair of dies 10 and 11 set on the parting surface 13. It is placed in the cavity 12. As a specific procedure, the fiber-reinforced resin sheet 1 is closely arranged on the inner surfaces of the molds 10 and 11, and the foamable resin mixture 2 uniformly mixed in advance is arranged on the inner surface of these resin sheets by coating or the like, and then arranged. , Molds 10 and 11 are brought into close contact with each other on the parting surface 13 and set. The cavity 12 is adjusted so that the gap between the fiber-reinforced resin sheets 1 filled with the foamable resin mixture 2 has a width t when the molds 10 and 11 are set. In this case, if necessary, a spacer having a wall thickness t may be arranged in the inner peripheral portion of the fiber reinforced resin sheet 1 arranged in the cavity 12 to maintain the gap width t of the fiber reinforced resin sheet 1. Further, when setting the molds 10 and 11, in order to match the gap width t, excess foamable resin is discharged to the outside of the mold, or if insufficient, it is added to the foamable resin mixture 2. Adjust the filling amount. This gap width t corresponds to the wall thickness of the resin foam sheet 3 after molding. The gap width t is preferably adjusted in the range of 0.3 to 10 mm.

このようにして、二枚の繊維強化樹脂シート1の間隙に発泡性樹脂混合物2の配置を行うには、発泡性樹脂混合物2が液状又はペースト状、或いは粉体状の樹脂混合物であることが好ましい。このような混合物としては、前記したように、熱硬化性樹脂又は熱可塑性樹脂に熱膨張性発泡粒子が均一に混合された混合物が用いられる。熱硬化性樹脂は硬化剤等が加えられた樹脂組成物として用いられ、液状又はペースト状の樹脂組成物として用いられることが多く、好ましく用いられる。熱可塑性樹脂を用いる場合は、粉砕又は乳化懸濁重合により得られた粒子による粉体状樹脂に熱膨張性発泡粒子を配合して、ブレンダーにより混合することにより発泡性樹脂混合物とすることができる。さらに、前記した塩ビペーストのようにペースト状とすることもできる。これらの発泡性樹脂混合物は加熱することにより樹脂発泡シートとすることができる。 In order to arrange the foamable resin mixture 2 in the gap between the two fiber-reinforced resin sheets 1 in this way, the foamable resin mixture 2 must be a liquid, paste, or powder resin mixture. preferable. As such a mixture, as described above, a mixture in which thermosetting resin or thermoplastic resin is uniformly mixed with heat-expandable foamed particles is used. The thermosetting resin is used as a resin composition to which a curing agent or the like is added, and is often used as a liquid or paste-like resin composition, and is preferably used. When a thermoplastic resin is used, a foamable resin mixture can be obtained by blending heat-expandable foamed particles with a powdery resin made of particles obtained by pulverization or emulsion suspension polymerization and mixing them with a blender. .. Further, it can be made into a paste like the above-mentioned PVC paste. These foamable resin mixtures can be heated to form a resin foam sheet.

そして、成型された積層複合シート100は内部歪の発生を防ぐためには、工程(B)において、一対の金型10、11は、接触する加熱金属体20、21から伝導される熱を短時間で左右同等かつ均一に、内部に配置された二枚の繊維強化樹脂シート1と間隙に充填された発泡性樹脂混合物2に伝導する必要があり、さらには、工程(C)において、工程(B)で加熱された成形体から、短時間で左右同等にかつ均一に冷却金属体30、31に熱を伝導する必要がある。そのため、一対の金型10、11は高熱伝導率を有する金属から成り、それぞれ均一かつ同一の肉厚を持つ必要がある。図1に示す金型10、11はそれぞれの外面10a、11aと内面10b、11bとの距離は肉厚dで統一され、短時間で同時に熱の伝動を行うためには薄肉板が好ましく、d=2〜10mmの肉厚の金属が用いられる。金属としては前記したように、アルミニウム又はジュラルミン等のアルミニウムを主成分とする合金が好ましく用いられ、その他、100W/m・K以上の熱伝導率を有する金属を用いることができ、銅、亜鉛、マグネシウムなどの金属を例示することができる。 Then, in order to prevent the occurrence of internal strain in the molded laminated composite sheet 100, in the step (B), the pair of molds 10 and 11 dissipate heat conducted from the heated metal bodies 20 and 21 in contact with each other for a short time. It is necessary to conduct the heat to the two fiber-reinforced resin sheets 1 arranged inside and the foamable resin mixture 2 filled in the gaps equally and uniformly on the left and right sides, and further, in the step (C), the step (B). ), It is necessary to conduct heat equally and uniformly to the cooling metal bodies 30 and 31 in a short time. Therefore, the pair of molds 10 and 11 are made of a metal having high thermal conductivity, and each of them needs to have a uniform and the same wall thickness. In the molds 10 and 11 shown in FIG. 1, the distances between the outer surfaces 10a and 11a and the inner surfaces 10b and 11b are unified by the wall thickness d, and a thin plate is preferable in order to simultaneously transfer heat in a short time. = A metal with a wall thickness of 2 to 10 mm is used. As the metal, as described above, an alloy containing aluminum as a main component such as aluminum or duralumin is preferably used, and other metals having a thermal conductivity of 100 W / m · K or more can be used, such as copper, zinc, and copper. A metal such as magnesium can be exemplified.

上記のように、金型10、11では熱の伝導を短時間でかつ均一に行うために、薄い肉厚の金属が用いられるが、金型内に配置される発泡性樹脂混合物2は、成形された二枚の繊維強化樹脂シート1で挟み込んで配置されるため、金型10、11の肉厚dは薄くても、成形品の形状を与える金型としての機能を充分発揮することができる。 As described above, in the molds 10 and 11, a thin metal is used in order to conduct heat uniformly in a short time, but the foamable resin mixture 2 arranged in the mold is molded. Since the molds 10 and 11 are arranged so as to be sandwiched between the two fiber-reinforced resin sheets 1, even if the wall thickness d of the molds 10 and 11 is thin, the function as a mold that gives the shape of the molded product can be sufficiently exhibited. ..

工程(B)、(C)における加熱と冷却は、上記した構成の金型を用いて、それぞれ左右の加熱金属体20、21と冷却金属体30、31をそれぞれ金型10、11の外面に密着させ、熱を伝導することで行うことにより、それぞれの金型10、11及び内部に配置された二枚の繊維強化樹脂シート1と発泡性樹脂混合物2とを短時間でかつ均一に加熱と冷却を行っている。この加熱金属体20、21と冷却金属体30、31に用いられる金属は、金型10、11のようには限定されず、蓄熱と密着による放熱ができればよく鉄鋼などの金属ブロックを用いることができる。しかしながら、左右均等に熱供与や熱除去がなされることが必要であり、これらの金属体は左右で同一形状が好ましく、同一の熱容量であることが好ましい。そして、表面は金型との密着面は密着による熱伝導を妨げないように平滑な面であることが好ましい。 For heating and cooling in the steps (B) and (C), the left and right heated metal bodies 20 and 21 and the cooling metal bodies 30 and 31, respectively, are placed on the outer surfaces of the molds 10 and 11, respectively, using the mold having the above configuration. By bringing them into close contact with each other and conducting heat, the two molds 10 and 11 and the two fiber-reinforced resin sheets 1 arranged inside and the foamable resin mixture 2 are heated uniformly in a short time. It is cooling. The metals used for the heated metal bodies 20 and 21 and the cooled metal bodies 30 and 31 are not limited to the molds 10 and 11, and a metal block such as steel may be used as long as heat can be stored and heat can be dissipated by close contact. it can. However, it is necessary to provide and remove heat evenly on the left and right sides, and these metal bodies preferably have the same shape on the left and right sides, and preferably have the same heat capacity. The surface that is in close contact with the mold is preferably a smooth surface so as not to interfere with heat conduction due to close contact.

上記の加熱金属体20、21は、金型10、11に密着させる前に予め加熱して、必要な温度としておく必要があるが、加熱金属体の加熱手段は、加熱炉内での加熱、高周波誘導加熱、輻射加熱などの公知の手段を用いることができる。そして、金属体に電熱ヒータや熱媒の導管などの加熱手段を設けてもよい。一方、冷却金属体30、31は室温としておいてもよいが、効率よく冷却するために、予め冷却しておくことも有効であり、冷却金属体に冷却水や冷却オイル用の導管を設けてもよい。しかし、加熱又は冷却金属体にこれらの加熱・冷却手段を設けた場合には、金型との密着面では温度のバラツキがないように調整する必要があり、加熱又は冷却金属体は加熱冷却手段を含めて全体として左右同一の熱容量とすることで、加熱手段により与えられる熱量又は冷却手段により除去される熱量は左右の金型において等量の熱量となる。 The heated metal bodies 20 and 21 need to be preheated to a required temperature before being brought into close contact with the molds 10 and 11, but the heating means for the heated metal bodies is heating in a heating furnace. Known means such as high frequency induction heating and radiant heating can be used. Then, the metal body may be provided with a heating means such as an electric heater or a conduit for a heat medium. On the other hand, the cooled metal bodies 30 and 31 may be kept at room temperature, but it is also effective to cool them in advance in order to cool them efficiently. The cooled metal bodies are provided with conduits for cooling water and cooling oil. May be good. However, when these heating / cooling means are provided on the heating or cooling metal body, it is necessary to adjust the contact surface with the mold so that there is no temperature variation, and the heating or cooling metal body is the heating / cooling means. By making the left and right heat capacities the same as a whole including the above, the amount of heat given by the heating means or the amount of heat removed by the cooling means is the same amount in the left and right molds.

上記の金型10、11と加熱金属体20、21を用いて、工程(A)にてセットした成形済みの二枚の繊維強化樹脂シート1と発泡性樹脂混合物2を、(B)において、加熱金属体20、21を左右の金型10、11の外面10a、11aに密着させることにより、金型10、11を介して熱伝導により加熱し、繊維強化樹脂シート1を熱変形させることのない温度であって、充填された前記発泡性樹脂混合物2を熱膨張性発泡粒子の熱膨張開始温度以上、最大膨張温度以下に昇温する。この昇温により熱膨張性発泡粒子を膨張させ、前記発泡性樹脂混合物2を樹脂発泡シート3に成形すると共に前記繊維強化樹脂シート1と積層一体化する。 Using the above dies 10 and 11 and the heated metal bodies 20 and 21, the two molded fiber-reinforced resin sheets 1 and the foamable resin mixture 2 set in the step (A) were placed in (B). By bringing the heated metal bodies 20 and 21 into close contact with the outer surfaces 10a and 11a of the left and right dies 10 and 11, the fiber reinforced resin sheet 1 is thermally deformed by being heated by heat conduction through the dies 10 and 11. The temperature of the filled foamable resin mixture 2 is raised to a temperature equal to or higher than the thermal expansion start temperature of the heat-expandable foam particles and to a temperature equal to or lower than the maximum expansion temperature. The heat-expandable foamed particles are expanded by this temperature rise, and the foamable resin mixture 2 is formed into a resin foamed sheet 3 and laminated and integrated with the fiber-reinforced resin sheet 1.

次いで、工程(C)において、加熱金属体20、21に替えて冷却金属体30、31を左右の金型10、11の外面10a、11aに密着させることにより、金型10、11を介して除熱し冷却し、冷却後、金型10、11を開き、繊維強化樹脂シート1をスキン層とし、樹脂発泡シート3をコア層とする積層複合シート100を取り出す。 Next, in the step (C), the cooling metal bodies 30 and 31 are brought into close contact with the outer surfaces 10a and 11a of the left and right molds 10 and 11 instead of the heated metal bodies 20 and 21, and the cooling metal bodies 30 and 31 are brought into close contact with each other through the molds 10 and 11. After removing heat and cooling and cooling, the molds 10 and 11 are opened, and the laminated composite sheet 100 having the fiber reinforced resin sheet 1 as the skin layer and the resin foam sheet 3 as the core layer is taken out.

前記の熱変形させることのない温度としては、繊維強化樹脂シート1の荷重たわみ温度(熱変形温度)を基準として設定され、この荷重たわみ温度より低い温度、好ましくは5℃以上低い温度である。したがって工程(B)において、前記発泡性樹脂混合物は、この熱変形させることのない温度であって、この組成物に混合された熱膨張性発泡粒子の熱膨張開始温度以上、最大膨張温度以下に昇温される。荷重たわみ温度はJIS K 7191−1〜3により規定される。 The temperature that does not cause thermal deformation is set based on the deflection temperature under load (heat distortion temperature) of the fiber-reinforced resin sheet 1, and is a temperature lower than this deflection temperature under load, preferably 5 ° C. or higher. Therefore, in the step (B), the effervescent resin mixture has a temperature that does not cause thermal deformation, and is set to a temperature equal to or higher than the thermal expansion start temperature of the thermally expandable foam particles mixed in the composition and not more than the maximum expansion temperature. The temperature is raised. The deflection temperature under load is specified by JIS K 7191-1 to 3.

前記したように、繊維強化樹脂シート1は、マトリクス樹脂としての熱硬化性樹脂又は熱可塑性樹脂を、強化用繊維に含浸させたり、強化用繊維をカットしたチョップドファイバーをマトリックス樹脂に混合したりした繊維強化熱硬化性樹脂基材又は繊維強化熱可塑性樹脂基材を加熱加圧して成形されたシートであり、肉厚0.02〜1.0mmの範囲のシートを用いることができる。 As described above, the fiber-reinforced resin sheet 1 is obtained by impregnating the reinforcing fibers with a thermosetting resin or a thermoplastic resin as a matrix resin, or mixing chopped fibers obtained by cutting the reinforcing fibers with the matrix resin. It is a sheet formed by heating and pressurizing a fiber-reinforced thermosetting resin base material or a fiber-reinforced thermoplastic resin base material, and a sheet having a wall thickness in the range of 0.02 to 1.0 mm can be used.

繊維強化樹脂シート1は、繊維強化されているためマトリクス樹脂自体に比べて充分高い荷重たわみ温度を確保でき、繊維強化熱硬化性樹脂シートの場合は、工程(B)において、発泡性樹脂混合物2に混合される熱膨張性発泡粒子の熱膨張開始温度より高い温度に、発泡性樹脂混合2を加熱することができ、発泡性樹脂混合物2を樹脂発泡シート3とすることができる。また、熱可塑性樹脂をマトリクス樹脂とする繊維強化熱可塑性樹脂シートの場合でも、シートが熱変形しない温度で、発泡性樹脂混合物に混合される熱膨張性発泡粒子の熱膨張開始温度より高い温度が確保できる。 Since the fiber-reinforced resin sheet 1 is fiber-reinforced, it can secure a sufficiently high deflection temperature under load as compared with the matrix resin itself. In the case of the fiber-reinforced thermosetting resin sheet, the foamable resin mixture 2 is in step (B). The foamable resin mixture 2 can be heated to a temperature higher than the heat distortion start temperature of the heat-expandable foam particles mixed in, and the foamable resin mixture 2 can be used as the resin foam sheet 3. Further, even in the case of a fiber-reinforced thermoplastic resin sheet using a thermoplastic resin as a matrix resin, the temperature at which the sheet does not undergo thermal deformation is higher than the thermal expansion start temperature of the heat-expandable foam particles mixed in the foamable resin mixture. Can be secured.

また、発泡性樹脂混合物2に混合される熱膨張性発泡粒子は、前記したように粒子の表面を形成する殻の内部に発泡膨張剤を内封する粒子であり、熱膨張性マイクロカプセル(又は熱膨張性マイクロスフェア)として各種のタイプが市販されており、熱膨張開始温度が80〜110℃、最大膨張温度が115〜140℃の低中温度膨張タイプから熱膨張開始温度が115〜140℃、最大膨張温度が170〜200℃の中高温度膨張タイプがあり、さらには、熱膨張開始温度が180〜230℃、最大膨張温度が210〜275℃の超高温度膨張タイプなども市販されている。そのため、用いる繊維強化樹脂シートの荷重たわみ温度を考慮して、熱膨張性発泡粒子のタイプを選択して、発泡性樹脂混合物2の加熱温度(金型の加熱温度)を選択することができる。 Further, the heat-expandable foamed particles mixed in the foamable resin mixture 2 are particles in which a foam-expanding agent is enclosed inside a shell forming the surface of the particles as described above, and are heat-expandable microcapsules (or). Various types are commercially available as thermal expansion microspheres), and the thermal expansion start temperature is 115 to 140 ° C from the low to medium temperature expansion type with a thermal expansion start temperature of 80 to 110 ° C and a maximum expansion temperature of 115 to 140 ° C. There is a medium-high temperature expansion type with a maximum expansion temperature of 170 to 200 ° C, and an ultra-high temperature expansion type with a thermal expansion start temperature of 180 to 230 ° C and a maximum expansion temperature of 210 to 275 ° C is also commercially available. .. Therefore, the type of heat-expandable foamed particles can be selected in consideration of the deflection temperature under load of the fiber-reinforced resin sheet to be used, and the heating temperature of the foamable resin mixture 2 (heating temperature of the mold) can be selected.

繊維強化熱硬化性樹脂基材又は繊維強化熱可塑性樹脂基材に用いられる強化用繊維としてはガラス繊維、炭素繊維、アラミド繊維などが好ましく用いられるが、そのボロン繊維、セラミック繊維、炭化ケイ素繊維等であってもよい。また、マトリクス樹脂としての熱硬化性樹脂は、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、アリル樹脂、メラミン樹脂、フェノール樹脂、フラン樹脂など、同じく熱可塑性樹脂は、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアミド(PA)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリヒドロキシポリエーテル(フェノキシ樹脂)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)などが例示できる。 As the reinforcing fiber used for the fiber-reinforced thermocurable resin base material or the fiber-reinforced thermoplastic resin base material, glass fiber, carbon fiber, aramid fiber and the like are preferably used, and the boron fiber, ceramic fiber, silicon carbide fiber and the like are preferably used. It may be. The thermosetting resin as the matrix resin is epoxy resin, unsaturated polyester resin, silicone resin, allyl resin, melamine resin, phenol resin, furan resin, etc. Similarly, the thermoplastic resin is polypropylene (PP), polyethylene terephthalate ( PET), polybutylene terephthalate (PBT), polyamide (PA), polyacetal (POM), polycarbonate (PC), polyhydroxypolyether (phenoxy resin), acrylonitrile-butadiene-styrene copolymer (ABS), polyphenylene sulfide (PPS) ), Polyetheretherketone (PEEK) and the like can be exemplified.

図1においては、積層複合シートとして成形したシート形状が平面状である例を示したが、シートは平面状だけでなく、図2に示すように成形したシート形状が曲面状であってもよい。この場合は図2の(D)に示すように、繊維強化樹脂シート4、5を曲面状に成形し、同様な曲面を有する金型14、15を用いる。金型14、15のそれぞれの内面14b、15bは、曲面の凹面側となる繊維強化樹脂シート4の曲面、曲面の凸面側なる繊維強化樹脂シート5の曲面と一致している。図1と同様に、繊維強化樹脂シート4、5の間隙に、発泡性樹脂混合物2を充填し、次いで(E)に示すように、金型14、15をパーティング面17で密着させてセットする。この場合、キャビティー16は、発泡性樹脂組成物2を充填する繊維強化樹脂シート4、5の間隙は間隙幅tとなるように設計されている。金型14、15のそれぞれの外面14a、15aと内面14b、15bとの距離である金型の肉厚はdで統一されているのは図1と同様である。 In FIG. 1, an example in which the sheet shape formed as a laminated composite sheet is flat is shown, but the sheet may be not only flat but also the sheet shape formed as shown in FIG. 2 may be curved. .. In this case, as shown in FIG. 2D, the fiber reinforced resin sheets 4 and 5 are formed into a curved surface, and the dies 14 and 15 having the same curved surface are used. The inner surfaces 14b and 15b of the molds 14 and 15 coincide with the curved surface of the fiber reinforced resin sheet 4 on the concave side of the curved surface and the curved surface of the fiber reinforced resin sheet 5 on the convex side of the curved surface. Similar to FIG. 1, the gaps between the fiber-reinforced resin sheets 4 and 5 are filled with the foamable resin mixture 2, and then the dies 14 and 15 are brought into close contact with each other on the parting surface 17 as shown in (E). To do. In this case, the cavity 16 is designed so that the gap between the fiber-reinforced resin sheets 4 and 5 filled with the foamable resin composition 2 has a gap width t. Similar to FIG. 1, the wall thickness of the mold, which is the distance between the outer surfaces 14a and 15a of the molds 14 and 15, and the inner surfaces 14b and 15b, is unified with d.

その他、金型14、15の構成、作用は、図1の金型10、11に関して説明したとおりであり、繊維強化樹脂シート4、5についても前記の繊維強化樹脂シート1と同様であり、曲面状に成形されているか、平面状に成形されているかの相異だけである。そして、加熱金属体、冷却金属体も密着面は金型の外面と一致する曲面とされる。 In addition, the configurations and operations of the dies 14 and 15 are as described with respect to the dies 10 and 11 of FIG. 1, and the fiber reinforced resin sheets 4 and 5 are the same as those of the fiber reinforced resin sheet 1 and have a curved surface. It is only the difference between being molded in a shape and being molded in a flat shape. The contact surface of the heated metal body and the cooled metal body is a curved surface that matches the outer surface of the mold.

以下、本発明を具体的に説明するために実施例を示す。 Hereinafter, examples will be shown in order to specifically explain the present invention.

[実施例1]
繊維強化樹脂基材として、カーボンファーバークロス(炭素繊維織布)に130℃硬化タイプのエポキシ樹脂ワニスを含浸させ作成した炭素繊維強化エポキシ樹脂プリプリグ(樹脂含有率33%)を用い、熱プレス成形にて肉厚0.15mmのシートに成形して繊維強化樹脂シートとした。この繊維強化樹脂シートの荷重たわみ温度は200℃以上であった。
熱膨張性発泡粒子として、市販の熱膨張性マイクロカプセル「エクスパンセル(登録商標、アクゾノーベルケミカルズ社)タイプ031−40、熱膨張開始温度80〜95℃、最大膨張温度120〜135℃、平均粒子径10-16μm」2重量部を、脂肪族ポリアミンを硬化剤とした常温硬化タイプのエポキシ樹脂ワニス100重量部に混合した発泡性樹脂混合物を2枚の上記繊維樹脂強化樹脂シートに塗布し、この2枚の樹脂シートの塗布面を内側にして重ね合わせ、両樹脂シートの間隙tを0.5mmとして、図1(A)に示すように、平板状の肉厚dが3mmの左右一対のアルミニウム製金型を用いて、キャビティー内に配置して左右の金型をセットした。
[Example 1]
As a fiber reinforced resin base material, carbon fiber reinforced epoxy resin preprig (resin content 33%) prepared by impregnating carbon fiber cloth (carbon fiber woven fabric) with a 130 ° C-curing type epoxy resin varnish is used for hot press molding. It was formed into a sheet having a wall thickness of 0.15 mm to obtain a fiber reinforced resin sheet. The deflection temperature under load of this fiber reinforced resin sheet was 200 ° C. or higher.
As the heat-expandable foamed particles, commercially available heat-expandable microcapsules "Expansel (registered trademark, Axonobel Chemicals) type 031-40, thermal expansion start temperature 80-95 ° C, maximum expansion temperature 120-135 ° C, average A foamable resin mixture obtained by mixing 2 parts by weight of "particle size 10-16 μm" with 100 parts by weight of a room temperature curing type epoxy resin varnish using an aliphatic polyamine as a curing agent was applied to the two fiber resin reinforced resin sheets. The two resin sheets are overlapped with the coated surface on the inside, and the gap t between the two resin sheets is 0.5 mm. As shown in FIG. 1 (A), a pair of left and right plates having a wall thickness d of 3 mm. Using an aluminum mold, the left and right molds were set by arranging them in the cavity.

次いで、加熱炉内にて110℃に加熱した厚さ60mmの二つの同一形状の鋼鉄製加熱金属体を図1(B)に示されるようにして、左右の金型のそれぞれの外面に90分間密着して加熱成形を行った。その後、加熱金属体を取り外し、室温となっている同一形状の鋼鉄製冷却金属体を金型の外面に20分間密着して冷却した後、金型より成形された積層複合シートを取り出した。積層複合シートは炭素繊維強化樹脂シートを0.15mmのスキン層とし、樹脂発泡シートを0.5mmのコア層とする積層複合シートであって、反りや歪のない肉厚0.8mmの平板状シートが得られた。 Next, two steel-heated metal bodies of the same shape with a thickness of 60 mm heated to 110 ° C. in a heating furnace were placed on the outer surfaces of the left and right molds for 90 minutes as shown in FIG. 1 (B). The heat molding was performed in close contact with each other. Then, the heated metal body was removed, and a steel cooling metal body having the same shape at room temperature was brought into close contact with the outer surface of the mold for 20 minutes to be cooled, and then the laminated composite sheet formed from the mold was taken out. The laminated composite sheet is a laminated composite sheet having a carbon fiber reinforced resin sheet as a skin layer of 0.15 mm and a resin foam sheet as a core layer of 0.5 mm, and is a flat plate having a wall thickness of 0.8 mm without warping or distortion. A sheet was obtained.

[実施例2]
繊維強化樹脂基材として、平織ガラスクロスにポリプロピレンを含浸させたガラス繊維強化ポリプロピレン基材(樹脂含有率50%)を用い、熱プレス成形にて肉厚0.30mmに成形した繊維強化樹脂シート(荷重たわみ温度120℃以上)と、実施例1で使用した熱膨張性粒子2重量部を、メチルエチルケトン系パーオキサイドを硬化剤とし、スチレンをモノマーとした常温硬化タイプ不飽和ポリエステル樹脂100重量部に混合した発泡性樹脂混合物を用いて、2枚の繊維強化樹脂シートの間隙tを1.0mmとし、鋼鉄製加熱金属体の温度を100℃とする他は実施例1と同様にして成形して、ガラス繊維強化樹脂シートを0.30mmのスキン層とし、樹脂発泡シートを1.0mmのコア層とする積層複合シートであって、反りや歪のない肉厚1.6mmの平板状シートを得た。
[Example 2]
As the fiber reinforced resin base material, a glass fiber reinforced polypropylene base material (resin content 50%) obtained by impregnating plain woven glass cloth with polypropylene was used, and a fiber reinforced resin sheet formed to a wall thickness of 0.30 mm by hot press molding ( (Load deflection temperature of 120 ° C. or higher) and 2 parts by weight of the heat-expandable particles used in Example 1 are mixed with 100 parts by weight of a room temperature curing type unsaturated polyester resin using methyl ethyl ketone-based polypropylene as a curing agent and styrene as a monomer. Using the foamed resin mixture obtained, the gap t between the two fiber-reinforced resin sheets was set to 1.0 mm, and the temperature of the steel heated metal body was set to 100 ° C. A laminated composite sheet having a glass fiber reinforced resin sheet as a skin layer of 0.30 mm and a resin foam sheet as a core layer of 1.0 mm, and a flat plate-like sheet having a wall thickness of 1.6 mm without warping or distortion was obtained. ..

[実施例3]
繊維強化材として、炭素繊維織布に硬化剤含油フェノキシ樹脂を含浸させた重合型熱可塑性プリプレグ「NS−TEreg(登録商標、日鉄ケミカル&マテリアル社)」を用いて、160℃にて熱プレス加工にて一次硬化させ、肉厚0.15mmのシートに成形した繊維強化樹脂シート及び、熱膨張性発泡粒子として、市販の熱膨張性マイクロカプセル「エクスパンセル(登録商標、アクゾノーベルケミカルズ社)タイプ053−40、熱膨張開始温度96〜103℃、最大膨張温度138〜146℃、平均粒子径10-16μm」2重量部を、脂肪族ポリアミンを硬化剤とした常温硬化タイプのエポキシ樹脂ワニス100重量部に混合した発泡性樹脂混合物を用いて、鋼鉄製加熱金属体の温度を120〜130℃とする他は実施例1と同様にして成形して、炭素繊維強化樹脂シートを0.15mmのスキン層とし、樹脂発泡シートを0.5mmのコア層とする積層複合シートであって、反りや歪のない肉厚0.8mmの平板状シートを得た。この平板状シートは、さらに金型を用いた熱プレス加工による二次加工に供し、フェノキシ樹脂を完全硬化させた成形品を得ることができる。
[Example 3]
As a fiber reinforced material, a polymerized thermoplastic prepreg "NS-TEReg (registered trademark, Nittetsu Chemical & Materials Co., Ltd.)" in which a carbon fiber woven fabric is impregnated with a curing agent oil-containing phenoxy resin is used and heat-pressed at 160 ° C. A fiber-reinforced resin sheet that has been primary-cured by processing and molded into a sheet with a wall thickness of 0.15 mm, and a commercially available thermoplastic microcapsule "Expansel (registered trademark, Axonobel Chemicals)" as a thermoplastic foamed particle. Type 053-40, thermal expansion start temperature 96-103 ° C, maximum expansion temperature 138-146 ° C, average particle size 10-16 μm ”2 parts by weight, room temperature curing type epoxy resin varnish 100 using aliphatic polyamine as a curing agent Using the foamable resin mixture mixed in the weight part, the carbon fiber reinforced resin sheet was formed in the same manner as in Example 1 except that the temperature of the steel heated metal body was 120 to 130 ° C., and the carbon fiber reinforced resin sheet was 0.15 mm. A laminated composite sheet having a skin layer and a resin foam sheet as a core layer of 0.5 mm, and a flat plate-like sheet having a wall thickness of 0.8 mm without warping or distortion was obtained. This flat sheet can be further subjected to secondary processing by hot press processing using a mold to obtain a molded product in which the phenoxy resin is completely cured.

[実施例4]
実施例2にて成形した繊維強化樹脂シートと、実施例1で使用した熱膨張性粒子2重量部を、塩ビペースト(PVC微粉末樹脂100重量部/DOP60重量部の混練物)100重量部に混合した発泡性樹脂混合物を用いて、2枚の繊維強化樹脂シートの間隙を1.0mmとし、鋼鉄製加熱金属体の温度を100℃とする他は実施例1と同様にして成形して、ガラス繊維強化樹脂シートを0.30mmのスキン層とし、樹脂発泡シートを1.0mmのコア層とする積層複合シートであって、反りや歪のない肉厚1.6mmの平板状シートを得た。
[Example 4]
The fiber-reinforced resin sheet molded in Example 2 and 2 parts by weight of the heat-expandable particles used in Example 1 were added to 100 parts by weight of PVC paste (100 parts by weight of PVC fine powder resin / 60 parts by weight of DOP). Using the mixed foamable resin mixture, the two fiber-reinforced resin sheets were molded in the same manner as in Example 1 except that the gap between the two fiber-reinforced resin sheets was 1.0 mm and the temperature of the steel heated metal body was 100 ° C. A laminated composite sheet having a glass fiber reinforced resin sheet as a skin layer of 0.30 mm and a resin foam sheet as a core layer of 1.0 mm, and a flat plate-like sheet having a wall thickness of 1.6 mm without warping or distortion was obtained. ..

[実施例5]
実施例1で用いた肉厚dが3mmの左右一対のアルミニウム製金型を図2に示すように湾曲した形状であるアルミニウム製金型を用い、金型の湾曲曲面と同一な形状である加熱及び冷却鋼鉄製加熱金属体を用いる他は、実施例1と同様な操作により成形を行い、金型のキャビティー面と一致した湾曲曲面に成形され、炭素繊維強化樹脂シートを0.15mmのスキン層とし、樹脂発泡シートを0.5mmのコア層とする積層複合シートであって、異常な反りや歪のない肉厚0.8mmの湾曲形状シートが得られた。
[Example 5]
A pair of left and right aluminum molds having a wall thickness d of 3 mm used in Example 1 are heated using an aluminum mold having a curved shape as shown in FIG. 2, which has the same shape as the curved curved surface of the mold. And, except that the heated metal body made of cooled steel is used, molding is performed by the same operation as in Example 1, and the molded curved surface coincides with the cavity surface of the mold, and the carbon fiber reinforced resin sheet is skinned with 0.15 mm. A laminated composite sheet having a resin foam sheet as a core layer of 0.5 mm as a layer, and a curved sheet having a wall thickness of 0.8 mm without abnormal warpage or distortion was obtained.

1 繊維強化樹脂シート 4 繊維強化樹脂シート(曲面)
2 発泡性樹脂混合物 5 繊維強化樹脂シート(曲面)
3 樹脂発泡シート
100 積層複合シート
10、11 金型(平面) 14,15 金型(曲面)
10a、11a 外面 14a、15a 外面
10b、11b 内面 14b、15b 内面
12 キャビティー 16 キャビティー
13 パーティング面 17 パーティング面
20、21 加熱金属体
30、31 冷却金属体
d 金型の肉厚 t 繊維強化樹脂シートの間隙幅
1 Fiber reinforced resin sheet 4 Fiber reinforced resin sheet (curved surface)
2 Foamable resin mixture 5 Fiber reinforced resin sheet (curved surface)
3 Resin foam sheet 100 Laminated composite sheet 10, 11 Mold (flat surface) 14, 15 Mold (curved surface)
10a, 11a Outer surface 14a, 15a Outer surface 10b, 11b Inner surface 14b, 15b Inner surface 12 Cavity 16 Cavity 13 Parting surface 17 Parting surface 20, 21 Heating metal body 30, 31 Cooling metal body d Mold wall thickness t Fiber Gap width of reinforced resin sheet

Claims (6)

高熱伝導率を有する金属から成り、均一かつ同一の肉厚を持つ一対の金型のそれぞれの内面に、成形された二枚の繊維強化樹脂シートを密着させ、該繊維強化樹脂シートの間隙を均一に保持し、かつ該間隙には熱膨張性発泡粒子を均一に混合された発泡性樹脂混合物が充填された状態で前記一対の金型をセットし、次いで該金型のそれぞれの外面に加熱金属体を接触させ両外面から同時に加熱して、前記繊維強化樹脂シートを熱変形させることのない温度であって、充填された前記発泡性樹脂混合物を熱膨張性発泡粒子の熱膨張開始温度以上、最大膨張温度以下に昇温し、熱膨張性発泡粒子を膨張させ、前記発泡性樹脂混合物を樹脂発泡シートに成形すると共に前記繊維強化樹脂シートと積層一体化し、次いで加熱金属体に替えて冷却金属体を接触させ金型及び積層一体化されたシートを両外面から同時に冷却する、繊維強化樹脂シートをスキン層とし、樹脂発泡シートをコア層とする積層複合シートの製造方法。 Two molded fiber-reinforced resin sheets are brought into close contact with each inner surface of a pair of dies made of a metal having a high coefficient of thermal coefficient and having a uniform and the same wall thickness, and the gaps between the fiber-reinforced resin sheets are made uniform. The pair of molds were set in a state where the gap was filled with a foamable resin mixture in which thermal expansion foam particles were uniformly mixed, and then the outer surface of each of the molds was covered with a heated metal. The temperature at which the fiber-reinforced resin sheet is not thermally deformed by bringing the bodies into contact with each other and simultaneously heating from both outer surfaces, and the filled foamable resin mixture is equal to or higher than the thermal expansion start temperature of the heat-expandable foam particles. The temperature is raised below the maximum expansion temperature to expand the heat-expandable foam particles, the foamable resin mixture is formed into a resin foam sheet, laminated and integrated with the fiber-reinforced resin sheet, and then cooled metal is replaced with a heated metal body. A method for producing a laminated composite sheet in which a fiber-reinforced resin sheet is used as a skin layer and a resin foam sheet is used as a core layer, in which a die and a laminated and integrated sheet are simultaneously cooled from both outer surfaces by bringing the bodies into contact with each other. 前記金型がアルミニウム又はアルミニウムを主成分とする合金から成っていることを特徴とする請求項1に記載の積層複合シートの製造方法。 The method for producing a laminated composite sheet according to claim 1, wherein the mold is made of aluminum or an alloy containing aluminum as a main component. 前記発泡性樹脂混合物は、液状又はペースト状の熱硬化性樹脂又は熱可塑性樹脂に熱膨張性発泡粒子が均一に混合された混合物であることを特徴とする請求項1又は2に記載の積層複合シートの製造方法。 The laminated composite according to claim 1 or 2, wherein the foamable resin mixture is a liquid or paste-like thermosetting resin or a mixture in which heat-expandable foamed particles are uniformly mixed with a thermoplastic resin. Sheet manufacturing method. 前記発泡性樹脂混合物は、熱膨張性発泡粒子を均一に混合する際に発生した気泡を脱泡しないことを特徴とする請求項3に記載の積層複合シートの製造方法。 The method for producing a laminated composite sheet according to claim 3, wherein the foamable resin mixture does not defoam bubbles generated when the heat-expandable foamed particles are uniformly mixed. 前記熱膨張性発泡粒子は、熱可塑性樹脂から成る殻の内部に揮発性溶剤が内封されている粒子であることを特徴とする請求項1〜4のいずれか一項に記載の積層複合シートの製造方法。 The laminated composite sheet according to any one of claims 1 to 4, wherein the heat-expandable foamed particles are particles in which a volatile solvent is sealed inside a shell made of a thermoplastic resin. Manufacturing method. 前記繊維強化樹脂シートは、繊維強化熱硬化性樹脂基材又は繊維強化熱可塑性樹脂基材を加熱加圧して成形されたシートであることを特徴とする請求項1〜5のいずれか一項に記載の積層複合シートの製造方法。 The item according to any one of claims 1 to 5, wherein the fiber-reinforced resin sheet is a sheet formed by heating and pressurizing a fiber-reinforced thermosetting resin base material or a fiber-reinforced thermoplastic resin base material. The method for manufacturing a laminated composite sheet according to the description.
JP2019166004A 2019-09-12 2019-09-12 Molding method for laminated composite sheet consisting of fiber reinforced resin sheet and resin foam sheet Active JP7374458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019166004A JP7374458B2 (en) 2019-09-12 2019-09-12 Molding method for laminated composite sheet consisting of fiber reinforced resin sheet and resin foam sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166004A JP7374458B2 (en) 2019-09-12 2019-09-12 Molding method for laminated composite sheet consisting of fiber reinforced resin sheet and resin foam sheet

Publications (2)

Publication Number Publication Date
JP2021041634A true JP2021041634A (en) 2021-03-18
JP7374458B2 JP7374458B2 (en) 2023-11-07

Family

ID=74863424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166004A Active JP7374458B2 (en) 2019-09-12 2019-09-12 Molding method for laminated composite sheet consisting of fiber reinforced resin sheet and resin foam sheet

Country Status (1)

Country Link
JP (1) JP7374458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115302913A (en) * 2022-07-15 2022-11-08 江苏中科聚合新材料产业技术研究院有限公司 Structural-function integrated heat-preservation beehive and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230341A (en) * 2010-04-27 2011-11-17 Nichiha Corp Method for manufacturing composite molded object
JP2012196899A (en) * 2011-03-22 2012-10-18 Teijin Ltd Carbon fiber reinforced thermoplastic resin sandwich molding, and method of manufacturing the same
JP2014198838A (en) * 2013-03-11 2014-10-23 三菱レイヨン株式会社 Method for producing fiber-reinforced thermoplastic resin molded plate
WO2015181870A1 (en) * 2014-05-26 2015-12-03 日産自動車株式会社 Composite material molded article and method for producing same
JP2016010953A (en) * 2014-06-30 2016-01-21 積水化成品工業株式会社 Resin foam for forming complex and method of producing fiber-reinforced complex
JP2021115777A (en) * 2020-01-27 2021-08-10 積水化成品工業株式会社 Resin composite manufacturing method and resin composite manufacturing equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230341A (en) * 2010-04-27 2011-11-17 Nichiha Corp Method for manufacturing composite molded object
JP2012196899A (en) * 2011-03-22 2012-10-18 Teijin Ltd Carbon fiber reinforced thermoplastic resin sandwich molding, and method of manufacturing the same
JP2014198838A (en) * 2013-03-11 2014-10-23 三菱レイヨン株式会社 Method for producing fiber-reinforced thermoplastic resin molded plate
WO2015181870A1 (en) * 2014-05-26 2015-12-03 日産自動車株式会社 Composite material molded article and method for producing same
JP2016010953A (en) * 2014-06-30 2016-01-21 積水化成品工業株式会社 Resin foam for forming complex and method of producing fiber-reinforced complex
JP2021115777A (en) * 2020-01-27 2021-08-10 積水化成品工業株式会社 Resin composite manufacturing method and resin composite manufacturing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115302913A (en) * 2022-07-15 2022-11-08 江苏中科聚合新材料产业技术研究院有限公司 Structural-function integrated heat-preservation beehive and preparation method thereof

Also Published As

Publication number Publication date
JP7374458B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
JP6405433B1 (en) Manufacturing method of fiber reinforced resin molded product
US5112663A (en) Method of manufacturing composite structures
US10118349B2 (en) Press moulding method
KR20120099677A (en) Method for producing a component from a fiber-reinforced material
US5152856A (en) Cure/bonding method for sandwiched plastic structure
JP5956187B2 (en) Method for molding fiber reinforced plastic molding with three-dimensional additive
US4917945A (en) Shaping of syntactic foam
WO2000054949A2 (en) Heated tooling apparatus and method for processing composite and plastic material
JP7374458B2 (en) Molding method for laminated composite sheet consisting of fiber reinforced resin sheet and resin foam sheet
WO2022260186A1 (en) Laminate for pressing, and pressed laminate
EP3936317B1 (en) Fibre reinforced composite material molding system and method
JPH06190847A (en) Production of carbon fiber-reinforced plastic molded body
JP6432750B2 (en) Fiber reinforced composite material molding equipment
JP3834628B2 (en) Resin filler for manufacturing fiber reinforced composite material and fiber reinforced composite material manufacturing method using the same
JPH03207631A (en) Method for forming fiber reinforced thermoplastic synthetic resin
JP7466248B1 (en) Press molding member, its manufacturing method, and manufacturing method of battery case using press molding member
JP7017071B2 (en) Sandwich structure and its manufacturing method
JP2015112805A (en) Method for molding composite material and molded article composed of composite material
JP3309913B2 (en) Method for producing thermoplastic composite material
JP2023064479A (en) Molding method for fiber-reinforced resin hollow molded article
JP2017177435A (en) Manufacturing method of composite fiber reinforced resin substrate and molded article
JP2022038508A (en) Method of manufacturing fibre-reinforced plastic moulding
WO1991014556A1 (en) Hybrid composite sandwich structure
JP2018176452A (en) Manufacturing method of composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R150 Certificate of patent or registration of utility model

Ref document number: 7374458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150