JP2020132972A - Cemented carbide and cutting tool - Google Patents
Cemented carbide and cutting tool Download PDFInfo
- Publication number
- JP2020132972A JP2020132972A JP2019030098A JP2019030098A JP2020132972A JP 2020132972 A JP2020132972 A JP 2020132972A JP 2019030098 A JP2019030098 A JP 2019030098A JP 2019030098 A JP2019030098 A JP 2019030098A JP 2020132972 A JP2020132972 A JP 2020132972A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- cemented carbide
- hard
- particle size
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、優れた耐塑性変形性を有する超硬合金および該超硬合金を工具基体として用いた切削工具に関するものである。 The present invention relates to a cemented carbide having excellent plastic deformation resistance and a cutting tool using the cemented carbide as a tool base.
従来、炭化タングステン(WC)を主成分とする硬質相と結合相とを有する超硬合金が切削工具の工具基体として用いられている。この工具基体には、強度、靭性、硬さ、耐塑性変形性、耐摩耗性が求められている。 Conventionally, a cemented carbide having a hard phase and a bonding phase containing tungsten carbide (WC) as a main component has been used as a tool base for a cutting tool. This tool substrate is required to have strength, toughness, hardness, plastic deformation resistance, and wear resistance.
例えば、特許文献1には、WCと、Co、NiまたはFeに基づく結合材相と、γ相(立方晶系炭化物相でTiC、NbC、TaC、ZrC、HfC及びVCのうち少なくとも1種類と、実質的な量の溶存WCとの固溶体)とを含み、前記γ相が1μm未満の平均粒度を有することを特徴とする、焼結炭化物(焼結合金)が記載されている。 For example, Patent Document 1 describes WC, a binder phase based on Co, Ni or Fe, and a γ phase (a cubic carbide phase at least one of TiC, NbC, TaC, ZrC, HfC and VC). Described are sintered carbides (sintered alloys) comprising a substantial amount of a solid solution with a dissolved WC) and characterized in that the γ phase has an average particle size of less than 1 μm.
また、例えば、特許文献2には、硬質相は、炭化タングステンを主成分とする第一硬質相と、タングステンを含む複数種の金属元素と、炭素、窒素、酸素及び硼素から選択される一種以上の元素と、を含む化合物を主成分とする第二硬質相とを備え、第二硬質相は、当該超硬合金の任意の表面又は断面から求めた面積基準の粒度分布における累積10%の粒径をD10、累積90%の粒径をD90としたとき、D10/D90<0.4を満たし、最近接する二つの前記第二硬質相の重心間距離の分散をσ 2としたとき、σ 2<5.0を満たし、前記第一硬質相の平均粒径をD W、前記第二硬質相の平均粒径をD Mとしたとき、D Wは、0.8μm以上4.0μm以下であり、D M/D W<1.0を満たす超硬合金が記載されている。 Further, for example, in Patent Document 2, the hard phase is one or more selected from the first hard phase containing tungsten carbide as a main component, a plurality of kinds of metal elements including tungsten, and carbon, nitrogen, oxygen and boron. The second hard phase is a grain having a cumulative 10% grain size distribution based on the area obtained from an arbitrary surface or cross section of the cemented carbide. the diameter D10, when the particle size of cumulative 90% D90, satisfies the D10 / D90 <0.4, when the variance of the distance between centers of gravity of two of the second hard phase in contact recently and σ 2, σ 2 When <5.0 is satisfied, the average particle size of the first hard phase is D W , and the average particle size of the second hard phase is D M , the D W is 0.8 μm or more and 4.0 μm or less. , D M / D W <1.0 are described as cemented carbides.
前記特許文献1に記載された超硬合金は、高温硬さおよび耐摩耗性を有しており、また、前記特許文献2に記載された超硬合金は、第二硬質相の粒度および分散を規定することで耐欠損性を有している。しかし、前記特許文献1〜2に記載された超硬合金のいずれもが、耐塑性変形性が十分ではなく、切削工具の工具基体として鋼の高能率加工(高速加工、高送り加工、または、高切込み加工)に用いた場合に、変形により短時間に工具寿命に至ってしまう。 The cemented carbide described in Patent Document 1 has high-temperature hardness and abrasion resistance, and the cemented carbide described in Patent Document 2 has a particle size and dispersion of the second hard phase. By specifying, it has fracture resistance. However, none of the cemented carbides described in Patent Documents 1 and 2 has sufficient plastic deformation resistance, and high-efficiency machining (high-speed machining, high-feed machining, or high-feed machining) of steel as a tool base of a cutting tool or When used for high cutting), the tool life will be reached in a short time due to deformation.
そこで、本発明は、超硬合金が優れた耐塑性変形性および塑性変形起因の欠損に対する耐性を有し、切削工具の工具基体として用いた場合、特に、鋼の高能率加工においても、長期の使用にわたり、優れた切削性能を発揮する超硬合金、および、該超硬合金を工具基体として用いた切削工具を提供することを目的とする。 Therefore, according to the present invention, cemented carbide has excellent plastic deformation resistance and resistance to defects caused by plastic deformation, and when it is used as a tool base of a cutting tool, it has a long period of time, especially in high-efficiency machining of steel. It is an object of the present invention to provide a cemented carbide that exhibits excellent cutting performance over use, and a cutting tool using the cemented carbide as a tool base.
本発明者は、超硬合金に優れた耐塑性変形性を付与するために鋭意検討を重ねたところ、炭化物相であるγ相が超硬合金に特定の分布で存在するとき、優れた耐塑性変形性および塑性変形起因の欠損に対する耐性を有することを知見した。 The present inventor has made extensive studies in order to impart excellent plastic deformation resistance to cemented carbide, and found that excellent plastic resistance is obtained when the γ phase, which is a carbide phase, is present in the cemented carbide in a specific distribution. It was found that it has resistance to defects caused by deformability and plastic deformation.
本発明はこの知見に基づくものであって、以下のとおりのものである。
「(1)WCを主体とする硬質相、
Co、Ni、Feの少なくとも1種を4.0〜15.0質量%含む結合相、および、
MC(Mは、Ta、Nb、Ti、Zr、Hf、Vの少なくとも1種)を主体とするγ相
を有する超硬合金であって、
さらに、0.0〜0.8質量のCr3C2を含有し、
前記硬質相の平均粒径は、2.0〜4.0μmであり、
前記γ相の含有量は、2.0〜12.0質量%で、
前記γ相の平均粒径は、前記硬質相の平均粒径の1.5〜4.0倍であって、4.0〜8.0μmであり、
前記γ相の800℃における硬さは、前記硬質相の800℃における硬さの20〜60%であり、
前記γ相のうち、その周囲が前記硬質相と接し、かつ、前記結合相には接していないものの占める個数割合が10%以上である、
ことを特徴とする超硬合金。
(2)前記Mは、Wをさらに含むことを特徴とする前記(1)に記載の超硬合金。
(3)前記(1)または(2)に記載の超硬合金の表面に硬質皮膜を有することを特徴する切削工具。」
The present invention is based on this finding and is as follows.
"(1) Hard phase mainly composed of WC,
A bonding phase containing 4.0 to 15.0% by mass of at least one of Co, Ni, and Fe, and
A cemented carbide having a γ phase mainly composed of MC (M is at least one of Ta, Nb, Ti, Zr, Hf, and V).
In addition, it contains 0.0-0.8 mass Cr 3 C 2 and contains
The average particle size of the hard phase is 2.0 to 4.0 μm.
The content of the γ phase is 2.0 to 12.0% by mass.
The average particle size of the γ phase is 1.5 to 4.0 times the average particle size of the hard phase, and is 4.0 to 8.0 μm.
The hardness of the γ phase at 800 ° C. is 20 to 60% of the hardness of the hard phase at 800 ° C.
Among the γ phases, the number ratio of those whose periphery is in contact with the hard phase and which is not in contact with the bonded phase is 10% or more.
Cemented carbide characterized by this.
(2) The cemented carbide according to (1) above, wherein M further contains W.
(3) A cutting tool having a hard film on the surface of the cemented carbide according to (1) or (2) above. "
本発明の超硬合金は、耐塑性変形性に優れ、また、切削工具の工具基体として用いた場合、特に、鋼の高能率加工において、長期の切削寿命を有するという顕著な効果を奏する。 The cemented carbide of the present invention has excellent plastic deformation resistance, and when used as a tool base for a cutting tool, it has a remarkable effect of having a long cutting life, particularly in high-efficiency machining of steel.
以下、本発明の超硬合金および切削工具について、より詳細に説明する。なお、本明細書、特許請求の範囲において、数値範囲を「〜」を用いて表現する場合、その範囲は上限および下限の数値を含むものとする。 Hereinafter, the cemented carbide and the cutting tool of the present invention will be described in more detail. In the present specification and claims, when the numerical range is expressed by using "~", the range shall include the numerical values of the upper limit and the lower limit.
硬質相:
硬質相はWCを主体とする。硬質相は、製造過程で不可避的に混入する不可避不純物を含んでいてもよい。
また、硬質相の平均粒径は、2.0〜4.0μmが好ましい。その理由は、2.0μm未満であると、硬質相同士の滑りが生じて耐塑性変形性や耐欠損性が十分ではなく、一方、4.0μmを超えると、十分な耐摩耗性が得られないためである。硬質相の平均粒径は、2.2〜3.6μmがより好ましい。
Hard phase:
The hard phase is mainly WC. The hard phase may contain unavoidable impurities that are inevitably mixed in during the manufacturing process.
The average particle size of the hard phase is preferably 2.0 to 4.0 μm. The reason is that if it is less than 2.0 μm, slippage between hard phases occurs and the plastic deformation resistance and fracture resistance are not sufficient, while if it exceeds 4.0 μm, sufficient wear resistance can be obtained. Because there is no such thing. The average particle size of the hard phase is more preferably 2.2 to 3.6 μm.
硬質相の平均粒径は、超硬合金の任意の表面または断面を鏡面加工し、その加工面を後方散乱電子回折(EBSD)で観察し、画像解析によって、少なくとも300個の各硬質相の面積を求め、その面積に等しい円の直径を算出して平均したものである。なお、鏡面加工は、例えば、集束イオンビーム装置(FIB装置)、クロスセクションポリッシャー装置(CP装置)等を用いる。 The average particle size of the hard phase is determined by mirror-working any surface or cross section of the cemented carbide, observing the machined surface by backscattered electron diffraction (EBSD), and performing image analysis on the area of at least 300 of each hard phase. Is calculated, and the diameter of the circle equal to the area is calculated and averaged. For mirror surface processing, for example, a focused ion beam device (FIB device), a cross-section polisher device (CP device), or the like is used.
硬質相の平均粒径を前記範囲とするために、WCの粒成長を抑制すべく、Crを含有させることが好ましい。Crを含有させるときは、Cr3C2で換算して0.8質量%以下含有させることが好ましい。すなわち、Crの含有割合は、Cr3C2として0.0〜0.8質量%が好ましい。 In order to keep the average particle size of the hard phase within the above range, it is preferable to contain Cr in order to suppress the grain growth of WC. When Cr is contained, it is preferable to contain it in an amount of 0.8% by mass or less in terms of Cr 3 C 2 . That is, the content ratio of Cr is preferably 0.0 to 0.8% by mass as Cr 3 C 2 .
結合相:
結合相は、Co、Ni、Feの鉄族元素の少なくとも1種以上(すなわち、Co、Ni、Feのいずれか一つであってもよいし、複数を組み合わせてもよい)を、超硬合金全体に対して4.0〜15.0質量%含むことが好ましい。結合相中には、硬質相の成分であるWやC、その他の不可避的不純物が含まれていてもよい。さらに、結合相は、Cr、Ta、Nb、Ti、Zr、Hf、Vの少なくとも1種を含んでいてもよい。これら元素が結合相中に存在するときは、結合相に固溶した状態であると推定される。
Bonding phase:
The bonding phase is a cemented carbide containing at least one or more iron group elements of Co, Ni, and Fe (that is, any one of Co, Ni, and Fe, or a combination of two or more). It is preferable to contain 4.0 to 15.0% by mass based on the whole. The bonded phase may contain W and C, which are components of the hard phase, and other unavoidable impurities. Further, the binding phase may contain at least one of Cr, Ta, Nb, Ti, Zr, Hf and V. When these elements are present in the bond phase, it is presumed that they are in a solid solution state in the bond phase.
結合相のCo、Ni、Feの鉄族元素が超硬合金全体の4.0〜15.0質量%であることが好ましい理由は、4.0質量%未満では、超硬合金製造時の焼結性が良くなく、また結合相によって硬質相が強固に結合されず、強度不足や欠損が生じやすく、一方、15.0質量%を超えると、硬質相が少なくなって超硬合金の強度が不足し、耐摩耗性が低下してしまうためである。結合相のCo、Ni、Feの鉄族元素は、超硬合金全体の5.0〜12.0質量%であることがより好ましい。
なお、結合相のCo、Ni、Feの鉄族元素の質量%は、超硬合金の任意の表面または断面を前述の方法により鏡面加工し、その加工面を蛍光X線回折測定することにより求める。
The reason why it is preferable that the iron group elements of Co, Ni, and Fe in the bonded phase are 4.0 to 15.0% by mass of the whole cemented carbide is that if it is less than 4.0% by mass, the cemented carbide is baked during production. The bondability is not good, and the hard phase is not firmly bonded by the bonded phase, and insufficient strength or chipping is likely to occur. On the other hand, if it exceeds 15.0% by mass, the hard phase decreases and the strength of the cemented carbide increases. This is because the wear resistance is lowered due to the shortage. The iron group elements of Co, Ni, and Fe in the bonded phase are more preferably 5.0 to 12.0% by mass based on the total amount of the cemented carbide.
The mass% of the iron group elements of Co, Ni, and Fe in the bonded phase is determined by mirror-processing an arbitrary surface or cross section of the cemented carbide by the above-mentioned method and measuring the processed surface by fluorescent X-ray diffraction measurement. ..
γ相:
γ相は、MC(Mは、Ta、Nb、Ti、Zr、Hf、Vの少なくとも1種)で表される炭化物を主体とする。この炭化物は、化学量論的な原子比で結合した炭化物に限定されず、MとCが結合した複合炭化物を含む炭化物すべてをいう。また、MとしてWをさらに含んでもよい。
γ phase:
The γ phase is mainly composed of a carbide represented by MC (M is at least one of Ta, Nb, Ti, Zr, Hf, and V). This carbide is not limited to the carbide bonded by the stoichiometric atomic ratio, and refers to all the carbides including the composite carbide in which M and C are bonded. Further, W may be further included as M.
γ相の含有量は、2.0〜12.0質量%が好ましい。その理由は、2.0%未満であると応力を緩和する役割を担うγ相の割合が少なく塑性変形起因の欠損に対する耐性が十分でなく、一方、12.0質量%を超えると、耐摩耗性が不十分になるためである。 The content of the γ phase is preferably 2.0 to 12.0% by mass. The reason is that if it is less than 2.0%, the proportion of the γ phase that plays a role of relieving stress is small and the resistance to defects due to plastic deformation is insufficient, while if it exceeds 12.0% by mass, the abrasion resistance is insufficient. This is because the sex becomes insufficient.
γ相の平均粒径は、硬質相の平均粒径の1.5〜4.0倍であって、4.0〜8.0μmであることが好ましい。その理由は、この範囲になると硬質相とγ相との接触頻度が適切となり、また、γ相が適切な塑性変形をすることでγ相周辺に位置する硬質相同士の界面およびγ相と硬質相の界面に発生する応力集中を緩和することが可能となり、塑性変形起因の欠損に対する耐性が向上するためである。 The average particle size of the γ phase is 1.5 to 4.0 times the average particle size of the hard phase, and is preferably 4.0 to 8.0 μm. The reason is that the contact frequency between the hard phase and the γ phase becomes appropriate within this range, and the interface between the hard phases located around the γ phase and the interface between the γ phase and the hard phase are formed by the appropriate plastic deformation of the γ phase. This is because the stress concentration generated at the interface of the phase can be relaxed and the resistance to defects due to plastic deformation is improved.
ここで、γ相の平均粒径は、超硬合金の任意の表面または断面を前述の装置を用いて鏡面加工し、その加工面を走査型電子顕微鏡(SEM)で観察し、画像解析によって、少なくとも300個の各γ相の面積を求め、その面積に等しい円の直径を算出して平均したものである。 Here, the average particle size of the γ phase is determined by mirror-processing an arbitrary surface or cross section of the cemented carbide using the above-mentioned device, observing the processed surface with a scanning electron microscope (SEM), and performing image analysis. The area of each of at least 300 γ phases was obtained, and the diameter of a circle equal to the area was calculated and averaged.
γ相の800℃おける硬さは、前記硬質相の800℃における硬さの20〜60%であることが好ましい。その理由は、20%未満であると、超硬合金の耐塑性変性が十分ではなく、60%を超えると、γ相が塑性変形する前に硬質相とγ相との界面でキャビティが発生し、そのキャビティを起点とした破壊が生じやすくなるためである。 The hardness of the γ phase at 800 ° C. is preferably 20 to 60% of the hardness of the hard phase at 800 ° C. The reason is that if it is less than 20%, the plastic modification of the cemented carbide is not sufficient, and if it exceeds 60%, a cavity is generated at the interface between the hard phase and the γ phase before the γ phase is plastically deformed. This is because the cavity is likely to be destroyed.
ここで、γ相と硬質相の800℃における硬さとは、ナノインデンテーション硬さをいい、その硬さは、超硬合金を前述の装置を用いて鏡面研磨し、Ar気流中800℃の温度で、押し込み深さが200nmになるまで圧子を押し込み、押し込み深さが200nmとなった荷重(最大荷重)で30秒間保持し、除荷したときの、最大押し込み深さおよび最大荷重から求めたものである。 Here, the hardness of the γ phase and the hard phase at 800 ° C. refers to the nanoindentation hardness, which is the temperature of 800 ° C. in an Ar stream after mirror-polishing the cemented carbide using the above-mentioned device. Then, the indenter was pushed in until the pushing depth became 200 nm, held for 30 seconds under the load (maximum load) at the pushing depth of 200 nm, and obtained from the maximum pushing depth and the maximum load when the load was removed. Is.
また、γ相の周囲が硬質相に接し、かつ、結合相に接しないγ相(図1でAで示すγ相)の個数が、すべてのγ相の個数に対して10%以上のとき、硬質相とγ相との界面の数が適切となって塑性変形起因の欠損に対する耐性が向上する。 Further, when the number of γ phases (γ phases shown by A in FIG. 1) in which the periphery of the γ phase is in contact with the hard phase and is not in contact with the coupled phase is 10% or more of the total number of γ phases. The number of interfaces between the hard phase and the γ phase becomes appropriate, and the resistance to defects due to plastic deformation is improved.
硬質相に接しかつ結合相に接してないγ相の個数は、超硬合金の任意の表面または断面を前述の装置を用いて鏡面加工し、30×20μmの領域を任意に5箇所選定して、SEMにより、3000〜4000倍で観察し、それぞれの領域において、
(硬質相に接しかつ結合相に接しないγ相個数の和)/(すべてのγ相の個数の和)×100
を求めて、平均値を算出することによって得る。
For the number of γ phases that are in contact with the hard phase and not in contact with the bonded phase, the surface or cross section of the cemented carbide is mirror-finished using the above-mentioned device, and 5 areas of 30 × 20 μm are arbitrarily selected. , SEM, observed at 3000-4000 times, in each region,
(Sum of the number of γ phases in contact with the hard phase and not in contact with the coupled phase) / (Sum of the number of all γ phases) × 100
Is obtained by calculating the average value.
不可避不純物:
前記のように、硬質相、結合相は製造過程で不可避的に混入する不純物を含んでいてもよく、その量は超硬合金全体に対して0.3質量%以下が好ましい。
Inevitable impurities:
As described above, the hard phase and the bonded phase may contain impurities that are inevitably mixed in during the manufacturing process, and the amount thereof is preferably 0.3% by mass or less with respect to the entire cemented carbide.
切削工具:
本発明の切削工具は、本発明の超硬合金に硬質皮膜を形成したものである。硬質皮膜の種類、成膜法は、それぞれ、当業者に既によく知られている膜種、成膜手法を採用すればよく、特に、制限するものではない。あえて例示をするならば、物理蒸着法(PVD法)または化学蒸着法(CVD法)により、Ti、Al、Cr、BおよびZrからなる群から選ばれた少なくとも一種の元素と、C、NおよびOからなる群から選ばれた少なくとも一種の元素とを必須とする単層又は多層の硬質皮膜が有用である。具体的には、例えば、TiC、CrC、SiC、VC、ZrC、TiN、AlN、CrN、VN、ZrN、Ti(CN)、(TiSi)N、(TiB)N、(TiZr)N、TiAl(CN)、TiCr(CN)、TiZr(CN)、Ti(CNO)、TiAl(CNO)、Ti(CO)、(TiCr)N、(TiAlCr)N、(AlCr)N、Al2O3およびTiB2等の単層または多層の皮膜が挙げることができ、硬質皮膜の膜厚は、例えば1.0〜15.0μmである。
Cutting tools:
The cutting tool of the present invention is obtained by forming a hard film on the cemented carbide of the present invention. The type of hard film and the film forming method may be any film type and film forming method already well known to those skilled in the art, and are not particularly limited. To give an example, at least one element selected from the group consisting of Ti, Al, Cr, B and Zr by a physical vapor deposition method (PVD method) or a chemical vapor deposition method (CVD method), C, N and A single-layer or multi-layer hard film that requires at least one element selected from the group consisting of O is useful. Specifically, for example, TiC, CrC, SiC, VC, ZrC, TiN, AlN, CrN, VN, ZrN, Ti (CN), (TiSi) N, (TiB) N, (TiZr) N, TiAl (CN). ), TiCr (CN), TiZr (CN), Ti (CNO), TiAl (CNO), Ti (CO), (TiCr) N, (TiAlCr) N, (AlCr) N, Al 2 O 3, TiB 2, etc. A single-layer or multi-layered film can be mentioned, and the thickness of the hard film is, for example, 1.0 to 15.0 μm.
製造方法:
本発明の超硬合金は、例えば、以下のようにして作製することができる。
まず、WC粉末、Co、Ni、Fe粉末の少なくとも1種、必要により、Cr3C2粉末からなる原料粉末、さらに、γ相を形成するための原料粉末(TaC粉末、NbC粉末、TiC粉末、ZrC粉末、HfC粉末、VC粉末のうちの1種以上)を、本発明の超硬合金で規定する組成となるように配合し、ボールミルで混合して、混合粉末を作製する。ここで、γ相を形成するための原料粉末は、WCと合金化した粉末を用いてもよく、その場合、焼結中にγ相が硬質相と強固に結合される。
Production method:
The cemented carbide of the present invention can be produced, for example, as follows.
First, a raw material powder consisting of at least one of WC powder, Co, Ni, and Fe powder, and if necessary, Cr 3 C 2 powder, and further, a raw material powder for forming a γ phase (TaC powder, NbC powder, TiC powder, One or more of ZrC powder, HfC powder, and VC powder) are blended so as to have a composition specified by the super hard alloy of the present invention, and mixed with a ball mill to prepare a mixed powder. Here, as the raw material powder for forming the γ phase, a powder alloyed with WC may be used, in which case the γ phase is firmly bonded to the hard phase during sintering.
次いで、前記混合粉末を成形して圧粉成形体を作製し、この圧粉成形体を、0.3〜0.5MPaのアルゴン雰囲気中、1050〜1250℃の温度において、300〜600分保持し(以下、仮焼工程ということがある)、さらに炉内を10−1Pa以下の真空雰囲気とし、加熱温度:1300〜1500℃、かつ、加熱保持時間:30〜120分、10−1Pa以下の真空雰囲気の条件で本焼結する。そして、本焼結後、HIP処理温度1250〜1350℃まで50℃/分以上の冷却速度(以下、本焼結後冷却ということがある)で冷却し、不活性ガス雰囲気中でHIP処理を30〜240分間行い、HIP処理後の冷却を1200℃以下の温度まで80℃/分以上の冷却速度で冷却して、γ相が硬質相と接する頻度を向上させる。
その後、この焼結体成形体(焼結合金)を機械加工、研削加工し、所望の大きさ・形状の超硬工具基体を作製する。
Next, the mixed powder was molded to prepare a powder compact, and the powder compact was held in an argon atmosphere of 0.3 to 0.5 MPa at a temperature of 105 to 1250 ° C. for 300 to 600 minutes. (Hereinafter, it may be referred to as a calcining process), and the inside of the furnace is set to a vacuum atmosphere of 10 -1 Pa or less, a heating temperature: 1300 to 1500 ° C., and a heating holding time: 30 to 120 minutes, 10 -1 Pa or less. This sintering is performed under the conditions of vacuum atmosphere. Then, after the main sintering, the HIP treatment is cooled to a HIP treatment temperature of 1250 to 1350 ° C. at a cooling rate of 50 ° C./min or more (hereinafter, may be referred to as cooling after the main sintering), and the HIP treatment is performed in an inert gas atmosphere. It is carried out for about 240 minutes, and the cooling after the HIP treatment is cooled to a temperature of 1200 ° C. or lower at a cooling rate of 80 ° C./min or more to improve the frequency of contact of the γ phase with the hard phase.
Then, this sintered body molded body (sintered alloy) is machined and ground to produce a cemented carbide tool base having a desired size and shape.
本発明の超硬合金および該超硬合金を工具基体として用いた切削工具について、実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。 The cemented carbide of the present invention and a cutting tool using the cemented carbide as a tool base will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
まず、焼結用の粉末として、表1に示す平均粒径(d50)が2.0〜5.0μmのWC粉末、および、平均粒径(d50)が、いずれも、1.0〜10.0μmの範囲内のCo粉末、Ni粉末、Fe粉末、Cr3C2粉末、TaC粉末、NbC粉末、TiC粉末、ZrC粉末、HfC粉末、VC粉末を用意する。
次に、これらの粉末を、表1に示す配合組成となるように配合して、焼結用粉末を作製し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で、ANSI呼び記号CNMG432MHの形状を得るべくプレス成形して圧粉成形体を作製した。
First, as the powder for sintering, the WC powder having an average particle size (d50) of 2.0 to 5.0 μm and the average particle size (d50) shown in Table 1 are both 1.0 to 10. Co powder in the range of 0 .mu.m, Ni powder, Fe powder, Cr 3 C 2 powder, TaC powder, NbC powder, TiC powder, ZrC powder, HfC powder, preparing a VC powder.
Next, these powders are blended so as to have the blending composition shown in Table 1, a powder for sintering is prepared, wet-mixed with a ball mill for 72 hours, dried, and then ANSI designation symbol is applied at a pressure of 100 MPa. A powder compact was produced by press molding to obtain the shape of CNMG432MH.
続いて、これらの圧粉成形体を、所定の温度で所定時間保持する仮焼結工程を行う。本実施例では、表2に示す条件、すなわち、0.3〜0.5MPaのアルゴン雰囲気中、1050〜1250℃の保持温度範囲まで加熱し(この温度範囲は、固相反応は起こるが結合相の液相生成温度以下である)、該保持温度で300〜600分保持を行い、炉内を10−1Pa以下の真空雰囲気とし、次に、表2に示す条件で本焼結を行った。 Subsequently, a temporary sintering step is performed in which these powder compacts are held at a predetermined temperature for a predetermined time. In this example, the mixture is heated to a holding temperature range of 1050 to 1250 ° C. under the conditions shown in Table 2, that is, in an argon atmosphere of 0.3 to 0.5 MPa (in this temperature range, a solid phase reaction occurs but a bonding phase occurs. It was held at the holding temperature for 300 to 600 minutes to create a vacuum atmosphere of 10 -1 Pa or less, and then the main sintering was performed under the conditions shown in Table 2. ..
次いで、表2に示す条件、加熱温度である1250〜1350℃まで、50℃/分以上の冷却速度の本焼結後の冷却を行い、不活性ガス雰囲気下でHIP処理を30〜240分間実施した。HIP処理後の冷却を1200℃以下の温度まで80℃/分以上の冷却速度で冷却した。 Next, cooling after the main sintering was performed at a cooling rate of 50 ° C./min or higher from 1250 to 1350 ° C., which is the heating temperature under the conditions shown in Table 2, and HIP treatment was performed for 30 to 240 minutes in an inert gas atmosphere. did. The cooling after the HIP treatment was cooled to a temperature of 1200 ° C. or lower at a cooling rate of 80 ° C./min or higher.
次に、機械加工、研削加工を行い、CNMG432MHの形状に整え、表3に示す超硬合金基体1〜10(以下、本発明工具基体1〜10という)を作製した。 Next, machining and grinding were performed to prepare the shape of CNMG432MH to prepare cemented carbide substrates 1 to 10 (hereinafter referred to as tool substrates 1 to 10 of the present invention) shown in Table 3.
比較のために、比較例の超硬合金基体1〜7(以下、比較例工具基体1〜7という)を製造した。
その製造工程は、本発明工具基体1〜10の製造工程において、前記仮焼結工程を省略したもの(表2では、仮焼結工程条件が「−」で記載されているもの)、あるいは、本発明の製造条件を外れた表2に示す仮焼結工程を行ったもの、もしくは、本発明の製造条件を外れた表2に示す本焼結工程を行ったものである。
For comparison, cemented carbide substrates 1 to 7 of Comparative Examples (hereinafter referred to as Tool Bases 1 to 7 of Comparative Examples) were manufactured.
The manufacturing process is such that the temporary sintering step is omitted in the manufacturing steps of the tool substrates 1 to 10 of the present invention (in Table 2, the temporary sintering process conditions are described by "-"), or The temporary sintering step shown in Table 2 outside the production conditions of the present invention is performed, or the main sintering step shown in Table 2 outside the production conditions of the present invention is performed.
すなわち、表1に示す配合組成に配合した焼結用粉末を、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力でプレス成形して圧粉成形体を作製し、表2に示す条件、すなわち、仮焼結を行うものは、加熱温度:1000℃以上1300℃以下、かつ、加熱保持時間:100または600分、0.3〜0.5MPaのアルゴン雰囲気で行い、加熱温度:1380℃以上1550℃以下、かつ、加熱保持時間:60〜120分、真空雰囲気の条件で本焼結し、HIP処理温度である1250〜1350℃まで、50℃/分以上の冷却速度の本焼結後の冷却を行い、不活性ガス雰囲気下でHIP処理を30〜240分間実施した。HIP処理後の冷却を1200℃以下の温度まで80℃/分以上の冷却速度で冷却し、超硬合金を作製し、これを機械加工、研削加工し、CNMG432MHインサート形状の表4に示す比較例工具1〜7を作製した。 That is, the sintering powder blended in the blending composition shown in Table 1 is wet-mixed with a ball mill for 72 hours, dried, and then press-molded at a pressure of 100 MPa to prepare a powder compact, and the conditions shown in Table 2 are obtained. That is, the material to be temporarily sintered is heated in an argon atmosphere having a heating temperature of 1000 ° C. or higher and 1300 ° C. or lower, a heating holding time of 100 or 600 minutes, and 0.3 to 0.5 MPa, and a heating temperature of 1380 ° C. After main sintering at 1550 ° C. or lower, heating holding time: 60 to 120 minutes, under vacuum atmosphere conditions, and at a cooling rate of 50 ° C./min or higher up to the HIP processing temperature of 1250-1350 ° C. The HIP treatment was carried out for 30 to 240 minutes in an inert gas atmosphere. The cooling after the HIP treatment is cooled to a temperature of 1200 ° C. or lower at a cooling rate of 80 ° C./min or more to produce a cemented carbide, which is machined and ground, and a comparative example shown in Table 4 of the CNMG432MH insert shape. Tools 1 to 7 were made.
本発明工具基体1〜10および比較例工具基体1〜7の超硬合金の断面について、電子線マイクロアナライザ(EPMA)により、その成分であるCr、γ相を構成する各元素の含有量を10点測定し、その平均値を各成分の含有量とした。ここで、Cr、γ相は、それぞれの炭化物に換算して含有量を算出した。表3、表4に、それぞれの平均含有量を示す。 With respect to the cross sections of the cemented carbides of the tool bases 1 to 10 and the comparative examples tool bases 1 to 7 of the present invention, the content of each element constituting the Cr and γ phases, which are the components thereof, is set to 10 by an electron probe microanalyzer (EPMA). Point measurement was performed, and the average value was taken as the content of each component. Here, the contents of Cr and γ phases were calculated by converting them into their respective carbides. Tables 3 and 4 show the average contents of each.
次に、本発明工具基体1〜10および比較例工具基体1〜7の断面について、前述した方法により、硬質相およびγ相の平均粒径を測定し、γ相の平均粒径の硬質相の平均粒径に対する割合を求め、かつ、γ相のうち周囲が硬質相に接しかつ結合相に接しないものの占める個数の割合を求めた。その結果を表3、表4に示す。 Next, with respect to the cross sections of the tool bases 1 to 10 of the present invention and the tool bases 1 to 7 of the comparative examples, the average particle diameters of the hard phase and the γ phase were measured by the above-mentioned method, and the average particle diameter of the γ phase was measured. The ratio to the average particle size was determined, and the ratio of the number of γ phases whose surroundings were in contact with the hard phase and not in contact with the bonded phase was determined. The results are shown in Tables 3 and 4.
前記本発明工具基体1〜10および比較例工具基体1〜7の表面に、表5に示す平均層厚の硬質被覆層をCVD法で被覆形成し、本発明表面被覆WC基超硬合金製切削工具(以下、本発明被覆工具という)1〜10、比較例表面被覆WC基超硬合金製切削工具(以下、比較例被覆工具という)1〜7を作製した。
前記各被覆工具について、以下に示す、乾式の外周連続切削加工を実施し、切れ刃の逃げ面塑性変形量を測定するとともに、切れ刃の損耗状態を観察した。
A hard coating layer having an average layer thickness shown in Table 5 is coated on the surfaces of the tool substrates 1 to 10 of the present invention and the tool substrates 1 to 7 of the comparative example by a CVD method, and the surface coating of the present invention is cut from a WC-based cemented carbide. Tools (hereinafter referred to as the coated tool of the present invention) 1 to 10 and a cutting tool made of a surface-coated WC-based cemented carbide (hereinafter referred to as a coated tool of the comparative example) 1 to 7 were produced.
For each of the covering tools, the following dry outer peripheral continuous cutting process was performed, the amount of plastic deformation of the flank of the cutting edge was measured, and the state of wear of the cutting edge was observed.
切削条件:
被削材:SNCM439のφ200丸棒
切削速度:300m/min
切り込み:2.0mm
送り:0.2mm/rev
切削時間:5分
Cutting conditions:
Work material: φ200 round bar of SNCM439 Cutting speed: 300 m / min
Notch: 2.0 mm
Feed: 0.2 mm / rev
Cutting time: 5 minutes
切れ刃の逃げ面塑性変形量を測定するとともに、切れ刃の損耗状態を観察した。本切削試験では、切れ刃の逃げ面塑性変形量として次のものを採用した。すなわち、切削前の変形していない切れ刃稜線を基準とし、切削によって切れ刃稜線が押し込まれて変形した量を切れ刃の逃げ面塑性変形量とした。具体的には、工具の主切れ刃側逃げ面について、切れ刃から十分離れた位置で主切れ刃側逃げ面とすくい面が交差する稜線上に線分を引き、同線分を切れ刃部方向に延伸し、延伸した線分と切れ刃部稜線間の距離(延伸した線分の垂直方向)が最も離れている部分を測定し、これを切れ刃の逃げ面塑性変形量とし(図2を参照)、切削時間が1分経過する毎に測定するとともに、切れ刃の損耗状態を観察した。
表6にその結果を示す。
The amount of plastic deformation of the flank of the cutting edge was measured, and the state of wear of the cutting edge was observed. In this cutting test, the following was adopted as the amount of plastic deformation of the flank of the cutting edge. That is, based on the undeformed cutting edge ridge line before cutting, the amount of the cutting edge ridge line pushed and deformed by cutting was defined as the flank plastic deformation amount of the cutting edge. Specifically, for the flank on the main cutting edge side of the tool, draw a line segment on the ridge line where the flank on the main cutting edge side and the rake face intersect at a position sufficiently distant from the cutting edge, and draw a line segment on the same line segment. Stretched in the direction, measure the part where the distance between the stretched line segment and the ridgeline of the cutting edge (vertical direction of the stretched line segment) is the longest, and use this as the flank plastic deformation amount of the cutting edge (Fig. 2). The cutting time was measured every 1 minute, and the state of wear of the cutting edge was observed.
The results are shown in Table 6.
表6に示される試験結果によれば、本発明被覆工具は、寿命に影響を及ぼす重度のチッピングを発生することなく、優れた耐塑性変形性および塑性変形に起因する欠損に対する耐性を発揮する。これに対して、比較例被覆工具は、所定の切削時間において工具が塑性変形起因の欠損により寿命を迎えた。
すなわち、γ相が硬質相と適切に接触しているため、耐塑性変形性に優れ、かつ、刃先が塑性変形する際にγ相が変形することでγ相周辺の硬質相同士の界面およびγ相と硬質相の界面に発生する応力集中が緩和され、破壊の起点となるキャビティの発生が抑制され、塑性変形起因の刃先の欠損が抑制される。
According to the test results shown in Table 6, the coated tool of the present invention exhibits excellent plastic deformation resistance and resistance to defects due to plastic deformation without causing severe chipping that affects the service life. On the other hand, in the comparative example coated tool, the tool reached the end of its life due to a defect due to plastic deformation in a predetermined cutting time.
That is, since the γ phase is in proper contact with the hard phase, it has excellent plastic deformation resistance, and the γ phase is deformed when the cutting edge is plastically deformed, so that the interface between the hard phases around the γ phase and γ The stress concentration generated at the interface between the phase and the hard phase is relaxed, the generation of cavities that are the starting points of fracture is suppressed, and the chipping of the cutting edge due to plastic deformation is suppressed.
以上のとおり、本発明の超硬合金および切削工具は、鋼の高能率加工に用いた場合、優れた耐塑性変形性とともに、優れた耐チッピング性を有するが、他の被削材、切削条件に適用した場合にも、長期の使用にわたって優れた切削性能を発揮し、工具の長寿命化が図られる。 As described above, the cemented carbide and the cutting tool of the present invention have excellent plastic deformation resistance and excellent chipping resistance when used for high-efficiency machining of steel, but other work materials and cutting conditions Even when applied to, it exhibits excellent cutting performance over a long period of use and extends the life of the tool.
Claims (3)
Co、Ni、Feの少なくとも1種を4.0〜15.0質量%含む結合相、および、
MC(Mは、Ta、Nb、Ti、Zr、Hf、Vの少なくとも1種)を主体とするγ相
を有する超硬合金であって、
さらに、0.0〜0.8質量のCr3C2を含有し、
前記硬質相の平均粒径は、2.0〜4.0μmであり、
前記γ相の含有量は、2.0〜12.0質量%で、
前記γ相の平均粒径は、前記硬質相の平均粒径の1.5〜4.0倍であって、4.0〜8.0μmであり、
前記γ相の800℃おける硬さは、前記硬質相の800℃における硬さの20〜60%であり、
前記γ相のうち、その周囲が前記硬質相と接し、かつ、前記結合相には接していないものの占める個数割合が10%以上である、
ことを特徴とする超硬合金。 Hard phase mainly composed of WC,
A bonding phase containing 4.0 to 15.0% by mass of at least one of Co, Ni, and Fe, and
A cemented carbide having a γ phase mainly composed of MC (M is at least one of Ta, Nb, Ti, Zr, Hf, and V).
In addition, it contains 0.0-0.8 mass Cr 3 C 2 and contains
The average particle size of the hard phase is 2.0 to 4.0 μm.
The content of the γ phase is 2.0 to 12.0% by mass.
The average particle size of the γ phase is 1.5 to 4.0 times the average particle size of the hard phase, and is 4.0 to 8.0 μm.
The hardness of the γ phase at 800 ° C. is 20 to 60% of the hardness of the hard phase at 800 ° C.
Among the γ phases, the number ratio of those whose periphery is in contact with the hard phase and which is not in contact with the bonded phase is 10% or more.
Cemented carbide characterized by this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019030098A JP7235200B2 (en) | 2019-02-22 | 2019-02-22 | Cemented carbide and cutting tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019030098A JP7235200B2 (en) | 2019-02-22 | 2019-02-22 | Cemented carbide and cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020132972A true JP2020132972A (en) | 2020-08-31 |
JP7235200B2 JP7235200B2 (en) | 2023-03-08 |
Family
ID=72277890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019030098A Active JP7235200B2 (en) | 2019-02-22 | 2019-02-22 | Cemented carbide and cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7235200B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114481115A (en) * | 2022-02-08 | 2022-05-13 | 重庆文理学院 | Hard alloy composite coating and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004256862A (en) * | 2003-02-25 | 2004-09-16 | Kyocera Corp | Cemented carbide, production method therefor, and cutting tool using the same |
JP2006328477A (en) * | 2005-05-26 | 2006-12-07 | Hitachi Tool Engineering Ltd | Wc based cemented carbide member, and coated wc based cemented carbide member |
JP2017024165A (en) * | 2015-07-15 | 2017-02-02 | 三菱日立ツール株式会社 | Wc-based hard metal cutting tool and manufacturing method thereof |
-
2019
- 2019-02-22 JP JP2019030098A patent/JP7235200B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004256862A (en) * | 2003-02-25 | 2004-09-16 | Kyocera Corp | Cemented carbide, production method therefor, and cutting tool using the same |
JP2006328477A (en) * | 2005-05-26 | 2006-12-07 | Hitachi Tool Engineering Ltd | Wc based cemented carbide member, and coated wc based cemented carbide member |
JP2017024165A (en) * | 2015-07-15 | 2017-02-02 | 三菱日立ツール株式会社 | Wc-based hard metal cutting tool and manufacturing method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114481115A (en) * | 2022-02-08 | 2022-05-13 | 重庆文理学院 | Hard alloy composite coating and preparation method thereof |
CN114481115B (en) * | 2022-02-08 | 2023-11-21 | 重庆文理学院 | Hard alloy composite coating and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP7235200B2 (en) | 2023-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6634647B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance | |
JP5305056B1 (en) | Cutting tool made of cubic boron nitride based sintered body | |
JP5328653B2 (en) | Ti-based cermet, coated cermet and cutting tool | |
WO2012053237A1 (en) | Wc-based cemented carbide cutting tool having high defect resistance for heat-resistant alloy cutting, and surface-coated wc-based cemented carbide cutting tool | |
CN107405695A (en) | Hard coating layer plays the excellent resistance to surface-coated cutting tool for collapsing knife | |
JP5935479B2 (en) | Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting | |
JP5594568B2 (en) | Cutting tool made of cubic boron nitride based ultra high pressure sintered material and cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP2014198362A (en) | Surface coated cutting tool | |
JP2011235410A (en) | Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy | |
JP7235200B2 (en) | Cemented carbide and cutting tools | |
JP6843096B2 (en) | A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body | |
JP7235199B2 (en) | Cemented carbide and cutting tools | |
JP7432109B2 (en) | Cemented carbide and cutting tools | |
JP7441415B2 (en) | WC-based cemented carbide and WC-based cemented carbide cutting tools | |
JP7170964B2 (en) | Cemented Carbide and Coated Cemented Carbide | |
JP2017179474A (en) | Hard metal used for tool for processing nonmetallic material | |
JP2021139022A (en) | Wc-based super-hard alloy and wc-based super-hard alloy cutting tool | |
JP7035820B2 (en) | Base material and cutting tools | |
EP3925720A1 (en) | Hard coating cutting tool | |
JP5321360B2 (en) | Surface coated cutting tool | |
JP2022108807A (en) | Cutting tool | |
JP2021143380A (en) | Wc-based hard metal and wc hard metal cutting tool | |
JP7437621B2 (en) | WC-based cemented carbide and WC-based cemented carbide cutting tools | |
JP7170965B2 (en) | Cemented Carbide and Coated Cemented Carbide | |
JP7473871B2 (en) | WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7235200 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |