JP7437621B2 - WC-based cemented carbide and WC-based cemented carbide cutting tools - Google Patents
WC-based cemented carbide and WC-based cemented carbide cutting tools Download PDFInfo
- Publication number
- JP7437621B2 JP7437621B2 JP2020040267A JP2020040267A JP7437621B2 JP 7437621 B2 JP7437621 B2 JP 7437621B2 JP 2020040267 A JP2020040267 A JP 2020040267A JP 2020040267 A JP2020040267 A JP 2020040267A JP 7437621 B2 JP7437621 B2 JP 7437621B2
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- based cemented
- powder
- grain boundaries
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 title claims description 46
- 239000002245 particle Substances 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 4
- 239000011247 coating layer Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 description 51
- 239000012071 phase Substances 0.000 description 23
- 238000005245 sintering Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000007790 solid phase Substances 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000003754 machining Methods 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001887 electron backscatter diffraction Methods 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910010038 TiAl Inorganic materials 0.000 description 2
- 229910010169 TiCr Inorganic materials 0.000 description 2
- 229910008651 TiZr Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- -1 and if necessary Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001778 solid-state sintering Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、優れた耐摩耗性、耐塑性変形性を有し、さらに、耐欠損性にも優れたWC基超硬合金、および、該超硬合金を工具基体として用いたWC基超硬合金切削工具に関するものである。 The present invention relates to a WC-based cemented carbide having excellent wear resistance, plastic deformation resistance, and chipping resistance, and a WC-based cemented carbide using the cemented carbide as a tool base. This relates to cutting tools.
従来、炭化タングステン(WC)を主成分とする硬質相と結合相とを有する超硬合金が切削工具の工具基体として用いられている。そして、この工具基体には、強度、靭性、硬さ、耐塑性変形性、耐摩耗性、耐クレーター摩耗性などの特性に加え、優れた耐欠損性や耐チッピング性を有することが求められており、耐欠損性や耐チッピング性が不足する場合には、Co量の増加や、あるいは、WCの粗粒化により、耐摩耗性や耐塑性変形性による効果を一部抑制することにより、耐欠損性および耐チッピング性の向上を図っている。 Conventionally, a cemented carbide having a hard phase mainly composed of tungsten carbide (WC) and a binder phase has been used as a tool base of a cutting tool. This tool base is required to have excellent fracture resistance and chipping resistance in addition to properties such as strength, toughness, hardness, plastic deformation resistance, wear resistance, and crater wear resistance. However, if fracture resistance or chipping resistance is insufficient, increase the amount of Co or coarsen the grains of WC to partially suppress the effects of wear resistance and plastic deformation resistance. Efforts are being made to improve chipping resistance and chipping resistance.
例えば、特許文献1では、WC基超硬合金において、焼結後、冷却速度100℃/分以上にて超急冷することにより、硬質相の接触率を低減させて、靭性の向上を図り、工具基体として、耐欠損性や耐チッピング性を高めることが提案されている。
また、特許文献2では、WC基超硬合金において、1350℃以上、1450℃以下にて高温真空焼結を行い、Ar雰囲気下にてシンターHIP処理を行った後、10℃/min以上、15℃/min以下の冷却速度にて冷却を行うことにより、WCの平均粒径を0.8μm以下、結合相における平均粒径を200μm以下とし、粒界部分における不純物や粒成長抑制成分の含有量を均一化することにより、靭性の向上を図り、耐欠損性を高めることが提案されている。
For example, in Patent Document 1, in a WC-based cemented carbide, after sintering, ultra-rapid cooling is performed at a cooling rate of 100°C/min or more to reduce the contact ratio of the hard phase and improve the toughness of the tool. It has been proposed that the substrate be improved in fracture resistance and chipping resistance.
Furthermore, in Patent Document 2, WC-based cemented carbide is subjected to high-temperature vacuum sintering at 1350°C or higher and 1450°C or lower, and then subjected to sinter HIP treatment in an Ar atmosphere, followed by 10°C/min or higher and 15°C. By cooling at a cooling rate of ℃/min or less, the average grain size of WC is 0.8 μm or less, the average grain size of the binder phase is 200 μm or less, and the content of impurities and grain growth inhibiting components at grain boundaries is reduced. It has been proposed to improve toughness and fracture resistance by making the steel uniform.
前記特許文献1に記載された超硬合金は、硬質相の接触率を低減させ、靭性を向上させて耐欠損性の向上を図るものであるが、他方、硬質相の接触率が低減することにより、切削工具の工具基体に用いた場合、耐塑性変形性が低下するという課題を有している。
また、前記特許文献2に記載された超硬合金は、粒界部における不純物や粒成長抑制成分の含有量の均一化、および、結合相粒界の健全化を図り、耐摩耗性と耐欠損性の両立を図るというものであるが、不純物や粒成長抑制成分の絶対量は変化するものではないため、その効果は、限定的であり、また、結合相の粒径はWCの粒径よりも大きく、結合相粒界の占める体積率は、WC/WC粒界やWC/結合相粒界の占める体積率よりも極めて小さいことから、その効果は、同様に限定的であるため、かかる超硬合金を切削工具の工具基体として、例えば、断続部を含む鋼の高能率加工に用いた場合には、刃先の塑性変形に伴う偏摩耗や欠損により工具寿命に達してしまうという課題を有していた。
The cemented carbide described in Patent Document 1 aims to improve fracture resistance by reducing the contact ratio of the hard phase and improving toughness, but on the other hand, the contact ratio of the hard phase is reduced. Therefore, when used in a tool base of a cutting tool, there is a problem that the plastic deformation resistance decreases.
In addition, the cemented carbide described in Patent Document 2 is designed to have a uniform content of impurities and grain growth inhibiting components in the grain boundaries, and to make the binder phase grain boundaries healthy, thereby improving wear resistance and chipping resistance. However, the effect is limited because the absolute amount of impurities and grain growth inhibiting components does not change, and the particle size of the binder phase is smaller than the particle size of WC. is also large, and the volume fraction occupied by binder phase grain boundaries is extremely smaller than the volume fraction occupied by WC/WC grain boundaries and WC/bond phase grain boundaries, so the effect is similarly limited. When a hard alloy is used as a tool base for a cutting tool, for example, for high-efficiency machining of steel that includes interrupted parts, there is a problem that the tool life is reached due to uneven wear and chipping caused by plastic deformation of the cutting edge. was.
そこで、本発明は、超硬合金が優れた耐塑性変形性および耐摩耗性を有するとともに、耐欠損性を合わせ持ち、切削工具の工具基体として用いた場合、特に、断続部を含む鋼の高能率加工において、長期の使用にわたり、優れた切削性能を発揮する超硬合金、および、該超硬合金を工具基体として用いた切削工具を提供することを目的とする。 Therefore, the present invention provides that cemented carbide has excellent plastic deformation resistance and wear resistance, as well as chipping resistance, and when used as a tool base of a cutting tool, it is particularly suitable for high The object of the present invention is to provide a cemented carbide that exhibits excellent cutting performance over a long period of use in efficient machining, and a cutting tool using the cemented carbide as a tool base.
本発明者らは、超硬合金に優れた耐塑性変形性と、耐摩耗性、および耐欠損性とを付与するために鋭意検討を重ねたところ、2つのWC結晶粒間に存在する結晶粒界上の原子において、その位置の多くが両側の結晶粒の格子点に一致し、両結晶粒に共有された粒界、すなわち、WCの対応粒界において、結晶配列の乱れが一般粒界(ランダム粒界)に比較して少なく、原子の結合が強固なΣ2対応粒界の、全WC/WC粒界における比率(以下、「Σ2対応粒界比率」ともいう。)を高めることにより、優れた耐塑性変形性、耐摩耗性、および、耐欠損性を合わせ持ち、特に、用途に応じて優れた特性、すなわち、断続部を含む鋼の高能率加工に用いた場合に、刃先の塑性変形に伴う偏摩耗や欠損に対して優れた耐性を有することを知見した。 The present inventors have conducted intensive studies to impart excellent plastic deformation resistance, wear resistance, and chipping resistance to cemented carbide, and found that the crystal grains present between two WC crystal grains Many of the positions of atoms on the boundary coincide with the lattice points of the crystal grains on both sides, and at the grain boundary shared by both grains, that is, the corresponding grain boundary of WC, the disorder of the crystal orientation is caused by the general grain boundary ( By increasing the ratio of Σ2-compatible grain boundaries (hereinafter also referred to as "Σ2-compatible grain boundary ratio") in all WC/WC grain boundaries, which are fewer in number than random grain boundaries and have strong atomic bonds, It has excellent plastic deformation resistance, wear resistance, and chipping resistance, and has particularly excellent properties depending on the application. It was found that this material has excellent resistance to uneven wear and chipping caused by this process.
本発明はかかる知見に基づいてなされたものであって、以下のとおりのものである。
「(1)WC基超硬合金において、
Co、Niの少なくとも1種を4.0質量%以上、10.0質量%未満、
TiC、TaC、NbC、ZrC、HfC、および、VCのうちから選ばれる少なくとも1種以上を合計にて、4.0質量%以上、12.0質量%未満、
さらに、Cr3C2を0.0質量%以上、0.5質量%未満にて含有し、
残部は、WCおよび不可避的不純物とからなり、
WCの平均粒径は、0.2μm以上、4.0μm以下であり、
WCのΣ2対応粒界の、全WC/WC粒界に占める存在比率(Σ2対応粒界比率)が15%以上である、
ことを特徴とするWC基超硬合金。
(2)前記Σ2対応粒界の、全WC/WC粒界に占める存在比率が25%以上であることを特徴とする(1)に記載された超硬合金。
(3)前記(1)または(2)に記載されたWC基超硬合金を基体とするWC基超硬合金製切削工具。
(4)前記(3)に記載されたWC基超硬合金製工具の少なくとも切れ刃には、硬質被覆層が形成されている表面被覆WC基超硬合金製切削工具。」
The present invention was made based on this knowledge, and is as follows.
(1) In WC-based cemented carbide,
At least one of Co and Ni is 4.0% by mass or more and less than 10.0% by mass,
The total content of at least one selected from TiC, TaC, NbC, ZrC, HfC, and VC is 4.0% by mass or more and less than 12.0% by mass,
Furthermore, it contains Cr 3 C 2 at 0.0% by mass or more and less than 0.5% by mass,
The remainder consists of WC and unavoidable impurities,
The average particle size of WC is 0.2 μm or more and 4.0 μm or less,
The abundance ratio of the WC Σ2-compatible grain boundaries to the total WC/WC grain boundaries (Σ2-compatible grain boundary ratio) is 15% or more,
A WC-based cemented carbide.
(2) The cemented carbide described in (1), wherein the abundance ratio of the Σ2 corresponding grain boundaries to all WC/WC grain boundaries is 25% or more.
(3) A cutting tool made of a WC-based cemented carbide having a base body made of the WC-based cemented carbide described in (1) or (2) above.
(4) A surface-coated WC-based cemented carbide cutting tool, wherein a hard coating layer is formed on at least the cutting edge of the WC-based cemented carbide tool described in (3) above. ”
本発明に係る超硬合金は、WC結晶粒同士の結合の強いΣ2対応粒界の比率を高めることにより、WC/WC粒界に生じる粒界すべりに対する抵抗を向上させ、耐欠損性を損なうことなく、耐塑性変形性を向上させるものである。 The cemented carbide according to the present invention improves resistance to grain boundary slip occurring at WC/WC grain boundaries and reduces fracture resistance by increasing the ratio of Σ2 compatible grain boundaries where WC grains have strong bonds. This improves plastic deformation resistance.
以下、本発明の超硬合金および切削工具について、より詳細に説明する。 Hereinafter, the cemented carbide and cutting tool of the present invention will be explained in more detail.
1.超硬合金
Co、Ni:
Co、Niは、WC基超硬合金の主たる結合相形成成分として含有させるが、CoとNiの含有量の少なくとも1種以上(すなわち、Co、Niのいずれか一つであってもよいし、CoとNiを組み合わせてもよい)の合計が超硬合金全体の4.0質量%未満では、断続部を含む鋼の高能率加工において、耐チッピング性や耐欠損性が十分でなく、一方、その含有量の合計が10.0質量%以上では、耐塑性変形性および耐摩耗性が不十分となる。
したがって、CoとNiの含有量の少なくとも1種以上の合計は、4.0質量%以上、10.0質量%未満とした。
結合相中には、硬質相の成分であるWやC、その他の不可避不純物が含まれていてもよい。また、結合相には、Cr、Ti、Ta、Nb、Zr、HfおよびVの少なくとも1種を含んでいてもよいが、これらの元素は、結合相中に存在するときは、結合相中に固溶した状態であると推定される。
なお、Co、Niの少なくとも1種以上の合計の質量%は、超硬合金の任意の表面または断面を鏡面加工し、その加工面を蛍光X線回折測定することにより求められる。
1. Cemented carbide Co, Ni:
Co and Ni are contained as the main binder phase forming components of the WC-based cemented carbide, but at least one of Co and Ni (that is, either one of Co or Ni may be included, If the total amount of (Co and Ni may be combined) is less than 4.0% by mass of the entire cemented carbide, chipping resistance and fracture resistance will not be sufficient in high-efficiency machining of steel including interrupted parts. If the total content is 10.0% by mass or more, the plastic deformation resistance and wear resistance will be insufficient.
Therefore, the total content of at least one of Co and Ni was set to be 4.0% by mass or more and less than 10.0% by mass.
The binder phase may contain W and C, which are components of the hard phase, and other unavoidable impurities. Further, the binder phase may contain at least one of Cr, Ti, Ta, Nb, Zr, Hf, and V, but when these elements are present in the binder phase, It is presumed to be in a solid solution state.
The total mass % of at least one of Co and Ni can be determined by mirror-finishing any surface or cross section of the cemented carbide and measuring the processed surface by fluorescent X-ray diffraction.
TiC、TaC、NbC、ZrC、HfC、VC:
本発明のWC基超硬合金において、TiC、TaC、NbC、ZrC、HfC及びVCは、γ相を形成する炭化物であり、断続部を含む鋼の高能率加工において、少なくとも炭化物換算にて1種以上の合計にて4.0質量%未満では、耐クレーター摩耗性が不十分となり、他方、12.0質量%以上では、耐摩耗性が不十分となり、また、凝集体が生じやすく、欠損発生の起点となるため、耐クレーター摩耗性と耐摩耗性の両特性が発揮可能な、4.0質量%以上、12.0質量%未満の範囲とすることが好ましい。
なお、TiC、TaC、NbC、ZrC、HfC、VCの含有量は、WC基超硬合金において、EPMAにて測定された、Ti量、Ta量、Nb量、Zr量、Hf量およびV量をいずれも炭化物換算した数値である。
TiC, TaC, NbC, ZrC, HfC, VC:
In the WC-based cemented carbide of the present invention, TiC, TaC, NbC, ZrC, HfC, and VC are carbides that form a γ phase, and in high-efficiency machining of steel including interrupted parts, at least one type of carbide is used. If the total of the above is less than 4.0% by mass, the crater wear resistance will be insufficient, while if it is 12.0% by mass or more, the wear resistance will be insufficient, and aggregates are likely to occur, resulting in chipping. Therefore, the content is preferably in the range of 4.0% by mass or more and less than 12.0% by mass, where both properties of crater wear resistance and wear resistance can be exhibited.
The contents of TiC, TaC, NbC, ZrC, HfC, and VC are based on the Ti amount, Ta amount, Nb amount, Zr amount, Hf amount, and V amount measured by EPMA in the WC-based cemented carbide. All values are calculated in terms of carbide.
Cr3C2:
Cr3C2は、結合相を形成するCo中にCrとして固溶し、固溶強化することにより、WC基超硬合金の強度を高めるものであるが、添加量が増加するとCrとWとの複合炭化物を析出し、靭性が低下し、また、欠損発生の起点となるため、断続部を含む鋼の高能率加工においては、炭化物換算にて0.5質量%未満とすることが好ましい。
すなわち、Crの含有割合は、Cr3C2として0.0質量%以上、0.5質量%未満とする。
Cr3C2 :
Cr 3 C 2 increases the strength of WC-based cemented carbide by forming a solid solution as Cr in Co forming the binder phase and solid solution strengthening, but as the amount added increases, Cr and W In high-efficiency machining of steel including interrupted parts, it is preferable to set the content to less than 0.5% by mass in terms of carbide, because it precipitates composite carbides, reduces toughness, and becomes a starting point for fracture occurrence.
That is, the content of Cr is 0.0% by mass or more and less than 0.5% by mass as Cr 3 C 2 .
WC:
WCは、WC基超硬合金の主たる硬質相形成成分として含有される。硬質相には、製造過程で不可避的に混入する不可避不純物が含まれていてもよい。
(1)平均粒径:
WCの平均粒径は、0.2μm未満では、切削加工中に硬質相同士のすべりが生じやすく耐塑性変形性が十分ではなくなり、一方、平均粒径が4.0μmを超えると、十分な耐摩耗性が得られなくなるため、0.2μm以上、4.0μm以下の範囲より選択するのが好ましい。
WCの平均粒径は、超硬合金の任意の表面または断面を鏡面加工し、その加工面を後方散乱電子回折(EBSD)で観察し、画像解析によって、少なくとも4000個の各硬質相の面積を求め、その面積に等しい円の直径を算出して平均したものである。
なお、鏡面加工には、例えば、集束イオンビーム装置(FIB装置)、クロスセクションポリッシャー装置(CP装置)等を用いる。
W.C.:
WC is contained as a main hard phase forming component of the WC-based cemented carbide. The hard phase may contain unavoidable impurities that are inevitably mixed in during the manufacturing process.
(1) Average particle size:
If the average grain size of WC is less than 0.2 μm, slippage between the hard phases tends to occur during cutting, resulting in insufficient plastic deformation resistance.On the other hand, if the average grain size exceeds 4.0 μm, sufficient resistance to plastic deformation is not achieved. Since abrasion resistance cannot be obtained, it is preferable to select from the range of 0.2 μm or more and 4.0 μm or less.
The average grain size of WC can be determined by mirror-finishing any surface or cross section of cemented carbide, observing the machined surface using backscattered electron diffraction (EBSD), and calculating the area of at least 4000 hard phases by image analysis. The diameter of a circle equal to that area is calculated and averaged.
Note that, for example, a focused ion beam device (FIB device), a cross-section polisher device (CP device), etc. are used for mirror finishing.
(2)Σ2対応粒界比率:
本発明者らは、超硬合金に優れた耐塑性変形性および耐摩耗性、耐チッピング性、耐欠損性を付与するために鋭意検討を重ねたところ、2つのWC結晶粒間に存在する結晶粒界上の原子において、その位置の多くが両側の結晶粒の格子点に一致し、両結晶粒に共有された粒界、すなわち、WCの対応粒界において、結晶配列の乱れが一般粒界(ランダム粒界)に比較して最も少なく、原子の結合が強固なΣ2対応粒界長の、全WC/WC粒界長における比率、
すなわち、Σ2対応粒界比率を高めることにより、用途に応じ優れた耐塑性変形性、耐摩耗性、耐チッピング性および耐欠損性を有することを知見した。
Σ2対応粒界比率は、15%未満では、粒界強度の高いWC/WC粒界の割合が少なく不十分となり、耐欠損性を満足しないため、15%以上と規定した。さらには、25%以上であることが好ましい。
Σ2対応粒界比率の測定は、例えば、SEM-EBSD法を用いて測定することができる。すなわち、SEMにて、1視野24μm×72μmの視野にてピクセルサイズを0.1μm×0.1μmとし、かつWC数が4000個以上となるように複数視野観察し、EBSDにて解析される、隣り合うWCが[10-10]方向を軸として90°回転した方位関係を持つ粒界をΣ2対応粒界と定義し、全WC/WC粒界長に占めるΣ2対応粒界長の比率を算出することにより求めることができる。
ただし、Brandonの条件式より、Σ2対応粒界は、前記90°の方位関係から両方向に10.6°以内の角度の範囲を含むものと定義されるので、隣り合うWCが[10-10]方向を軸として79.4°以上、100.6°以下の方位関係をもつものをΣ2対応粒界と定義した。
(2) Σ2 corresponding grain boundary ratio:
The inventors of the present invention conducted intensive studies to impart excellent plastic deformation resistance, wear resistance, chipping resistance, and chipping resistance to cemented carbide, and found that the crystals present between two WC crystal grains Many of the positions of atoms on the grain boundary coincide with the lattice points of the crystal grains on both sides, and at the grain boundary shared by both grains, that is, the corresponding grain boundary of WC, the disorder of the crystal orientation is the general grain boundary. The ratio of the Σ2 corresponding grain boundary length, which is the smallest compared to (random grain boundaries) and has strong atomic bonds, to the total WC/WC grain boundary length,
That is, it has been found that by increasing the Σ2-compatible grain boundary ratio, excellent plastic deformation resistance, wear resistance, chipping resistance, and fracture resistance can be achieved depending on the application.
If the Σ2 corresponding grain boundary ratio is less than 15%, the ratio of WC/WC grain boundaries with high grain boundary strength will be small and insufficient, and the fracture resistance will not be satisfied, so it was specified as 15% or more. Furthermore, it is preferably 25% or more.
The Σ2-compatible grain boundary ratio can be measured using, for example, the SEM-EBSD method. That is, multiple fields of view are observed using SEM with a pixel size of 0.1 μm x 0.1 μm in a field of view of 24 μm x 72 μm, and the number of WC is 4000 or more, and analyzed using EBSD. A grain boundary with an orientation relationship in which adjacent WCs are rotated by 90° around the [10-10] direction is defined as a Σ2-compatible grain boundary, and the ratio of the Σ2-compatible grain boundary length to the total WC/WC grain boundary length is calculated. It can be found by
However, according to Brandon's conditional expression, the Σ2 corresponding grain boundary is defined as including the range of angles within 10.6° in both directions from the 90° orientation relationship, so the adjacent WC is [10-10] Those having an orientation relationship of 79.4° or more and 100.6° or less with the direction as an axis were defined as Σ2-compatible grain boundaries.
不可避不純物:
前記のように、硬質相、結合相には製造過程で不可避的に混入する不純物を含んでいてもよく、その量は超硬合金全体に対して0.3質量%以下が好ましい。
Unavoidable impurities:
As mentioned above, the hard phase and the binder phase may contain impurities that are inevitably mixed in during the manufacturing process, and the amount thereof is preferably 0.3% by mass or less based on the entire cemented carbide.
2.切削工具:
本発明の切削工具は、本発明の超硬合金に硬質皮膜を形成したものである。硬質皮膜の種類、成膜法は、それぞれ、当業者に既によく知られている膜種、成膜手法を採用すればよく、特に、制限するものではない。あえて例示をするならば、物理蒸着法(PVD法)または化学蒸着法(CVD法)により、Ti、Al、Cr、BおよびZrからなる群から選ばれた少なくとも一種の元素と、C、NおよびOからなる群から選ばれた少なくとも一種の元素とを必須とする単層又は多層の硬質皮膜が有用である。具体的には、例えば、TiC、CrC、SiC、VC、ZrC、TiN、AlN、CrN、VN、ZrN、Ti(CN)、(TiSi)N、(TiB)N、(TiZr)N、TiAl(CN)、TiCr(CN)、TiZr(CN)、Ti(CNO)、TiAl(CNO)、Ti(CO)、(TiCr)N、(TiAlCr)N、(AlCr)N、Al2O3およびTiB2等の単層または多層の皮膜が挙げることができ、硬質皮膜の膜厚は、例えば1.0~15.0μmである。
2. Cutting tools:
The cutting tool of the present invention is one in which a hard coating is formed on the cemented carbide of the present invention. The type and film forming method of the hard film are not particularly limited, and may be those that are already well known to those skilled in the art. To give an example, at least one element selected from the group consisting of Ti, Al, Cr, B, and Zr and C, N, and A single-layer or multi-layer hard coating containing at least one element selected from the group consisting of O is useful. Specifically, for example, TiC, CrC, SiC, VC, ZrC, TiN, AlN, CrN, VN, ZrN, Ti(CN), (TiSi)N, (TiB)N, (TiZr)N, TiAl(CN ), TiCr(CN), TiZr(CN), Ti(CNO), TiAl(CNO), Ti(CO), (TiCr)N, (TiAlCr)N, ( AlCr )N, Al2O3 and TiB2 , etc. For example, the hard coating may have a thickness of 1.0 to 15.0 μm.
3.製造方法:
本発明の超硬合金は、例えば、以下のようにして作製することができる。
まず、WC粉末、Co、Ni粉末の少なくとも1種以上、TiC粉末、TaC粉末、NbC粉末、ZrC粉末、HfC粉末、VC粉末のうちの1種以上、および、必要により、Cr3C2粉末を加えた原料粉末を、本発明の超硬合金にて規定する組成となるように配合し混合する。
特にWC粉末は、他の原料粉末との混合前にプレス成形-熱処理-解砕処理を複数回実施し、WC粉末におけるΣ2対応粒界比率を高めた上で、他の原料粉末と混合することができる。
前処理されたWC粉末と、他の原料粉末との混合には、例えば、超音波ホモジナイザー、サイクロンミキサーなどのメディアレス混合を用いることにより、大きな破砕力を加えることなく配合・混合することができるため、炭化時および前処理時に形成されたWCのΣ2対応粒界の消失を回避することができる。
次いで、前記混合粉末を成形して圧粉成形体を作製し、前記圧粉成形体の焼結工程においては、固相焼結が進むとその後の液晶焼結時にΣ2対応粒界が形成されにくくなるため、固相焼結が進む温度領域(1000℃~1350℃)では昇温速度を40℃/分以上に早め、固相焼結を抑制した上で、1350℃~1450℃にて、真空雰囲気下、10~80分の時間にて本焼結を行うことにより、微粒WCに形成されるΣ2対応粒界が溶解・再析出により消失することを回避し、Σ2対応粒界比率が15%以上、さらには、25%以上に維持されたWC焼結体を得ることができる。
3. Production method:
The cemented carbide of the present invention can be produced, for example, as follows.
First, at least one of WC powder, Co, and Ni powder, one or more of TiC powder, TaC powder, NbC powder, ZrC powder, HfC powder, and VC powder, and if necessary, Cr 3 C 2 powder. The added raw material powders are blended and mixed so as to have the composition specified for the cemented carbide of the present invention.
In particular, WC powder is subjected to press molding, heat treatment, and crushing multiple times before being mixed with other raw material powders to increase the ratio of Σ2-compatible grain boundaries in the WC powder, and then mixed with other raw material powders. Can be done.
For mixing the pretreated WC powder and other raw material powders, for example, by using medialess mixing such as an ultrasonic homogenizer or a cyclone mixer, it is possible to blend and mix without applying large crushing force. Therefore, it is possible to avoid the disappearance of the Σ2-corresponding grain boundaries of WC formed during carbonization and pretreatment.
Next, the mixed powder is molded to produce a powder compact, and in the sintering process of the powder compact, as solid-phase sintering progresses, Σ2-compatible grain boundaries are difficult to form during subsequent liquid crystal sintering. Therefore, in the temperature range where solid-phase sintering progresses (1000°C to 1350°C), the temperature increase rate is increased to 40°C/min or more to suppress solid-state sintering, and at 1350°C to 1450°C, vacuum By performing main sintering in an atmosphere for 10 to 80 minutes, the Σ2 compatible grain boundaries formed in fine WC are prevented from disappearing due to dissolution and re-precipitation, and the Σ2 compatible grain boundaries ratio is 15%. Furthermore, it is possible to obtain a WC sintered body in which the WC concentration is maintained at 25% or more.
本発明の超硬合金および該超硬合金を工具基体として用いた切削工具について、以下、実施例により具体的に説明する。 The cemented carbide of the present invention and the cutting tool using the cemented carbide as a tool base will be specifically explained below using Examples.
(a)原料粉末
まず、焼結用の原料粉末として、体積基準の平均粒径(d50)が0.5μm以上、4.0μm以下のWC粉末、および、平均粒径(d50)が、いずれも、1.0μm以上、4.0μm以下の範囲内のCo粉末、Ni粉末、Cr3C2粉末、TiC粉末、TaC粉末、NbC粉末、ZrC粉末、HfC粉末、VC粉末を用意した。
特に、WC粉末については、表1に示すとおり、他粉末との混合前の事前の準備工程として、下記手順により、前記素原料WC粉末について、プレス成形-熱処理-解砕処理を複数回実施すことにより、結晶性に優れ、Σ2対応粒界比率を高めたWC原料粉末を得て、これを原料として用いた。
以下、具体的に示すと以下のとおり。
1)前記素原料WC粉末を粒径1mm以上、3mm以下の球状にプレス成形し、1300以上、1400℃以下、アルゴン雰囲気10Pa以上、100Pa以下にて30分間以上、90分間以内の熱処理を施す。
2)前記熱処理により得られた粉末を乳鉢にて3分以上、10分以下の解砕処理を施す。
3)1)と2)の工程を2回以上、10回以下にて繰り返すことにより、Σ2対応粒界比率を高めたWC粉末を得た。
すなわち、まず、1)工程では、別々の個体であったWC粒子同士をプレス成形により接触させた状態にて熱処理を行うことにより、WC粒子同士を接合させ、その界面に対応粒界およびランダム粒界を形成させる。次いで、2)工程では、解砕処理により、粒界強度の低いランダム粒界やΣ値の高い粒界が優先して破壊され、粒界強度の高いΣ2対応粒界が残存する。そして、3)工程として、1)工程と2)工程とを繰り返すことにより、Σ2対応粒界比率の高いWC粉末を作製することができた。
(a) Raw material powder First, as raw material powder for sintering, WC powder with a volume-based average particle size (d50) of 0.5 μm or more and 4.0 μm or less, and a WC powder with an average particle size (d50) of , Co powder, Ni powder, Cr 3 C 2 powder, TiC powder, TaC powder, NbC powder, ZrC powder, HfC powder, and VC powder within the range of 1.0 μm or more and 4.0 μm or less were prepared.
In particular, for the WC powder, as shown in Table 1, as a preliminary preparation step before mixing with other powders, the raw material WC powder is subjected to press molding, heat treatment, and crushing processes multiple times according to the following procedure. As a result, a WC raw material powder with excellent crystallinity and an increased ratio of grain boundaries corresponding to Σ2 was obtained, and this was used as a raw material.
The specific details are as follows.
1) The raw material WC powder is press-molded into a spherical shape with a particle size of 1 mm or more and 3 mm or less, and heat-treated at 1300° C. or more and 1400° C. or less and an argon atmosphere of 10 Pa or more and 100 Pa or less for 30 minutes or more and 90 minutes or less.
2) The powder obtained by the heat treatment is crushed in a mortar for at least 3 minutes and at most 10 minutes.
3) By repeating the steps 1) and 2) at least 2 times and at most 10 times, a WC powder with an increased ratio of grain boundaries corresponding to Σ2 was obtained.
That is, first, in step 1), WC particles, which were separate individuals, are brought into contact with each other by press molding, and heat treatment is performed to bond the WC particles together, and the corresponding grain boundaries and random grains are formed at the interface. form a world. Next, in step 2), random grain boundaries with low grain boundary strength and grain boundaries with high Σ values are preferentially destroyed by crushing treatment, and grain boundaries corresponding to Σ2 with high grain boundary strength remain. Then, as step 3), by repeating step 1) and step 2), it was possible to produce a WC powder with a high ratio of grain boundaries corresponding to Σ2.
(b)混合工程(メディアレス混合工程)
次に、(a)にて、Σ2対応粒界比率を高めたWC原料粉末と、事前に準備した、前記平均粒径(d50)が、いずれも、1.0μm以上、4.0μm以下の範囲内のCo粉末、Ni粉末、Cr3C2粉末、TaC粉末、NbC粉末、TiC粉末、ZrC粉末、HfC粉末、VC粉末とを、表2に示す配合組成となるように配合して焼結用粉末とし、特に、WC粉末について炭化時に形成されたΣ2対応粒界が破壊されるのを防ぐために、メディアレスのアトライター混合により、回転数50rpm、8時間湿式混合し、乾燥後、100MPaの圧力でプレス成形し、圧粉成形体を作製した。
(b) Mixing process (media-less mixing process)
Next, in (a), the WC raw material powder with a high Σ2 corresponding grain boundary ratio and the average particle size (d50) prepared in advance are both in the range of 1.0 μm or more and 4.0 μm or less. Co powder, Ni powder, Cr 3 C 2 powder, TaC powder, NbC powder, TiC powder, ZrC powder, HfC powder, and VC powder were mixed to have the composition shown in Table 2 and used for sintering. In particular, in order to prevent destruction of the Σ2-compatible grain boundaries formed during carbonization for WC powder, wet mixing was performed at a rotation speed of 50 rpm for 8 hours using a media-less attritor mixing, and after drying, a pressure of 100 MPa was applied. Press molding was performed to produce a powder compact.
(c)焼結工程
昇温工程;
次いで、固相焼結となる1000℃から焼結温度である1350℃までの昇温工程においては、昇温速度を40℃/分以上に早めることにより、固相焼結を抑制した。
すなわち、液相温度領域における昇温後の液相焼結時には、また、新たなΣ2対応粒界が形成されるものの、液相が出現する前の温度域においては、WC同士が固相拡散により結合しネッキングが強固に形成されると本来液相焼結時に形成されるΣ2対応粒界が減少してしまうことから、固相拡散が進む1000~1350℃の温度域において、昇温速度を速めたものである。
焼結工程;
次いで、焼結工程では、1350℃以上への昇温後、1350℃~1450℃にて10~80分、真空0.1Pa以下とすることにより、微粒WCに形成されるΣ2対応粒界の溶解、再析出による消失を防ぎ、WC基超硬合金焼結体を得た。
(c) Sintering process Temperature raising process;
Next, in the temperature raising step from 1000° C., which is solid phase sintering, to 1350° C., which is the sintering temperature, solid phase sintering was suppressed by increasing the temperature raising rate to 40° C./min or more.
In other words, during liquid phase sintering after temperature rise in the liquidus temperature region, new Σ2-compatible grain boundaries are formed, but in the temperature region before the appearance of the liquid phase, WCs are separated by solid phase diffusion. If the bonding and necking are strongly formed, the Σ2 compatible grain boundaries that are originally formed during liquid phase sintering will decrease, so the temperature increase rate should be increased in the temperature range of 1000 to 1350 °C where solid phase diffusion occurs. It is something that
Sintering process;
Next, in the sintering process, after raising the temperature to 1350°C or higher, the temperature is 10 to 80 minutes at 1350°C to 1450°C and the vacuum is 0.1 Pa or less, thereby melting the Σ2 corresponding grain boundaries formed in the fine grain WC. , a WC-based cemented carbide sintered body was obtained by preventing disappearance due to redeposition.
次に、WC基超硬合金焼結体を機械加工、研削加工し、CNMG432MAの形状に整え、表4に示す超硬合金基体1~10(以下、本発明工具基体1~10という)を作製した。 Next, the WC-based cemented carbide sintered body was machined and ground to form the shape of CNMG432MA to produce cemented carbide substrates 1 to 10 shown in Table 4 (hereinafter referred to as tool substrates 1 to 10 of the present invention). did.
比較のために、比較例の超硬合金基体1~7(以下、比較例工具基体1~7という)を作製した。
その製造工程は、本発明工具基体1~10の製造条件を外れた、表3に示す固相焼結条件、および、液相焼結条件にて、焼結工程を行い、WC基超硬合金焼結体を得た後、前記WC基超硬合金焼結体を機械加工、研削加工し、CNMG432MAの形状に整えることにより、表5に示す比較例工具基体1~7として作製した。
For comparison, comparative examples of cemented carbide substrates 1 to 7 (hereinafter referred to as comparative example tool substrates 1 to 7) were produced.
In the manufacturing process, a sintering process is performed under the solid phase sintering conditions and liquid phase sintering conditions shown in Table 3, which are different from the manufacturing conditions of the tool bases 1 to 10 of the present invention, and the WC-based cemented carbide is After obtaining the sintered body, the WC-based cemented carbide sintered body was machined and ground to form the shape of CNMG432MA, thereby producing Comparative Example Tool Bases 1 to 7 shown in Table 5.
本発明工具基体1~10および比較例工具基体1~7の超硬合金の断面について、電子線マイクロアナライザ(EPMA)により、その成分であるCr、Ti、Ta、Nb、Zr、Hf、Vの各元素につき、その含有量を10点測定し、その平均値を各成分の含有量とした。
なお、ここで、Cr、Ti、Ta、Nb、Zr、Hf、Vは、それぞれの炭化物に換算して含有量を算出した。表4、表5に、それぞれの平均含有量を示す。
The cross sections of the cemented carbide of the present invention tool bases 1 to 10 and the comparative example tool bases 1 to 7 were analyzed using an electron beam microanalyzer (EPMA) to determine the components of Cr, Ti, Ta, Nb, Zr, Hf, and V. The content of each element was measured at 10 points, and the average value was taken as the content of each component.
Note that the contents of Cr, Ti, Ta, Nb, Zr, Hf, and V were calculated in terms of their respective carbides. Tables 4 and 5 show the respective average contents.
前記本発明工具基体1~10および比較例工具基体1~7の表面に、表6に示す平均層厚の硬質被覆層をCVD法で被覆形成し、本発明表面被覆WC基超硬合金製切削工具(以下、本発明被覆工具という)1~10、比較例表面被覆WC基超硬合金製切削工具(以下、比較例被覆工具という)1~7を作製した。 A hard coating layer having an average layer thickness shown in Table 6 was formed on the surfaces of the present invention tool bases 1 to 10 and comparative example tool bases 1 to 7 by CVD method, and the present invention surface-coated WC-based cemented carbide cutting material was Tools (hereinafter referred to as coated tools of the present invention) 1 to 10 and comparative example surface-coated WC-based cemented carbide cutting tools 1 to 7 (hereinafter referred to as comparative coated tools) were prepared.
切削条件:
スリット溝付き合金鋼丸棒の湿式外径旋削加工
被削材:SNCM439 幅30mmのスリット溝が1本加工されたφ200の丸棒
切削速度:300m/min
切り込み:1.5mm
送り:0.5mm/rev
切削時間:5分
Cutting conditions:
Wet outer diameter turning of a metal steel round bar with slit grooves Work material: SNCM439 φ200 round bar with one 30mm wide slit groove Cutting speed: 300m/min
Cut: 1.5mm
Feed: 0.5mm/rev
Cutting time: 5 minutes
上記湿式外径旋削加工試験後の、切れ刃の逃げ面塑性変形量を測定するとともに、切れ刃の損耗状態を観察した。本切削試験では、切れ刃の逃げ面塑性変形量として次のものを採用した。すなわち、切削前の変形していない切れ刃稜線を基準とし、切削によって切れ刃稜線が押し込まれて変形した量を切れ刃の逃げ面塑性変形量として、切削時間終了後に測定した。具体的には、工具の主切れ刃側逃げ面について、切れ刃から十分離れた位置で主切れ刃側逃げ面とすくい面が交差する稜線上に線分を引き、同線分を切れ刃部方向に延伸し、延伸した線分と切れ刃部稜線間の距離(延伸した線分の垂直方向)が最も離れている部分を測定し、これを切れ刃の逃げ面塑性変形量として求めた(図2を参照)。
表7に、その結果を示す。
After the above-mentioned wet outer diameter turning test, the amount of plastic deformation of the flank face of the cutting edge was measured, and the state of wear of the cutting edge was observed. In this cutting test, the following was adopted as the amount of plastic deformation on the flank face of the cutting edge. That is, using the undeformed cutting edge ridgeline before cutting as a reference, the amount by which the cutting edge ridgeline was pushed in and deformed by cutting was defined as the amount of plastic deformation of the flank face of the cutting edge, and was measured after the cutting time had ended. Specifically, for the flank face on the main cutting edge side of the tool, draw a line segment on the ridge line where the flank face on the main cutting edge side intersects with the rake face at a position sufficiently far from the cutting edge, and draw the line segment on the ridgeline where the flank face on the main cutting edge side intersects with the rake face, and draw the same line segment on the cutting edge side. The distance between the stretched line segment and the cutting edge ridgeline (perpendicular to the stretched line segment) was measured at the farthest point, and this was determined as the amount of plastic deformation on the flank surface of the cutting edge ( (see Figure 2).
Table 7 shows the results.
表7に示される試験結果によれば、本発明被覆工具は、偏摩耗や欠損を発生することなく、優れた耐塑性変形性を発揮する。これに対して、比較例被覆工具は、所定の切削時間において、工具が塑性変形に起因する欠損により寿命を迎えた。
本発明被覆工具においては、全WC/WC粒界長に対して、粒界強度の高いΣ2対応粒界長の占める比率が15%以上、より好ましくは、25%以上であることにより、WC/WC粒界に生じる粒界すべりに対する抵抗を向上させ、耐欠損性を損なうことなく、高い耐塑性変形性を発揮することができた。
According to the test results shown in Table 7, the coated tool of the present invention exhibits excellent plastic deformation resistance without causing uneven wear or chipping. On the other hand, the comparative coated tool reached the end of its life due to chipping due to plastic deformation within a predetermined cutting time.
In the coated tool of the present invention, the ratio of the Σ2 corresponding grain boundary length with high grain boundary strength to the total WC/WC grain boundary length is 15% or more, more preferably 25% or more, so that the WC/WC It was possible to improve resistance to grain boundary slip occurring at WC grain boundaries and to exhibit high plastic deformation resistance without impairing fracture resistance.
以上のとおり、本発明の超硬合金および切削工具は、断続部を含む鋼の高能率加工に用いた場合、耐欠損性を損なうことなく耐塑性変形性を向上させることができるため、長期の使用にわたって優れた切削性能を発揮し、工具の長寿命化が図られる。 As described above, when the cemented carbide and cutting tool of the present invention are used for high-efficiency machining of steel including interrupted parts, the plastic deformation resistance can be improved without impairing the fracture resistance. Demonstrates excellent cutting performance over the course of use, extending tool life.
Claims (4)
Co、Niの少なくとも1種を4.0質量%以上、10.0質量%未満、
TiC、TaC、NbC、ZrC、HfC、および、VCのうちから選ばれる少なくとも1種以上を合計にて、4.0質量%以上、12.0質量%未満、
さらに、Cr3C2を0.0質量%以上、0.5質量%未満にて含有し、
残部は、WCおよび不可避的不純物とからなり、
WCの平均粒径は、0.2μm以上、4.0μm以下であり、
WCのΣ2対応粒界の、全WC/WC粒界に占める存在比率(Σ2対応粒界比率)が15%以上である、
ことを特徴とするWC基超硬合金。 In WC-based cemented carbide,
At least one of Co and Ni is 4.0% by mass or more and less than 10.0% by mass,
The total content of at least one selected from TiC, TaC, NbC, ZrC, HfC, and VC is 4.0% by mass or more and less than 12.0% by mass,
Furthermore, it contains Cr 3 C 2 at 0.0% by mass or more and less than 0.5% by mass,
The remainder consists of WC and unavoidable impurities,
The average particle size of WC is 0.2 μm or more and 4.0 μm or less,
The abundance ratio of the WC Σ2-compatible grain boundaries to the total WC/WC grain boundaries (Σ2-compatible grain boundary ratio) is 15% or more,
A WC-based cemented carbide characterized by the following.
The surface-coated WC-based cemented carbide cutting tool according to claim 3, wherein a hard coating layer is formed on at least the cutting edge of the WC-based cemented carbide tool.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020040267A JP7437621B2 (en) | 2020-03-09 | 2020-03-09 | WC-based cemented carbide and WC-based cemented carbide cutting tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020040267A JP7437621B2 (en) | 2020-03-09 | 2020-03-09 | WC-based cemented carbide and WC-based cemented carbide cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021139032A JP2021139032A (en) | 2021-09-16 |
JP7437621B2 true JP7437621B2 (en) | 2024-02-26 |
Family
ID=77667922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020040267A Active JP7437621B2 (en) | 2020-03-09 | 2020-03-09 | WC-based cemented carbide and WC-based cemented carbide cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7437621B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002187005A (en) | 2000-12-22 | 2002-07-02 | Mitsubishi Materials Corp | Throwaway tip made of surface-coated cemented carbide excellent in wear resistance in high speed cutting |
JP2009035802A (en) | 2007-08-03 | 2009-02-19 | Sumitomo Electric Ind Ltd | Cemented carbide |
US20150176106A1 (en) | 2013-12-23 | 2015-06-25 | King Fahd University Of Petroleum And Minerals | High-density and high-strength wc-based cemented carbide |
-
2020
- 2020-03-09 JP JP2020040267A patent/JP7437621B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002187005A (en) | 2000-12-22 | 2002-07-02 | Mitsubishi Materials Corp | Throwaway tip made of surface-coated cemented carbide excellent in wear resistance in high speed cutting |
JP2009035802A (en) | 2007-08-03 | 2009-02-19 | Sumitomo Electric Ind Ltd | Cemented carbide |
US20150176106A1 (en) | 2013-12-23 | 2015-06-25 | King Fahd University Of Petroleum And Minerals | High-density and high-strength wc-based cemented carbide |
Also Published As
Publication number | Publication date |
---|---|
JP2021139032A (en) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6677932B2 (en) | Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting | |
EP3225337B1 (en) | Surface-coated cutting tool with excellent chipping resistance and wear resistance | |
JP5234926B2 (en) | Hard film and hard film forming target | |
EP1904660A1 (en) | Sintered cemented carbides using vanadium as gradient former | |
EP3427872B1 (en) | Surface-coated cubic boron nitride sintered tool | |
EP3613864A1 (en) | Cemented carbide, cutting tool comprising same, and method for preparing cemented carbide | |
WO2017077884A1 (en) | Hard alloy and cutting tool | |
JP7441416B2 (en) | WC-based cemented carbide and WC-based cemented carbide cutting tools | |
JP7441415B2 (en) | WC-based cemented carbide and WC-based cemented carbide cutting tools | |
WO2016084939A1 (en) | Surface-coated cutting tool with excellent chipping resistance and wear resistance | |
JP7437621B2 (en) | WC-based cemented carbide and WC-based cemented carbide cutting tools | |
JP2002129306A (en) | Dispersion strengthened composite hard coating and tools coated by the same | |
JP7432109B2 (en) | Cemented carbide and cutting tools | |
JP2007136655A (en) | Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting excellent wear resistance in high-speed heavy cutting of high-hardness steel | |
JP2021126738A (en) | Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting | |
JP7235200B2 (en) | Cemented carbide and cutting tools | |
JP7235199B2 (en) | Cemented carbide and cutting tools | |
JP2021143380A (en) | Wc-based hard metal and wc hard metal cutting tool | |
JP2022108807A (en) | Cutting tool | |
JP2021139033A (en) | Wc-based super-hard alloy and wc-based super-hard alloy cutting tool | |
JP7170964B2 (en) | Cemented Carbide and Coated Cemented Carbide | |
EP3925720A1 (en) | Hard coating cutting tool | |
JP3451949B2 (en) | Surface-coated cemented carbide end mill with high toughness of substrate | |
JP5629291B2 (en) | Hard film and hard film forming target | |
EP3786309A1 (en) | Composite sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7437621 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |