[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020132492A - Zinc compound for cosmetics, and method for manufacturing same - Google Patents

Zinc compound for cosmetics, and method for manufacturing same Download PDF

Info

Publication number
JP2020132492A
JP2020132492A JP2019030268A JP2019030268A JP2020132492A JP 2020132492 A JP2020132492 A JP 2020132492A JP 2019030268 A JP2019030268 A JP 2019030268A JP 2019030268 A JP2019030268 A JP 2019030268A JP 2020132492 A JP2020132492 A JP 2020132492A
Authority
JP
Japan
Prior art keywords
zinc
aqueous solution
cosmetics
compound
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019030268A
Other languages
Japanese (ja)
Other versions
JP7231145B2 (en
Inventor
武弘 後藤
Takehiro Goto
武弘 後藤
長谷 昇
Noboru Nagatani
昇 長谷
明希子 蔵之上
Akiko Kuranoue
明希子 蔵之上
貴行 粂井
Takayuki Kumei
貴行 粂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fancl Corp
Daito Kasei Kogyo Co Ltd
Original Assignee
Fancl Corp
Daito Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fancl Corp, Daito Kasei Kogyo Co Ltd filed Critical Fancl Corp
Priority to JP2019030268A priority Critical patent/JP7231145B2/en
Publication of JP2020132492A publication Critical patent/JP2020132492A/en
Application granted granted Critical
Publication of JP7231145B2 publication Critical patent/JP7231145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

To provide a zinc compound for cosmetics which achieves excellent use feeling when blended into cosmetics and prevents oil flotation and makeup deterioration of the cosmetics, thereby maintaining makeup for a longer time than conventional ones.SOLUTION: A tabular zinc compound for cosmetics has a full length of 5-50 μm. An aspect ratio that is a ratio of the full length and a thickness is 6-100. When preparing an oil and fat mixture in which a content of the zinc compound for cosmetics reaches 10 wt% or more by being added to oil and fat including C-Cmonounsaturated fatty acid, flowability of the oil and fat mixture is designed to decrease or disappear in 2-10 minutes.SELECTED DRAWING: None

Description

本発明は、板状の化粧料用亜鉛化合物、及び化粧料用亜鉛化合物の製造方法に関する。 The present invention relates to a plate-shaped zinc compound for cosmetics and a method for producing a zinc compound for cosmetics.

一般に、顔のメイク等に用いる化粧料には、皮脂による油浮きが起こり難いこと、化粧くずれが起こり難いこと、使用感に優れることなどの性能が求められる。これらの性能を向上させるための化粧料の原材料の一つとして、従来から酸化亜鉛が用いられている。酸化亜鉛は、化粧料の使用感に関係する「滑り性」や「肌への付着性」等に影響を与える白色微粒子であり、オレイン酸等の脂肪酸と反応することで当該脂肪酸を固化又はゲル化させるという特性を有する。酸化亜鉛を含む化粧料を用いてメイクを行うと、酸化亜鉛が皮膚の毛穴から滲出する皮脂に含まれる脂肪酸に作用して皮脂の拡散が抑えられ、メイク後ある程度時間が経っても、化粧料の油浮きや化粧くずれが起こり難いものとなる。 In general, cosmetics used for facial makeup and the like are required to have performances such as less likely to cause oil floating due to sebum, less likely to cause makeup breakage, and excellent usability. Zinc oxide has been conventionally used as one of the raw materials for cosmetics for improving these performances. Zinc oxide is white fine particles that affect the "slipperiness" and "adhesion to the skin" related to the feeling of use of cosmetics, and solidifies or gels the fatty acid by reacting with fatty acids such as oleic acid. It has the property of being converted. When make-up is performed using a cosmetic containing zinc oxide, zinc oxide acts on the fatty acids contained in the sebum that exudes from the pores of the skin to suppress the diffusion of the sebum, and even after a certain amount of time has passed after the make-up, the cosmetic Oil floating and makeup breakage are less likely to occur.

ところで、酸化亜鉛の性能(物性)は、形状、結晶構造、比表面積等の性状に左右される。本出願人は、化粧料に用いることが可能な酸化亜鉛として、これまで針状酸化亜鉛(特許文献1)や、球状酸化亜鉛(特許文献2)を開発し、これらを各種化粧品に配合して種々の検討を行ってきた。特許文献1には、針状酸化亜鉛粉体を配合した化粧料は、化粧料ののび、広がりやシワ隠し効果が優れたものとなることが記載されている。特許文献2には、球状酸化亜鉛粉体を配合した化粧料は、肌へ塗布した時の透明感、使用感、化粧持ちが優れたものとなることが記載されている。 By the way, the performance (physical properties) of zinc oxide depends on properties such as shape, crystal structure, and specific surface area. The applicant has developed needle-shaped zinc oxide (Patent Document 1) and spherical zinc oxide (Patent Document 2) as zinc oxide that can be used in cosmetics, and has incorporated these into various cosmetics. Various studies have been conducted. Patent Document 1 describes that a cosmetic containing acicular zinc oxide powder has an excellent effect of spreading, spreading and hiding wrinkles. Patent Document 2 describes that a cosmetic containing spherical zinc oxide powder has excellent transparency, usability, and long-lasting makeup when applied to the skin.

特開2015−81201号公報Japanese Unexamined Patent Publication No. 2015-8201 特開2016−160165号公報Japanese Unexamined Patent Publication No. 2016-160165

化粧料の油浮きや化粧くずれを防止し、長時間に亘ってメイクを維持するためには、化粧料に含まれる酸化亜鉛と皮脂に含まれる脂肪酸とを効率よく反応させ、皮脂を迅速且つ均一に固化又はゲル化させることが求められる。ところが、これまでに開発してきた酸化亜鉛から得られた知見のみでは、どのような性状を有する酸化亜鉛が脂肪酸と効率よく反応し、化粧料の原材料として最適であるのか、十分に明らかになっているとは言えなかった。つまり、特許文献1の針状酸化亜鉛粉体を配合した化粧料や、特許文献2の球状酸化亜鉛粉体を配合した化粧料においても、化粧料の油浮きや化粧くずれをさらに長時間に亘って防止するという点では、まだ改善の余地があった。また、酸化亜鉛を含む化粧料の使用感に関しても、さらなる知見の蓄積が求められている。 In order to prevent oil floating and makeup breakage of cosmetics and maintain makeup for a long period of time, zinc oxide contained in cosmetics and fatty acids contained in sebum are efficiently reacted to quickly and uniformly make sebum uniform. Is required to be solidified or gelled. However, the findings obtained from the zinc oxide that has been developed so far have fully clarified what kind of properties zinc oxide has, which reacts efficiently with fatty acids and is the most suitable raw material for cosmetics. I couldn't say there was. That is, even in the cosmetics containing the acicular zinc oxide powder of Patent Document 1 and the cosmetics containing the spherical zinc oxide powder of Patent Document 2, the oil floating and the makeup breakage of the cosmetics last for a longer period of time. There was still room for improvement in terms of prevention. Further, it is required to accumulate further knowledge about the feeling of use of cosmetics containing zinc oxide.

また、酸化亜鉛の代表的な製造方法として、水溶性亜鉛化合物の溶液反応を利用したものが知られているが、溶液反応は、亜鉛原料液の添加条件やタイミングによって反応機構や反応速度が変化することがあり、一定の性状を有する酸化亜鉛を安定して製造することが難しい場合がある。特許文献1の針状酸化亜鉛粉体や、特許文献2の球状酸化亜鉛粉体においても、亜鉛原料液として水溶性亜鉛化合物の水溶液を用いているが、溶液反応を行う際の亜鉛原料液の添加条件等については、特に詳細な検討はなされていない。 Further, as a typical method for producing zinc oxide, a method using a solution reaction of a water-soluble zinc compound is known, but in the solution reaction, the reaction mechanism and reaction rate change depending on the addition conditions and timing of the zinc raw material solution. It may be difficult to stably produce zinc oxide having certain properties. The needle-shaped zinc oxide powder of Patent Document 1 and the spherical zinc oxide powder of Patent Document 2 also use an aqueous solution of a water-soluble zinc compound as the zinc raw material solution, but the zinc raw material solution used in the solution reaction is used. No particular detailed study has been made on the addition conditions and the like.

本発明は、上記問題点に鑑みてなされたものであり、化粧料に配合したときに優れた使用感を達成しながら、化粧料の油浮きや化粧くずれを防止し、従来よりも長時間に亘ってメイクを維持することが可能な化粧料用亜鉛化合物を提供することを目的とする。また、本発明は、一定の性状を有する化粧料用亜鉛化合物を安定して製造するための化粧料用亜鉛化合物の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and while achieving an excellent usability when blended in a cosmetic, it prevents oil floating and makeup breakage of the cosmetic, and takes a longer time than before. An object of the present invention is to provide a zinc compound for cosmetics capable of maintaining make-up over time. Another object of the present invention is to provide a method for producing a zinc compound for cosmetics for stably producing a zinc compound for cosmetics having certain properties.

上記課題を解決するための本発明にかかる化粧料用亜鉛化合物の特徴構成は、
板状の化粧料用亜鉛化合物であって、
全長が5〜50μmであり、全長と厚さとの比率であるアスペクト比が6〜100であることにある。
The characteristic composition of the zinc compound for cosmetics according to the present invention for solving the above problems is as follows.
A plate-shaped zinc compound for cosmetics
The total length is 5 to 50 μm, and the aspect ratio, which is the ratio of the total length to the thickness, is 6 to 100.

本発明者らは、鋭意研究の末、数多くの種類の亜鉛化合物の中で板状の形態を有する亜鉛化合物が皮脂に含まれる脂肪酸を固化又はゲル化する性能に優れていることを見出し、さらに、このような板状の化粧料用亜鉛化合物において、全長が5〜50μm、全長と厚さとの比率であるアスペクト比が6〜100であるものが、化粧料に配合したときの使用感のみならず、脂肪酸を固化又はゲル化する性能に特に優れていることを突き止め、本構成の板状の化粧料用亜鉛化合物を創作するに至った。従って、本構成の化粧料用亜鉛化合物を化粧料の原材料として使用すると、当該化粧料を顔などの皮膚に塗布した場合、皮脂に含まれる脂肪酸が化粧料に含まれる亜鉛化合物と効率よく反応し、皮脂が迅速且つ均一に固化又はゲル化されることになる。その結果、化粧料の油浮きや化粧くずれが防止され、従来よりも長時間に亘ってメイクを維持することが可能となる。また、化粧料に配合したときの使用感も優れたものとなる。 As a result of diligent research, the present inventors have found that among many types of zinc compounds, zinc compounds having a plate-like morphology are excellent in the ability to solidify or gel fatty acids contained in sebum. If such a plate-shaped zinc compound for cosmetics has a total length of 5 to 50 μm and an aspect ratio of 6 to 100, which is the ratio of the total length to the thickness, only the feeling of use when blended in cosmetics. However, they found that they were particularly excellent in the ability to solidify or gel fatty acids, and came up with the creation of a plate-shaped zinc compound for cosmetics having this composition. Therefore, when the zinc compound for cosmetics having this composition is used as a raw material for cosmetics, when the cosmetic is applied to the skin such as the face, the fatty acids contained in sebum efficiently react with the zinc compounds contained in the cosmetics. , Sebum will be rapidly and uniformly solidified or gelled. As a result, oil floating and makeup breakage of the cosmetic are prevented, and the makeup can be maintained for a longer period of time than before. In addition, the feeling of use when blended in cosmetics is also excellent.

本発明にかかる化粧料用亜鉛化合物において、
16〜C20モノ不飽和脂肪酸を含む油脂に添加して含有量が10重量%以上となる油脂混合物を調製した場合において、当該油脂混合物の流動性が2〜10分で低減又は消失するように設定されていることが好ましい。
In the zinc compound for cosmetics according to the present invention
When a fat / oil mixture having a content of 10% by weight or more is prepared by adding it to a fat / oil containing C 16 to C 20 monounsaturated fatty acids, the fluidity of the fat / oil mixture is reduced or disappears in 2 to 10 minutes. It is preferably set to.

皮脂の主成分はC16〜C20モノ不飽和脂肪酸である。そこで、板状の化粧料用亜鉛化合物を、C16〜C20モノ不飽和脂肪酸を含む油脂に濃度が10重量%以上となるように混合調製したとき、当該油脂混合物の流動性が2〜10分で低減又は消失するものとすれば、本構成の化粧料用亜鉛化合物は、化粧料の原材料として使い勝手や化粧料に配合したときの使用感が良好なものでありながら、皮脂による油浮きや化粧くずれがより起こり難いものとなる。従って、化粧料の原材料として極めて有用なものとなり得る。 The main component of sebum is C 16- C 20 monounsaturated fatty acids. Therefore, when a plate-shaped zinc compound for cosmetics is mixed and prepared with an oil or fat containing C 16 to C 20 monounsaturated fatty acids so that the concentration is 10% by weight or more, the fluidity of the oil or fat mixture is 2 to 10 If it is reduced or disappears in minutes, the zinc compound for cosmetics having this composition has good usability as a raw material for cosmetics and has a good usability when blended in cosmetics, but oil floating due to sebum and oil floating. Makeup breakage is less likely to occur. Therefore, it can be extremely useful as a raw material for cosmetics.

上記課題を解決するための本発明にかかる化粧料用亜鉛化合物の製造方法の特徴構成は、
板状の化粧料用亜鉛化合物の製造方法であって、
アルカリ金属水酸化物を溶解させた第一原料水溶液と、水溶性亜鉛化合物及び加水分解性アルカリ化可能窒素含有化合物を溶解させた第二原料水溶液とを夫々調製する準備工程と、
前記第一原料水溶液に、前記第二原料水溶液の一部を滴下し、液中に水酸化亜鉛化合物の種結晶を生成する結晶生成工程と、
種結晶を含む混合液に、前記第二原料水溶液の残部を滴下し、結晶を成長させる結晶成長工程と、
結晶を含む混合液から当該結晶を分離する分離工程と、
分離した結晶を乾燥及び焼成する熱処理工程と、
を包含することにある。
The characteristic configuration of the method for producing a zinc compound for cosmetics according to the present invention for solving the above problems is
A method for producing a plate-shaped zinc compound for cosmetics.
A preparatory step for preparing a first aqueous solution in which an alkali metal hydroxide is dissolved and a second aqueous solution in which a water-soluble zinc compound and a hydrolyzable alkalinable nitrogen-containing compound are dissolved, respectively.
A crystal generation step of dropping a part of the second raw material aqueous solution into the first raw material aqueous solution to form a seed crystal of a zinc hydroxide compound in the liquid.
A crystal growth step of dropping the remainder of the second raw material aqueous solution into a mixed solution containing seed crystals to grow crystals, and
A separation step of separating the crystals from the mixed solution containing the crystals,
A heat treatment step of drying and firing the separated crystals,
To include.

本構成の化粧料用亜鉛化合物の製造方法であれば、第一原料水溶液がアルカリ性であり、このようなアルカリ性環境下から出発して第二原料水溶液を二段階で添加することにより、結晶生成及び結晶成長が各段階で進行し、水酸化亜鉛化合物の結晶が生成する。そして、生成した水酸化亜鉛化合物の結晶を熱処理することで、酸化亜鉛を得ることができる。この酸化亜鉛は、板状の形態を有しており、化粧料に配合したときの使用感、及び皮脂に含まれる脂肪酸を固化又はゲル化する性能に優れているため、化粧料の原材料として有用なものとなる。 In the method for producing a zinc compound for cosmetics having the present constitution, the first aqueous solution is alkaline, and by starting from such an alkaline environment and adding the second aqueous solution in two steps, crystal formation and Crystal growth proceeds at each stage to produce crystals of the zinc hydroxide compound. Then, zinc oxide can be obtained by heat-treating the crystals of the produced zinc hydroxide compound. This zinc oxide has a plate-like shape and is useful as a raw material for cosmetics because it has an excellent feeling of use when blended in cosmetics and the ability to solidify or gel fatty acids contained in sebum. It will be something like that.

本発明にかかる化粧料用亜鉛化合物の製造方法において、
前記準備工程において、前記第一原料水溶液における前記アルカリ金属水酸化物の濃度を0.1〜0.7mol/Lに調整し、前記第二原料水溶液における前記水溶性亜鉛化合物の濃度を0.2〜4mol/L、前記加水分解性アルカリ化可能窒素含有化合物の濃度を0.4〜12mol/Lに調整することが好ましい。
In the method for producing a zinc compound for cosmetics according to the present invention.
In the preparatory step, the concentration of the alkali metal hydroxide in the first aqueous solution is adjusted to 0.1 to 0.7 mol / L, and the concentration of the water-soluble zinc compound in the second aqueous solution is 0.2. It is preferable to adjust the concentration of the hydrolyzable alkalinable nitrogen-containing compound to ~ 4 mol / L to 0.4 to 12 mol / L.

本構成の化粧料用亜鉛化合物の製造方法であれば、上記の濃度に調整した第一原料水溶液及び第二原料水溶液を用いて溶液反応を進行させることにより、化粧料に配合したときの使用感、及び皮脂に含まれる脂肪酸を固化又はゲル化する性能に特に優れた酸化亜鉛を含む化粧料用亜鉛化合物を効率的に且つ容易に製造することが可能となる。また、このような製造方法は、大量生産にも対応できるため、工業的製造にも適用可能となる。 In the method for producing a zinc compound for cosmetics having the present constitution, a feeling of use when blended in cosmetics by advancing the solution reaction using the first raw material aqueous solution and the second raw material aqueous solution adjusted to the above concentrations. , And a zinc oxide compound for cosmetics containing zinc oxide, which is particularly excellent in the ability to solidify or gel fatty acids contained in sebum, can be efficiently and easily produced. Further, since such a manufacturing method can be applied to mass production, it can be applied to industrial manufacturing.

本発明にかかる化粧料用亜鉛化合物の製造方法において、
前記結晶生成工程は、混合液の水素イオン濃度(pH)が11以下に低減するまで実施されることが好ましい。
In the method for producing a zinc compound for cosmetics according to the present invention.
The crystal formation step is preferably carried out until the hydrogen ion concentration (pH) of the mixed solution is reduced to 11 or less.

本構成の化粧料用亜鉛化合物の製造方法であれば、結晶生成工程を混合液の水素イオン濃度(pH)が11以下に低減するまで実施することで、液中に水酸化亜鉛化合物の微結晶(種結晶)が大量に生成し易くなる。 In the method for producing a zinc compound for cosmetics having this constitution, by carrying out the crystal formation step until the hydrogen ion concentration (pH) of the mixed solution is reduced to 11 or less, fine crystals of the zinc hydroxide compound are contained in the solution. (Seed crystals) are likely to be produced in large quantities.

本発明にかかる化粧料用亜鉛化合物の製造方法において、
前記結晶生成工程は、生成した種結晶を熟成させる第一熟成工程を含むことが好ましい。
In the method for producing a zinc compound for cosmetics according to the present invention.
The crystal forming step preferably includes a first aging step of aging the produced seed crystal.

本構成の化粧料用亜鉛化合物の製造方法であれば、結晶生成時に種結晶を熟成させる第一熟成工程を行うことで、種結晶の性状が安定し、その後の結晶成長を確実に行うことが可能となる。 In the method for producing a zinc compound for cosmetics having this constitution, by performing the first aging step of aging the seed crystal at the time of crystal formation, the properties of the seed crystal can be stabilized and the subsequent crystal growth can be surely performed. It will be possible.

本発明にかかる化粧料用亜鉛化合物の製造方法において、
前記結晶生成工程において、前記第二原料水溶液を滴下する前の前記第一原料水溶液の液温を70〜95℃に維持することが好ましい。
In the method for producing a zinc compound for cosmetics according to the present invention.
In the crystal formation step, it is preferable to maintain the liquid temperature of the first raw material aqueous solution at 70 to 95 ° C. before dropping the second raw material aqueous solution.

本構成の化粧料用亜鉛化合物の製造方法であれば、第二原料水溶液を滴下する前の第一原料水溶液の液温を70〜95℃に維持することで、液中に水酸化亜鉛化合物の微結晶が大量に生成し、これが種結晶となって、その後の結晶成長を効率よく進行させることが可能となる。 In the method for producing a zinc hydroxide compound for cosmetics having the present constitution, by maintaining the liquid temperature of the first raw material aqueous solution at 70 to 95 ° C. before dropping the second raw material aqueous solution, the zinc hydroxide compound can be contained in the liquid. A large amount of microcrystals are generated, which become seed crystals, and subsequent crystal growth can be efficiently promoted.

本発明にかかる化粧料用亜鉛化合物の製造方法において、
前記結晶成長工程は、成長した結晶を熟成させる第二熟成工程を含むことが好ましい。
In the method for producing a zinc compound for cosmetics according to the present invention.
The crystal growth step preferably includes a second aging step of aging the grown crystal.

本構成の化粧料用亜鉛化合物の製造方法であれば、結晶成長時に結晶を熟成させる第二熟成工程を行うことで、水酸化亜鉛化合物の結晶の成長が促進され、結晶サイズが適度に大きいものとなる。このような水酸化亜鉛化合物の結晶を熱処理すれば、化粧料に配合したときの使用感、及び皮脂に含まれる脂肪酸を固化又はゲル化する性能が良好でありながら、取り扱いも容易な板状の酸化亜鉛を得ることができる。 In the method for producing a zinc compound for cosmetics having this constitution, the growth of the zinc hydroxide compound crystal is promoted by performing the second aging step of aging the crystal at the time of crystal growth, and the crystal size is appropriately large. It becomes. If the crystals of such a zinc hydroxide compound are heat-treated, they have a good feeling of use when blended in cosmetics and the ability to solidify or gel fatty acids contained in sebum, but they are easy to handle. Zinc oxide can be obtained.

本発明にかかる化粧料用亜鉛化合物の製造方法において、
前記熱処理工程は、結晶を粉砕した状態で実施されることが好ましい。
In the method for producing a zinc compound for cosmetics according to the present invention.
The heat treatment step is preferably carried out in a state where the crystals are crushed.

本構成の化粧料用亜鉛化合物の製造方法であれば、結晶を粉砕した状態で熱処理工程を実施することで、水酸化亜鉛化合物に含まれる水酸化亜鉛の酸化亜鉛への転化(脱水反応)が確実に進行し、純度の高い化粧料に適した酸化亜鉛を得ることができる。 In the method for producing a zinc compound for cosmetics having this constitution, by carrying out a heat treatment step in a state where the crystals are crushed, the zinc hydroxide contained in the zinc hydroxide compound is converted to zinc oxide (dehydration reaction). It progresses reliably, and zinc oxide suitable for high-purity cosmetics can be obtained.

図1は、実施例1の酸化亜鉛の電子顕微鏡写真である。FIG. 1 is an electron micrograph of zinc oxide of Example 1. 図2は、実施例1における原料混合液の水素イオン濃度(pH)の変化を示すグラフである。FIG. 2 is a graph showing changes in the hydrogen ion concentration (pH) of the raw material mixed solution in Example 1. 図3は、実施例2の酸化亜鉛の電子顕微鏡写真である。FIG. 3 is an electron micrograph of zinc oxide of Example 2. 図4は、実施例3の酸化亜鉛の電子顕微鏡写真である。FIG. 4 is an electron micrograph of zinc oxide of Example 3. 図5は、実施例4の酸化亜鉛の電子顕微鏡写真である。FIG. 5 is an electron micrograph of zinc oxide of Example 4. 図6は、実施例5の酸化亜鉛の電子顕微鏡写真である。FIG. 6 is an electron micrograph of zinc oxide of Example 5. 図7は、実施例6の酸化亜鉛の電子顕微鏡写真である。FIG. 7 is an electron micrograph of zinc oxide of Example 6. 図8は、実施例7の酸化亜鉛の電子顕微鏡写真である。FIG. 8 is an electron micrograph of zinc oxide of Example 7. 図9は、実施例8の酸化亜鉛の電子顕微鏡写真である。FIG. 9 is an electron micrograph of zinc oxide of Example 8. 図10は、実施例9の酸化亜鉛の電子顕微鏡写真である。FIG. 10 is an electron micrograph of zinc oxide of Example 9. 図11は、比較例1の酸化亜鉛の電子顕微鏡写真である。FIG. 11 is an electron micrograph of zinc oxide of Comparative Example 1. 図12は、比較例2の酸化亜鉛の電子顕微鏡写真である。FIG. 12 is an electron micrograph of zinc oxide of Comparative Example 2. 図13は、比較例3の酸化亜鉛の電子顕微鏡写真である。FIG. 13 is an electron micrograph of zinc oxide of Comparative Example 3. 図14は、比較例4の酸化亜鉛の電子顕微鏡写真である。FIG. 14 is an electron micrograph of zinc oxide of Comparative Example 4. 図15は、比較例5の酸化亜鉛の電子顕微鏡写真である。FIG. 15 is an electron micrograph of zinc oxide of Comparative Example 5.

本発明の化粧料用亜鉛化合物、及び化粧料用亜鉛化合物の製造方法について、詳細に説明する。ただし、本発明は、以下に説明する実施形態及び実施例に限定されることを意図するものではない。 The zinc compound for cosmetics and the method for producing the zinc compound for cosmetics of the present invention will be described in detail. However, the present invention is not intended to be limited to the embodiments and examples described below.

<化粧料用亜鉛化合物>
本発明の化粧料用亜鉛化合物は、その名に示すとおり化粧料(例えば、ファンデーション、頬紅、アイシャドウ、マスカラ、アイライナー等)の原材料として使用されるものである。亜鉛化合物は、主成分として酸化亜鉛を含むものであるが、当該亜鉛化合物には、酸化亜鉛の前駆体であって製造過程で残留した水酸化亜鉛化合物が含まれている可能性がある。しかしながら、本発明の化粧料用亜鉛化合物は、全体としては酸化亜鉛の特性が支配的であり、酸化亜鉛として見なしても特に支障がないため、以降の説明では、亜鉛化合物を酸化亜鉛として取り扱うものとする。
<Zinc compounds for cosmetics>
As the name implies, the zinc compound for cosmetics of the present invention is used as a raw material for cosmetics (for example, foundation, blusher, eye shadow, mascara, eyeliner, etc.). The zinc compound contains zinc oxide as a main component, and the zinc compound may contain a zinc hydroxide compound that is a precursor of zinc oxide and remains in the production process. However, the zinc oxide compound for cosmetics of the present invention is dominated by the characteristics of zinc oxide as a whole, and there is no particular problem even if it is regarded as zinc oxide. Therefore, in the following description, the zinc compound is treated as zinc oxide. And.

本発明の酸化亜鉛は、板状の形態を有する結晶性の金属酸化物として得られる。酸化亜鉛のサイズとしては、全長が5〜50μm、好ましくは10〜45μmに設定される。また、アスペクト比は、6〜100、好ましくは10〜70に設定される。ここで、酸化亜鉛の全長とは、板状の酸化亜鉛を上方視した場合における最大幅(長軸)を意味する。アスペクト比とは、板状結晶における全長と厚さとの比率を意味する。酸化亜鉛の全長及び厚さは、簡便には、電子顕微鏡写真から複数の結晶粒子を任意に抽出し、各結晶粒子の全長及び厚さの計測値の平均値として特定することができる。このような形態を有する酸化亜鉛は、化粧料に配合したときの使用感だけでなく、脂肪酸(特に、C16〜C20モノ不飽和脂肪酸)を固化又はゲル化させる性能に特に優れており、このような特性は、本発明者らの研究によって初めて明らかとなった。 The zinc oxide of the present invention is obtained as a crystalline metal oxide having a plate-like morphology. The size of zinc oxide is set to 5 to 50 μm in total length, preferably 10 to 45 μm. The aspect ratio is set to 6 to 100, preferably 10 to 70. Here, the total length of zinc oxide means the maximum width (major axis) when the plate-shaped zinc oxide is viewed upward. The aspect ratio means the ratio of the total length to the thickness of a plate crystal. The total length and thickness of zinc oxide can be easily specified as an average value of measured values of the total length and thickness of each crystal particle by arbitrarily extracting a plurality of crystal particles from an electron micrograph. Zinc oxide having such a form is particularly excellent not only in the feeling of use when blended in cosmetics, but also in the ability to solidify or gel fatty acids (particularly C 16 to C 20 monounsaturated fatty acids). Such characteristics were first clarified by the research of the present inventors.

従って、本発明の酸化亜鉛を化粧料の原材料として使用すると、当該化粧料を顔などの皮膚に塗布した場合、皮脂に含まれる脂肪酸(主に、C18モノ不飽和脂肪酸であるオレイン酸)が化粧料に含まれる酸化亜鉛と効率よく反応し、皮脂が迅速且つ均一に固化又はゲル化されることになる。その結果、化粧料の油浮きや化粧くずれが防止され、従来よりも長時間に亘ってメイクを維持することが可能となり、化粧料に配合したときの使用感も優れたものとなる。 Therefore, the use of zinc oxide of the present invention as a raw material for cosmetics, when applying the cosmetics on the skin such as the face, including the fatty acids (mainly oleic acid, a C 18 monounsaturated fatty acids) in the sebum It reacts efficiently with zinc oxide contained in cosmetics, and sebum is rapidly and uniformly solidified or gelled. As a result, oil floating and makeup breakage of the cosmetics are prevented, the makeup can be maintained for a longer period of time than before, and the feeling of use when blended in the cosmetics is also excellent.

本発明の酸化亜鉛は、C16〜C20モノ不飽和脂肪酸を含む油脂に添加して含有量が10重量%以上となる油脂混合物を調製した場合において、当該油脂混合物の流動性が2〜10分で低減又は消失するように設定されていることが好ましい。ここで、油脂混合物の流動性は、例えば、上記油脂混合物を水平に載置したガラス板の上に滴下し、ガラス板を揺動したとき、油脂混合物が流れ出さないことを以って、流動性が消失したと判断することができる。また、ガラス板の揺動によって上記油脂混合物が若干流れ出したとしても、流動量(ガラス板上での流動距離)が元の油脂の流動量の1/2以下となっていれば、流動性が低減したと判断することができる。このような油脂に対する固化又はゲル化性能を発揮できる酸化亜鉛であれば、化粧料の原材料として使い勝手や化粧料に配合したときの使用感が良好なものでありながら、皮脂による油浮きや化粧くずれがより起こり難いものとなる。従って、本発明の酸化亜鉛は、化粧料の原材料として極めて有用なものとなり得る。 When the zinc oxide of the present invention is added to a fat or oil containing C 16 to C 20 monounsaturated fatty acids to prepare a fat or oil mixture having a content of 10% by weight or more, the fluidity of the fat or oil mixture is 2 to 10 It is preferably set to reduce or disappear in minutes. Here, the fluidity of the oil / fat mixture is such that, for example, when the oil / fat mixture is dropped onto a glass plate placed horizontally and the glass plate is shaken, the oil / fat mixture does not flow out. It can be determined that the sex has disappeared. Further, even if the oil / fat mixture slightly flows out due to the shaking of the glass plate, if the flow amount (flow distance on the glass plate) is 1/2 or less of the original flow amount of the oil / fat, the fluidity is high. It can be judged that it has decreased. Zinc oxide, which can exhibit solidification or gelling performance against such fats and oils, is easy to use as a raw material for cosmetics and has a good usability when blended in cosmetics, but oil floats and makeup breaks due to sebum. Is less likely to occur. Therefore, the zinc oxide of the present invention can be extremely useful as a raw material for cosmetics.

<化粧料用亜鉛化合物の製造方法>
本発明の酸化亜鉛(化粧料用亜鉛化合物)は、アルカリ性環境下において、水溶性亜鉛化合物を含む水溶液中での加水分解性アルカリ化可能窒素含有化合物の加水分解を利用した反応により製造されるものである。以下、本発明の酸化亜鉛の製造方法における各工程について説明する。
<Manufacturing method of zinc compounds for cosmetics>
The zinc oxide (zinc compound for cosmetics) of the present invention is produced by a reaction utilizing hydrolysis of a hydrolyzable alkalinable nitrogen-containing compound in an aqueous solution containing a water-soluble zinc compound in an alkaline environment. Is. Hereinafter, each step in the method for producing zinc oxide of the present invention will be described.

初めに、準備工程として、アルカリ金属水酸化物を溶解させたアルカリ性水溶液(これを第一原料水溶液とする)と、水溶性亜鉛化合物及び加水分解性アルカリ化可能窒素含有化合物を溶解させた亜鉛含有水溶液(これを第二原料水溶液とする)とを夫々調製する。第一原料水溶液を調製するためのアルカリ金属水酸化物としては、水酸化ナトリウム、及び水酸化カリウムが挙げられ、特に水酸化ナトリウムが好適に使用される。第二原料水溶液を調製するための水溶性亜鉛化合物としては、硫酸亜鉛、塩化亜鉛、酢酸亜鉛、及び硝酸亜鉛が挙げられ、これらのうち硫酸亜鉛、及び塩化亜鉛が好適に使用される。加水分解性アルカリ化可能窒素含有化合物としては、尿素、及びヘキサメチレンテトラミンが挙げられ、入手容易性及びコストの点で尿素が好適に使用される。 First, as a preparatory step, an alkaline aqueous solution in which an alkali metal hydroxide is dissolved (this is used as a first raw material aqueous solution) and a zinc-containing solution in which a water-soluble zinc compound and a hydrolyzable alkalinable nitrogen-containing compound are dissolved are contained. An aqueous solution (referred to as a second raw material aqueous solution) is prepared respectively. Examples of the alkali metal hydroxide for preparing the first raw material aqueous solution include sodium hydroxide and potassium hydroxide, and sodium hydroxide is particularly preferably used. Examples of the water-soluble zinc compound for preparing the second raw material aqueous solution include zinc sulfate, zinc chloride, zinc acetate, and zinc nitrate, and zinc sulfate and zinc chloride are preferably used among these. Examples of the hydrolyzable alkalinable nitrogen-containing compound include urea and hexamethylenetetramine, and urea is preferably used in terms of availability and cost.

第一原料水溶液の調製においては、調製後の水溶液中に含まれるアルカリ金属水酸化物が0.1〜0.7mol/Lとなるように、好ましくは0.4〜0.5mol/Lとなるように濃度調整される。この場合、第一原料水溶液の水素イオン濃度(pH)は、12以上となる。第二原料水溶液の調製においては、調製後の水溶液中に含まれる水溶性亜鉛化合物が0.2〜4mol/Lとなるように、好ましくは0.6〜2mol/Lとなるように濃度調整され、また、調製後の水溶液中に含まれる加水分解性アルカリ化可能窒素含有化合物が0.4〜12mol/Lとなるように、好ましくは1.2〜9mol/Lとなるように濃度調整される。上記の濃度に調整した第一原料水溶液及び第二原料水溶液を用いて溶液反応を進行させることにより、本発明の酸化亜鉛の前駆体となる水酸化亜鉛化合物を効率的に且つ容易に製造することが可能となる。また、このような製造方法は、大量生産にも対応できるため、工業的製造にも適用可能となる。 In the preparation of the first raw material aqueous solution, the alkali metal hydroxide contained in the prepared aqueous solution is preferably 0.4 to 0.5 mol / L so as to be 0.1 to 0.7 mol / L. The concentration is adjusted so as to. In this case, the hydrogen ion concentration (pH) of the first raw material aqueous solution is 12 or more. In the preparation of the second raw material aqueous solution, the concentration of the water-soluble zinc compound contained in the prepared aqueous solution is adjusted so as to be 0.2 to 4 mol / L, preferably 0.6 to 2 mol / L. Further, the concentration of the hydrolyzable alkalinable nitrogen-containing compound contained in the prepared aqueous solution is adjusted to be 0.4 to 12 mol / L, preferably 1.2 to 9 mol / L. .. By advancing the solution reaction using the first aqueous solution and the second aqueous solution adjusted to the above concentrations, the zinc hydroxide compound which is the precursor of zinc oxide of the present invention can be efficiently and easily produced. Is possible. Further, since such a manufacturing method can be applied to mass production, it can be applied to industrial manufacturing.

本発明の酸化亜鉛の製造方法における反応機構は、種結晶(核)となる水酸化亜鉛化合物の微結晶を水溶液中に発生させ、これを成長させる反応である。すなわち、次に説明する結晶生成工程(一段目)と結晶成長工程(二段目)とを実行することにより、酸化亜鉛の前駆体となる水酸化亜鉛化合物の結晶が得られる。 The reaction mechanism in the method for producing zinc oxide of the present invention is a reaction in which microcrystals of a zinc hydroxide compound to be a seed crystal (nucleus) are generated in an aqueous solution and grown. That is, by executing the crystal formation step (first step) and the crystal growth step (second step) described below, crystals of a zinc hydroxide compound serving as a precursor of zinc oxide can be obtained.

結晶生成工程では、第一原料水溶液に、第二原料水溶液の一部を滴下し(一段目)、液中に水酸化亜鉛化合物の種結晶を生成させる。その後、種結晶を安定させるため、必要に応じて熟成を行なう。結晶生成工程では、予め第一原料水溶液を加熱して一定の液温を維持しておくことが好ましい。その際の第一原料水溶液の液温は、70〜95℃が好ましく、80〜90℃がより好ましい。これにより、液中に水酸化亜鉛化合物の微結晶が大量に生成し、これが種結晶となって、その後の結晶成長を効率よく進行させることが可能となる。第二原料水溶液の滴下量は、第二原料水溶液全体の0.2〜0.9倍量とすることが好ましく、0.5〜0.8倍量とすることがより好ましい。上記の条件で第二原料水溶液を第一原料水溶液に滴下すれば、混合液のpHの低下が穏やかなものとなるため、種結晶が安定して生成される。なお、第一原料水溶液への第二原料水溶液の滴下は、混合液のpHが11以下に低減するまで実施することが好ましい。これにより、液中に水酸化亜鉛化合物の微結晶(種結晶)が大量に生成し易くなる。 In the crystal formation step, a part of the second raw material aqueous solution is added dropwise to the first raw material aqueous solution (first stage) to generate seed crystals of the zinc hydroxide compound in the liquid. Then, in order to stabilize the seed crystal, aging is performed as necessary. In the crystal formation step, it is preferable to heat the first raw material aqueous solution in advance to maintain a constant liquid temperature. At that time, the liquid temperature of the first raw material aqueous solution is preferably 70 to 95 ° C, more preferably 80 to 90 ° C. As a result, a large amount of fine crystals of the zinc hydroxide compound are generated in the liquid, which become seed crystals, and it becomes possible to efficiently proceed with the subsequent crystal growth. The dropping amount of the second raw material aqueous solution is preferably 0.2 to 0.9 times, more preferably 0.5 to 0.8 times the amount of the entire second raw material aqueous solution. When the second raw material aqueous solution is added dropwise to the first raw material aqueous solution under the above conditions, the pH of the mixed solution gradually decreases, so that seed crystals are stably produced. The dropping of the second raw material aqueous solution into the first raw material aqueous solution is preferably carried out until the pH of the mixed solution is reduced to 11 or less. This facilitates the formation of a large amount of zinc hydroxide compound microcrystals (seed crystals) in the liquid.

結晶成長工程では、種結晶を含む混合液に、第二原料水溶液の残部を滴下し(二段目)、結晶を成長させる。なお、この第二原料水溶液の残部の滴下(二段目)は、一度に(すなわち、連続的に)行ってもよいし、複数回に分けて(すなわち、間欠的に)行うことも可能である。その後、結晶の成長を促進させるため、必要に応じて熟成を行なう。第二原料水溶液の残部を滴下する際の混合液の液温は、結晶生成工程における液温(70〜95℃)と同程度又は低い温度であっても構わない。また、混合液への第二原料水溶液の残部の滴下は、少量ずつ攪拌しながら行うことが好ましい。これにより、混合液中の種結晶が板状の結晶へと効率よく成長することができる。上記の条件で第二原料水溶液の残部を混合液に滴下すれば、混合液の最終的なpHは弱酸性となる5〜6の範囲に落ち着くため、結晶の成長が適度に促進され、アスペクト比が適度に大きい板状の結晶が安定して生成される。 In the crystal growth step, the remainder of the second aqueous solution is added dropwise to the mixed solution containing the seed crystal (second stage) to grow the crystal. The remaining portion of the second aqueous solution (second stage) may be dropped at once (that is, continuously) or divided into a plurality of times (that is, intermittently). is there. Then, in order to promote the growth of crystals, aging is performed as necessary. The liquid temperature of the mixed liquid when the remainder of the second raw material aqueous solution is dropped may be the same as or lower than the liquid temperature (70 to 95 ° C.) in the crystal formation step. Further, it is preferable to add the remaining portion of the second raw material aqueous solution to the mixed solution while stirring little by little. As a result, the seed crystals in the mixed solution can efficiently grow into plate-shaped crystals. If the remainder of the second aqueous solution is added dropwise to the mixed solution under the above conditions, the final pH of the mixed solution will settle in the range of 5 to 6, which is weakly acidic, so that crystal growth will be appropriately promoted and the aspect ratio will be increased. A moderately large plate-like crystal is stably produced.

上記の溶液反応で得られた結晶は、水酸化亜鉛が主成分である水酸化亜鉛化合物の結晶である。そこで、結晶を含む混合液から当該結晶を分離する分離工程を実施し、さらに、分離した結晶を乾燥及び焼成する熱処理工程を実施する。分離工程は、フィルタープレス、遠心分離機等を用いて行うことができる。熱処理工程では、焼成炉にて乾燥及び焼成を一連の工程として連続的に実施してもよいし、乾燥機で一旦乾燥を行った後に焼成炉で焼成を行うようにしてもよい。乾燥条件は、温度30〜100℃で0.5〜3時間とすることが好ましい。焼成条件は、400〜800℃で1〜5時間とすることが好ましい。水酸化亜鉛化合物の結晶を熱処理すると、水酸化亜鉛化合物に含まれる水酸化亜鉛が脱水反応によって酸化亜鉛へと転化する。なお、熱処理工程は、結晶を粉砕した状態で行うことが好ましい。これにより、水酸化亜鉛の酸化亜鉛への転化(脱水反応)が確実に進行し、結晶性及び純度の高い化粧料に適した全長5〜50μm、アスペクト比6〜100を有する本発明の化粧料用酸化亜鉛を得ることができる。 The crystals obtained by the above solution reaction are crystals of a zinc hydroxide compound containing zinc hydroxide as a main component. Therefore, a separation step of separating the crystals from the mixed solution containing the crystals is carried out, and a heat treatment step of drying and firing the separated crystals is further carried out. The separation step can be performed using a filter press, a centrifuge, or the like. In the heat treatment step, drying and firing may be continuously performed as a series of steps in the firing furnace, or may be performed once in the dryer and then fired in the firing furnace. The drying conditions are preferably at a temperature of 30 to 100 ° C. for 0.5 to 3 hours. The firing conditions are preferably 400 to 800 ° C. for 1 to 5 hours. When the crystals of the zinc hydroxide compound are heat-treated, the zinc hydroxide contained in the zinc hydroxide compound is converted to zinc oxide by the dehydration reaction. The heat treatment step is preferably performed in a state where the crystals are crushed. As a result, the conversion of zinc hydroxide to zinc oxide (dehydration reaction) proceeds reliably, and the cosmetic of the present invention having a total length of 5 to 50 μm and an aspect ratio of 6 to 100 suitable for cosmetics having high crystallinity and purity. Zinc oxide can be obtained.

本発明にかかる酸化亜鉛を種々の条件にて製造し、それらの特性を評価した(実施例1〜9)。また、比較のため、本発明とは異なる条件にて酸化亜鉛を製造し、同様に特性を評価した(比較例1〜5)。実施例及び比較例にかかる酸化亜鉛の製造条件を表1に纏めるとともに、具体的な製造方法を以下に説明する。 Zinc oxide according to the present invention was produced under various conditions, and their characteristics were evaluated (Examples 1 to 9). For comparison, zinc oxide was produced under conditions different from those of the present invention, and the characteristics were evaluated in the same manner (Comparative Examples 1 to 5). Table 1 summarizes the zinc oxide production conditions of Examples and Comparative Examples, and a specific production method will be described below.

〔実施例1〕
第一原料水溶液として、0.4mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、0.6mol/Lの硫酸亜鉛及び1.2mol/Lの尿素を含む硫酸亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに硫酸亜鉛/尿素混合水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下した(一段目)。滴下後の混合液の水素イオン濃度(pH)は11以下となり、液中に無数の水酸化亜鉛化合物の種結晶が析出していることが確認された。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの硫酸亜鉛/尿素混合水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。成長後の結晶は、板状の水酸化亜鉛化合物の結晶であることが確認された。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて500℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、実施例1の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が15μm、アスペクト比が50であり、板状の形態を有するものであった。実施例1の酸化亜鉛の電子顕微鏡写真を図1に示す。また、水酸化ナトリウム水溶液(第一原料水溶液)に硫酸亜鉛/尿素混合水溶液(第二原料水溶液)を滴下するにあたり、得られた原料混合液の水素イオン濃度(pH)の変化を示すグラフを図2に示す。図2によれば、水酸化ナトリウム水溶液に対して一段目の硫酸亜鉛/尿素混合水溶液を滴下することにより混合液のpHは10.9となり、熟成後、二段目の硫酸亜鉛/尿素混合水溶液の滴下を開始すると混合液のpHは急激に低下し、その後、混合液のpHの低下は徐々に緩やかとなり、最終的に混合液のpHは5.5付近で落ち着いた。
[Example 1]
As a first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.4 mol / L sodium hydroxide was prepared, and further, as a second raw material aqueous solution, 0.6 mol / L zinc sulfate and 1.2 mol / L urea were prepared. 250 mL of a zinc sulfate / urea mixed aqueous solution containing the above was prepared. The aqueous sodium hydroxide solution was heated to 90 ° C., and 100 mL (0.4 times the amount) of the zinc sulfate / urea mixed aqueous solution was added dropwise over 10 minutes with stirring (first step). The hydrogen ion concentration (pH) of the mixed solution after dropping was 11 or less, and it was confirmed that innumerable seed crystals of the zinc hydroxide compound were precipitated in the solution. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc sulfate / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. It was confirmed that the crystal after growth was a plate-shaped crystal of zinc hydroxide compound. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 500 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Example 1. It was. This zinc oxide had a total length (major axis) of 15 μm, an aspect ratio of 50, and had a plate-like morphology. An electron micrograph of zinc oxide of Example 1 is shown in FIG. In addition, a graph showing changes in the hydrogen ion concentration (pH) of the obtained raw material mixed solution when adding zinc sulfate / urea mixed aqueous solution (second raw material aqueous solution) to the sodium hydroxide aqueous solution (first raw material aqueous solution) is shown in the figure. Shown in 2. According to FIG. 2, the pH of the mixed solution became 10.9 by dropping the first-stage zinc sulfate / urea mixed aqueous solution to the sodium hydroxide aqueous solution, and after aging, the second-stage zinc sulfate / urea mixed aqueous solution was added. The pH of the mixed solution dropped sharply when the dropping of the mixture was started, and then the pH of the mixed solution gradually decreased gradually, and finally the pH of the mixed solution settled at around 5.5.

〔実施例2〕
第一原料水溶液として、0.4mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、2.0mol/Lの硫酸亜鉛及び4.0mol/Lの尿素を含む硫酸亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに硫酸亜鉛/尿素混合水溶液50mL(0.2倍量)を攪拌しながら10分かけて滴下した(一段目)。滴下後の混合液の水素イオン濃度(pH)は11以下となり、液中に無数の水酸化亜鉛化合物の種結晶が析出していることが確認された。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの硫酸亜鉛/尿素混合水溶液200mL(0.8倍量)を60分かけて滴下し(二段目)、結晶を成長させた。成長後の結晶は、板状の水酸化亜鉛化合物の結晶であることが確認された。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて500℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、実施例2の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が18μm、アスペクト比が60であり、板状の形態を有するものであった。実施例2の酸化亜鉛の電子顕微鏡写真を図3に示す。
[Example 2]
As the first aqueous solution, 500 mL of sodium hydroxide aqueous solution containing 0.4 mol / L sodium hydroxide was prepared, and as the second aqueous solution, 2.0 mol / L zinc sulfate and 4.0 mol / L urea were prepared. 250 mL of a zinc sulfate / urea mixed aqueous solution containing the above was prepared. The aqueous sodium hydroxide solution was heated to 90 ° C., and 50 mL (0.2 times amount) of the zinc sulfate / urea mixed aqueous solution was added dropwise over 10 minutes with stirring (first step). The hydrogen ion concentration (pH) of the mixed solution after dropping was 11 or less, and it was confirmed that innumerable seed crystals of the zinc hydroxide compound were precipitated in the solution. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 200 mL (0.8 times amount) of the remaining zinc sulfate / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. It was confirmed that the crystal after growth was a plate-shaped crystal of zinc hydroxide compound. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 500 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Example 2. It was. This zinc oxide had a total length (major axis) of 18 μm, an aspect ratio of 60, and had a plate-like morphology. An electron micrograph of zinc oxide of Example 2 is shown in FIG.

〔実施例3〕
第一原料水溶液として、0.5mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、0.6mol/Lの硫酸亜鉛及び1.2mol/Lの尿素を含む硫酸亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに硫酸亜鉛/尿素混合水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下した(一段目)。滴下後の混合液の水素イオン濃度(pH)は11以下となり、液中に無数の水酸化亜鉛化合物の種結晶が析出していることが確認された。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの硫酸亜鉛/尿素混合水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。成長後の結晶は、板状の水酸化亜鉛化合物の結晶であることが確認された。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて500℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、実施例3の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が20μm、アスペクト比が60であり、板状の形態を有するものであった。実施例3の酸化亜鉛の電子顕微鏡写真を図4に示す。
[Example 3]
As a first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.5 mol / L sodium hydroxide was prepared, and further, as a second raw material aqueous solution, 0.6 mol / L zinc sulfate and 1.2 mol / L urea were prepared. 250 mL of a zinc sulfate / urea mixed aqueous solution containing the above was prepared. The aqueous sodium hydroxide solution was heated to 90 ° C., and 100 mL (0.4 times the amount) of the zinc sulfate / urea mixed aqueous solution was added dropwise over 10 minutes with stirring (first step). The hydrogen ion concentration (pH) of the mixed solution after dropping was 11 or less, and it was confirmed that innumerable seed crystals of the zinc hydroxide compound were precipitated in the solution. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc sulfate / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. It was confirmed that the crystal after growth was a plate-shaped crystal of zinc hydroxide compound. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 500 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Example 3. It was. This zinc oxide had a total length (major axis) of 20 μm, an aspect ratio of 60, and had a plate-like morphology. An electron micrograph of zinc oxide of Example 3 is shown in FIG.

〔実施例4〕
第一原料水溶液として、0.4mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、0.6mol/Lの硫酸亜鉛及び1.2mol/Lの尿素を含む硫酸亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに硫酸亜鉛/尿素混合水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下した(一段目)。滴下後の混合液の水素イオン濃度(pH)は11以下となり、液中に無数の水酸化亜鉛化合物の種結晶が析出していることが確認された。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの硫酸亜鉛/尿素混合水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。成長後の結晶は、板状の水酸化亜鉛化合物の結晶であることが確認された。次いで、混合液をそのまま120分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて500℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、実施例4の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が25μm、アスペクト比が70であり、板状の形態を有するものであった。実施例4の酸化亜鉛の電子顕微鏡写真を図5に示す。
[Example 4]
As a first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.4 mol / L sodium hydroxide was prepared, and further, as a second raw material aqueous solution, 0.6 mol / L zinc sulfate and 1.2 mol / L urea were prepared. 250 mL of a zinc sulfate / urea mixed aqueous solution containing the above was prepared. The aqueous sodium hydroxide solution was heated to 90 ° C., and 100 mL (0.4 times the amount) of the zinc sulfate / urea mixed aqueous solution was added dropwise over 10 minutes with stirring (first step). The hydrogen ion concentration (pH) of the mixed solution after dropping was 11 or less, and it was confirmed that innumerable seed crystals of the zinc hydroxide compound were precipitated in the solution. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc sulfate / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. It was confirmed that the crystal after growth was a plate-shaped crystal of zinc hydroxide compound. Next, the crystals were aged by stirring the mixed solution as it was for 120 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 500 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Example 4. It was. This zinc oxide had a total length (major axis) of 25 μm, an aspect ratio of 70, and had a plate-like morphology. An electron micrograph of zinc oxide of Example 4 is shown in FIG.

〔実施例5〕
第一原料水溶液として、0.4mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、0.6mol/Lの硫酸亜鉛及び9.0mol/Lの尿素を含む硫酸亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに硫酸亜鉛/尿素混合水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下した(一段目)。滴下後の混合液の水素イオン濃度(pH)は11以下となり、液中に無数の水酸化亜鉛化合物の種結晶が析出していることが確認された。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの硫酸亜鉛/尿素混合水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。成長後の結晶は、板状の水酸化亜鉛化合物の結晶であることが確認された。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて500℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、実施例5の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が13μm、アスペクト比が40であり、板状の形態を有するものであった。実施例5の酸化亜鉛の電子顕微鏡写真を図6に示す。
[Example 5]
As the first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.4 mol / L sodium hydroxide was prepared, and further, as a second raw material aqueous solution, 0.6 mol / L zinc sulfate and 9.0 mol / L urea were prepared. 250 mL of a zinc sulfate / urea mixed aqueous solution containing the above was prepared. The aqueous sodium hydroxide solution was heated to 90 ° C., and 100 mL (0.4 times the amount) of the zinc sulfate / urea mixed aqueous solution was added dropwise over 10 minutes with stirring (first step). The hydrogen ion concentration (pH) of the mixed solution after dropping was 11 or less, and it was confirmed that innumerable seed crystals of the zinc hydroxide compound were precipitated in the solution. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc sulfate / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. It was confirmed that the crystal after growth was a plate-shaped crystal of zinc hydroxide compound. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 500 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Example 5. It was. This zinc oxide had a total length (major axis) of 13 μm, an aspect ratio of 40, and had a plate-like shape. An electron micrograph of zinc oxide of Example 5 is shown in FIG.

〔実施例6〕
第一原料水溶液として、0.4mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、0.6mol/Lの硫酸亜鉛及び1.2mol/Lの尿素を含む硫酸亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに硫酸亜鉛/尿素混合水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下した(一段目)。滴下後の混合液の水素イオン濃度(pH)は11以下となり、液中に無数の水酸化亜鉛化合物の種結晶が析出していることが確認された。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの硫酸亜鉛/尿素混合水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。成長後の結晶は、板状の水酸化亜鉛化合物の結晶であることが確認された。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて600℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、実施例6の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が20μm、アスペクト比が60であり、板状の形態を有するものであった。実施例6の酸化亜鉛の電子顕微鏡写真を図7に示す。
[Example 6]
As a first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.4 mol / L sodium hydroxide was prepared, and further, as a second raw material aqueous solution, 0.6 mol / L zinc sulfate and 1.2 mol / L urea were prepared. 250 mL of a zinc sulfate / urea mixed aqueous solution containing the above was prepared. The aqueous sodium hydroxide solution was heated to 90 ° C., and 100 mL (0.4 times the amount) of the zinc sulfate / urea mixed aqueous solution was added dropwise over 10 minutes with stirring (first step). The hydrogen ion concentration (pH) of the mixed solution after dropping was 11 or less, and it was confirmed that innumerable seed crystals of the zinc hydroxide compound were precipitated in the solution. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc sulfate / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. It was confirmed that the crystal after growth was a plate-shaped crystal of zinc hydroxide compound. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 600 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Example 6. It was. This zinc oxide had a total length (major axis) of 20 μm, an aspect ratio of 60, and had a plate-like morphology. An electron micrograph of zinc oxide of Example 6 is shown in FIG.

〔実施例7〕
第一原料水溶液として、0.4mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、0.6mol/Lの硫酸亜鉛及び1.2mol/Lの尿素を含む硫酸亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに硫酸亜鉛/尿素混合水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下した(一段目)。滴下後の混合液の水素イオン濃度(pH)は11以下となり、液中に無数の水酸化亜鉛化合物の種結晶が析出していることが確認された。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの硫酸亜鉛/尿素混合水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。成長後の結晶は、板状の水酸化亜鉛化合物の結晶であることが確認された。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて800℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、実施例7の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が20μm、アスペクト比が60であり、板状の形態を有するものであった。実施例7の酸化亜鉛の電子顕微鏡写真を図8に示す。
[Example 7]
As a first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.4 mol / L sodium hydroxide was prepared, and further, as a second raw material aqueous solution, 0.6 mol / L zinc sulfate and 1.2 mol / L urea were prepared. 250 mL of a zinc sulfate / urea mixed aqueous solution containing the above was prepared. The aqueous sodium hydroxide solution was heated to 90 ° C., and 100 mL (0.4 times the amount) of the zinc sulfate / urea mixed aqueous solution was added dropwise over 10 minutes with stirring (first step). The hydrogen ion concentration (pH) of the mixed solution after dropping was 11 or less, and it was confirmed that innumerable seed crystals of the zinc hydroxide compound were precipitated in the solution. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc sulfate / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. It was confirmed that the crystal after growth was a plate-shaped crystal of zinc hydroxide compound. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 800 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Example 7. It was. This zinc oxide had a total length (major axis) of 20 μm, an aspect ratio of 60, and had a plate-like morphology. An electron micrograph of zinc oxide of Example 7 is shown in FIG.

〔実施例8〕
第一原料水溶液として、0.5mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、1.0mol/Lの塩化亜鉛及び2.0mol/Lの尿素を含む塩化亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに塩化亜鉛/尿素混合水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下した(一段目)。滴下後の混合液の水素イオン濃度(pH)は11以下となり、液中に無数の水酸化亜鉛化合物の種結晶が析出していることが確認された。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの塩化亜鉛/尿素混合水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。成長後の結晶は、板状の水酸化亜鉛化合物の結晶であることが確認された。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて400℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、実施例8の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が20μm、アスペクト比が13であり、板状の形態を有するものであった。実施例8の酸化亜鉛の電子顕微鏡写真を図9に示す。
[Example 8]
As a first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.5 mol / L sodium hydroxide was prepared, and as a second raw material aqueous solution, 1.0 mol / L zinc chloride and 2.0 mol / L urea were prepared. 250 mL of a zinc chloride / urea mixed aqueous solution containing the above was prepared. The sodium hydroxide aqueous solution was heated to 90 ° C., and 100 mL (0.4 times amount) of the zinc chloride / urea mixed aqueous solution was added dropwise over 10 minutes with stirring (first step). The hydrogen ion concentration (pH) of the mixed solution after dropping was 11 or less, and it was confirmed that innumerable seed crystals of the zinc hydroxide compound were precipitated in the solution. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc chloride / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. It was confirmed that the crystal after growth was a plate-shaped crystal of zinc hydroxide compound. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 400 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Example 8. It was. This zinc oxide had a total length (major axis) of 20 μm, an aspect ratio of 13, and had a plate-like morphology. An electron micrograph of zinc oxide of Example 8 is shown in FIG.

〔実施例9〕
第一原料水溶液として、0.5mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、2.0mol/Lの塩化亜鉛及び2.0mol/Lの尿素を含む塩化亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに塩化亜鉛/尿素混合水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下した(一段目)。滴下後の混合液の水素イオン濃度(pH)は11以下となり、液中に無数の水酸化亜鉛化合物の種結晶が析出していることが確認された。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの塩化亜鉛/尿素混合水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。成長後の結晶は、板状の水酸化亜鉛化合物の結晶であることが確認された。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて400℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、実施例9の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が6μm、アスペクト比が6であり、板状の形態を有するものであった。実施例9の酸化亜鉛の電子顕微鏡写真を図10に示す。
[Example 9]
As a first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.5 mol / L sodium hydroxide was prepared, and as a second raw material aqueous solution, 2.0 mol / L zinc chloride and 2.0 mol / L urea were prepared. 250 mL of a zinc chloride / urea mixed aqueous solution containing the above was prepared. The sodium hydroxide aqueous solution was heated to 90 ° C., and 100 mL (0.4 times amount) of the zinc chloride / urea mixed aqueous solution was added dropwise over 10 minutes with stirring (first step). The hydrogen ion concentration (pH) of the mixed solution after dropping was 11 or less, and it was confirmed that innumerable seed crystals of the zinc hydroxide compound were precipitated in the solution. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc chloride / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. It was confirmed that the crystal after growth was a plate-shaped crystal of zinc hydroxide compound. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 400 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Example 9. It was. This zinc oxide had a total length (major axis) of 6 μm, an aspect ratio of 6, and had a plate-like morphology. An electron micrograph of zinc oxide of Example 9 is shown in FIG.

〔比較例1〕
第一原料水溶液の代わりに水500mLを準備し、さらに、第二原料水溶液として、2.0mol/Lの硫酸亜鉛及び4.0mol/Lの尿素を含む硫酸亜鉛/尿素混合水溶液250mLを調製した。水を90℃まで加温し、これに硫酸亜鉛/尿素混合水溶液の全量250mLを攪拌しながら60分かけて滴下し、液中に水酸化亜鉛化合物の結晶を生成させた。滴下後の液をそのまま30分間攪拌することで結晶を熟成させ、その後、液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて500℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、比較例1の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が50μm、アスペクト比が125であり、板状の形態を有するものであった。比較例1の酸化亜鉛の電子顕微鏡写真を図11に示す。
[Comparative Example 1]
500 mL of water was prepared in place of the first aqueous solution, and 250 mL of a zinc sulfate / urea mixed aqueous solution containing 2.0 mol / L zinc sulfate and 4.0 mol / L urea was prepared as the second aqueous solution. Water was heated to 90 ° C., and 250 mL of a total amount of a zinc sulfate / urea mixed aqueous solution was added dropwise over 60 minutes with stirring to form crystals of a zinc hydroxide compound in the solution. The crystals were aged by stirring the liquid after dropping for 30 minutes as it was, and then the crystals were separated from the liquid and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 500 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Comparative Example 1. It was. This zinc oxide had a total length (major axis) of 50 μm, an aspect ratio of 125, and had a plate-like morphology. An electron micrograph of zinc oxide of Comparative Example 1 is shown in FIG.

〔比較例2〕
第一原料水溶液として、0.75mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、0.6mol/Lの硫酸亜鉛及び1.2mol/Lの尿素を含む硫酸亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに硫酸亜鉛/尿素混合水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下し(一段目)、液中に水酸化亜鉛化合物の種結晶を生成させた。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの硫酸亜鉛/尿素混合水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて500℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、比較例2の酸化亜鉛の結晶を得た。この酸化亜鉛は、板状の形態を有するものではなかった。比較例2の酸化亜鉛の電子顕微鏡写真を図12に示す。
[Comparative Example 2]
As a first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.75 mol / L sodium hydroxide was prepared, and further, as a second raw material aqueous solution, 0.6 mol / L zinc sulfate and 1.2 mol / L urea were prepared. 250 mL of a zinc sulfate / urea mixed aqueous solution containing the above was prepared. The sodium hydroxide aqueous solution is heated to 90 ° C., and 100 mL (0.4 times amount) of the zinc sulfate / urea mixed aqueous solution is added dropwise over 10 minutes with stirring (first stage), and the zinc hydroxide compound is added to the solution. Seed crystals were produced. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc sulfate / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 500 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Comparative Example 2. It was. This zinc oxide did not have a plate-like morphology. An electron micrograph of zinc oxide of Comparative Example 2 is shown in FIG.

〔比較例3〕
第一原料水溶液の代わりに水500mLを準備し、さらに、第二原料水溶液として、1.0mol/Lの塩化亜鉛及び2.0mol/Lの尿素を含む塩化亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに塩化亜鉛/尿素混合水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下し(一段目)、液中に水酸化亜鉛化合物の種結晶を生成させた。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの塩化亜鉛/尿素混合水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて400℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、比較例3の酸化亜鉛の結晶を得た。この酸化亜鉛は、板状の形態を有するものではなかった。比較例3の酸化亜鉛の電子顕微鏡写真を図13に示す。
[Comparative Example 3]
500 mL of water was prepared in place of the first aqueous solution, and 250 mL of a zinc chloride / urea mixed aqueous solution containing 1.0 mol / L zinc chloride and 2.0 mol / L urea was prepared as the second aqueous solution. The sodium hydroxide aqueous solution is heated to 90 ° C., and 100 mL (0.4 times amount) of the zinc chloride / urea mixed aqueous solution is added dropwise over 10 minutes with stirring (first stage), and the zinc hydroxide compound is added to the solution. Seed crystals were produced. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc chloride / urea mixed aqueous solution is applied for 60 minutes while stirring the mixed solution. And dropped (second stage) to grow crystals. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 400 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Comparative Example 3. It was. This zinc oxide did not have a plate-like morphology. An electron micrograph of zinc oxide of Comparative Example 3 is shown in FIG.

〔比較例4〕
第一原料水溶液として、0.5mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液の代わりに1.0mol/Lの塩化亜鉛を含む塩化亜鉛水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに塩化亜鉛水溶液100mL(0.4倍量)を攪拌しながら10分かけて滴下し(一段目))、液中に水酸化亜鉛化合物の種結晶を生成させた。次いで、種結晶を含む混合液をそのまま10分間攪拌することで種結晶を熟成させ、その後、混合液を攪拌しながら残りの塩化亜鉛水溶液150mL(0.6倍量)を60分かけて滴下し(二段目)、結晶を成長させた。成長後の結晶は、板状の水酸化亜鉛化合物の結晶であることが確認された。次いで、混合液をそのまま30分間攪拌することで結晶を熟成させ、その後、混合液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて400℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、比較例4の酸化亜鉛の結晶を得た。この酸化亜鉛は、全長(長軸)が20μm、アスペクト比が5であり、板状の形態を有するものであった。比較例4の酸化亜鉛の電子顕微鏡写真を図14に示す。
[Comparative Example 4]
As the first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.5 mol / L sodium hydroxide was prepared, and 250 mL of a zinc chloride aqueous solution containing 1.0 mol / L zinc chloride was used instead of the second raw material aqueous solution. Prepared. The sodium hydroxide aqueous solution is heated to 90 ° C., and 100 mL (0.4 times amount) of the zinc chloride aqueous solution is added dropwise over 10 minutes with stirring (first stage)), and the zinc hydroxide compound seeds are contained in the solution. Crystals were generated. Next, the seed crystal is aged by stirring the mixed solution containing the seed crystal as it is for 10 minutes, and then 150 mL (0.6 times amount) of the remaining zinc chloride aqueous solution is added dropwise over 60 minutes while stirring the mixed solution. (Second stage), crystals were grown. It was confirmed that the crystal after growth was a plate-shaped crystal of zinc hydroxide compound. Next, the crystals were aged by stirring the mixed solution as it was for 30 minutes, and then the crystals were filtered off from the mixed solution and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 400 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Comparative Example 4. It was. This zinc oxide had a total length (major axis) of 20 μm, an aspect ratio of 5, and had a plate-like morphology. An electron micrograph of zinc oxide of Comparative Example 4 is shown in FIG.

〔比較例5〕
第一原料水溶液として、0.4mol/Lの水酸化ナトリウムを含む水酸化ナトリウム水溶液500mLを調製し、さらに、第二原料水溶液として、0.6mol/Lの硫酸亜鉛及び1.2mol/Lの尿素を含む硫酸亜鉛/尿素混合水溶液250mLを調製した。水酸化ナトリウム水溶液を90℃まで加温し、これに硫酸亜鉛/尿素混合水溶液の全量250mLを攪拌しながら1分かけて滴下し、液中に水酸化亜鉛化合物の結晶を生成させた。滴下後の液をそのまま30分間攪拌することで結晶を熟成させ、その後、液から結晶を濾別し、水洗した。その後、水酸化亜鉛化合物の結晶を乾燥させ、続いて500℃で3時間焼成を行って水酸化亜鉛化合物に含まれる水酸化亜鉛の脱水反応を進行させ、比較例5の酸化亜鉛の結晶を得た。この酸化亜鉛は、板状の形態を有するものではなかった。比較例5の酸化亜鉛の電子顕微鏡写真を図15に示す。
[Comparative Example 5]
As a first raw material aqueous solution, 500 mL of a sodium hydroxide aqueous solution containing 0.4 mol / L sodium hydroxide was prepared, and further, as a second raw material aqueous solution, 0.6 mol / L zinc sulfate and 1.2 mol / L urea were prepared. 250 mL of a zinc sulfate / urea mixed aqueous solution containing the above was prepared. The aqueous sodium hydroxide solution was heated to 90 ° C., and 250 mL of the total amount of the zinc sulfate / urea mixed aqueous solution was added dropwise over 1 minute with stirring to generate crystals of the zinc hydroxide compound in the solution. The crystals were aged by stirring the liquid after dropping for 30 minutes as it was, and then the crystals were separated from the liquid and washed with water. Then, the crystal of the zinc hydroxide compound was dried, and then calcined at 500 ° C. for 3 hours to proceed with the dehydration reaction of zinc hydroxide contained in the zinc hydroxide compound to obtain the zinc oxide crystal of Comparative Example 5. It was. This zinc oxide did not have a plate-like morphology. An electron micrograph of zinc oxide of Comparative Example 5 is shown in FIG.

実施例1〜9の酸化亜鉛は、本発明の製造条件の範囲内で実施したものであり、全長が5〜50μmであり、アスペクト比が6〜100である板状の酸化亜鉛であった。特に、第二原料液として硫酸亜鉛を含むものを使用した実施例1〜7の酸化亜鉛は、アスペクト比が適度に大きくなり、化粧料用亜鉛化合物として最適なものであった。また、実施例1、6、7の酸化亜鉛を比較すると、それらの電子顕微鏡写真(図2、図7、図8)より、熱処理工程における焼成温度を高くなる程、結晶の多孔質化が進行することが確認された。 The zinc oxide of Examples 1 to 9 was carried out within the range of the production conditions of the present invention, and was a plate-shaped zinc oxide having a total length of 5 to 50 μm and an aspect ratio of 6 to 100. In particular, the zinc oxides of Examples 1 to 7 in which zinc sulfate was used as the second raw material liquid had an appropriately large aspect ratio and were optimal as zinc compounds for cosmetics. Comparing the zinc oxides of Examples 1, 6 and 7, the electron micrographs (FIGS. 2, 7, and 8) show that the higher the firing temperature in the heat treatment step, the more the crystals become porous. It was confirmed that

一方、比較例1の酸化亜鉛は、出発原料液として第一原料水溶液の代わりに水を用いたことにより反応開始時のpHが低くなったため、結晶生成が十分に進行せず、その結果、結晶生成と結晶成長とのバランスが崩れ、アスペクト比が過大なものとなった。比較例2の酸化亜鉛は、第一原料水溶液における水酸化ナトリウムの含有量が過剰であったことにより反応開始時のpHが高くなったため、結晶成長が十分に進行せず、その結果、板状の結晶を形成することができなかった。比較例3の酸化亜鉛は、比較例1と同様に出発原料液として第一原料水溶液の代わりに水を用いたものであるが、第二原料水溶液として塩化亜鉛を含むものを使用すると、板状の結晶が形成されず不定形の粒子が形成された。比較例4の酸化亜鉛は、第二原料水溶液が尿素を含まないものであるが、この場合、第二原料水溶液の滴下によるpHの変化が過大となるため、結晶成長が十分に進行せず、その結果、結晶生成と結晶成長とのバランスが崩れ、アスペクト比が過少なものとなった。比較例5の酸化亜鉛は、第二原料水溶液の滴下を二段階で行わず一度に行ったものであるが、この場合、結晶生成と結晶成長とが十分に進行せず、その結果、不定形の粒子が形成された。 On the other hand, in the zinc oxide of Comparative Example 1, since water was used as the starting raw material solution instead of the first raw material aqueous solution, the pH at the start of the reaction became low, so that crystal formation did not proceed sufficiently, and as a result, crystals were formed. The balance between formation and crystal growth was lost, and the aspect ratio became excessive. The zinc oxide of Comparative Example 2 had a high pH at the start of the reaction due to an excessive content of sodium hydroxide in the first aqueous solution, so that the crystal growth did not proceed sufficiently, and as a result, the zinc oxide was plate-shaped. Could not form crystals of. Similar to Comparative Example 1, the zinc oxide of Comparative Example 3 uses water instead of the first raw material aqueous solution as the starting raw material solution, but when a zinc chloride-containing solution is used as the second raw material aqueous solution, it has a plate shape. Crystals were not formed and amorphous particles were formed. In the zinc oxide of Comparative Example 4, the aqueous solution of the second raw material does not contain urea, but in this case, the pH change due to the dropping of the aqueous solution of the second raw material becomes excessive, so that the crystal growth does not proceed sufficiently. As a result, the balance between crystal formation and crystal growth was lost, and the aspect ratio became too small. The zinc oxide of Comparative Example 5 was obtained by dropping the second raw material aqueous solution at once without dropping it in two steps, but in this case, crystal formation and crystal growth did not proceed sufficiently, and as a result, the amorphous shape was formed. Particles were formed.

<性能評価>
実施例1〜9及び比較例1〜5の酸化亜鉛を使用し、(1)使用感、(2)油脂の固化又はゲル化性能について評価を行った。夫々の評価方法を以下に説明する。
<Performance evaluation>
Using zinc oxide of Examples 1 to 9 and Comparative Examples 1 to 5, (1) usability and (2) solidification or gelation performance of fats and oils were evaluated. Each evaluation method will be described below.

(1)使用感
実施例1〜9及び比較例1〜5の酸化亜鉛を夫々含む化粧料(パウダーファンデーション)を調合し、各化粧料をパフで顔に塗布したときの使用感をパネラー10名により評価する官能評価試験を実施した。官能評価試験はアンケート形式で実施し、滑り性、付着性、化粧崩れ等の総合的な使用感について0点から5点の間の評価点をつけ、0点は使用感が最も悪く、5点は使用感が最も優れるものとして数値化し、結果を全パネラーの平均点として表した。
(1) Usability When cosmetics (powder foundation) containing zinc oxide of Examples 1 to 9 and Comparative Examples 1 to 5 were prepared and each cosmetic was applied to the face with a puff, 10 panelists A sensory evaluation test was carried out. The sensory evaluation test was conducted in the form of a questionnaire, and an evaluation score of 0 to 5 was given for the overall usability such as slipperiness, adhesiveness, and makeup loss. 0 point was the worst usability, and 5 points. Was quantified as having the best usability, and the results were expressed as the average score of all panelists.

(2)油脂の固化又はゲル化性能
油脂としてオレイン酸9gに、実施例1〜9及び比較例1〜5の酸化亜鉛1gを夫々混合して供試サンプルとした。各供試サンプル1gを水平に載置したガラス板の上に滴下し、ガラス板を揺動させて供試サンプルの流動性を目視により判断する確認試験を実施した。そして、試験開始から供試サンプルの流動性が低減又は消失した時点までの時間を固化又はゲル化時間とした。
(2) Solidification or gelation performance of fats and oils 1 g of zinc oxide of Examples 1 to 9 and Comparative Examples 1 to 5 were mixed with 9 g of oleic acid as fats and oils to prepare a test sample. A confirmation test was conducted in which 1 g of each test sample was dropped onto a glass plate placed horizontally and the glass plate was shaken to visually judge the fluidity of the test sample. Then, the time from the start of the test to the time when the fluidity of the test sample decreased or disappeared was defined as the solidification or gelation time.

実施例1〜9及び比較例1〜5の酸化亜鉛を用いた評価結果を以下の表2に示す。 The evaluation results using zinc oxide of Examples 1 to 9 and Comparative Examples 1 to 5 are shown in Table 2 below.

実施例1〜9の酸化亜鉛を配合したパウダーファンデーションは、使用感の評価点が何れも4点以上となり、全体として優れた使用感を有する化粧料であると評価された。また、実施例1〜9の酸化亜鉛によるオレイン酸の固化又はゲル化時間については、2〜10分の範囲内となり、化粧料の原材料として使い勝手が良いものでありながら、化粧料の油浮きや化粧くずれを防止できるものであった。 The powder foundation containing zinc oxide of Examples 1 to 9 had an evaluation score of 4 points or more, and was evaluated as a cosmetic having an excellent usability as a whole. In addition, the solidification or gelation time of oleic acid by zinc oxide in Examples 1 to 9 is within the range of 2 to 10 minutes, which is convenient as a raw material for cosmetics, but also causes oil floating in cosmetics. It was able to prevent makeup from coming off.

一方、比較例1〜5の酸化亜鉛を配合したパウダーファンデーションは、使用感の評価点が何れも4点未満であり、化粧料として満足できるものではなかった。比較例1〜5の酸化亜鉛によるオレイン酸の固化又はゲル化時間については、比較例1の酸化亜鉛は120分以上もの非常に長い時間を要しており、化粧料の原材料として適さないものであった。比較例2、5の酸化亜鉛も10分を超える時間を要しており、化粧料の原材料として使い勝手が良いとは言えなかった。 On the other hand, the powder foundations containing zinc oxide of Comparative Examples 1 to 5 had a usability evaluation score of less than 4, which was not satisfactory as a cosmetic. Regarding the solidification or gelation time of oleic acid by zinc oxide in Comparative Examples 1 to 5, zinc oxide in Comparative Example 1 required a very long time of 120 minutes or more, and is not suitable as a raw material for cosmetics. there were. Zinc oxide in Comparative Examples 2 and 5 also took more than 10 minutes, and could not be said to be easy to use as a raw material for cosmetics.

本発明の化粧料用亜鉛化合物は、ファンデーション、頬紅、アイシャドウ、マスカラ、アイライナー等の化粧料の原材料として利用可能である。また、本発明の化粧料用亜鉛化合物の製造方法は、上記化粧料の製造産業において利用可能である。 The zinc compound for cosmetics of the present invention can be used as a raw material for cosmetics such as foundation, blusher, eye shadow, mascara, and eyeliner. In addition, the method for producing a zinc compound for cosmetics of the present invention can be used in the above-mentioned manufacturing industry for cosmetics.

Claims (9)

板状の化粧料用亜鉛化合物であって、
全長が5〜50μmであり、全長と厚さとの比率であるアスペクト比が6〜100である化粧料用亜鉛化合物。
A plate-shaped zinc compound for cosmetics
A zinc compound for cosmetics having a total length of 5 to 50 μm and an aspect ratio of 6 to 100, which is the ratio of the total length to the thickness.
16〜C20モノ不飽和脂肪酸を含む油脂に添加して含有量が10重量%以上となる油脂混合物を調製した場合において、当該油脂混合物の流動性が2〜10分で低減又は消失するように設定されている請求項1に記載の化粧料用亜鉛化合物。 When a fat / oil mixture having a content of 10% by weight or more is prepared by adding it to a fat / oil containing C 16 to C 20 monounsaturated fatty acids, the fluidity of the fat / oil mixture is reduced or disappears in 2 to 10 minutes. The zinc compound for cosmetics according to claim 1, which is set in 1. 板状の化粧料用亜鉛化合物の製造方法であって、
アルカリ金属水酸化物を溶解させた第一原料水溶液と、水溶性亜鉛化合物及び加水分解性アルカリ化可能窒素含有化合物を溶解させた第二原料水溶液とを夫々調製する準備工程と、
前記第一原料水溶液に、前記第二原料水溶液の一部を滴下し、液中に水酸化亜鉛化合物の種結晶を生成する結晶生成工程と、
種結晶を含む混合液に、前記第二原料水溶液の残部を滴下し、結晶を成長させる結晶成長工程と、
結晶を含む混合液から当該結晶を分離する分離工程と、
分離した結晶を乾燥及び焼成する熱処理工程と、
を包含する化粧料用亜鉛化合物の製造方法。
A method for producing a plate-shaped zinc compound for cosmetics.
A preparatory step for preparing a first aqueous solution in which an alkali metal hydroxide is dissolved and a second aqueous solution in which a water-soluble zinc compound and a hydrolyzable alkalinable nitrogen-containing compound are dissolved, respectively.
A crystal generation step of dropping a part of the second raw material aqueous solution into the first raw material aqueous solution to form a seed crystal of a zinc hydroxide compound in the liquid.
A crystal growth step of dropping the remainder of the second raw material aqueous solution into a mixed solution containing seed crystals to grow crystals, and
A separation step of separating the crystals from the mixed solution containing the crystals,
A heat treatment step of drying and firing the separated crystals,
A method for producing a zinc compound for cosmetics, which comprises.
前記準備工程において、前記第一原料水溶液における前記アルカリ金属水酸化物の濃度を0.1〜0.7mol/Lに調整し、前記第二原料水溶液における前記水溶性亜鉛化合物の濃度を0.2〜4mol/L、前記加水分解性アルカリ化可能窒素含有化合物の濃度を0.4〜12mol/Lに調整する請求項3に記載の化粧料用亜鉛化合物の製造方法。 In the preparatory step, the concentration of the alkali metal hydroxide in the first aqueous solution is adjusted to 0.1 to 0.7 mol / L, and the concentration of the water-soluble zinc compound in the second aqueous solution is 0.2. The method for producing a zinc compound for cosmetics according to claim 3, wherein the concentration of the hydrolyzable alkalinable nitrogen-containing compound is adjusted to 0.4 to 12 mol / L. 前記結晶生成工程は、混合液の水素イオン濃度(pH)が11以下に低減するまで実施される請求項3又は4に記載の化粧料用亜鉛化合物の製造方法。 The method for producing a zinc compound for cosmetics according to claim 3 or 4, wherein the crystal formation step is carried out until the hydrogen ion concentration (pH) of the mixed solution is reduced to 11 or less. 前記結晶生成工程は、生成した種結晶を熟成させる第一熟成工程を含む請求項3〜5の何れか一項に記載の化粧料用亜鉛化合物の製造方法。 The method for producing a zinc compound for cosmetics according to any one of claims 3 to 5, wherein the crystal forming step includes a first aging step of aging the produced seed crystal. 前記結晶生成工程において、前記第二原料水溶液を滴下する前の前記第一原料水溶液の液温を70〜95℃に維持する請求項3〜6の何れか一項に記載の化粧料用亜鉛化合物の製造方法。 The zinc compound for cosmetics according to any one of claims 3 to 6, wherein in the crystal formation step, the liquid temperature of the first raw material aqueous solution before dropping the second raw material aqueous solution is maintained at 70 to 95 ° C. Manufacturing method. 前記結晶成長工程は、成長した結晶を熟成させる第二熟成工程を含む請求項3〜7の何れか一項に記載の化粧料用亜鉛化合物の製造方法。 The method for producing a zinc compound for cosmetics according to any one of claims 3 to 7, wherein the crystal growth step includes a second aging step of aging the grown crystals. 前記熱処理工程は、結晶を粉砕した状態で実施される請求項3〜8の何れか一項に記載の化粧料用亜鉛化合物の製造方法。 The method for producing a zinc compound for cosmetics according to any one of claims 3 to 8, wherein the heat treatment step is carried out in a state where the crystals are crushed.
JP2019030268A 2019-02-22 2019-02-22 Cosmetic zinc compound and method for producing cosmetic zinc compound Active JP7231145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019030268A JP7231145B2 (en) 2019-02-22 2019-02-22 Cosmetic zinc compound and method for producing cosmetic zinc compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019030268A JP7231145B2 (en) 2019-02-22 2019-02-22 Cosmetic zinc compound and method for producing cosmetic zinc compound

Publications (2)

Publication Number Publication Date
JP2020132492A true JP2020132492A (en) 2020-08-31
JP7231145B2 JP7231145B2 (en) 2023-03-01

Family

ID=72262203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019030268A Active JP7231145B2 (en) 2019-02-22 2019-02-22 Cosmetic zinc compound and method for producing cosmetic zinc compound

Country Status (1)

Country Link
JP (1) JP7231145B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115937A (en) * 1992-09-29 1994-04-26 Sumitomo Chem Co Ltd Flaky zinc oxide powder and its production
JP2013095668A (en) * 2011-10-28 2013-05-20 Kao Corp Water-in-oil type emulsified cosmetic
JP2017197559A (en) * 2017-06-09 2017-11-02 味の素株式会社 Composite powders and makeup cosmetics
JP2018083766A (en) * 2016-11-21 2018-05-31 堺化学工業株式会社 Unsaturated fatty acid adsorbent and cosmetic containing the same
JP2019026620A (en) * 2017-08-03 2019-02-21 花王株式会社 Water-in-oil emulsion cosmetic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115937A (en) * 1992-09-29 1994-04-26 Sumitomo Chem Co Ltd Flaky zinc oxide powder and its production
JP2013095668A (en) * 2011-10-28 2013-05-20 Kao Corp Water-in-oil type emulsified cosmetic
JP2018083766A (en) * 2016-11-21 2018-05-31 堺化学工業株式会社 Unsaturated fatty acid adsorbent and cosmetic containing the same
JP2017197559A (en) * 2017-06-09 2017-11-02 味の素株式会社 Composite powders and makeup cosmetics
WO2018225310A1 (en) * 2017-06-09 2018-12-13 味の素株式会社 Powder modifying agent, composite powder and makeup cosmetic
JP2019026620A (en) * 2017-08-03 2019-02-21 花王株式会社 Water-in-oil emulsion cosmetic

Also Published As

Publication number Publication date
JP7231145B2 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JPH05503063A (en) Method for producing highly uniform silica spheres
DE3633309C2 (en) Composition based on zirconia and process for its manufacture
CN108712999B (en) Method for preparing synthetic hectorite at low temperature and normal pressure
CN113830839B (en) Preparation method and application of flaky aluminum-doped cobalt carbonate
JPH09502693A (en) A method for forming large silica spheres by low temperature nucleation.
WO2002090262A1 (en) Method for preparing single crystalline zns powder for phosphor
EP0334727B1 (en) Reactiv zirconiumoxide and its preparation
CN102616854A (en) Preparation method of monodisperse spherical MoS2 ultrafine powder
JP2020132492A (en) Zinc compound for cosmetics, and method for manufacturing same
JP5729926B2 (en) Gallium oxide powder
JPH0346407B2 (en)
CN108341422B (en) Rod-shaped β -aluminum hydroxide and preparation method and application thereof
JP2021116205A (en) Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same
JP4195931B2 (en) Scandium compound ultrafine particles and method for producing the same
CN101570478B (en) Spherical cobalt oxalate powder and production method thereof
JPS6197134A (en) Powder of zirconia agglomerated particle and preparation thereof
JP7372141B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
CN115572222B (en) Preparation method and application of spherical calcium citrate crystal
CN105905877A (en) A method of preparing nanorod crystal hydroxylapatite hydrosol
US2152597A (en) Method of preparing sodium aluminum sulphate substantially fluorine free
JPS58213633A (en) Production of aluminum oxide
JPH0635329B2 (en) Method for producing zirconium oxide powder
JP4561975B2 (en) Ceria sol and method for producing the same
CN110642280A (en) alpha-Al2O3Nanotube and method for preparing the same
KR102706623B1 (en) Manufacturing method of Na2Ti6O13 nanowire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230116

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230207

R150 Certificate of patent or registration of utility model

Ref document number: 7231145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150