[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020192533A - Water treatment system, water treatment method and water production method - Google Patents

Water treatment system, water treatment method and water production method Download PDF

Info

Publication number
JP2020192533A
JP2020192533A JP2020141686A JP2020141686A JP2020192533A JP 2020192533 A JP2020192533 A JP 2020192533A JP 2020141686 A JP2020141686 A JP 2020141686A JP 2020141686 A JP2020141686 A JP 2020141686A JP 2020192533 A JP2020192533 A JP 2020192533A
Authority
JP
Japan
Prior art keywords
water
turbidity
hollow fiber
raw water
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020141686A
Other languages
Japanese (ja)
Inventor
若狭 浩之
Hiroyuki Wakasa
浩之 若狭
高志 西田
Takashi Nishida
高志 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Publication of JP2020192533A publication Critical patent/JP2020192533A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

To make it possible, upon water treatment using hollow fiber membrane filtration modules, to improve efficiency of filtration treatment, reduce clogging of membrane, and improve cleaning effect by means of air backwash or the like.SOLUTION: Before subjecting raw water to filtration treatment using a hollow fiber membrane bundle with one end not fixed, the turbidity of raw water is measured, and an inorganic flocculant is added thereto in an amount adjusted in accordance with the turbidity measured. This makes it possible to form flocs having preferred sizes, which improves the efficiency of the filtration treatment and reduces clogging of the membrane, and also improves the cleaning effect.SELECTED DRAWING: Figure 2

Description

本発明は、水処理システム、水処理方法および水製造方法に関し、詳しくは河川水や地下水などの原水を処理し、工業用水等として再利用するために好適な技術に関するものである。 The present invention relates to a water treatment system, a water treatment method, and a water production method, and more particularly to a technique suitable for treating raw water such as river water and groundwater and reusing it as industrial water.

河川水や地下水などの原水を処理するシステムとして、中空糸膜ろ過モジュールを利用するものがある。中でも、特許文献1に開示された中空糸膜ろ過モジュールは、一端(上端)が容器に固定される一方、他端(下端)が固定されていない、多数の中空糸膜からなる中空糸膜束を用いる「片端フリー」と称される構造を採用することで、両端が固定された中空糸膜束を用いるものに比べ、優れた特徴を有している。すなわち、エアースクラビングを適用して中空糸膜面にある堆積物を除去する洗浄処理を行う場合、中空糸膜の非固定端側が自由に動くために、堆積物質を剥離させる効果が高いのである。また、特許文献1の中空糸膜ろ過モジュールでは、中空糸膜束の固定側から中空糸膜束の長手方向に向かって延在する整流管を備えることで、洗浄時における中空糸膜同士の絡み合いや、それによる中空糸膜の切断、あるいは中空糸膜の固定端側の応力集中に起因した中空糸膜の折損が防止されるという効果も得られる。 As a system for treating raw water such as river water and groundwater, there is a system using a hollow fiber membrane filtration module. Among them, the hollow fiber membrane filtration module disclosed in Patent Document 1 has a hollow fiber membrane bundle composed of a large number of hollow fiber membranes in which one end (upper end) is fixed to the container but the other end (lower end) is not fixed. By adopting a structure called "one-end free", it has excellent features as compared with the one using a hollow fiber membrane bundle in which both ends are fixed. That is, when the cleaning treatment for removing the deposits on the surface of the hollow fiber membrane is performed by applying air scrubbing, the non-fixed end side of the hollow fiber membrane moves freely, so that the effect of peeling the deposits is high. Further, the hollow fiber membrane filtration module of Patent Document 1 is provided with a rectifying tube extending from the fixed side of the hollow fiber membrane bundle toward the longitudinal direction of the hollow fiber membrane bundle, so that the hollow fiber membranes are entangled with each other during cleaning. It is also possible to prevent the hollow fiber membrane from being broken due to the cutting of the hollow fiber membrane or the stress concentration on the fixed end side of the hollow fiber membrane.

一方、濁度の高い原水を処理するために、無機凝集剤を添加し、これを中空糸膜ろ過モジュールによる処理と組み合わせることがある。効果的な水処理を行うには無機凝集剤を高濃度に添加することが有効であると考えられるところ、高濃度の無機凝集剤はそれ自体が膜ファウリングや閉塞の原因となり得ることから、効率的な中空糸膜によるろ過処理(以下、単にろ過処理という)を行えなくなったり、中空糸膜の寿命を短くしたりする懸念があった。そのため、ろ過処理と組み合わせる場合、無機凝集剤の濃度ないし添加量は低く抑えられているのが一般的である。 On the other hand, in order to treat the raw water having high turbidity, an inorganic flocculant may be added and combined with the treatment by the hollow fiber membrane filtration module. It is considered effective to add an inorganic flocculant at a high concentration for effective water treatment. However, a high concentration of the inorganic flocculant itself can cause membrane fouling and clogging. There was a concern that efficient filtration treatment with a hollow fiber membrane (hereinafter, simply referred to as filtration treatment) could not be performed, or the life of the hollow fiber membrane could be shortened. Therefore, when combined with the filtration treatment, the concentration or the amount of the inorganic flocculant added is generally kept low.

特許第3686225号公報Japanese Patent No. 3686225 国際公開WO2013/099857号公報International Publication WO2013 / 099857

しかしながら、本発明者が鋭意検討したところ、無機凝集剤が低濃度であると凝集物(以下、フロックという)のサイズは一般に小さくなり、かえって中空糸膜の孔を閉塞しやすくなることや、フロックが中空糸間に容易に入り込んで滞留することで、エアースクラビングによる洗浄効果が減殺されることがわかった。 However, as a result of diligent studies by the present inventor, when the concentration of the inorganic flocculant is low, the size of the agglomerates (hereinafter referred to as flocs) is generally small, and the pores of the hollow fiber membrane are easily blocked, and flocs It was found that the cleaning effect of air scrubbing was diminished by easily entering and staying between the hollow fibers.

よって本発明は、中空糸膜ろ過モジュールを用いて水処理を行うに際し、ろ過処理の効率化と膜の閉塞の低減化とを実現し、且つ洗浄効果も向上できるようにすることを目的とする。 Therefore, it is an object of the present invention to realize efficiency of filtration treatment and reduction of membrane blockage when water treatment is performed using a hollow fiber membrane filtration module, and to improve the cleaning effect. ..

そのために、本発明の一形態では、一端が固定されていない中空糸膜束により原水を処理する水処理システムにおいて、中空糸膜束によるろ過処理を行うに先立って、原水の濁度を計測する濁度計測部と、当該計測された濁度に基づいて調整した量の無機凝集剤を添加する凝集剤添加部と、を備える。 Therefore, in one embodiment of the present invention, in a water treatment system in which raw water is treated by a hollow fiber membrane bundle whose one end is not fixed, the turbidity of the raw water is measured prior to performing filtration treatment by the hollow fiber membrane bundle. It includes a turbidity measuring unit and a coagulant adding unit that adds an amount of an inorganic flocculant adjusted based on the measured turbidity.

また、本発明の他の形態では、一端が固定されていない中空糸膜束により原水を処理する水処理方法において、中空糸膜束によるろ過処理を行うに先立って、原水の濁度を計測する工程と、当該計測された濁度に基づいて調整した量の無機凝集剤を添加する工程と、を備える。 Further, in another embodiment of the present invention, in a water treatment method for treating raw water with a hollow fiber membrane bundle whose one end is not fixed, the turbidity of the raw water is measured prior to performing filtration treatment with the hollow fiber membrane bundle. It comprises a step and a step of adding an amount of the inorganic flocculant adjusted based on the measured turbidity.

さらに、本発明の別の形態は、原水の濁度を計測する工程と、当該計測された濁度に基づいて調整された量の無機凝集剤を添加する工程と、当該無機凝集剤が添加された原水を、一端が固定されていない中空糸膜束によりろ過処理する工程と、備える水製造方法に存する。 Further, another embodiment of the present invention includes a step of measuring the turbidity of raw water, a step of adding an amount of an inorganic flocculant adjusted based on the measured turbidity, and a step of adding the inorganic flocculant. There is a step of filtering the raw water with a hollow fiber membrane bundle whose one end is not fixed, and a method of producing water.

本発明によれば、一端が固定されていない中空糸膜束を用いて原水のろ過処理を行うに先立って、原水の濁度を計測し、当該計測された濁度に基づいて調整した量の無機凝集剤を添加する。これにより、フロックを好ましいサイズに形成することで、ろ過処理の効率化と膜の閉塞の低減化とを実現し、且つ洗浄効果も向上できるようになる。 According to the present invention, the turbidity of the raw water is measured and the amount adjusted based on the measured turbidity prior to performing the filtration treatment of the raw water using the hollow fiber membrane bundle whose one end is not fixed. Add an inorganic flocculant. As a result, by forming the flocs into a preferable size, the efficiency of the filtration process and the reduction of the blockage of the membrane can be realized, and the cleaning effect can be improved.

本発明に適用可能な中空糸膜ろ過モジュールの一例を、一部破断して示す側面図である。It is a side view which shows an example of the hollow fiber membrane filtration module applicable to this invention partially broken. 図1の中空糸膜ろ過モジュールを用いた、本発明水処理システムの一実施形態を模式的に示すブロック図である。It is a block diagram which shows typically one Embodiment of the water treatment system of this invention using the hollow fiber membrane filtration module of FIG. 図2の水処理システムを作動させるための制御系の概略を示すブロック図である。It is a block diagram which shows the outline of the control system for operating the water treatment system of FIG. 図3の制御系による水処理システムの制御手順の一例を示すフローチャートである。It is a flowchart which shows an example of the control procedure of the water treatment system by the control system of FIG. 原水に添加する無機凝集剤の種類や濃度を異ならせて用意した5つの試料に対する、ろ過処理後の透水性を比較した結果を示すグラフである。It is a graph which shows the result of having compared the water permeability after the filtration treatment with respect to 5 samples prepared with different types and concentrations of the inorganic flocculants added to raw water. 図5Aのうちの1つの試料について、原水に添加する無機凝集剤の濃度を異ならせて用意した3つの試料に対する、ろ過処理後の透水性を比較した結果を示すグラフである。It is a graph which shows the result of having compared the water permeability after the filtration treatment with respect to three samples prepared with different concentrations of the inorganic flocculants added to raw water about one sample in FIG. 5A. 濁度25の原水に対して添加する無機凝集剤の濃度と透水性との関係を計測した結果を示すグラフである。It is a graph which shows the result of having measured the relationship between the concentration of the inorganic flocculant added to the raw water of turbidity 25 and water permeability. 原水に添加する無機凝集剤の種類や濃度を異ならせて用意した5つの試料に対する、洗浄後のろ過性能の回復性を比較した結果を示すグラフである。It is a graph which shows the result of having compared the recoverability of the filtration performance after washing with respect to 5 samples prepared with different types and concentrations of the inorganic flocculants added to raw water. 図7Aのうちの1つの試料について、原水に添加する無機凝集剤の濃度を異ならせて用意した3つの試料に対する、洗浄後のろ過性能の回復性を比較した結果を示すグラフである。It is a graph which shows the result of having compared the recoverability of the filtration performance after washing with respect to three samples prepared by making the concentration of the inorganic flocculant added to raw water different with respect to one sample of FIG. 7A. 無機凝集剤として硫酸バンドを添加する場合の濃度とSDI値との関係を示す説明図である。It is explanatory drawing which shows the relationship between the concentration and SDI value at the time of adding a sulfuric acid band as an inorganic flocculant. 原水の濁度と無機凝集剤の好ましい濃度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the turbidity of raw water and a preferable concentration of an inorganic flocculant.

以下、図面を参照して本発明を詳細に説明する。ただし、本発明は以下に述べる実施の態様に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the embodiments described below.

(定義)
なお、本明細書および特許請求の範囲において、原水とは、河川水、湖沼水、地下水、処理後の各種排水などを言い、濁りを除去することで工業用水などとして再利用可能なものを言う。
(Definition)
In the present specification and claims, raw water refers to river water, lake water, groundwater, various types of wastewater after treatment, etc., and refers to water that can be reused as industrial water by removing turbidity. ..

また、濁度とは、JIS K 0101に規定される水の濁りの程度を表す指標であり、精製水1L(リットル)に対して標準物質であるカオリンまたはホルマジン1mgを均一に分散させたときの懸濁液の濁り(「濁度1度」と定義される)と試料(原水)とを比較することで決定されたものを言う。以下の実施形態では標準物質としてカオリンを用い、単に「濁度50」の如く標記するが、標準物質としてホルマジンを用いることができることは勿論である。 The turbidity is an index indicating the degree of turbidity of water specified in JIS K 0101, and when 1 mg of kaolin or formazine, which is a standard substance, is uniformly dispersed in 1 L (liter) of purified water. It refers to what is determined by comparing the turbidity of the suspension (defined as "turbidity 1 degree") with the sample (raw water). In the following embodiments, kaolin is used as a standard substance and is simply labeled as "turbidity 50", but it goes without saying that formazine can be used as a standard substance.

さらに、無機凝集剤にはアルミニウム系や鉄系のものが含まれ、以下の実施形態では硫酸バンド(硫酸アルミニウム)および塩化第二鉄を用いる場合を例示するが、その他、アルミニウム系のものとしてPAC(ポリ塩化アルミニウム)など、また鉄系のものポリ硫酸第二鉄など)を用いることができる。 Further, the inorganic flocculant includes aluminum-based and iron-based ones, and in the following embodiments, a case where a sulfate band (aluminum sulfate) and ferric chloride are used will be exemplified, but PAC is also used as an aluminum-based one. (Polyaluminum chloride) or iron-based ones such as ferric polysulfate) can be used.

(水処理システムの実施形態)
図1は、本発明水処理システムに適用可能な中空糸膜ろ過モジュールの一例を一部破断して示す側面図である。図1において、全体を符号100で示す中空糸膜ろ過モジュール(以下、単にろ過モジュールという)は、多数の中空糸膜からなる、精密ろ過膜または限外ろ過膜とすることができる中空糸膜束1を収容した容器3を有する。ここで、各中空糸膜の一端側(図1の下端側)は封止されるとともに、容器3には固定されていない自由端となっている。一方、各中空糸膜の他端側(図1の上端側)は開口されるとともに、固定部材6によって容器3に固定された固定端となっている。すなわち、中空糸膜束1は、各中空糸膜の固定端側の開口状態を保ったまま収束されて固定され、ろ過された水が当該固定端側の開口から出て行くように容器3に収容されている。
(Embodiment of water treatment system)
FIG. 1 is a side view showing a partially broken example of a hollow fiber membrane filtration module applicable to the water treatment system of the present invention. In FIG. 1, the hollow fiber membrane filtration module (hereinafter, simply referred to as a filtration module) whose whole is indicated by reference numeral 100 can be a microfiltration membrane or an ultrafiltration membrane composed of a large number of hollow fiber membranes. It has a container 3 containing 1. Here, one end side (lower end side in FIG. 1) of each hollow fiber membrane is sealed and has a free end that is not fixed to the container 3. On the other hand, the other end side (upper end side in FIG. 1) of each hollow fiber membrane is opened and is a fixed end fixed to the container 3 by the fixing member 6. That is, the hollow fiber membrane bundle 1 is converged and fixed while maintaining the opening state on the fixed end side of each hollow fiber membrane, and is placed in the container 3 so that the filtered water exits from the opening on the fixed end side. It is contained.

容器3の下端部すなわち中空糸膜束1の自由端側の端部は、原水を導入するための原水導入部7として形成されており、そこには圧縮空気を導入するための空気導入部9が接続されている。一方、容器3の上端部すなわち中空糸膜束1の固定端側の端部は、ろ過処理された水(以下、処理水という)を排出するための処理水導出部11として形成されており、さらに容器3の上端近傍には排気部13が設けられている。なお、図には示されていないが、特許文献1に記載されているように、中空糸膜束1の固定端側から自由端側に向かって延在するように、中空糸膜束1の中心近傍に整流管を配置することができる。 The lower end of the container 3, that is, the end of the hollow fiber membrane bundle 1 on the free end side is formed as a raw water introduction portion 7 for introducing raw water, and an air introduction portion 9 for introducing compressed air there. Is connected. On the other hand, the upper end portion of the container 3, that is, the end portion on the fixed end side of the hollow fiber membrane bundle 1 is formed as a treated water outlet portion 11 for discharging the filtered water (hereinafter referred to as treated water). Further, an exhaust portion 13 is provided near the upper end of the container 3. Although not shown in the figure, as described in Patent Document 1, the hollow fiber membrane bundle 1 extends from the fixed end side to the free end side of the hollow fiber membrane bundle 1. A rectifier tube can be arranged near the center.

原水は、原水導入部7から容器3内に導入され、中空糸膜束1を通過することでろ過処理され、処理水は導出部11を介して流出する。一方、空気導入部9を介して圧縮空気を容器3内に導入し、容器3の内部に流体の運動を生じさせることで、中空糸膜束1の洗浄(エアースクラビング;以下、空気逆洗ともいう)が行われる。特許文献1に記載されたように、整流管が設けられていれば、空気逆洗時における中空糸膜同士の動きが抑制され、絡みが防止される。なお、空気逆洗時に導入された空気は排気部13を介して排出される。 The raw water is introduced into the container 3 from the raw water introduction section 7, is filtered by passing through the hollow fiber membrane bundle 1, and the treated water flows out through the lead-out section 11. On the other hand, by introducing compressed air into the container 3 via the air introduction section 9 and causing the movement of the fluid inside the container 3, the hollow fiber membrane bundle 1 is washed (air scrubbing; hereinafter, also referred to as air backwashing). ) Is performed. As described in Patent Document 1, if the rectifying tube is provided, the movement of the hollow fiber membranes during air backwashing is suppressed, and entanglement is prevented. The air introduced during the air backwash is discharged through the exhaust unit 13.

図2は、図1のろ過モジュール100を用いた、本発明水処理システムの一実施形態を模式的に示す。このシステムには複数(図示の例では4基)のろ過モジュール100が配設され、原水導入部7および空気導入部9は、それぞれ、原水配管70および空気配管90に共通に接続されている。原水は、ポンプ72により原水配管70および原水導入部7を介して、各ろ過モジュール100に対し例えば0.1MPa(ゲージ圧)の圧力で供給される。一方、空気逆洗に際しては、圧縮空気供給源(空気圧縮機など)92から空気配管90および空気導入部9を介して、各ろ過モジュール100に0.1MPa以上の圧縮空気が導入される。なお、本実施形態では、原水導入部7はろ過モジュール100のドレン抜き部に兼用されており、原水配管70の終端側はドレン排出管76となっている。 FIG. 2 schematically shows an embodiment of the water treatment system of the present invention using the filtration module 100 of FIG. A plurality of (4 in the illustrated example) filtration modules 100 are arranged in this system, and the raw water introduction unit 7 and the air introduction unit 9 are commonly connected to the raw water pipe 70 and the air pipe 90, respectively. The raw water is supplied to each filtration module 100 by a pump 72 via the raw water pipe 70 and the raw water introduction section 7 at a pressure of, for example, 0.1 MPa (gauge pressure). On the other hand, in the case of air backwashing, compressed air of 0.1 MPa or more is introduced into each filtration module 100 from the compressed air supply source (air compressor or the like) 92 via the air pipe 90 and the air introduction section 9. In the present embodiment, the raw water introduction section 7 is also used as a drain drain section of the filtration module 100, and the end side of the raw water pipe 70 is a drain discharge pipe 76.

ろ過モジュール100の処理水導出部11および排気部13は、それぞれ、処理水配管110および排気管130に共通に接続されている。すなわち、ろ過モジュール100の中空糸膜束1を通過することでろ過処理された処理水は、導出部11から処理水配管110を介して導出され、例えば工業用水として利用される。また、排気管130の終端はドレン排出管76に接続されている。 The treated water outlet section 11 and the exhaust section 13 of the filtration module 100 are commonly connected to the treated water pipe 110 and the exhaust pipe 130, respectively. That is, the treated water filtered by passing through the hollow fiber membrane bundle 1 of the filtration module 100 is led out from the lead-out unit 11 via the treated water pipe 110 and is used as, for example, industrial water. Further, the end of the exhaust pipe 130 is connected to the drain discharge pipe 76.

原水配管70の終端のドレン排出管76、空気配管90、処理水配管110および排気管130には、それぞれ、開閉弁形態のバルブ74、94、114および134が介挿されている。これらのバルブは、ろ過処理時および空気逆洗時等において適宜制御され、各配管の流路を開放/閉鎖することが可能である。また、原水配管70および処理水配管110にそれぞれ圧力センサ78および118を配設することができ、例えば原水の導入側と導出側との圧力差を検出することで、中空糸膜の性能低下等の判断に供することができる。 Valves 74, 94, 114 and 134 in the form of on-off valves are interposed in the drain discharge pipe 76, the air pipe 90, the treated water pipe 110 and the exhaust pipe 130 at the end of the raw water pipe 70, respectively. These valves are appropriately controlled during filtration processing, air backwashing, etc., and can open / close the flow path of each pipe. Further, pressure sensors 78 and 118 can be arranged in the raw water pipe 70 and the treated water pipe 110, respectively. For example, by detecting the pressure difference between the raw water introduction side and the discharge side, the performance of the hollow fiber membrane is deteriorated. Can be used for judgment.

さらに、原水配管70には、ろ過モジュール100に原水を分配するに先立って濁度を計測する濁度計測器202と、計測された濁度に基づいて無機凝集剤を原水に添加する凝集剤添加装置204と、が配設される。これらは本実施形態の特徴をなす構成要素であるが、適宜の形態のものを使用できる。例えば、濁度計測器202はJIS K 0801に準拠した濁度自動計測器を使用できるが、計測した濁度の情報を後述するコントローラなどに提示できるものであることが好ましい。また、凝集剤添加装置204は、無機凝集剤の貯留部と、後述するコントローラなどの指示に応じた量の無機凝集剤を原水配管70中に投入する投入部と、を備えることが好ましい。 Further, the raw water pipe 70 is provided with a turbidity measuring instrument 202 that measures turbidity prior to distributing the raw water to the filtration module 100, and a coagulant that adds an inorganic flocculant to the raw water based on the measured turbidity. The device 204 and the device 204 are arranged. These are the components that are characteristic of this embodiment, but those of an appropriate form can be used. For example, the turbidity measuring instrument 202 can use an automatic turbidity measuring instrument conforming to JIS K 0801, but it is preferable that the measured turbidity information can be presented to a controller or the like described later. Further, it is preferable that the coagulant adding device 204 includes a storage unit for the inorganic coagulant and a charging unit for charging the amount of the inorganic coagulant according to the instruction of the controller or the like described later into the raw water pipe 70.

(水処理システムの制御)
図3は図2に示したシステムの構成に対して適用可能な制御系の構成例を示すブロック図である。図示の制御系は、図4について後述する制御手順を実行するCPU、その制御手順に対応するプログラムを格納したROMおよび作業用のRAMなどを有するコントローラ200を中心に構成されている。コントローラ200の制御対象はバルブ74,94,114,134、ポンプ72、圧縮空気供給源(空気圧縮機など)92および凝集剤添加装置204の投入部であり、これらはそれぞれ駆動部212、214、216および218を介して駆動される。また、コントローラ200に対しては、濁度計測器202の計測情報が入力されるとともに、空気逆洗などによる洗浄タイミングを規定する洗浄タイミング規定部220からの情報が入力される。
(Control of water treatment system)
FIG. 3 is a block diagram showing a configuration example of a control system applicable to the system configuration shown in FIG. The illustrated control system is mainly composed of a controller 200 having a CPU that executes a control procedure described later with reference to FIG. 4, a ROM that stores a program corresponding to the control procedure, a working RAM, and the like. The control targets of the controller 200 are the valves 74, 94, 114, 134, the pump 72, the compressed air supply source (air compressor, etc.) 92, and the input unit of the coagulant addition device 204, which are the drive units 212, 214, respectively. Driven via 216 and 218. Further, the measurement information of the turbidity measuring instrument 202 is input to the controller 200, and the information from the cleaning timing defining unit 220 that defines the cleaning timing by air backwashing or the like is input.

空気逆洗は時間に基づいて実施することができ、例えば15〜30分毎のタイミングで行うことができる。従って、洗浄タイミング規定部220は、時間の管理を行うタイマユニットを有するものとすることができる。しかしその他の条件、中空糸膜束1の性能低下を判断して空気逆洗が行われるようにしてもよく、その場合には、洗浄タイミング規定部220を例えば圧力センサ78および118の検出値を比較するコンパレータなどを有するものとすることができる。また、ろ過モジュール100内に次亜塩素酸ナトリウムなどの薬品を適宜投入して行う薬品洗浄を組み合わせることもできる。薬品洗浄のタイミングについても、例えば時間に基づいて実施することができ、例えば1〜2日毎のタイミングで行うことができる。 The air backwash can be performed on a time basis, for example every 15 to 30 minutes. Therefore, the cleaning timing defining unit 220 may have a timer unit that manages the time. However, under other conditions, it may be determined that the performance of the hollow fiber membrane bundle 1 is deteriorated so that air backwashing may be performed. In that case, the cleaning timing defining unit 220 may be set to, for example, the detected values of the pressure sensors 78 and 118. It may have a comparator or the like to be compared. It is also possible to combine chemical cleaning performed by appropriately adding a chemical such as sodium hypochlorite into the filtration module 100. The timing of chemical cleaning can also be carried out, for example, based on time, and can be carried out, for example, every 1 to 2 days.

図4は、図3の制御系を用いた、図2の水処理システムの制御手順の一例を示す。本手順が起動されると、まずステップS1にてバルブ114を開、バルブ74、94および134を閉とした後、ステップS3にてポンプ72を駆動する。これらにより、原水配管70から各ろ過モジュール100への原水の流れ、および各ろ過モジュール100から処理水配管110を介した処理水の流れが確立されるとともに、空気配管90、ドレン排出管76および排気管130が閉塞される。そして、ステップS5では濁度計測器202により原水の濁度を計測し、ステップS7では凝集剤添加装置204を駆動することで、濁度および処理対象である原水の流量に応じて適切に定めた量の無機凝集剤を投入する。これにより、無機凝集剤が添加された原水がろ過モジュール100に流入する。この過程で原水に含まれる不純物が凝集するが、無機凝集剤の濃度が適切に調整されることでフロックが好ましいサイズに形成され、中空糸膜の孔の閉塞や中空糸間の滞留が生じにくいものとなる。なお、濁度の計測およびそれに応じた無機凝集剤添加量の調整は、常時行うのではなく、適宜のタイミングで行うようにしてもよい。 FIG. 4 shows an example of a control procedure of the water treatment system of FIG. 2 using the control system of FIG. When this procedure is activated, the valve 114 is first opened in step S1, the valves 74, 94 and 134 are closed, and then the pump 72 is driven in step S3. As a result, the flow of raw water from the raw water pipe 70 to each filtration module 100 and the flow of treated water from each filtration module 100 through the treated water pipe 110 are established, and the air pipe 90, the drain discharge pipe 76 and the exhaust are established. The pipe 130 is blocked. Then, in step S5, the turbidity of the raw water was measured by the turbidity measuring instrument 202, and in step S7, the coagulant addition device 204 was driven to appropriately determine the turbidity and the flow rate of the raw water to be treated. Add an amount of inorganic flocculant. As a result, the raw water to which the inorganic flocculant is added flows into the filtration module 100. Impurities contained in the raw water aggregate in this process, but by appropriately adjusting the concentration of the inorganic flocculant, the flocs are formed in a preferable size, and the pores of the hollow fiber membrane are less likely to be blocked or retention between the hollow fibers is unlikely to occur. It becomes a thing. The measurement of turbidity and the adjustment of the amount of the inorganic flocculant added accordingly may be performed at an appropriate timing instead of always.

次に、ステップS11では空気逆洗による洗浄タイミングとなったか否かを判定し、否定判定であればステップS5に復帰する一方、肯定判定であればステップS13に進み、バルブ114を閉、バルブ74、94および134を開とする。これにより、原水配管70から各ろ過モジュール100への原水の流れ、および各ろ過モジュール100から処理水配管110を介した処理水の流れが阻止されるとともに、空気配管90、ドレン排出管76および排気管130を介した流路が確立される。 Next, in step S11, it is determined whether or not the cleaning timing is due to air backwashing, and if a negative determination is made, the process returns to step S5. If the determination is positive, the process proceeds to step S13, the valve 114 is closed, and the valve 74 , 94 and 134 are open. As a result, the flow of raw water from the raw water pipe 70 to each filtration module 100 and the flow of treated water from each filtration module 100 through the treated water pipe 110 are blocked, and the air pipe 90, the drain discharge pipe 76 and the exhaust are blocked. A flow path is established through the pipe 130.

ステップS15では凝集剤添加装置204の駆動を停止し、ステップS15にて空気圧縮機92を駆動する。これにより、圧縮空気が空気配管90を介してろ過モジュール100に供給されることで、中空糸膜束1の空気逆洗が行われる。この空気逆洗によって容器3内で浮遊しているフロックや中空糸膜束1から剥離したフロックを含む流体は、排気部13から排気管130を介してドレン排出管76に移送される。また、本実施形態では、容器3の下端側の原水導入部7はドレン排出口を兼ねているため、空気逆洗時にもポンプ72を駆動しておくことで、原水導入部7に沈降したフロックをドレン排出管76に移送することができる。 In step S15, the drive of the coagulant addition device 204 is stopped, and in step S15, the air compressor 92 is driven. As a result, the compressed air is supplied to the filtration module 100 via the air pipe 90, so that the hollow fiber membrane bundle 1 is backwashed with air. The fluid containing the flocs floating in the container 3 and the flocs separated from the hollow fiber membrane bundle 1 by this air backwash is transferred from the exhaust unit 13 to the drain discharge pipe 76 via the exhaust pipe 130. Further, in the present embodiment, since the raw water introduction portion 7 on the lower end side of the container 3 also serves as a drain discharge port, by driving the pump 72 even during air backwashing, the flocs settled in the raw water introduction portion 7 Can be transferred to the drain discharge pipe 76.

空気逆洗による洗浄を行う期間についても時間で管理することができ、ステップS19で洗浄が終了したことが判定されると、ステップS21で空気圧縮機92の駆動を停止する。そしてステップS1に復帰することで、通常の水処理が再開される。なお、図4には示されていないが、薬剤洗浄を実施する処理ステップが付加されていてもよい。 The period for performing cleaning by air backwash can also be managed by time, and when it is determined in step S19 that the cleaning is completed, the drive of the air compressor 92 is stopped in step S21. Then, by returning to step S1, normal water treatment is restarted. Although not shown in FIG. 4, a treatment step for carrying out chemical cleaning may be added.

(無機凝集剤の添加量について)
本発明者は、以下に示すような様々な実験を通じ、ろ過処理の効率化と膜の閉塞の低減化とを実現し、且つ洗浄効果も向上できるようにするための無機凝集剤の適切な添加量について検討を行った。
(About the amount of inorganic flocculant added)
Through various experiments as shown below, the present inventor appropriately added an inorganic flocculant to improve the efficiency of filtration treatment and the reduction of membrane blockage, and also to improve the cleaning effect. The amount was examined.

まず、図5A、原水に添加する無機凝集剤の種類や濃度に応じた、ろ過処理後の透水性を比較した実験結果を示すグラフである。実験には、次の5つの試料、すなわち、
試料1:無機凝集剤を添加していない原水(濁度25)、
試料2:硫酸バンドを5ppm添加した原水、
試料3:硫酸バンドを10ppm添加した原水、
試料4:塩化第二鉄を5ppm添加した原水、および
試料5:塩化第二鉄を10ppm添加した原水、
を用意した。そして、図1に示したような構造を有するろ過モジュールであるクラレアクア株式会社製のピューリア(登録商標)GSの中空糸膜を切断し、総面積が0.0152m2となるようにその数本を自由端端部と反対側において束ねたものを試験用のろ過膜として使用した。そのろ過膜に0.1MPaの圧力で原水を供給した。
First, FIG. 5A is a graph showing the experimental results comparing the water permeability after the filtration treatment according to the type and concentration of the inorganic flocculant added to the raw water. For the experiment, the following five samples, that is,
Sample 1: Raw water without an inorganic flocculant (turbidity 25),
Sample 2: Raw water to which 5 ppm of sulfuric acid band is added,
Sample 3: Raw water to which 10 ppm of sulfuric acid band is added,
Sample 4: Raw water containing 5 ppm of ferric chloride, and Sample 5: Raw water containing 10 ppm of ferric chloride.
I prepared. Then, the hollow fiber membranes of Puria (registered trademark) GS manufactured by Kuraray Aqua Co., Ltd., which is a filtration module having a structure as shown in FIG. 1, are cut, and several of them are cut so that the total area is 0.0152 m 2. Was bundled on the opposite side of the free end and used as a test filtration membrane. Raw water was supplied to the filtration membrane at a pressure of 0.1 MPa.

図5Aの縦軸は処理水の流量を示し、膜1m2、1時間当たり何L(リットル)の処理水が得られたかを示している。このグラフから、原水に無機凝集剤を添加するほうが透水性は良好となり、膜の閉塞がない効率的なろ過処理が可能となること、また、無機凝集剤の添加率(濃度)は高いほうがより効率的となるとの知見が得られた。そしてこのことは、フロックが好ましいサイズに形成されていることに由来するものと考えられる。 The vertical axis of FIG. 5A shows the flow rate of the treated water, and shows how many L (liters) of treated water was obtained per 1 m 2 of the membrane per hour. From this graph, it is better to add the inorganic flocculant to the raw water, the water permeability is better, the efficient filtration treatment without film blockage is possible, and the higher the addition rate (concentration) of the inorganic flocculant is, the better. It was found that it would be efficient. And this is considered to be due to the fact that the flocs are formed in a preferable size.

そこで本発明者は、無機凝集剤として硫酸バンドを選択し、試料3に加え、
試料3−2:硫酸バンドを15ppm添加した原水、および
試料3−3:硫酸バンドを25ppm添加した原水、
を用意し、同様にして透水性を検証した。図5Bはその実験結果を示すグラフである。このグラフから、試料3よりも無機凝集剤の添加率(濃度)が高い試料3−2のほうが透水性は高いが、さらに高濃度に無機凝集剤を添加した試料3−3ではかえって透水性が低くなることがわかった。
Therefore, the present inventor selected a sulfuric acid band as the inorganic flocculant and added it to sample 3.
Sample 3-2: Raw water to which 15 ppm of sulfuric acid band was added, and Sample 3-3: Raw water to which 25 ppm of sulfuric acid band was added.
Was prepared, and the water permeability was verified in the same manner. FIG. 5B is a graph showing the experimental results. From this graph, the water permeability of the sample 3-2, which has a higher addition rate (concentration) of the inorganic flocculant than that of the sample 3, is higher, but the water permeability of the sample 3-3 to which the inorganic coagulant is added at a higher concentration is rather higher. It turned out to be lower.

本発明者はさらに、原水(濁度25)に対して硫酸バンドの添加率を変化させて透水性を検証する実験を行った。この実験で用いた原水は、下記の範囲内の水質を有していた。
pH:5.4〜7.8
SS:20〜380mg/L
色度:30〜50
電気伝導度:1.80〜5.34mS/cm
塩分:0.3%
Ca:250〜870mg/L
SiO2:7mg/L
NH4 +:0.2〜0.7mg/L
CaCO3:150〜200mg/L
The present inventor further conducted an experiment to verify the water permeability by changing the addition rate of the sulfuric acid band with respect to the raw water (turbidity 25). The raw water used in this experiment had a water quality within the following range.
pH: 5.4 to 7.8
SS: 20-380 mg / L
Saturation: 30-50
Electrical conductivity: 1.80 to 5.34 mS / cm
Salt content: 0.3%
Ca: 250-870 mg / L
SiO 2 : 7 mg / L
NH 4 + : 0.2-0.7 mg / L
CaCO 3 : 150-200 mg / L

図6はその実験結果を示すグラフである。この結果から、無機凝集剤を適切な濃度となるように添加すること、すなわち硫酸バンドを使用する場合、原水に対し15ppm程度の濃度となるように添加することが、透水性を良好にする上で好ましいことを確認した。 FIG. 6 is a graph showing the experimental results. From this result, adding the inorganic flocculant to an appropriate concentration, that is, when using a sulfuric acid band, adding it to a concentration of about 15 ppm with respect to the raw water improves the water permeability. It was confirmed that it was preferable.

一方、本発明者は、無機凝集剤の濃度に応じた洗浄効果を確認する実験を行った。実験ではまず、上記試料1〜5を上記と同じろ過モジュールに対し50Lを供給した後、物理洗浄(空気逆洗)および(薬品洗浄)を行った。 On the other hand, the present inventor conducted an experiment to confirm the cleaning effect according to the concentration of the inorganic flocculant. In the experiment, first, 50 L of the above samples 1 to 5 was supplied to the same filtration module as above, and then physical washing (air backwashing) and (chemical washing) were performed.

図7Aは、洗浄後にどこまで膜の性能が回復したかを、供給前の透水性を100%としたときの流量比にて示したグラフである。このグラフから、原水に無機凝集剤を添加するほうが概して回復性は良く、図5Aに示した透水性も勘案すれば、無機凝集剤を10ppm以上の濃度で添加することが好ましいとの知見が得られた。そしてこのことも、フロックが好ましいサイズに形成されていることに由来するものと考えられる。 FIG. 7A is a graph showing how much the performance of the membrane has recovered after cleaning by the flow rate ratio when the water permeability before supply is 100%. From this graph, it was found that the recovery is generally better when the inorganic flocculant is added to the raw water, and it is preferable to add the inorganic flocculant at a concentration of 10 ppm or more in consideration of the water permeability shown in FIG. 5A. Was done. And this is also considered to be due to the fact that the flocs are formed in a preferable size.

そこで本発明者は、無機凝集剤として硫酸バンドを選択し、試料3、試料3−2および試料3−3を用意し、同様に回復性を検証した。図7Bはその実験結果を示すグラフである。このグラフから、硫酸バンドを使用する場合、濁度25の原水に対し15ppm程度の濃度(例えば、12.5〜17.5ppmの範囲)となるように添加することが、洗浄後の回復性の観点からも好ましいことが確認された。本発明においてこのような濃度の無機凝集剤を用いることは、上記の水質を有する原水の処理において特に好適である。 Therefore, the present inventor selected a sulfuric acid band as the inorganic flocculant, prepared Sample 3, Sample 3-2 and Sample 3-3, and similarly verified the recoverability. FIG. 7B is a graph showing the experimental results. From this graph, when a sulfuric acid band is used, it is necessary to add it to a concentration of about 15 ppm (for example, in the range of 12.5 to 17.5 ppm) with respect to raw water having a turbidity of 25 for recovery after washing. It was confirmed that it was preferable from the viewpoint. In the present invention, the use of an inorganic flocculant having such a concentration is particularly suitable for the treatment of raw water having the above water quality.

さらに本発明者は、特許文献2の明細書に記載されている方法に従って、米国ASTMD 4189の規定に準じて、硫酸バンドを添加したときの原水の濁質成分量(SDI(Silt Density Index)値)を評価する実験を行った。 Further, the present inventor, according to the method described in the specification of Patent Document 2, according to the provisions of ASTM 4189 in the United States, the amount of turbid component (SDI (Silt Density Index) value) of raw water when a sulfuric acid band is added. ) Was evaluated.

図8はその結果を示している。一般に、水はSDI値が3〜4以下となるように処理されることが必要とされているが、硫酸バンドを添加した場合、「×」で示すUF(限外ろ過膜)処理した場合よりも優れたSDI値となっていることが確認された。 FIG. 8 shows the result. Generally, water is required to be treated so that the SDI value is 3 to 4 or less, but when a sulfuric acid band is added, it is more than when it is treated with UF (ultrafiltration membrane) indicated by "x". It was confirmed that the SDI value was also excellent.

加えて、本発明者は、種々の濁度に対し、透水性および洗浄後の回復性の観点から好ましい無機凝集剤(硫酸バンド)の濃度を求める実験を行った。 In addition, the present inventor conducted an experiment to determine the concentration of an inorganic flocculant (sulfuric acid band) preferable from the viewpoint of water permeability and recoverability after washing for various turbidities.

図9はその結果を示しており、この結果から、濁度と、好ましい無機凝集剤の添加量とには概ね線形の関係があることが確認された。図9の場合には、ほぼ
無機凝集剤添加量(ppm)=0.45×濁度+5
の式で表される関係となっている。従って、図2および図3に示した水処理システムに適用するにあたっては、濁度計測器202によって計測された濁度に対し、処理する原水の流量に応じた濃度が得られる量の無機凝集剤が添加されるように、図4のステップS7にて凝集剤添加装置204を制御すればよいことになる。なお、好ましい量の無機凝集剤を添加するに際しては、例えば、濁度、添加量および原水の流量を予めテーブル化したものをコントローラ200のROM等に格納しておき、このテーブルを参照するようにすることができる。あるいは、コントローラ200のCPUが、濁度に基づき上式に従って好ましい濃度ひいては添加量を算出するものであってもよい。
FIG. 9 shows the result, and from this result, it was confirmed that there is a substantially linear relationship between the turbidity and the amount of the preferable inorganic flocculant added. In the case of FIG. 9, the amount of inorganic coagulant added (ppm) = 0.45 x turbidity +5
The relationship is expressed by the formula of. Therefore, when applied to the water treatment system shown in FIGS. 2 and 3, an amount of the inorganic flocculant that can obtain a concentration corresponding to the flow rate of the raw water to be treated with respect to the turbidity measured by the turbidity measuring instrument 202. The flocculant addition device 204 may be controlled in step S7 of FIG. 4 so that When adding a preferable amount of the inorganic flocculant, for example, a table in which the turbidity, the amount added, and the flow rate of the raw water are tabulated in advance is stored in the ROM or the like of the controller 200, and this table is referred to. can do. Alternatively, the CPU of the controller 200 may calculate a preferable concentration and thus an addition amount according to the above formula based on the turbidity.

(その他)
なお、本発明は、以上の実施形態および随所に述べた変形例に限られるものではない。例えば、無機凝集剤として硫酸バンドを添加する場合について好ましい濃度を具体的に説明したが、これは単に例示であって、PAC、あるいは鉄系の無機凝集剤である塩化第二鉄やポリ硫酸第二鉄などを用いる場合にも同様に適切な添加量を定め得ることは勿論である。また、中空糸膜の諸元(中空糸自体の径や孔径など)に応じ、あるいは、ろ過システムの使用条件や環境条件(水温など)に応じ、用いる無機凝集剤の種類や濃度ないしは添加量を定め得ることも勿論である。
(Other)
It should be noted that the present invention is not limited to the above embodiments and modifications described everywhere. For example, the preferable concentration in the case of adding a sulfuric acid band as an inorganic flocculant has been specifically described, but this is merely an example, and PAC, or ferric chloride or polysulfate which is an iron-based inorganic flocculant. Of course, when ferric or the like is used, an appropriate addition amount can be determined in the same manner. In addition, the type, concentration, or amount of inorganic flocculant used depends on the specifications of the hollow fiber membrane (diameter and pore diameter of the hollow fiber itself, etc.), or according to the usage conditions and environmental conditions (water temperature, etc.) of the filtration system. Of course, it can be determined.

加えて、上述の実施形態では、濁度の計測および無機凝集剤の添加を自動で行う水処理システムを例示したが、水処理方法または水製造方法に具現化される本発明の趣旨に照らし、少なくとも一部を操作者の指示または操作に従って行われるものであってもよい。また、本発明に従って処理された水は、工業用水等として直接的に利用されるものであってもよいし、付加的な処理が施されるものであってもよい。 In addition, in the above-described embodiment, a water treatment system that automatically measures turbidity and adds an inorganic flocculant is exemplified, but in light of the gist of the present invention embodied in the water treatment method or the water production method. At least a part thereof may be performed according to the instruction or operation of the operator. Further, the water treated according to the present invention may be directly used as industrial water or the like, or may be additionally treated.

Claims (7)

一端が固定されていない中空糸膜束により原水を処理する水処理システムにおいて、
前記中空糸膜束によるろ過処理を行うに先立って、原水の濁度を計測する濁度計測部と、
当該計測された濁度に基づいて調整した量の無機凝集剤を添加する凝集剤添加部と、
を備えたことを特徴とする水処理システム。
In a water treatment system that treats raw water with hollow fiber membrane bundles with one end not fixed
Prior to performing the filtration process using the hollow fiber membrane bundle, a turbidity measuring unit that measures the turbidity of the raw water and a turbidity measuring unit.
A coagulant addition part that adds an amount of inorganic coagulant adjusted based on the measured turbidity,
A water treatment system characterized by being equipped with.
前記濁度計測部によって計測された濁度がX度(カオリン)であるとき、前記凝集剤添加部は次式で定まる濃度Y(ppm)
Y=0.45×X+5
が得られるように前記無機凝集剤の添加を行うことを特徴とする請求項1に記載の水処理システム。
When the turbidity measured by the turbidity measuring unit is X degree (kaolin), the flocculant addition unit has a concentration Y (ppm) determined by the following equation.
Y = 0.45 x X + 5
The water treatment system according to claim 1, wherein the inorganic flocculant is added so as to obtain the above.
前記中空糸膜束は精密ろ過膜または限外ろ過膜であることを特徴とする請求項1または2に記載の水処理システム。 The water treatment system according to claim 1 or 2, wherein the hollow fiber membrane bundle is a microfiltration membrane or an ultrafiltration membrane. 前記無機凝集剤として硫酸アルミニウムが用いられることを特徴とする請求項1ないし3のいずれか一項に記載の水処理システム。 The water treatment system according to any one of claims 1 to 3, wherein aluminum sulfate is used as the inorganic flocculant. さらに、0.1MPa以上の圧力で圧縮空気を導入することにより前記中空糸膜束の洗浄が行われることを特徴とする請求項1ないし4のいずれか一項に記載の水処理システム。 The water treatment system according to any one of claims 1 to 4, further characterized in that the hollow fiber membrane bundle is washed by introducing compressed air at a pressure of 0.1 MPa or more. 一端が固定されていない中空糸膜束により原水を処理する水処理方法において、
前記中空糸膜束によるろ過処理を行うに先立って、原水の濁度を計測する工程と、
当該計測された濁度に基づいて調整した量の無機凝集剤を添加する工程と、
を備えたことを特徴とする水処理方法。
In a water treatment method in which raw water is treated with a hollow fiber membrane bundle whose one end is not fixed,
Prior to performing the filtration treatment with the hollow fiber membrane bundle, the step of measuring the turbidity of the raw water and
The step of adding an amount of the inorganic flocculant adjusted based on the measured turbidity, and
A water treatment method characterized by being equipped with.
原水の濁度を計測する工程と、
当該計測された濁度に基づいて調整された量の無機凝集剤を添加する工程と、
当該無機凝集剤が添加された原水を、一端が固定されていない中空糸膜束によりろ過処理する工程と、
を備えたことを特徴とする水製造方法。
The process of measuring the turbidity of raw water and
The step of adding an amount of the inorganic flocculant adjusted based on the measured turbidity, and
A step of filtering the raw water to which the inorganic flocculant is added by a hollow fiber membrane bundle having one end not fixed, and
A water production method characterized by being equipped with.
JP2020141686A 2015-12-28 2020-08-25 Water treatment system, water treatment method and water production method Pending JP2020192533A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015257390 2015-12-28
JP2015257390 2015-12-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017558844A Division JPWO2017115455A1 (en) 2015-12-28 2016-11-10 Water treatment system, water treatment method and water production method

Publications (1)

Publication Number Publication Date
JP2020192533A true JP2020192533A (en) 2020-12-03

Family

ID=59224883

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017558844A Pending JPWO2017115455A1 (en) 2015-12-28 2016-11-10 Water treatment system, water treatment method and water production method
JP2020141686A Pending JP2020192533A (en) 2015-12-28 2020-08-25 Water treatment system, water treatment method and water production method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017558844A Pending JPWO2017115455A1 (en) 2015-12-28 2016-11-10 Water treatment system, water treatment method and water production method

Country Status (3)

Country Link
JP (2) JPWO2017115455A1 (en)
SG (1) SG11201805603SA (en)
WO (1) WO2017115455A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351623B2 (en) * 2019-02-28 2023-09-27 株式会社クラレ Composite hollow fiber membrane module
KR102453863B1 (en) * 2022-03-23 2022-10-12 주식회사 로펜 Physicochemical water treatment process using microfiber filter coated with coagulant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130055A (en) * 1975-05-08 1976-11-12 Toshiba Corp Apparatus for controlling amounts incorporated of chemicals in a water purification plant
JPH1170324A (en) * 1997-08-29 1999-03-16 Kuraray Co Ltd Hollow fiber membrane module
JP2007330916A (en) * 2006-06-16 2007-12-27 Fuji Electric Holdings Co Ltd Water treatment method of hollow fiber membrane and water treatment apparatus
JP2012024673A (en) * 2010-07-21 2012-02-09 Ohbayashi Corp Method of managing addition of flocculant
JP2012239947A (en) * 2011-05-17 2012-12-10 Toray Ind Inc Water treatment method and water treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130055A (en) * 1975-05-08 1976-11-12 Toshiba Corp Apparatus for controlling amounts incorporated of chemicals in a water purification plant
JPH1170324A (en) * 1997-08-29 1999-03-16 Kuraray Co Ltd Hollow fiber membrane module
JP2007330916A (en) * 2006-06-16 2007-12-27 Fuji Electric Holdings Co Ltd Water treatment method of hollow fiber membrane and water treatment apparatus
JP2012024673A (en) * 2010-07-21 2012-02-09 Ohbayashi Corp Method of managing addition of flocculant
JP2012239947A (en) * 2011-05-17 2012-12-10 Toray Ind Inc Water treatment method and water treatment apparatus

Also Published As

Publication number Publication date
SG11201805603SA (en) 2018-07-30
WO2017115455A1 (en) 2017-07-06
JPWO2017115455A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP5561473B2 (en) Filtration device and water treatment device
JP6269241B2 (en) Forward osmosis processing system
WO2010142673A1 (en) Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
JP2012239948A (en) Method for washing filter medium, and water treatment apparatus
WO2016158312A1 (en) Water treatment method and device
KR101389450B1 (en) Desalination apparatus and desalinating method thereof
JP2013111559A (en) Pretreating apparatus for supplying seawater to apparatus desalting or concentrating salt in seawater by using film
JP2020192533A (en) Water treatment system, water treatment method and water production method
JP2008229418A (en) Method and apparatus for industrial water treatment
WO2013111826A1 (en) Desalination method and desalination device
WO2016035174A1 (en) Deposit monitoring device for water treatment device, water treatment device, operating method for same, and washing method for water treatment device
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
JP4241684B2 (en) Membrane module cleaning method
KR20130132020A (en) High-recovery nf/ro water purification system with inter-stage demineralization process
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
CA2904571A1 (en) Methods of inhibiting fouling in liquid systems
KR20120082754A (en) Water treating apparatus and a cleaning methoed for reverse osmosis filter of the water treating apparatus
WO2016035175A1 (en) Water treatment device and operating method for water treatment device
WO2013047466A1 (en) Membrane module cleaning method
JP5915295B2 (en) Pure water production method
WO2017159303A1 (en) Method for treating waste water having high hardness
KR101732811B1 (en) Energy saving Forward Osmosis-filtration hybrid Water treatment/seawater desalination system using big size polymer draw solute and method of Water treatment/seawater desalination using the same
Konieczny et al. Water treatment using hybrid method of coagulation and low-pressure membrane filtration
TW201917102A (en) Water treatment equipment and water treatment method comprising an acid supply unit, a first filtering device, an alkali supply unit and a second filtering device
CN205821040U (en) Desulfurization wastewater advanced treating membrance separation is combined Zero discharging system by a kind of full embrane method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220329