[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012239947A - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP2012239947A
JP2012239947A JP2011110043A JP2011110043A JP2012239947A JP 2012239947 A JP2012239947 A JP 2012239947A JP 2011110043 A JP2011110043 A JP 2011110043A JP 2011110043 A JP2011110043 A JP 2011110043A JP 2012239947 A JP2012239947 A JP 2012239947A
Authority
JP
Japan
Prior art keywords
water
raw water
flocculant
oxidant
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011110043A
Other languages
Japanese (ja)
Inventor
Keiichi Ikeda
啓一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011110043A priority Critical patent/JP2012239947A/en
Publication of JP2012239947A publication Critical patent/JP2012239947A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method and a water treatment apparatus reducing the cost of chemicals and attaining the stable operation of solid-liquid separation in the water treatment method of carrying out solid-liquid separation after flocculating raw water by injecting an oxidizing agent and a flocculant into the raw water that contains ferrous ions.SOLUTION: The water treatment method of flocculating raw water by injecting the oxidizing agent and the flocculant into the raw water that contains ferrous ions and then carrying out solid-liquid separation to obtain clarified water includes measuring the ferrous ion concentration of the raw water, computing the injection amount of the oxidizing agent for oxidizing the ferrous ions, and the produced amount of iron hydroxide (III) produced by the reaction between the ferrous ions and the oxidizing agent, and computing the required injection amount of the flocculant by subtracting the produced amount of the iron hydroxide (III) from the appropriate injection amount of the flocculant for flocculating the raw water, to control the injection amount of the oxidizing agent and the required injection amount of the flocculant.

Description

本発明は濁度成分、色度成分、第1鉄イオンを含有する原水を固液分離する水処理方法および水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus for solid-liquid separation of raw water containing turbidity components, chromaticity components, and ferrous ions.

上下水道や廃水処理等の水処理においては、原水中の濁度成分や色度成分を除去し、所定の濁度、色度以下になるまで処理する必要があり、凝集処理した後に沈澱、砂ろ過、膜ろ過等の固液分離処理を行うことが多い。通常は、初めに凝集剤を原水に注入し、攪拌機等により混和を十分に行ってフロックを形成させた後、粗大化したフロックは、沈澱池にて沈降分離される。残留する微小なフロックは、砂ろ過や膜ろ過にて固液分離され、最終的に所定の濁度、色度以下の処理水が得られる。   In water treatment such as water and sewage and wastewater treatment, it is necessary to remove turbidity components and chromaticity components in raw water, and to treat them until they are below the specified turbidity and chromaticity. In many cases, solid-liquid separation treatment such as filtration and membrane filtration is performed. Usually, after a flocculant is first poured into raw water and thoroughly mixed with a stirrer or the like to form flocs, the coarse flocs are settled and separated in a sedimentation basin. The remaining minute floc is solid-liquid separated by sand filtration or membrane filtration, and finally treated water having a predetermined turbidity and chromaticity is obtained.

いずれの方法でも、原水にPAC(ポリ塩化アルミニウム)や塩化第2鉄等の凝集剤を注入して原水中の濁度成分や色度成分を凝集フロック内に取り込ませた上でろ過することにより、ろ過水質の向上を図るとともに、ろ過差圧の上昇を抑制している。また、凝集剤の注入率は、取水した原水の濁度を濁度計で測定し、濁度に比例した量の凝集剤を注入する濁度比例注入制御あるいは容器やビーカー等を用いたジャーテスト等の結果から、人為的に制御することが一般的である(特許文献1、非特許文献1)。   In any method, by adding a flocculating agent such as PAC (polyaluminum chloride) or ferric chloride into raw water and incorporating turbidity components and chromaticity components in the raw water into the coagulation floc, filtration is performed. In addition to improving the quality of filtered water, the rise in filtration differential pressure is suppressed. The flocculant injection rate is determined by measuring the turbidity of the raw water taken with a turbidimeter, and using a turbidity proportional injection control that injects an amount of flocculant proportional to the turbidity, or a jar test using a container, beaker, etc. From the results of the above, it is common to artificially control (Patent Document 1, Non-Patent Document 1).

一方、原水中に第1鉄イオンが含まれている場合、酸化剤によって第1鉄イオンを第2鉄イオンに酸化すると共に、中和剤を注入してpHを調整し、水酸化鉄(III)主体の粒子を生成させて、凝集させる方法が提案されている(特許文献2)。これにより、第1鉄イオンも後段の固液分離手段で除去可能となる。   On the other hand, when ferrous ions are contained in the raw water, the ferrous ions are oxidized to ferric ions by an oxidizing agent, and the pH is adjusted by injecting a neutralizing agent, whereby iron hydroxide (III ) A method for generating and agglomerating main particles has been proposed (Patent Document 2). Thereby, ferrous ions can also be removed by the solid-liquid separation means at the subsequent stage.

固液分離手段、特に膜ろ過法においては凝集剤の注入量を適切に制御することが重要であり、もし凝集剤の注入量が不足すると凝集フロック内への濁度成分や色度成分の取り込みが十分に行われないために膜ろ過水質の低下とろ過差圧の上昇が起こる。逆に凝集剤の注入量が多すぎると過剰にフロックが形成されて膜の閉塞が急速に進行し、短時間に膜差圧が上昇して処理不能に陥る。しかも河川水や湖沼水は季節や天候によって水質が変動するため、水質変化に応じて凝集剤の注入量を制御することは、重要な管理項目となっている。   In solid-liquid separation means, especially membrane filtration, it is important to control the amount of flocculant injected appropriately. If the amount of flocculant injected is insufficient, turbidity components and chromaticity components can be incorporated into the flocs. Is not performed sufficiently, the membrane filtration water quality decreases and the filtration differential pressure increases. On the other hand, if the injection amount of the flocculant is too large, excessive flocs are formed and the membrane is rapidly blocked, and the membrane differential pressure rises in a short period of time, resulting in inability to process. Moreover, since the water quality of river water and lake water fluctuates depending on the season and weather, it is an important management item to control the injection amount of the flocculant according to the water quality change.

しかし、酸化剤を注入して第1鉄イオンを酸化しつつ、凝集剤単独の濁度比例注入制御あるいは色度比例注入制御をそのまま膜ろ過法における前処理に適用すると、原水の濁度、色度が低く、第1鉄イオンが上昇した場合に、問題があることが判明した。すなわち原水の濁度、色度が低い場合には、凝集剤の注入量が少ないが、酸化剤注入によって多量の水酸化鉄(III)を生成し、結果として水酸化鉄(III)由来の凝集フロックが過剰に生成されて膜の閉塞が発生することがあることが判明した。酸化剤注入によって多量の水酸化鉄(III)を生成するのを防止するために酸化剤注入量を少なくした場合には、第1鉄イオンが膜を通過してしまい、処理水質が悪化する問題があった。   However, if the turbidity proportional injection control or chromaticity proportional injection control of the flocculant alone is directly applied to the pretreatment in the membrane filtration method while oxidizing the ferrous ion by injecting the oxidizing agent, the turbidity and color of the raw water It was found that there was a problem when the degree was low and ferrous ions were elevated. In other words, when the turbidity and chromaticity of the raw water are low, the injection amount of the flocculant is small, but a large amount of iron hydroxide (III) is generated by the injection of the oxidant, and as a result, the aggregation is derived from iron (III) hydroxide. It has been found that flocs can be generated excessively, resulting in membrane clogging. When the oxidant injection amount is reduced in order to prevent a large amount of iron hydroxide (III) from being generated by the oxidant injection, ferrous ions pass through the membrane and the quality of the treated water deteriorates. was there.

このように、濁度、色度、第1鉄イオン濃度が頻繁に変動する原水に対して、原水の濁度成分や色度成分を凝集するのに必要な凝集剤および第1鉄イオンを酸化するのに必要な酸化剤の注入量を決定するのは、非常に困難であった。   Thus, the flocculant and ferrous ions necessary to agglomerate the turbidity component and chromaticity component of the raw water are oxidized against the raw water whose turbidity, chromaticity, and ferrous ion concentration frequently change. It was very difficult to determine the amount of oxidant injection required to do this.

特開平5−146608号公報JP-A-5-146608 特開2005−296866号公報JP 2005-296866 A

「水道施設設計指針2000」、日本水道協会、p175〜p177“Water Supply Facility Design Guidelines 2000”, Japan Waterworks Association, p175-p177

本発明は、濁度成分、色度成分、第1鉄イオンが変動する原水に対して、酸化剤および凝集剤を注入して凝集した後、固液分離して清澄水を得る水処理方法において、第1鉄イオンを水酸化鉄(III)に酸化するために注入する酸化剤の量と、原水の濁度成分や色度成分を凝集するために注入する凝集剤の量を最適化し、さらに後段の逆浸透膜が酸化剤で劣化するのを防止するために注入する還元剤の量を最適化する固液分離の安定運転が可能な水処理方法および水処理装置を提供することを課題とする。   The present invention relates to a water treatment method for obtaining clear water by solid-liquid separation after injecting and agglomerating an oxidizing agent and a flocculant to raw water in which turbidity components, chromaticity components and ferrous ions vary. Optimize the amount of oxidant injected to oxidize ferrous ions to iron (III) hydroxide and the amount of flocculant injected to flocculate turbidity and chromaticity components of raw water, It is an object of the present invention to provide a water treatment method and a water treatment apparatus capable of stable operation of solid-liquid separation that optimizes the amount of reducing agent to be injected in order to prevent the reverse osmosis membrane in the latter stage from being deteriorated by the oxidizing agent. To do.

上記課題を解決するため、本発明の水処理方法および水処理装置は、次の特徴を有するものである。   In order to solve the above problems, a water treatment method and a water treatment apparatus of the present invention have the following characteristics.

(1)第1鉄イオンを含む原水に酸化剤と凝集剤を注入して凝集した後、固液分離して清澄水を得る水処理方法において、原水の第1鉄イオン濃度を測定し、第1鉄イオンを酸化するための酸化剤注入量および第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)生成量を演算し、原水を凝集するための適正凝集剤注入量から前記水酸化鉄(III)生成量を差し引いて必要凝集剤注入量を演算することで、前記酸化剤注入量および前記必要凝集剤注入量を制御することを特徴とする水処理方法。   (1) In a water treatment method in which an oxidant and a flocculant are injected into raw water containing ferrous ions and agglomerated to obtain a clarified water by solid-liquid separation, the ferrous ion concentration of the raw water is measured, Calculate the amount of oxidant injected to oxidize 1 iron ion and the amount of iron (III) hydroxide produced by the reaction between ferrous ions and oxidant, and the appropriate amount of coagulant injected to agglomerate raw water A water treatment method characterized by controlling the oxidant injection amount and the necessary flocculant injection amount by calculating the required flocculant injection amount by subtracting the iron (III) hydroxide production amount from

(2)第1鉄イオンを含む原水に酸化剤と凝集剤を注入して凝集した後、固液分離して清澄水を得る水処理方法において、清澄水の第1鉄イオン濃度を測定し、第1鉄イオンを酸化するための酸化剤注入量および第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)生成量を演算し、原水を凝集するための適正凝集剤注入量から前記水酸化鉄(III)生成量を差し引いて必要凝集剤注入量を演算することで、前記酸化剤注入量および前記必要凝集剤注入量を制御することを特徴とする水処理方法。   (2) In a water treatment method in which an oxidant and an aggregating agent are injected into raw water containing ferrous ions and agglomerated to aggregate, then solid-liquid separation is performed to measure the ferrous ion concentration of the clarified water. Calculate the amount of oxidant injected to oxidize ferrous ions and the amount of iron (III) hydroxide produced by the reaction between ferrous ions and oxidants, and inject appropriate coagulant for agglomerating raw water A water treatment method characterized by controlling the oxidant injection amount and the necessary coagulant injection amount by calculating the required coagulant injection amount by subtracting the iron (III) hydroxide production amount from the amount.

(3)固液分離手段が砂ろ過、精密ろ過膜、限外ろ過膜のいずれかである、(1)または(2)に記載の水処理方法。   (3) The water treatment method according to (1) or (2), wherein the solid-liquid separation means is one of sand filtration, microfiltration membrane, and ultrafiltration membrane.

(4)原水の濁度または色度を測定し、適正凝集剤注入量を原水の濁度または色度で比例演算する、(1)〜(3)のいずれかに記載の水処理方法。   (4) The water treatment method according to any one of (1) to (3), wherein the turbidity or chromaticity of the raw water is measured, and the proper amount of the flocculant injected is proportionally calculated by the turbidity or chromaticity of the raw water.

(5)凝集剤が鉄系凝集剤またはアルミ系凝集剤を含む、(1)〜(4)のいずれかに記載の水処理方法。   (5) The water treatment method according to any one of (1) to (4), wherein the flocculant includes an iron-based flocculant or an aluminum-based flocculant.

(6)酸化剤が塩素系酸化剤を含む、(1)〜(5)のいずれかに記載の水処理方法。   (6) The water treatment method according to any one of (1) to (5), wherein the oxidizing agent includes a chlorine-based oxidizing agent.

(7)清澄水を逆浸透膜で処理する、(1)〜(6)のいずれかに記載の水処理方法。   (7) The water treatment method according to any one of (1) to (6), wherein the clear water is treated with a reverse osmosis membrane.

(8)逆浸透膜で処理する前に清澄水に還元剤を注入する、(7)に記載の水処理方法。   (8) The water treatment method according to (7), wherein a reducing agent is injected into the clear water before treatment with the reverse osmosis membrane.

(9)第1鉄イオンを含む原水を固液分離して清澄水を得る固液分離手段と、原水の第1鉄イオン濃度を測定する手段と、原水に酸化剤を供給する手段と、原水に凝集剤を供給する手段と、第1鉄イオンを酸化するための酸化剤注入量および第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)生成量を演算する手段と、適正凝集剤注入量を演算する手段と、前記適正凝集剤注入量から前記水酸化鉄(III)生成量を差し引いて必要凝集剤の注入量を演算する手段と、原水と凝集剤と酸化剤を攪拌する手段と固液分離手段の1次側に原水を供給する手段とを備えた水処理装置。   (9) Solid-liquid separation means for separating raw water containing ferrous ions to obtain clarified water, means for measuring the ferrous ion concentration of raw water, means for supplying an oxidizing agent to the raw water, and raw water A means for supplying a flocculant to the gas, and a means for calculating an oxidant injection amount for oxidizing ferrous ions and an iron (III) hydroxide production amount produced by a reaction between the ferrous ions and the oxidant; Means for calculating an appropriate flocculant injection amount; means for calculating an injection amount of the necessary flocculant by subtracting the iron (III) hydroxide generation amount from the appropriate flocculant injection amount; and raw water, flocculant, and oxidizing agent A water treatment apparatus comprising means for stirring the water and means for supplying raw water to the primary side of the solid-liquid separation means.

(10)第1鉄イオンを含む原水を固液分離して清澄水を得る固液分離手段と、清澄水の第1鉄イオン濃度を測定する手段と、原水に酸化剤を供給する手段と、原水に凝集剤を供給する手段と、第1鉄イオンを酸化するための酸化剤注入量および第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)生成量を演算する手段と、適正凝集剤注入量を演算する手段と、前記適正凝集剤注入量から前記水酸化鉄(III)生成量を差し引いて必要凝集剤の注入量を演算する手段と、原水と凝集剤と酸化剤を攪拌する手段と固液分離手段の1次側に原水を供給する手段とを備えた水処理装置。   (10) Solid-liquid separation means for obtaining clear water by solid-liquid separation of raw water containing ferrous ions, means for measuring the ferrous ion concentration of clear water, means for supplying an oxidizing agent to the raw water, Means for supplying flocculant to raw water, means for calculating oxidant injection amount for oxidizing ferrous ions and iron (III) hydroxide produced by reaction of ferrous ions and oxidant Means for calculating an appropriate flocculant injection amount, means for calculating an injection amount of the necessary flocculant by subtracting the iron (III) hydroxide production amount from the appropriate flocculant injection amount, raw water, flocculant, and oxidation A water treatment apparatus comprising means for stirring the agent and means for supplying raw water to the primary side of the solid-liquid separation means.

(11)固液分離手段が砂ろ過、精密ろ過膜、限外ろ過膜のいずれかである、(9)または(10)に記載の水処理装置。   (11) The water treatment apparatus according to (9) or (10), wherein the solid-liquid separation means is any one of sand filtration, microfiltration membrane, and ultrafiltration membrane.

(12)原水の濁度または色度を測定する手段を備え、適正凝集剤注入量を演算する手段が原水の濁度または色度で比例演算したものである、(9)〜(11)のいずれかに記載の水処理装置。   (12) It is provided with means for measuring the turbidity or chromaticity of the raw water, and the means for calculating the appropriate flocculant injection amount is a proportional calculation of the turbidity or chromaticity of the raw water, (9) to (11) The water treatment apparatus in any one.

(13)清澄水を逆浸透膜処理する逆浸透膜を備えた(9)〜(12)のいずれかに記載の水処理装置。   (13) The water treatment apparatus according to any one of (9) to (12), comprising a reverse osmosis membrane for treating the clarified water with a reverse osmosis membrane.

(14)清澄水を逆浸透膜で処理する前に還元剤を注入する手段を備えた(13)に記載の水処理装置。   (14) The water treatment apparatus according to (13), comprising means for injecting a reducing agent before treating the clarified water with a reverse osmosis membrane.

本発明の水処理方法によれば、第1鉄イオンを含む原水に酸化剤と凝集剤を注入して凝集した後、固液分離して清澄水を得る水処理方法において、第1鉄イオンを水酸化鉄(III)に酸化するために注入する酸化剤の量が必要最低限で済むとともに、第1鉄イオンを水酸化鉄(III)に酸化することで、原水の濁度成分や色度成分を凝集するために注入する凝集剤の量が必要最低限で済む。さらに後段の逆浸透膜が酸化剤で劣化するのを防止するために注入する還元剤の量が必要最低限で済むので、薬品コストを低減でき、固液分離の安定運転が可能となる。   According to the water treatment method of the present invention, in the water treatment method for obtaining clear water by injecting an oxidant and a flocculant into raw water containing ferrous ions and then aggregating and solid-liquid separation, The amount of oxidant to be injected to oxidize to iron (III) hydroxide can be minimized, and ferrous ions can be oxidized to iron (III) hydroxide, so that the turbidity and chromaticity of raw water The amount of flocculant injected to flocculate the components is minimal. Furthermore, since the amount of reducing agent to be injected to prevent the downstream reverse osmosis membrane from being deteriorated by the oxidizing agent can be minimized, the chemical cost can be reduced and stable operation of solid-liquid separation becomes possible.

本発明が適用される水処理装置の一例を示す装置概略フロー図である。It is an apparatus schematic flowchart which shows an example of the water treatment apparatus to which this invention is applied. 本発明が適用される水処理装置の別の一例を示す装置概略フロー図である。It is an apparatus schematic flowchart which shows another example of the water treatment apparatus to which this invention is applied.

以下、図面に示す実施態様に基づいて本発明をさらに詳細に説明する。なお、本発明は以下の実施態様に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. In addition, this invention is not limited to the following embodiments.

本発明の水処理装置は、例えば、図1に示すように、酸化剤を貯留する酸化剤貯留槽1と、原水に酸化剤を注入する酸化剤供給ポンプ2と、凝集剤を貯留する凝集剤貯留槽3と、原水に凝集剤を注入する凝集剤供給ポンプ4と、原水の第1鉄イオン濃度を測定する第1鉄イオン測定器5と、原水の濁度/色度を測定する濁度計/色度計6と、第1鉄イオンを酸化するのに必要な酸化剤注入量および第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)生成量を演算する酸化剤演算器7と、原水濁度あるいは原水色度に比例する適正凝集剤注入量および前記理論凝集剤注入量から前記水酸化鉄(III)生成量を差し引いて必要凝集剤の注入量を演算する凝集剤演算器8と、原水と酸化剤と凝集剤を混合撹拌する攪拌機9、凝集反応槽10と、凝集反応槽10内の凝集水を精密ろ過膜/限外ろ過膜13に注入する凝集水供給ポンプ11と、凝集水供給時に開となる凝集水供給弁12と、凝集水をろ過する精密ろ過膜/限外ろ過膜13と、逆圧洗浄や空気洗浄する場合などに開となるエア抜き弁14と、膜ろ過時に開となるろ過水弁15と、膜ろ過水を貯留するろ過水貯留槽16と、膜ろ過水で精密ろ過膜/限外ろ過膜13を逆洗洗浄する時に稼働する逆洗ポンプ17と、逆圧洗浄する時に開となる逆洗弁18と、精密ろ過膜/限外ろ過膜13の空気洗浄の空気供給源であるブロワー19と、空気を精密ろ過膜/限外ろ過膜13の下部に供給し空気洗浄する場合に開となる空洗弁20と、精密ろ過膜/限外ろ過膜13の1次側の水を排出する場合に開となる排水弁21と、逆浸透膜22と、膜ろ過水を逆浸透膜22に供給する高圧ポンプ23と、逆浸透膜透過水を貯留する逆浸透膜透過水貯留槽24と、逆浸透膜濃縮水を貯留する逆浸透膜濃縮水貯留槽25と、膜ろ過水に還元剤を注入する還元剤供給ポンプ26と、還元剤を貯留する還元剤貯留槽27とが設けられている。   As shown in FIG. 1, for example, the water treatment apparatus of the present invention includes an oxidant storage tank 1 that stores an oxidant, an oxidant supply pump 2 that injects an oxidant into raw water, and a flocculant that stores a flocculant. A storage tank 3, a flocculant supply pump 4 for injecting a flocculant into raw water, a ferrous ion measuring device 5 for measuring ferrous ion concentration of raw water, and turbidity for measuring turbidity / chromaticity of raw water Oxidation that calculates the amount of iron (III) hydroxide produced by the reaction between the luminometer / chromatometer 6 and the oxidant injection amount necessary for oxidizing ferrous ions and the reaction between ferrous ions and oxidants The required amount of coagulant is calculated by subtracting the iron (III) hydroxide generation amount from the appropriate coagulant injection amount proportional to the raw water turbidity or raw water color and the theoretical coagulant injection amount. A coagulant calculator 8; a stirrer 9 for mixing and stirring the raw water, the oxidizing agent, and the coagulant; A flocculated water supply pump 11 for injecting the flocculated water in the reaction tank 10 into the microfiltration membrane / ultrafiltration membrane 13, a flocculated water supply valve 12 that is opened when the flocculated water is supplied, and a microfiltration membrane for filtering the flocculated water / An ultrafiltration membrane 13, an air vent valve 14 that is opened when performing reverse pressure washing or air washing, a filtrate water valve 15 that is opened during membrane filtration, and a filtrate storage tank 16 that stores membrane filtrate. , Backwash pump 17 that operates when backwashing microfiltration membrane / ultrafiltration membrane 13 with membrane filtrate, backwash valve 18 that opens when backwashing, microfiltration membrane / ultrafiltration membrane A blower 19 as an air supply source of air cleaning 13, an empty flush valve 20 that is opened when air is supplied to the lower part of the microfiltration membrane / ultrafiltration membrane 13 and air cleaning, and a microfiltration membrane / ultrafiltration A drain valve 21 that opens when draining water on the primary side of the filtration membrane 13, a reverse osmosis membrane 22, A high pressure pump 23 for supplying filtrate to the reverse osmosis membrane 22, a reverse osmosis membrane permeated water storage tank 24 for storing reverse osmosis membrane permeated water, and a reverse osmosis membrane concentrated water storage tank 25 for storing reverse osmosis membrane concentrated water; A reducing agent supply pump 26 for injecting the reducing agent into the membrane filtrate and a reducing agent storage tank 27 for storing the reducing agent are provided.

上述の水処理装置において、原水の第1鉄イオン濃度(α)[mg−Fe/L]を第1鉄イオン測定器5で測定するとともに、原水の濁度あるいは色度(β)[度]を濁度計/色度計6で測定する。第1鉄イオンの測定値は酸化剤演算器7に入力され、酸化剤演算器7は原水の第1鉄イオン濃度(α)[mg−Fe/L]と原水流量(γ)[L/min]に基づいて、単位時間あたり原水中の第1鉄イオンを酸化するのに必要な酸化剤注入量(A)[mg−Cl/min]を演算して、酸化剤供給ポンプ2の吐出流量を制御するとともに、第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)濃度(B)[mg−Fe/L]を演算し、凝集剤演算器8に入力される。原水の濁度あるいは色度(β)[度]も凝集剤演算器8に入力され、原水中の濁度あるいは色度を凝集するのに適正な凝集剤注入濃度(C)[mg−Fe/L]を演算した後、適正な凝集剤注入濃度(C)[mg−Fe/L]から第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)濃度(B)[mg−Fe/L]を差し引いて演算した必要凝集剤注入濃度(D)[mg−Fe/L]と原水流量(γ)[L/min]に基づいて、単位時間あたり原水中の濁度成分あるいは色度成分を酸化するのに必要な凝集剤注入量(E)[mg−Fe/min]を演算して、凝集剤供給ポンプ4の吐出流量を制御する。第1鉄イオン測定器5は、ジピリジル、o−フェナントロリン等の発色剤を用いた比色分析法を用いるのが一般的である。感度、特異性、溶解性等を考慮すると、バソフェナントロリン、2−ニトロソ−5−(N−プロピル−N−スルホプロピルアミノ)−フェノール(ニトロソPSAP)、3−(2−ピリジル)−5,6−ビス[2−(5−フリルスルホン酸)]1,2,4−トリアジン・二ナトリウム塩、トリピリジルトリアジン、フェロジン等の発色剤がよく使われ、定期的な手動計測や自動オンライン計測でも構わない。 In the above-described water treatment apparatus, the ferrous ion concentration (α) [mg-Fe / L] of raw water is measured by the ferrous ion measuring device 5, and the turbidity or chromaticity (β) [degree] of the raw water is measured. Is measured with a turbidimeter / colorimeter 6. The measured value of ferrous ions is input to the oxidant calculator 7, and the oxidant calculator 7 converts the ferrous ion concentration (α) [mg-Fe / L] and the raw water flow rate (γ) [L / min]. ], The oxidant injection amount (A) [mg-Cl 2 / min] necessary for oxidizing ferrous ions in the raw water per unit time is calculated, and the discharge flow rate of the oxidant supply pump 2 is calculated. And the iron hydroxide (III) concentration (B) [mg-Fe / L] generated by the reaction between ferrous ions and the oxidizing agent is calculated and input to the flocculant calculator 8. The turbidity or chromaticity (β) [degree] of the raw water is also input to the coagulant calculator 8, and the coagulant injection concentration (C) [mg−Fe / mg] appropriate for aggregating the turbidity or chromaticity in the raw water. L], and then the iron (III) hydroxide concentration (B) [mg] produced by the reaction between ferrous ions and the oxidizing agent from the appropriate flocculant injection concentration (C) [mg-Fe / L]. Based on the required flocculant injection concentration (D) [mg-Fe / L] and the raw water flow rate (γ) [L / min] calculated by subtracting -Fe / L], the turbidity component in raw water per unit time or The flocculant injection amount (E) [mg-Fe / min] necessary for oxidizing the chromaticity component is calculated, and the discharge flow rate of the flocculant supply pump 4 is controlled. The ferrous ion measuring device 5 generally uses a colorimetric analysis method using a color former such as dipyridyl or o-phenanthroline. Considering sensitivity, specificity, solubility, etc., bathophenanthroline, 2-nitroso-5- (N-propyl-N-sulfopropylamino) -phenol (nitroso PSAP), 3- (2-pyridyl) -5,6 -Coloring agents such as bis [2- (5-furylsulfonic acid)] 1,2,4-triazine disodium salt, tripyridyltriazine, and ferrozine are often used, and regular manual measurement or automatic online measurement may be used. Absent.

濁度計/色度計6は、透過光吸光度方式を用いるのが一般的である。透過光吸光度方式とは、濁度成分あるいは色度成分の入った水の層に一定の強さの光が入射すると、濁度成分の粒子あるいは色度成分の粒子により反射または散乱し,透過光が減じることから、透過光の強度に対する入射光の強度の比をとり、その対数(吸光度)が、水の層の厚さと濁度あるいは色度に比例する原理(Lambert−Beerの法則)を用いて、吸光度を測定することにより濁度あるいは色度を測定する方法である。濁度の測定波長は、色度による妨害を避けるため、660nm付近の吸光度を測定する場合が多く、色度の測定波長は、390nm付近の吸光度を測定する場合が多い。濁度計としては、前記の透過光吸光度方式以外にも、入射した光が反射あるいは散乱によって生じた光の強度を測定する散乱光測定方式を用いたものでもよい。   The turbidimeter / colorimeter 6 generally uses a transmitted light absorbance method. In the transmitted light absorbance method, when light of a certain intensity is incident on a water layer containing turbidity components or chromaticity components, the light is reflected or scattered by turbidity component particles or chromaticity component particles. Therefore, the ratio of the intensity of the incident light to the intensity of the transmitted light is taken, and the principle (Lambert-Beer's law) in which the logarithm (absorbance) is proportional to the water layer thickness and turbidity or chromaticity is used. Thus, the turbidity or chromaticity is measured by measuring the absorbance. In order to avoid interference due to chromaticity, the turbidity measurement wavelength often measures absorbance near 660 nm, and the chromaticity measurement wavelength often measures absorbance near 390 nm. As the turbidimeter, in addition to the transmitted light absorbance method described above, a scattered light measurement method that measures the intensity of light generated by reflection or scattering of incident light may be used.

酸化剤貯留槽1に貯留する酸化剤としては、次亜塩素酸ナトリウム、二酸化塩素、過マンガン酸カリウム、オゾン等いずれでも構わない。例えば酸化剤が次亜塩素酸ナトリウムの場合、第1鉄イオンとの反応式は下記の通りである。   The oxidant stored in the oxidant storage tank 1 may be sodium hypochlorite, chlorine dioxide, potassium permanganate, ozone, or the like. For example, when the oxidizing agent is sodium hypochlorite, the reaction formula with ferrous ions is as follows.

2Fe2++4OH+NaOCl+HO→2Fe(OH)+NaCl
理論的にはFe2+を1mg酸化するのに塩素Cl0.63mgが必要であることから
(A)=0.63×(α)×(γ)
(B)=(α)
となるが、実際には酸化剤は第1鉄イオン以外の物質を酸化するのに消費されうるので、原水性状に応じて、係数を0.63より適宜大きくしたほうが好ましい。
2Fe 2+ + 4OH + NaOCl + H 2 O → 2Fe (OH) 3 + NaCl
Theoretically, 0.63 mg of chlorine Cl 2 is required to oxidize 1 mg of Fe 2+ (A) = 0.63 × (α) × (γ)
(B) = (α)
In practice, however, the oxidizing agent can be consumed to oxidize substances other than ferrous ions, so it is preferable to make the coefficient appropriately larger than 0.63 depending on the raw aqueous state.

また、原水中の第1鉄イオンを酸化するのに必要な酸化剤注入流量(A)[mg−Cl/min]の演算方法としては、上記演算以外に、図2のように第1鉄イオン測定器5を膜ろ過水側に設置して、得られた膜ろ過水中の第1鉄イオン濃度の測定値に基づいて酸化剤供給ポンプ2の吐出量をフィードバック制御してもよい。具体的な制御手段としては、(1)第1鉄イオン濃度の測定値をアナログ値(電圧、電流など)又はデジタル値に変換する手段(信号変換器など)と変換した値が一定値以上になると酸化剤供給ポンプ2を稼働させる手段(調整スイッチ+電磁リレーなど)、(2)第1鉄イオン濃度の測定値の変換手段と、変換した値を更に酸化剤供給ポンプ2を制御するための信号に変換する手段(電流、電圧、パルスなどへの信号変換器など)と制御信号により酸化剤供給ポンプ2を稼働させる手段、(3)第1鉄イオン濃度の測定値の変換手段と、変換された値から適正酸化剤注入量を計算し、これに基き酸化剤供給ポンプ2を制御する信号を出力する手段(PIDコントローラーなど)と制御信号により酸化剤供給ポンプ2を稼働させる手段、などが挙げられる。ただし、制御手段はここに挙げたものに何ら限定されるものではない。本発明のフィードバック制御においては、膜ろ過水中の第1鉄イオン濃度の測定値が予め定めた上限設定値を超えた場合において、酸化剤の注入量を増加する信号を酸化剤演算器7から発信し、第1鉄イオン濃度の測定値が予め定めた下限設定値を下回った場合において、酸化剤演算器7から酸化剤の注入量を減少する信号を発信するといった制御を行うことにより、酸化剤の過剰注入を防止して安定かつ効率的な処理を行える。 Further, as a method for calculating the oxidizing agent injection flow rate (A) [mg-Cl 2 / min] required for oxidizing ferrous ions in the raw water, ferrous iron as shown in FIG. The ion measuring device 5 may be installed on the membrane filtrate side, and the discharge amount of the oxidant supply pump 2 may be feedback controlled based on the measured value of the ferrous ion concentration in the obtained membrane filtrate. As specific control means, (1) means to convert the measured value of ferrous ion concentration to analog value (voltage, current, etc.) or digital value (signal converter etc.) and the converted value is above a certain value Then, means for operating the oxidant supply pump 2 (adjustment switch + electromagnetic relay, etc.), (2) means for converting the measured value of ferrous ion concentration, and further controlling the oxidant supply pump 2 with the converted value Means for converting to a signal (signal converter for current, voltage, pulse, etc.) and means for operating the oxidant supply pump 2 by a control signal; (3) means for converting the measured value of ferrous ion concentration; Based on the calculated value, the appropriate oxidant injection amount is calculated, and based on this, a means for outputting a signal for controlling the oxidant supply pump 2 (PID controller, etc.), a means for operating the oxidant supply pump 2 by the control signal, etc. Be mentioned However, the control means is not limited to those listed here. In the feedback control of the present invention, when the measured value of the ferrous ion concentration in the membrane filtrate exceeds a predetermined upper limit set value, a signal for increasing the oxidant injection amount is transmitted from the oxidant calculator 7. Then, when the measured value of the ferrous ion concentration falls below a predetermined lower limit set value, the oxidant calculator 7 performs control such as transmitting a signal for reducing the injection amount of the oxidant, whereby the oxidant Therefore, stable and efficient treatment can be performed by preventing excessive injection.

原水中の濁度成分あるいは色度成分を凝集するのに適正な凝集剤注入濃度(C)[mg−Fe/L]は原水の濁度あるいは色度(β)[度]とは比例関係にあり、
(C)=(K)×(β)
となる。係数(K)[mg−Fe/(L・度)]は原水性状や固液分離手段に応じて適宜設定する。係数(K)を算出する方法としては、例えば、ジャーテスタと称する多連の攪拌機によって凝集条件を個々に変えた数個のビーカーの中の原水を凝集させて相対的に最も良好な凝集フロックを形成する凝集条件を見出すためのジャーテストを実施することで得られる。動的光散乱法、レーザー回析散乱法、電気的検知体法等によって凝集フロックの粒子径を測定したり、凝集フロックの沈降速度を測定したり、凝集フロックのゼータ電位を測定して、所定の数値になるための凝集剤注入濃度[mg−Fe/L]が得られ、ジャーテスト時に使用した原水の濁度あるいは色度[度]で除することで係数(K)を算出できる。固液分離手段が精密ろ過膜/限外ろ過膜13の場合、凝集フロックのゼータ電位の所定の数値としては−10mV以上0mV未満であることが好ましい。
The coagulant injection concentration (C) [mg-Fe / L] appropriate for aggregating the turbidity component or chromaticity component in the raw water is proportional to the turbidity or chromaticity (β) [degree] of the raw water. Yes,
(C) = (K) × (β)
It becomes. The coefficient (K) [mg-Fe / (L · degree)] is appropriately set according to the raw aqueous state and the solid-liquid separation means. As a method of calculating the coefficient (K), for example, the raw water in several beakers with different agglomeration conditions is agglomerated by a multiple stirrer called a jar tester to agglomerate the relatively best agglomeration floc. It is obtained by performing a jar test to find the aggregation conditions to be formed. Measure aggregated floc particle size by dynamic light scattering method, laser diffraction scattering method, electrical detector method, etc., measure sedimentation rate of aggregated floc, measure zeta potential of aggregated floc The coagulant injection concentration [mg-Fe / L] for obtaining a numerical value of is obtained, and the coefficient (K) can be calculated by dividing by the turbidity or chromaticity [degree] of the raw water used during the jar test. When the solid-liquid separation means is a microfiltration membrane / ultrafiltration membrane 13, the predetermined value of the zeta potential of the aggregation floc is preferably −10 mV or more and less than 0 mV.

必要凝集剤注入濃度(D)[mg−Fe/L]と原水中の濁度あるいは色度を酸化するのに必要な凝集剤注入量(E)[mg−Fe/min]の演算式は下記の通りである。   The calculation formula of the necessary flocculant injection concentration (D) [mg-Fe / L] and the flocculant injection amount (E) [mg-Fe / min] necessary for oxidizing the turbidity or chromaticity in the raw water is as follows. It is as follows.

(D)=(C)−(B)=(K)×(β)−(α)
(E)=(D)×(γ)=(K)×(β)×(γ)−(α)×(γ)
凝集剤貯留槽3に貯留する凝集剤としては、塩化第2鉄、硫酸第2鉄、ポリシリカ鉄等の鉄系凝集剤であれば、上記演算式をそのまま適用できるが、ポリ塩化アルミニウムやポリ硫酸アルミニウム等のアルミ系凝集剤を用いる場合には、1molのFeと1molのAlは同等の凝集効果を有することから、
(C`)[mg−Al/L]=0.48×(C)
(D`)[mg−Al/L]=0.48×(D)
(E`)[mg−Al/min]=0.48×(E)
と変換して演算すればよい。なお、(D)が負の場合は、凝集剤無注入でよい。
(D) = (C) − (B) = (K) × (β) − (α)
(E) = (D) × (γ) = (K) × (β) × (γ) − (α) × (γ)
As the coagulant stored in the coagulant storage tank 3, the above calculation formula can be applied as it is as long as it is an iron-based coagulant such as ferric chloride, ferric sulfate, polysilica iron, etc. When using an aluminum-based aggregating agent such as aluminum, 1 mol of Fe and 1 mol of Al have the same aggregating effect,
(C `) [mg-Al / L] = 0.48 × (C)
(D `) [mg-Al / L] = 0.48 × (D)
(E `) [mg-Al / min] = 0.48 × (E)
Can be converted and calculated. When (D) is negative, no flocculant injection is required.

原水の第1鉄イオン濃度および濁度あるいは色度を測定した原水は凝集反応槽10に流入し、前記演算に基づいて制御された酸化剤供給ポンプ2から吐出された酸化剤と凝集剤供給ポンプ4から吐出された凝集剤とが攪拌機によって混合攪拌することで、原水中の第1鉄イオンが酸化されるとともに、凝集処理が行われる。その後、凝集水供給弁12を開とし、凝集水供給ポンプ11を稼働して凝集反応槽10に貯留されている凝集水を精密ろ過膜/限外ろ過膜13の1次側に供給し、ろ過水弁15を開にすることで精密ろ過膜/限外ろ過膜13の加圧ろ過が行われる。ろ過時間は原水水質や膜透過流束に応じて適宜設定するのが好ましいが、所定の膜ろ過差圧に到達するまでろ過時間を継続させてもよい。   The raw water whose ferrous ion concentration and turbidity or chromaticity are measured in the raw water flows into the agglomeration reaction tank 10, and the oxidant and the flocculant supply pump discharged from the oxidant supply pump 2 controlled based on the calculation. The flocculant discharged from 4 is mixed and stirred by a stirrer, whereby ferrous ions in the raw water are oxidized and agglomeration is performed. Thereafter, the aggregated water supply valve 12 is opened, the aggregated water supply pump 11 is operated, and the aggregated water stored in the aggregation reaction tank 10 is supplied to the primary side of the microfiltration membrane / ultrafiltration membrane 13 for filtration. By opening the water valve 15, pressure filtration of the microfiltration membrane / ultrafiltration membrane 13 is performed. The filtration time is preferably set as appropriate according to the raw water quality and the membrane permeation flux, but the filtration time may be continued until a predetermined membrane filtration differential pressure is reached.

原水を精密ろ過膜/限外ろ過膜13でろ過して得られた膜ろ過水は一時的にろ過水貯留槽16に貯留された後、膜ろ過水中の残留酸化剤を消失するために、還元剤供給ポンプ26を稼働し、還元剤貯留槽27内の還元剤が注入される。その後、高圧ポンプ23によって昇圧され、逆浸透膜22に供給される。供給された膜ろ過水は、塩分や有機物などが除去された逆浸透膜透過水と、塩分や有機物などが濃縮された逆浸透膜濃縮水とに分離された後、それぞれ逆浸透膜透過水貯留槽24と逆浸透膜濃縮水貯留槽25に貯留される。   The membrane filtrate obtained by filtering the raw water through the microfiltration membrane / ultrafiltration membrane 13 is temporarily stored in the filtrate storage tank 16 and then reduced in order to eliminate residual oxidant in the membrane filtration water. The agent supply pump 26 is operated, and the reducing agent in the reducing agent storage tank 27 is injected. Thereafter, the pressure is increased by the high-pressure pump 23 and supplied to the reverse osmosis membrane 22. The supplied membrane filtrate is separated into reverse osmosis membrane permeated water from which salt and organic matter have been removed and reverse osmosis membrane concentrated water from which salt and organic matter have been concentrated, and then stored in reverse osmosis membrane permeated water, respectively. It is stored in the tank 24 and the reverse osmosis membrane concentrated water storage tank 25.

還元剤貯留槽27に貯留する還元剤としては、亜硫酸水素ナトリウム、亜硫酸ナトリウムおよびチオ硫酸ナトリウム等いずれでも構わない。   As the reducing agent stored in the reducing agent storage tank 27, any of sodium bisulfite, sodium sulfite, sodium thiosulfate, and the like may be used.

凝集水供給ポンプ11を停止し、凝集水供給弁12、ろ過水弁15を閉とし、精密ろ過膜/限外ろ過膜13のろ過工程を停止した後、逆洗弁18とエア抜き弁14を開とし、逆洗ポンプ17を稼動することで逆圧洗浄が行われる。   The condensed water supply pump 11 is stopped, the condensed water supply valve 12 and the filtration water valve 15 are closed, the filtration process of the microfiltration membrane / ultrafiltration membrane 13 is stopped, and then the backwash valve 18 and the air vent valve 14 are turned on. Back pressure cleaning is performed by opening and operating the backwash pump 17.

逆圧洗浄の時間は、特に制限するものではなく、逆圧洗浄の流量についても特に制限するものではないが、ろ過圧力より高い圧力で逆圧洗浄したほうが膜表面や膜細孔内の付着汚濁物質を剥離しやすいので、ろ過工程におけるろ過流量の1倍以上であることが好ましく、膜モジュール容器の破壊や膜の亀裂等の損傷を起こさない範囲内に適宜設定する。   The time for back pressure washing is not particularly limited, and the flow rate for back pressure washing is not particularly limited. However, it is better to perform back pressure washing at a pressure higher than the filtration pressure to prevent contamination on the membrane surface and membrane pores. Since it is easy to exfoliate a substance, it is preferably 1 or more times the filtration flow rate in the filtration step, and is set appropriately within a range that does not cause damage such as breakage of the membrane module container and cracking of the membrane.

さらに、精密ろ過膜/限外ろ過膜13に多量の汚濁物質が付着している場合は空洗弁20を開にして、ブロワー19を稼働して、精密ろ過膜/限外ろ過膜13の下方に空気を供給し、精密ろ過膜/限外ろ過膜13を振動させる空気洗浄を上述の逆圧洗浄と同時に実施することも好ましい。逆圧洗浄と空気洗浄の併用により洗浄効果が向上する。空気流量が大きいほど洗浄効果が高くなるので好ましいが、膜の擦過や亀裂等の損傷を起こさない範囲内に空気流量を適宜設定する。   Further, when a large amount of pollutant adheres to the microfiltration membrane / ultrafiltration membrane 13, the flush valve 20 is opened, the blower 19 is operated, and the lower portion of the microfiltration membrane / ultrafiltration membrane 13 is operated. It is also preferable to perform air cleaning for supplying air to the microfiltration membrane / ultrafiltration membrane 13 simultaneously with the above-described back pressure cleaning. The cleaning effect is improved by the combined use of back pressure cleaning and air cleaning. A larger air flow rate is preferable because the cleaning effect becomes higher, but the air flow rate is appropriately set within a range that does not cause damage such as film abrasion or cracking.

逆洗弁18、空洗弁20を閉とし、逆洗ポンプ17、ブロワー19を停止して、上述の逆圧洗浄と空気洗浄を終了した後、排水弁21を開とすることで、膜面や膜細孔内から剥離してモジュール内で浮遊しているファウリング物質が系外に排出される排水工程を行う。排水工程終了後、排水弁21を閉、凝集水供給弁12を開とし、凝集水供給ポンプ11を稼動して給水工程が行われ、モジュール内が凝集水で満水になった後、エア抜き弁14を閉、ろ過水弁15を開にすることで、ろ過工程に戻り、上記工程を繰り返す。   The back flush valve 18 and the air flush valve 20 are closed, the back flush pump 17 and the blower 19 are stopped, the above reverse pressure washing and air washing are finished, and then the drain valve 21 is opened, whereby the membrane surface In addition, a drainage process is performed in which the fouling substances that are separated from the pores of the membrane and are suspended in the module are discharged out of the system. After the drainage process is completed, the drainage valve 21 is closed, the aggregated water supply valve 12 is opened, the aggregated water supply pump 11 is operated, the water supply process is performed, and the module is filled with the aggregated water. 14 is closed and the filtered water valve 15 is opened to return to the filtration step and repeat the above steps.

本発明における精密ろ過膜/限外ろ過膜13は、実際に使用するために収納容器に装着し、容器に原水の流入部、ろ過水の取り出し部とモジュールの型式によっては濃縮水排出部、物理洗浄排出部などを具備した加圧型膜モジュールや原水の入った膜浸漬槽に浸漬させてポンプやサイフォン等で吸引ろ過する浸漬型膜モジュール等に組み込まれるが、いずれでも構わない。加圧型膜モジュールの場合、外圧式でも内圧式であっても良いが、前処理の簡便さの点から外圧式である方が好ましい。   The microfiltration membrane / ultrafiltration membrane 13 in the present invention is attached to a storage container for actual use. Depending on the type of the raw water inflow part, filtered water take-out part and module, the concentrated water discharge part, physical A pressure-type membrane module equipped with a cleaning discharge unit or the like, or a submerged membrane module that is immersed in a membrane immersion tank containing raw water and sucked and filtered with a pump, siphon, or the like may be used. In the case of a pressure-type membrane module, an external pressure type or an internal pressure type may be used, but an external pressure type is preferable from the viewpoint of simplicity of pretreatment.

また、モジュールを構成する分離膜の孔径としては、多孔質であれば特に限定しないが、所望の処理水の水質や水量によって、MF膜(精密ろ過膜)を用いたり、UF膜(限外ろ過膜)を用いたり、あるいは両者を併用したりする。例えば、濁質成分、大腸菌、クリプトスポリジウム等を除去したい場合はMF膜でもUF膜のどちらを用いても構わないが、ウィルスや高分子有機物等も除去したい場合は、UF膜を用いるのが好ましい。   Further, the pore size of the separation membrane constituting the module is not particularly limited as long as it is porous, but depending on the desired quality and quantity of treated water, an MF membrane (microfiltration membrane) or a UF membrane (ultrafiltration) is used. Film) or a combination of both. For example, when removing turbid components, Escherichia coli, Cryptosporidium, etc., either the MF membrane or the UF membrane may be used. However, when removing viruses or high molecular organic substances, it is preferable to use the UF membrane. .

分離膜の形状としては、中空糸膜、平膜、管状膜、モノリス膜等があるが、いずれでも構わない。   Examples of the shape of the separation membrane include a hollow fiber membrane, a flat membrane, a tubular membrane, and a monolith membrane, and any of them may be used.

分離膜の材質としても、特に限定しないが、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体およびクロロトリフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコールおよびポリエーテルスルホンやセラミック等の無機素材からなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。   The material of the separation membrane is not particularly limited, but polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene Copolymers, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers and chlorotrifluoroethylene-ethylene copolymers, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, and polyether sulfone, ceramics, and other inorganic materials It is preferable to contain at least one selected from the group consisting of polyvinylidene fluoride (PVDF) from the viewpoint of film strength and chemical resistance, and has high hydrophilicity and high resistance. Polyacrylonitrile is more preferable from the viewpoint of strong stain resistance.

ろ過方式は、全量ろ過方式、クロスフローろ過方式のどちらでも良いが、エネルギー消費が少ないという点から全量ろ過モジュールである方が好ましい。   The filtration method may be either a full-volume filtration method or a cross-flow filtration method, but a full-volume filtration module is preferred from the viewpoint of low energy consumption.

ろ過流束制御方法としては、定流束ろ過であっても定圧ろ過であってもよいが、一定の処理水量が得られ、また、全体の制御が容易であるという点から定流束ろ過である方が好ましい。   The filtration flux control method may be constant flux filtration or constant pressure filtration, but constant flux filtration is used because a constant amount of treated water is obtained and the overall control is easy. Some are preferred.

本発明において、逆浸透膜22に用いられる逆浸透膜とは、被分離混合液中の一部の成分、例えば溶媒を透過させ他の成分を透過させない、実質的に逆浸透分離が可能な半透性の膜であって、その素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材がよく使用されている。またその膜構造は膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜がある。膜形態には中空糸、平膜がある。本発明は、これら膜素材、膜構造や膜形態によらず実施することができいずれも効果があるが、代表的な膜としては、例えば酢酸セルロース系やポリアミド系の非対称膜およびポリアミド系、ポリ尿素系の分離機能層を有する複合膜などがあり、造水量、耐久性、塩排除率の観点から、酢酸セルロース系の非対称膜、ポリアミド系の複合膜を用いることが好ましい。   In the present invention, the reverse osmosis membrane used for the reverse osmosis membrane 22 is a semi-pervious separation capable of substantially reverse osmosis separation that does not allow other components to permeate through some components in the liquid mixture to be separated. It is a permeable membrane, and a high molecular weight material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer is often used as the material. In addition, the membrane structure has a dense layer on at least one side of the membrane, an asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, and another layer on the dense layer of the asymmetric membrane. There are composite membranes having a very thin separation functional layer formed of a material. The membrane form includes hollow fiber and flat membrane. The present invention can be carried out regardless of the film material, film structure and film form, and any of them is effective, but as typical films, for example, cellulose acetate-based or polyamide-based asymmetric membranes and polyamide-based, There are composite membranes having a urea-based separation functional layer, and it is preferable to use a cellulose acetate-based asymmetric membrane and a polyamide-based composite membrane from the viewpoint of water production, durability, and salt rejection.

本発明において、逆浸透膜22に用いられる逆浸透膜は、25℃、pH7、濃度32,000mg/Lの食塩水を5.5MPaで供給したときの塩排除率が99%以上の性能を有することが好ましい。原水が海水の場合、該塩排除率が99%よりも小さいと透過液中の塩素イオンの量が多くなり、ろ過水をそのまま飲料水として使用することが難しい。   In the present invention, the reverse osmosis membrane used for the reverse osmosis membrane 22 has a performance of a salt rejection rate of 99% or more when a saline solution having a pH of 7 and a concentration of 32,000 mg / L is supplied at 5.5 MPa. It is preferable. When the raw water is seawater, if the salt rejection rate is less than 99%, the amount of chlorine ions in the permeate increases, and it is difficult to use the filtered water as it is as drinking water.

このような性能を有する逆浸透膜は、実際に使用するためにスパイラル、チューブラー、プレート・アンド・フレーム等のエレメントに組み込まれ、また中空糸は束ねた上でエレメントに組み込まれて使用されるが、本発明はこれらの逆浸透膜エレメントの形態に左右されるものではない。   A reverse osmosis membrane having such performance is incorporated into an element such as spiral, tubular, plate and frame for practical use, and hollow fibers are bundled and incorporated into the element. However, the present invention does not depend on the form of these reverse osmosis membrane elements.

また、本発明において、逆浸透膜22は、前記逆浸透膜エレメントを1〜数本圧力容器の中に収めたモジュールはもちろんであるが、このモジュールを複数本並列に配置したものをも含むものである。組合せ、本数、配列は目的に応じて任意に行うことができる。   In the present invention, the reverse osmosis membrane 22 includes not only a module in which the reverse osmosis membrane element is housed in one to several pressure vessels, but also includes a plurality of modules arranged in parallel. . Combination, number, and arrangement can be arbitrarily performed according to the purpose.

(実施例1)
図1に示すように、酸化剤貯留槽1内の酸化剤には次亜塩素酸ナトリウムを用い、凝集剤貯留槽3内の凝集剤には塩化第2鉄を用い、精密ろ過膜/限外ろ過膜13には東レ(株)製の分画分子量15万Daのポリフッ化ビニリデン製中空糸UF膜で膜面積が72mの加圧型膜モジュール1本を用い、凝集水供給弁12とろ過水弁15を開とし、凝集水供給ポンプ11を稼動して、井戸水を膜ろ過流束2.5m/m/d(ろ過流量125L/min)で全量ろ過した。また、逆浸透膜22には東レ(株)製逆浸透膜エレメント(TM820S−400)4本を用いて高圧ポンプ23を稼働し、ろ過水貯留槽16内の膜ろ過水を膜ろ過流量60m/d、濃縮水流量120m/d(回収率33%)でクロスフローろ過した。還元剤貯留槽27内の還元剤にはチオ硫酸ナトリウムを用い、膜ろ過水に1mg/L注入した。第1鉄イオン測定器5には(株)共立理化学研究所のデジタルパックテストマルチを用い、手動で測定し、色度計6には横河電機(株)のCZ402Gを用い、自動で連続測定した。
Example 1
As shown in FIG. 1, sodium hypochlorite is used as the oxidant in the oxidant storage tank 1, and ferric chloride is used as the flocculating agent in the flocculant storage tank 3. The filtration membrane 13 is a pressure-sensitive membrane module made of polyvinylidene fluoride, a hollow fiber UF membrane with a molecular weight cut off of 150,000 Da, manufactured by Toray Industries, Inc. and having a membrane area of 72 m 2. The valve 15 was opened, the condensed water supply pump 11 was operated, and the whole well water was filtered at a membrane filtration flux of 2.5 m 3 / m 2 / d (filtration flow rate 125 L / min). In addition, the reverse osmosis membrane 22 to operate the high-pressure pump 23 with four reverse osmosis membrane elements manufactured by Toray Industries (Inc.) (TM820S-400), film membrane filtration water in the filtered water reservoir 16 filtration flow rate 60 m 3 / D, cross flow filtration was performed at a flow rate of concentrated water of 120 m 3 / d (recovery rate 33%). Sodium thiosulfate was used as the reducing agent in the reducing agent storage tank 27, and 1 mg / L was injected into the membrane filtrate. The ferrous ion measuring instrument 5 is measured manually using a digital pack test multi from Kyoritsu Riken Co., Ltd. The chromaticity meter 6 is CZ402G manufactured by Yokogawa Electric Co., Ltd. did.

精密ろ過膜/限外ろ過膜13で30minろ過した後、凝集水供給弁12とろ過水弁15を閉とし、凝集水供給ポンプ11を停止すると同時に、エア抜き弁14、逆洗弁18、空洗弁20を開とし、逆洗ポンプ17、ブロワー19を稼動して、流束3.0m/dの逆圧洗浄と膜モジュールの下方から空気を供給する100L/minの空気洗浄を同時に1min実施した。その後、逆洗弁18、空洗弁20を閉とし、逆洗ポンプ17、ブロワー19を停止して、上述の逆圧洗浄と空気洗浄を終了した後、排水弁21を開とし、排水工程を1min行った。排水工程終了後、排水弁21を閉、凝集水供給弁12を開とし、凝集水供給ポンプ11を稼動して給水工程が行われ、モジュール内が凝集水で満水になった後、エア抜き弁14を閉、ろ過水弁15を開にすることで、ろ過工程に戻り、上記工程を繰り返していった。   After 30 minutes of filtration through the microfiltration membrane / ultrafiltration membrane 13, the condensed water supply valve 12 and the filtered water valve 15 are closed and the condensed water supply pump 11 is stopped, and at the same time, the air vent valve 14, the backwash valve 18, and the empty The flush valve 20 is opened, the backwash pump 17 and the blower 19 are operated, and backwashing with a flow rate of 3.0 m / d and air washing at 100 L / min for supplying air from below the membrane module are simultaneously performed for 1 min. did. Thereafter, the backwash valve 18 and the air wash valve 20 are closed, the backwash pump 17 and the blower 19 are stopped, and after the above-described back pressure washing and air washing are finished, the drain valve 21 is opened, and the draining process is performed. 1 min. After the drainage process is completed, the drainage valve 21 is closed, the aggregated water supply valve 12 is opened, the aggregated water supply pump 11 is operated, the water supply process is performed, and the module is filled with the aggregated water. 14 was closed and the filtered water valve 15 was opened to return to the filtration step, and the above steps were repeated.

2011年3月1日に第1鉄イオン測定器5と色度計6で測定した結果、原水の第1鉄イオン濃度(α)=6[mg−Fe/L]、原水の色度(β)=9[度]であった。   As a result of measurement with a ferrous ion measuring device 5 and a chromaticity meter 6 on March 1, 2011, the ferrous ion concentration (α) of raw water = 6 [mg−Fe / L], the chromaticity of raw water (β ) = 9 [degrees].

原水の第1鉄イオン濃度(α)=6[mg−Fe/L]、原水流量(γ)=125[L/min]を、酸化剤演算器7に入力後、酸化剤注入量(A)、第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)濃度(B)を演算し、酸化剤供給ポンプ2の吐出量を調整した。   The ferrous ion concentration (α) = 6 [mg-Fe / L] and the raw water flow rate (γ) = 125 [L / min] are input to the oxidant calculator 7 and then the oxidant injection amount (A). The iron hydroxide (III) concentration (B) produced by the reaction between ferrous ions and the oxidizing agent was calculated, and the discharge amount of the oxidizing agent supply pump 2 was adjusted.

(A)=0.63×6×125=472.5[mg−Cl/min]
(B)=6[mg−Fe/L]
次に係数(K)=0.6[mg−Fe/(L・度)]とし、原水の色度(β)=9[度]、第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)濃度(B)=6[mg−Fe/L]を凝集剤演算器8に入力し、原水中の濁度あるいは色度を凝集するのに適正な凝集剤注入濃度(C)および必要凝集剤注入濃度(D)[mg−Fe/L]を演算した。
(A) = 0.63 × 6 × 125 = 472.5 [mg-Cl 2 / min]
(B) = 6 [mg-Fe / L]
Next, the coefficient (K) = 0.6 [mg−Fe / (L · degree)], the chromaticity (β) = 9 [degree] of raw water, and produced by the reaction between ferrous ions and an oxidizing agent. The iron hydroxide (III) concentration (B) = 6 [mg-Fe / L] is input to the flocculant calculator 8 and the appropriate flocculant injection concentration (C) for aggregating the turbidity or chromaticity in the raw water. ) And the necessary flocculant injection concentration (D) [mg-Fe / L].

(C)=0.6×9=5.4[mg−Fe/L]
(D)=5.4−6=−0.6[mg−Fe/L]
(D)は負だったので、凝集剤供給ポンプ4は稼働しなかった。
(C) = 0.6 × 9 = 5.4 [mg-Fe / L]
(D) = 5.4-6 = −0.6 [mg-Fe / L]
Since (D) was negative, the flocculant supply pump 4 did not operate.

上記要領で3月1日から1ヶ月間運転した結果、表1の通り、酸化剤の平均注入量は323[mg−Cl/min]、凝集剤の平均注入量は144[mg−Fe/min]となった。精密ろ過膜/限外ろ過膜13のろ過差圧は運転開始直後30kPaに対し、1ヶ月後も35kPaと安定運転が行えた。また、逆浸透膜22のろ過差圧は運転開始直後5.5MPaに対し、2ヶ月後も5.9MPaと安定運転が行えており脱塩率は運転開始直後99.7%に対し、1ヶ月後も99.7%と安定していた。 As a result of operation for one month from March 1 in the above manner, as shown in Table 1, the average injection amount of the oxidizing agent was 323 [mg-Cl 2 / min], and the average injection amount of the flocculant was 144 [mg-Fe / min]. The filtration differential pressure of the microfiltration membrane / ultrafiltration membrane 13 was stable at 35 kPa even after one month with respect to 30 kPa immediately after the start of operation. Further, the filtration differential pressure of the reverse osmosis membrane 22 was stable at 5.9 MPa after 2 months with respect to 5.5 MPa immediately after the start of operation, and the desalination rate was 1 month with respect to 99.7% immediately after the start of operation. After that, it was stable at 99.7%.

Figure 2012239947
Figure 2012239947

(比較例1)
第1鉄イオン測定器5、色度計6を用いず、酸化剤供給ポンプ2で酸化剤を320[mg−Cl/min]常時定量注入し、凝集剤供給ポンプ4で凝集剤を150[mg−Fe/min]常時定量注入した以外は、実施例1と同じにした。
(Comparative Example 1)
Without using the ferrous ion measuring instrument 5 and the chromaticity meter 6, the oxidant supply pump 2 constantly injects the oxidant at 320 [mg-Cl 2 / min], and the coagulant supply pump 4 supplies the coagulant to 150 [ [mg-Fe / min] Same as Example 1 except that constant injection was always performed.

その結果精密ろ過膜/限外ろ過膜13のろ過差圧は運転開始直後30kPaに対し、1ヶ月後は98kPaに上昇していた。安定運転が行えた。また、逆浸透膜22のろ過差圧は運転開始直後5.5MPaに対し、1ヶ月後は8.7MPaに上昇しており、脱塩率は運転開始直後99.7%に対し、2ヶ月後は96.1%に低下した。   As a result, the filtration differential pressure of the microfiltration membrane / ultrafiltration membrane 13 was increased to 98 kPa after one month with respect to 30 kPa immediately after the start of operation. Stable operation was possible. Further, the filtration differential pressure of the reverse osmosis membrane 22 increased to 8.7 MPa after 1 month with respect to 5.5 MPa immediately after the start of operation, and the desalination rate was 29.7 months after 99.7% immediately after the start of operation. Decreased to 96.1%.

1:酸化剤貯留槽
2:酸化剤供給ポンプ
3:凝集剤貯留槽
4:凝集剤供給ポンプ
5:第1鉄イオン測定器
6:濁度計/色度計
7:酸化剤演算器
8:凝集剤演算器
9:攪拌機
10:凝集反応槽
11:凝集水供給ポンプ
12:凝集水供給弁
13:精密ろ過膜/限外ろ過膜
14:エア抜き弁
15:ろ過水弁
16:ろ過水貯留槽
17:逆洗ポンプ
18:逆洗弁
19:ブロワー
20:空洗弁
21:排水弁
22:逆浸透膜
23:高圧ポンプ
24:逆浸透膜透過水貯留槽
25:逆浸透膜濃縮水貯留槽
26:還元剤供給ポンプ
27:還元剤貯留槽
1: Oxidant storage tank 2: Oxidant supply pump 3: Flocculant storage tank 4: Flocculant supply pump 5: Ferrous ion measuring instrument 6: Turbidimeter / colorimeter 7: Oxidant calculator 8: Aggregation Agent calculator 9: Stirrer 10: Coagulation reaction tank 11: Coagulated water supply pump 12: Coagulated water supply valve 13: Microfiltration membrane / ultrafiltration membrane 14: Air vent valve 15: Filtration water valve 16: Filtration water storage tank 17 : Backwash pump 18: Backwash valve 19: Blower 20: Air wash valve 21: Drain valve 22: Reverse osmosis membrane 23: High pressure pump 24: Reverse osmosis membrane permeated water storage tank 25: Reverse osmosis membrane concentrated water storage tank 26: Reducing agent supply pump 27: Reducing agent storage tank

Claims (14)

第1鉄イオンを含む原水に酸化剤と凝集剤を注入して凝集した後、固液分離して清澄水を得る水処理方法において、原水の第1鉄イオン濃度を測定し、第1鉄イオンを酸化するための酸化剤注入量および第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)生成量を演算し、原水を凝集するための適正凝集剤注入量から前記水酸化鉄(III)生成量を差し引いて必要凝集剤注入量を演算することで、前記酸化剤注入量および前記必要凝集剤注入量を制御することを特徴とする水処理方法。 In a water treatment method in which an oxidant and a flocculant are injected into raw water containing ferrous ions and agglomerated to obtain clarified water by solid-liquid separation, the ferrous ion concentration of raw water is measured and ferrous ions The amount of oxidant injected to oxidize and the amount of iron (III) hydroxide produced by the reaction between ferrous ions and oxidant is calculated, and the water is calculated from the appropriate amount of flocculant injected for agglomerating raw water. A water treatment method, wherein the oxidant injection amount and the necessary flocculating agent injection amount are controlled by calculating a necessary flocculating agent injection amount by subtracting an iron (III) oxide production amount. 第1鉄イオンを含む原水に酸化剤と凝集剤を注入して凝集した後、固液分離して清澄水を得る水処理方法において、清澄水の第1鉄イオン濃度を測定し、第1鉄イオンを酸化するための酸化剤注入量および第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)生成量を演算し、原水を凝集するための適正凝集剤注入量から前記水酸化鉄(III)生成量を差し引いて必要凝集剤注入量を演算することで、前記酸化剤注入量および前記必要凝集剤注入量を制御することを特徴とする水処理方法。 In a water treatment method in which an oxidant and an aggregating agent are injected into raw water containing ferrous ions and agglomerated to obtain solid water by solid-liquid separation, the ferrous ion concentration of the clear water is measured and ferrous iron is obtained. The oxidant injection amount for oxidizing the ions and the iron (III) hydroxide production amount produced by the reaction between ferrous ions and the oxidant are calculated, and the above-mentioned from the appropriate coagulant injection amount for aggregating the raw water A water treatment method characterized by controlling the oxidant injection amount and the necessary flocculant injection amount by calculating the required flocculant injection amount by subtracting the iron hydroxide (III) production amount. 固液分離手段が砂ろ過、精密ろ過膜、限外ろ過膜のいずれかである、請求項1または2に記載の水処理方法。 The water treatment method according to claim 1 or 2, wherein the solid-liquid separation means is sand filtration, microfiltration membrane, or ultrafiltration membrane. 原水の濁度または色度を測定し、適正凝集剤注入量を原水の濁度または色度で比例演算する、請求項1〜3のいずれかに記載の水処理方法。 The water treatment method according to any one of claims 1 to 3, wherein the turbidity or chromaticity of the raw water is measured, and the appropriate amount of the flocculant is proportionally calculated by the turbidity or chromaticity of the raw water. 凝集剤が鉄系凝集剤またはアルミ系凝集剤を含む、請求項1〜4のいずれかに記載の水処理方法。 The water treatment method according to claim 1, wherein the flocculant contains an iron-based flocculant or an aluminum-based flocculant. 酸化剤が塩素系酸化剤を含む、請求項1〜5のいずれかに記載の水処理方法。 The water treatment method according to claim 1, wherein the oxidizing agent contains a chlorine-based oxidizing agent. 清澄水を逆浸透膜で処理する、請求項1〜6のいずれかに記載の水処理方法。 The water treatment method according to claim 1, wherein the clarified water is treated with a reverse osmosis membrane. 逆浸透膜で処理する前に清澄水に還元剤を注入する、請求項7に記載の水処理方法。 The water treatment method according to claim 7, wherein a reducing agent is injected into the clear water before the treatment with the reverse osmosis membrane. 第1鉄イオンを含む原水を固液分離して清澄水を得る固液分離手段と、原水の第1鉄イオン濃度を測定する手段と、原水に酸化剤を供給する手段と、原水に凝集剤を供給する手段と、第1鉄イオンを酸化するための酸化剤注入量および第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)生成量を演算する手段と、適正凝集剤注入量を演算する手段と、前記適正凝集剤注入量から前記水酸化鉄(III)生成量を差し引いて必要凝集剤の注入量を演算する手段と、原水と凝集剤と酸化剤を攪拌する手段と固液分離手段の1次側に原水を供給する手段とを備えた水処理装置。 Solid-liquid separation means for obtaining clear water by solid-liquid separation of raw water containing ferrous ions, means for measuring the ferrous ion concentration of raw water, means for supplying an oxidizing agent to raw water, and flocculant for raw water , A means for calculating the amount of oxidant injected for oxidizing ferrous ions and the amount of iron (III) hydroxide produced by the reaction of ferrous ions and oxidant, and proper aggregation Means for calculating the injection amount of the agent, means for calculating the injection amount of the necessary coagulant by subtracting the iron (III) hydroxide production amount from the appropriate injection amount of the coagulant, and stirring the raw water, the coagulant and the oxidizing agent And a means for supplying raw water to the primary side of the solid-liquid separation means. 第1鉄イオンを含む原水を固液分離して清澄水を得る固液分離手段と、清澄水の第1鉄イオン濃度を測定する手段と、原水に酸化剤を供給する手段と、原水に凝集剤を供給する手段と、第1鉄イオンを酸化するための酸化剤注入量および第1鉄イオンと酸化剤との反応で生成される水酸化鉄(III)生成量を演算する手段と、適正凝集剤注入量を演算する手段と、前記適正凝集剤注入量から前記水酸化鉄(III)生成量を差し引いて必要凝集剤の注入量を演算する手段と、原水と凝集剤と酸化剤を攪拌する手段と固液分離手段の1次側に原水を供給する手段とを備えた水処理装置。 Solid-liquid separation means for obtaining clear water by solid-liquid separation of raw water containing ferrous ions, means for measuring the ferrous ion concentration of the clear water, means for supplying an oxidizing agent to the raw water, and aggregation in the raw water Means for supplying an agent, means for calculating the amount of oxidant injected for oxidizing ferrous ions and the amount of iron (III) hydroxide produced by the reaction of ferrous ions and oxidant, Means for calculating the coagulant injection amount, means for calculating the injection amount of the necessary coagulant by subtracting the iron (III) hydroxide production amount from the appropriate coagulant injection amount, and stirring the raw water, the coagulant and the oxidant And a means for supplying raw water to the primary side of the solid-liquid separation means. 固液分離手段が砂ろ過、精密ろ過膜、限外ろ過膜のいずれかである、請求項9または10に記載の水処理装置。 The water treatment apparatus according to claim 9 or 10, wherein the solid-liquid separation means is one of sand filtration, microfiltration membrane, and ultrafiltration membrane. 原水の濁度または色度を測定する手段を備え、適正凝集剤注入量を演算する手段が原水の濁度または色度で比例演算したものである、請求項9〜11のいずれかに記載の水処理装置。 The means for measuring turbidity or chromaticity of raw water is provided, and the means for calculating an appropriate flocculant injection amount is a proportional calculation of turbidity or chromaticity of raw water. Water treatment equipment. 清澄水を逆浸透膜処理する逆浸透膜を備えた請求項9〜12のいずれかに記載の水処理装置。 The water treatment apparatus according to any one of claims 9 to 12, further comprising a reverse osmosis membrane for treating the clarified water with a reverse osmosis membrane. 清澄水を逆浸透膜で処理する前に還元剤を注入する手段を備えた請求項13に記載の水処理装置。 The water treatment apparatus according to claim 13, comprising means for injecting a reducing agent before treating the clarified water with a reverse osmosis membrane.
JP2011110043A 2011-05-17 2011-05-17 Water treatment method and water treatment apparatus Withdrawn JP2012239947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110043A JP2012239947A (en) 2011-05-17 2011-05-17 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110043A JP2012239947A (en) 2011-05-17 2011-05-17 Water treatment method and water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2012239947A true JP2012239947A (en) 2012-12-10

Family

ID=47462215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110043A Withdrawn JP2012239947A (en) 2011-05-17 2011-05-17 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP2012239947A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104724857A (en) * 2015-03-27 2015-06-24 天津大学 Method for recycling treatment of rinsing solution during production of bleaching powder concentrate
US20160318779A1 (en) * 2011-05-13 2016-11-03 University Of South Carolina Methods of treating a water sample or a substrate to remove organic compounds
JP2017074585A (en) * 2015-10-16 2017-04-20 Jfeスチール株式会社 Method for treating hexavalent chromium-containing waste liquid and equipment for treating hexavalent chromium-containing waste liquid
WO2017115455A1 (en) * 2015-12-28 2017-07-06 王子ホールディングス株式会社 Water treatment system, water treatment method , and water production method
JP2017186771A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater recharge system
JP2020060098A (en) * 2016-04-04 2020-04-16 清水建設株式会社 Underground water recharge system
JP2020131055A (en) * 2019-02-13 2020-08-31 株式会社クラレ Water treatment device, and water treatment method
WO2022075063A1 (en) * 2020-10-09 2022-04-14 三菱重工エンジニアリング株式会社 Analysis system and management system, analysis method, and analysis program
WO2023227119A1 (en) * 2022-05-27 2023-11-30 叶涛 New-type nascent flocculation water purification method and device thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160318779A1 (en) * 2011-05-13 2016-11-03 University Of South Carolina Methods of treating a water sample or a substrate to remove organic compounds
CN104724857A (en) * 2015-03-27 2015-06-24 天津大学 Method for recycling treatment of rinsing solution during production of bleaching powder concentrate
JP2017074585A (en) * 2015-10-16 2017-04-20 Jfeスチール株式会社 Method for treating hexavalent chromium-containing waste liquid and equipment for treating hexavalent chromium-containing waste liquid
WO2017115455A1 (en) * 2015-12-28 2017-07-06 王子ホールディングス株式会社 Water treatment system, water treatment method , and water production method
JPWO2017115455A1 (en) * 2015-12-28 2018-10-18 王子ホールディングス株式会社 Water treatment system, water treatment method and water production method
JP2020192533A (en) * 2015-12-28 2020-12-03 王子ホールディングス株式会社 Water treatment system, water treatment method and water production method
JP2017186771A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater recharge system
JP2020060098A (en) * 2016-04-04 2020-04-16 清水建設株式会社 Underground water recharge system
JP2020131055A (en) * 2019-02-13 2020-08-31 株式会社クラレ Water treatment device, and water treatment method
JP7213711B2 (en) 2019-02-13 2023-01-27 株式会社クラレ Water treatment device and water treatment method
WO2022075063A1 (en) * 2020-10-09 2022-04-14 三菱重工エンジニアリング株式会社 Analysis system and management system, analysis method, and analysis program
WO2023227119A1 (en) * 2022-05-27 2023-11-30 叶涛 New-type nascent flocculation water purification method and device thereof

Similar Documents

Publication Publication Date Title
JP2012239947A (en) Water treatment method and water treatment apparatus
Konieczny et al. Coagulation—ultrafiltration system for river water treatment
KR101306389B1 (en) Method for cleaning separation membrane module, and method for fresh water generation
JP5954182B2 (en) Cleaning method for separation membrane module
WO2012147715A1 (en) Method for cleaning membrane module
JP2012239948A (en) Method for washing filter medium, and water treatment apparatus
JP5131005B2 (en) Water treatment method and water treatment apparatus
JP5343655B2 (en) Operation method of membrane module
EP0433200A1 (en) Water filtration and purification process
WO2000027756A1 (en) Water treating method
Abbasi-Garravand et al. Role of two different pretreatment methods in osmotic power (salinity gradient energy) generation
JP6210063B2 (en) Fresh water generation method and fresh water generation apparatus
JP2012086120A (en) Method for washing immersion type membrane module with chemical
WO2013047466A1 (en) Membrane module cleaning method
JP2011056411A (en) System and method for desalination of water to be treated
JP2007203249A (en) Water treating apparatus and method
JP2015085206A (en) Separation membrane module cleaning method
WO2000027510A1 (en) Method for filtration with membrane
Galvañ et al. Direct pre-treatment of surface water through submerged hollow fibre ultrafiltration membranes
JP2016093789A (en) Water treatment method and water treatment system
Johir et al. Deep bed filter as pre-treatment to stormwater
JP6444606B2 (en) Water treatment equipment
JP2014046235A (en) Fresh water generating method
JP2011083656A (en) Method of washing membrane module and membrane filtration apparatus
WO2015002186A1 (en) Water treatment system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805