JP2020161572A - 配線基板及び配線基板の製造方法 - Google Patents
配線基板及び配線基板の製造方法 Download PDFInfo
- Publication number
- JP2020161572A JP2020161572A JP2019057400A JP2019057400A JP2020161572A JP 2020161572 A JP2020161572 A JP 2020161572A JP 2019057400 A JP2019057400 A JP 2019057400A JP 2019057400 A JP2019057400 A JP 2019057400A JP 2020161572 A JP2020161572 A JP 2020161572A
- Authority
- JP
- Japan
- Prior art keywords
- wiring board
- layer
- electrode
- inorganic insulating
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
【課題】半導体素子を良好に実装することが可能で、半導体素子実装工程での収率低下を抑制し、且つ、半導体素子との高い接続信頼性を兼ね備えた配線基板及び配線基板の製造方法を提供すること。【解決手段】第1配線基板1と、第1配線基板1に接合された、前記第1配線基板1より微細な配線が形成された第2配線基板3を備え、第2配線基板3の第1配線基板1との接合面とは反対側の面に半導体素子4が実装される配線基板23において、第2配線基板3の、半導体素子4が実装される側の面に形成された半導体素子4との接合のための電極11が、該面から突出した凸形状であることを特徴とする配線基板である。【選択図】図1
Description
本発明は、配線基板及び配線基板の製造方法に関する。
近年半導体装置の高速、高集積化が進む中で、FC−BGA(Flip Chip-Ball Grid Array)用配線基板に対しても、半導体チップとの接続端子の狭ピッチ化、基板配線の微細化が求められている。一方、FC−BGA用配線基板とマザーボードとの接続は、従来とほぼ変わらないピッチの接続端子での接続が要求されている。この半導体チップと接続端子の狭ピッチ化、基板配線の微細化のため、シリコン上に配線形成してチップ接続用の基板(シリコンインターポーザ)として、それぞれFC−BGA用配線基板に接続する方式が特許文献1に開示されている。また、FC−BGA用配線基板の表面をCMP(Chemical Mechanical Polishing、化学機械研磨)等で平坦化してから微細配線を形成する方式が特許文献2に開示されている。また、支持基板の上に微細な配線層を形成しFC−BGA基板に搭載した後、支持基板を剥離することで狭ピッチな配線基板な形成する方式が特許文献3に開示されている。
シリコンインターポーザ方式は、シリコンウェハを利用して、半導体前工程用の設備を用いて製作している。シリコンウェハは形状、サイズに制限があり、1枚のウェハから製作できるインターポーザの数が少なく、製造設備も高価であるため、インターポーザも高価となる。また、シリコンウェハが半導体であることから、伝送特性も劣化するという問題がある。
また、FC−BGA用配線基板の表面の平坦化を行いその上に微細配線層を形成する方式においては、シリコンインターポーザの伝送特性劣化の問題は無いが、FC−BGA用配線基板の製造不良と難易度の高い微細配線形成時の不良との合算で収率が低下する問題や、FC−BGA用配線基板の反り、歪みによる半導体素子の実装に対する問題がある。
また、FC−BGA用配線基板の表面の平坦化を行いその上に微細配線層を形成する方式においては、シリコンインターポーザの伝送特性劣化の問題は無いが、FC−BGA用配線基板の製造不良と難易度の高い微細配線形成時の不良との合算で収率が低下する問題や、FC−BGA用配線基板の反り、歪みによる半導体素子の実装に対する問題がある。
また、支持基板の上に微細な配線層を形成しFC−BGA基板に搭載する方式では、伝送特劣化の問題や、FC−BGA用配線基板と微細な配線層を別々に形成するため合算で収率が低下する問題はない。しかしながら、FC−BGA用配線基板に搭載した後、支持基板を剥離するため、剥離面に形成される接合用電極の形状に対して、支持基板の表層が配線基板の表面に転写されることに起因して平坦形状は得易いが、例えば凹凸形状を有する接合用電極を得ることが困難であるという問題があった。
半導体素子の配線基板への狭ピッチの実装では熱と圧力によって、柱状の銅の先端のはんだを溶融固着し半導体素子と配線基板を接合するTCB(Thermal Compression Bonding:熱圧着)が用いられる。この時、配線基板の接合用電極が平面形状であると、溶融したはんだが流れやすく、他の接続部と接触し短絡によって大きく収率が低下する。また、平面形状では接合後は接合用電極の端部に応力が集中するため、熱変化などの環境に対する信頼性が低くなる。
半導体素子の配線基板への狭ピッチの実装では熱と圧力によって、柱状の銅の先端のはんだを溶融固着し半導体素子と配線基板を接合するTCB(Thermal Compression Bonding:熱圧着)が用いられる。この時、配線基板の接合用電極が平面形状であると、溶融したはんだが流れやすく、他の接続部と接触し短絡によって大きく収率が低下する。また、平面形状では接合後は接合用電極の端部に応力が集中するため、熱変化などの環境に対する信頼性が低くなる。
本発明は、上記問題に鑑みなされたものであり、半導体素子を良好に実装することが可能で、半導体素子実装工程での収率低下を抑制し、且つ、半導体素子との高い接続信頼性を兼ね備えた配線基板及び配線基板の製造方法を提供することを目的としている。
上記の課題を解決する手段として、本発明の一態様に係る配線基板は、第1配線基板と、前記第1配線基板に接合された、前記第1配線基板より微細な配線が形成された第2配線基板を備え、前記第2配線基板の前記第1配線基板との接合面とは反対側の面に半導体素子が実装される配線基板において、
前記第2配線基板の、前記半導体素子が実装される側の面に形成された前記半導体素子との接合のための電極が、該面から突出した凸形状であることを特徴とする配線基板である。
前記第2配線基板の、前記半導体素子が実装される側の面に形成された前記半導体素子との接合のための電極が、該面から突出した凸形状であることを特徴とする配線基板である。
上記配線基板は、半導体素子をフリップチップ実装方式により実装するための配線基板であり得る。
また、上記第2配線基板の半導体素子が実装される側の面の、前記半導体素子との接合のための電極を除く領域には無機絶縁層が形成されていてもよい。
上記無機絶縁層は例えばシリコンナイトライドからなる。
また、上記第2配線基板は、配線層と絶縁樹脂層とにより形成された多層配線層を含み、上記無機絶縁層は、前記多層配線層の前記半導体素子が実装される側の最表層をなす前記絶縁樹脂層上に形成され得る。
上記第2配線基板の半導体素子との接合のための電極は、第2配線基板表面から0.1μm以上5μm以下の高さで突出した凸形状であるのが好ましい。
また、上記第2配線基板の半導体素子が実装される側の面の、前記半導体素子との接合のための電極を除く領域には無機絶縁層が形成されていてもよい。
上記無機絶縁層は例えばシリコンナイトライドからなる。
また、上記第2配線基板は、配線層と絶縁樹脂層とにより形成された多層配線層を含み、上記無機絶縁層は、前記多層配線層の前記半導体素子が実装される側の最表層をなす前記絶縁樹脂層上に形成され得る。
上記第2配線基板の半導体素子との接合のための電極は、第2配線基板表面から0.1μm以上5μm以下の高さで突出した凸形状であるのが好ましい。
また、本発明の他の態様に係る配線基板の製造方法は、第1配線基板と、前記第1配線基板に接合された、前記第1配線基板より微細な配線が形成された第2配線基板とを備え、前記第2配線基板の前記第1配線基板との接合面とは反対の面に半導体素子が実装される配線基板の製造方法であって、
支持体の一面上に剥離層を形成する工程と、該剥離層上に無機絶縁層を形成する工程と、該無機絶縁層をパターニングする工程と、該パターニングにより上記無機絶縁層が除去された領域に上記半導体素子との接合のための第1電極を形成する工程と、上記第1電極及び上記無機絶縁層上に絶縁樹脂層と配線層からなる多層配線層を形成する工程と、上記多層配線層の上記支持体とは反対側の面に上記第1配線基板との接合のための第2電極を形成する工程と、を有する上記第2配線基板を形成する工程と、
上記第1配線基板の一方の面に前記第2配線基板との接合のための第3電極を形成し、上記第2配線基板と上記第1配線基板を、上記第3電極と上記第2電極とで接合する工程と、
上記支持体を上記剥離層により上記第2配線基板から剥離し、その後上記第1電極と上記無機絶縁層を表面に露出させる工程と
上記無機絶縁層をドライエッチングすることで上記第1電極を凸形状にする工程と、を含むことを特徴とする。
支持体の一面上に剥離層を形成する工程と、該剥離層上に無機絶縁層を形成する工程と、該無機絶縁層をパターニングする工程と、該パターニングにより上記無機絶縁層が除去された領域に上記半導体素子との接合のための第1電極を形成する工程と、上記第1電極及び上記無機絶縁層上に絶縁樹脂層と配線層からなる多層配線層を形成する工程と、上記多層配線層の上記支持体とは反対側の面に上記第1配線基板との接合のための第2電極を形成する工程と、を有する上記第2配線基板を形成する工程と、
上記第1配線基板の一方の面に前記第2配線基板との接合のための第3電極を形成し、上記第2配線基板と上記第1配線基板を、上記第3電極と上記第2電極とで接合する工程と、
上記支持体を上記剥離層により上記第2配線基板から剥離し、その後上記第1電極と上記無機絶縁層を表面に露出させる工程と
上記無機絶縁層をドライエッチングすることで上記第1電極を凸形状にする工程と、を含むことを特徴とする。
上記配線基板の製造方法において、上記無機絶縁層をパターニングする工程が、上記無機絶縁層上にレジストパターンを形成する工程と、該レジストパターンをマスクとしてドライエッチングする工程とを含み、上記第1電極を形成する工程において、上記第1電極を上記無機絶縁層よりも厚く形成するのが好ましい。
上記無機絶縁層をドライエッチングすることで上記第1電極を凸形状にする工程において、上記無機絶縁層を残存させるようにドライエッチングを行っても、上記無機絶縁層を全て除去して絶縁樹脂層を露出させるようにドライエッチングを行ってもよい。
上記無機絶縁層は、例えばシリコンナイトライドをCVD法で蒸着することにより形成される。
上記支持体は好ましくはガラスである。
上記無機絶縁層の開口部は、上記半導体素子が接合される領域の平面視において上記最表層をなす絶縁樹脂層の開口部と略同一形状となるように形成するのが好ましい。
上記無機絶縁層をドライエッチングすることで上記第1電極を凸形状にする工程において、上記無機絶縁層を残存させるようにドライエッチングを行っても、上記無機絶縁層を全て除去して絶縁樹脂層を露出させるようにドライエッチングを行ってもよい。
上記無機絶縁層は、例えばシリコンナイトライドをCVD法で蒸着することにより形成される。
上記支持体は好ましくはガラスである。
上記無機絶縁層の開口部は、上記半導体素子が接合される領域の平面視において上記最表層をなす絶縁樹脂層の開口部と略同一形状となるように形成するのが好ましい。
本発明によれば、支持体の上に微細な配線層を形成しFC−BGA基板に搭載する方式においても凸形状を有する接合電極の作製が可能となる。そのため、半導体素子実装工程での収率低下を抑制し、且つ、半導体素子との高い接続信頼性を兼ね備えた配線基板及び配線基板の製造方法を提供することが可能となる。
以下に、本発明の一実施形態に関わる配線基板について図面を参照して説明する。ただし、以下に説明する各図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適宜省略する。また、各図面は説明を容易にするために適宜誇張して表現している。
図1は、本発明の一実施形態に係る配線基板(FC−BGA配線基板)に半導体素子を実装した半導体パッケージの一例を示す断面図である。本実施形態においてはFC−BGA用配線基板1が上記第1配線基板であり、インターポーザ3が上記第2配線基板である。
図1は、本発明の一実施形態に係る配線基板(FC−BGA配線基板)に半導体素子を実装した半導体パッケージの一例を示す断面図である。本実施形態においてはFC−BGA用配線基板1が上記第1配線基板であり、インターポーザ3が上記第2配線基板である。
本発明の一実施形態に係る半導体パッケージは、FC−BGA用配線基板(第1配線基板)1の一方の面に、樹脂と配線とが積層されてなるビルドアップ配線層のみで形成された微細配線層を備えた薄いインターポーザ(第2配線基板)3が、はんだバンプまたは銅ポスト(銅ピラー)または金バンプなどで接合(インターポーザ‐FC−BGA接合部19)されている。また、FC−BGA用配線基板1とインターポーザ3との間隙が絶縁性の接着部材としてのアンダーフィル2で埋め込まれている。さらにインターポーザ3の、FC−BGA用配線基板1とは逆側の面に半導体素子4が銅ピラー21a(図7参照)及びその先端のはんだ21b(図7参照)で接合(接合部21)され、半導体素子4とインターポーザ3との間隙がアンダーフィル22で埋め込まれている。
アンダーフィル2は、FC−BGA用配線基板1とインターポーザ3とを固定するため及びインターポーザ‐FC−BGA接合部19を封止するために用いられる接着材料である。アンダーフィル2としては、例えば、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、ポリエステル樹脂、オキセタン樹脂、及びマレイミド樹脂の1種又はこれらの樹脂の2種類以上が混合された樹脂に、フィラーとしてのシリカ、酸化チタン、酸化アルミニウム、酸化マグネシウム、又は酸化亜鉛等が加えられた材料が用いられる。アンダーフィル2は、液状の樹脂を充填させることで形成される。
アンダーフィル22は半導体素子4とインターポーザ3とを固定するため及び接合部21を封止するために用いられる接着材料であり、アンダーフィル2と同様の材料で構成される。またこれら毛細管現象を利用して接合後に液状の樹脂を充填させるアンダーフィル2及び/またはアンダーフィル22の代わりに、接合前にシート状のフィルムを予め配置し、接合時に空間を充填する異方性導電フィルム(ACF)または、フィルム状接続材料(NCF)や、接合前に液状の樹脂を予め配置し接合時に空間を充填する非導電ペースト(NCP)などを用いてもよい。
インターポーザ3と半導体素子4との接合部21の個々の間隔は、インターポーザ‐FC−BGA接合部19の個々の間隔よりも狭いことが一般的である。そのため、インターポーザ3において、半導体素子4を接合する側の方が、FC−BGA用配線基板1と接合する側よりも微細な配線が必要となる。例えば、現在のハイバンドメモリ(HBM)の使用に対応するためには、インターポーザ3では配線幅を2μm以上6μm以下にする必要がある。特性インピーダンスを50Ωにあわせるためには、配線幅が2μm、配線高さ2μmの場合、配線間の絶縁膜厚は2.5μmとなる。配線も含めたい1層の厚さは4.5μmとなり、この厚さで5層のインターポーザ3を形成する場合、インターポーザ3は、総厚25μm程度のインターポーザ3となる。
前記の通り、インターポーザ3の厚みは総厚25μm程度と薄く、そのままの状態ではFC−BGA用配線基板1と接合するのが困難であるため、支持体5を用いて剛直性を担保することが有効である。また、2μm程度の幅と高さを有する配線を形成するには、平坦な支持体5が必要となる。上記理由により、図2に示すように、インターポーザ3は、剛直で平坦な支持体5上に剥離層6と保護層7とシード層8を介して形成される。なお、支持体上には剥離層6、保護層7、シード層8以外の層を設けてもよい。
次に図3(a)から図3(n)を用いて、本発明の一実施形態に係る支持体5上へのインターポーザ(第2配線基板)3の製造工程の一例を説明する。
まず、図3(a)に示すように、支持体5の一方の面に、後の工程で支持体5を剥離するために必要な剥離層6を形成する。
まず、図3(a)に示すように、支持体5の一方の面に、後の工程で支持体5を剥離するために必要な剥離層6を形成する。
剥離層6は、例えば、UV光などの光を吸収して発熱、もしくは、変質によって剥離可能となる樹脂でもよく、熱によって発泡により剥離可能となる樹脂でもよい。UV光などの光によって剥離可能となる樹脂を用いる場合、剥離層6を設けた側とは反対側の面から支持体5に光を照射して、インターポーザ3と、FC−BGA用配線基板1との接合体から支持体5を取り去る。この場合、支持体5は、透明性を有する必要があり、例えばガラスを用いることができる。ガラスは平坦性に優れており、インターポーザ3の微細なパターン形成に適している。また、ガラスはCTE(coefficient of thermal expansion、熱膨張率)が小さく歪みにくいことから、パターン配置精度及び平坦性の確保に優れている。支持体5としてガラスを用いる場合、ガラスの厚さは、製造プロセスにおける反りの発生を抑制する観点から厚い方が望ましく、例えば0.7mm以上、好ましくは1.1mm以上の厚みである。また、ガラスのCTEは3ppm以上15ppm以下が好ましく、FC−BGA用配線基板1、半導体素子4のCTEの観点から9ppm程度がより好ましい。一方、剥離層6に前記熱によって発泡する樹脂を用いた場合は、インターポーザ3と、FC−BGA用配線基板1との接合体を加熱する事で支持体5を取り去る。この場合、支持体5には、歪みの少ない例えばメタルやセラミックスなどを用いることができる。本発明の一実施形態では、剥離層6としてUV光を吸収して剥離可能となる樹脂を用い、支持体5にはガラスを用いる。
次いで、図3(b)に示すように、剥離層6の上に保護層7を形成する。保護層7は、後の工程で支持体5を剥離する際にインターポーザ3を保護するための層であり、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコン樹脂、ポリエステル樹脂、オキセタン樹脂の1種又はこれらの樹脂の2種類以上が混合された樹脂であり、インターポーザ3を支持体5から剥離後に除去可能な樹脂である。保護層7については、スピンコート、ラミネート法等により、樹脂の形状に応じて適宜形成してよい、本発明の一実施形態ではアクリル系樹脂をラミネート法により形成している。
次いで、図3(c)に示すように、真空中で、保護層7上にシード層8を形成する。シード層8は配線形成において、電解めっきの給電層として作用する。シード層8は、例えば、スパッタ法、またはCVD法などにより形成され、例えば、Cu、Ni、Al、Ti、Cr、Mo、W、Ta、Au、Ir、Ru、Pd、Pt、AlSi、AlSiCu、AlCu、NiFe、ITO、IZO、AZO、ZnO、PZT、TiN、Cu3N4、Cu合金などを単体でもしくは複数組み合わせて適用することができる。本発明では、電気特性、製造の容易性の観点およびコスト面を考慮して、チタン層、続いて銅層を順次スパッタリング法で形成する。チタンと銅層の合計の膜厚は、電解めっきの給電層として1μm以下とするのが好ましい。本発明の一実施形態ではTi:50nm、Cu:300nmを形成した。
次いで、図3(d)に示すように、シード層8上に無機絶縁層9を形成する。無機絶縁層9は絶縁性、後の工程でのエッチング性の観点からアルミナ、シリカ、シリコンナイトライド、タンタルオキサイド、などから選択することが出来る。より好ましくは、ドライエッチング性に優れることから無機絶縁層9はシリコンナイトライドであることが望ましい。これら無機絶縁層9の厚みは0.01μm以上10μm以下であることが望ましい。第1電極の凸部の高さを好ましい高さである0.1μm以上とするには、無機絶縁層9を少なくとも0.1μmの厚さに形成することが必要であり、10μm以上とすると、成膜時間がかかりすぎて量産性に欠けるからである。無機絶縁層9の成膜方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE法、レーザーアブレーション法、CVD法が挙げられるが、本発明においては限定されない。
次に図3(e)に示すように無機絶縁層9上にレジストパターン10を形成し、そのレジストパターン10をマスクとして無機絶縁層9のエッチングを行う。レジストパターン10は公知のフォトリソグラフィー法によって形成が可能である。即ち、レジストパターン10は後の電解めっき層が形成される部分が露出するように位置あわせの上、露光、現像処理することによってパターニングすることができる。ここで、無機絶縁層9のエッチング方法は化学エッチング法、ドライエッチング法等、いずれも公知の方法を用いることができる。テーパー角制御の観点から異方性エッチングが容易なドライエッチングがより望ましい。
その後、図3(f)のように、電解めっきにより導体層(第1電極)11を形成する。導体層11は半導体素子4と接合用の電極となる。電解めっき法は電解ニッケルめっき、電解銅めっき、電解クロムめっき、電解Pdめっき、電解金めっき、電解ロジウムめっき、電解イリジウムめっき等が挙げられるが、電解銅めっきであることが簡便で安価で、電気伝導性が良好であることから望ましい。電解銅めっきの厚みは、回路の接続信頼性、及び、製造コストの観点から、1μm以上30μm以下であることが望ましい。本発明においては、導体層11の形状制御性のため、無機絶縁層9よりも厚く形成する。その後、図3(g)に示すようにレジストパターン10を除去する。
次に、図3(h)に示すように絶縁樹脂層12を形成する。絶縁樹脂層12は導体層11が絶縁樹脂層12の層内に埋め込まれるように形成する。本実施形態では、絶縁樹脂層12として例えば、感光性のエポキシ系樹脂をスピンコート法により形成する。感光性のエポキシ樹脂は比較的低温で硬化することができ、形成後の硬化による収縮が少ないため、その後の微細パターン形成に優れる。絶縁樹脂層12としては、感光性のエポキシ系樹脂を用いてスピンコート法により形成する他、絶縁樹脂フィルムを真空ラミネータで圧縮キュアを行って形成することも可能であり、この場合は平坦性の良い絶縁膜を形成することができる。その他、例えばポリイミドを絶縁樹脂として用いることも可能である。
次に、図3(i)に示すように、フォトリソグラフィーにより、絶縁樹脂層12に開口部を形成する。該開口部は、導体層11の一部を露出するように形成する。該開口部に対して、現像時の残渣除去を目的として、プラズマ処理を行ってもよい。
次に、図3(j)に示すように、該絶縁樹脂層12の開口部により露出した導体層11上及び上記絶縁樹脂層12上の少なくともその上層に導体層が形成される領域にシード層13を設ける。シード層13の構成については前述したシード層8と同様で、適宜構成、厚みを変更可能である。本発明の一実施形態ではTi:50nm、Cu:300nmをスパッタリング法で形成する。
次に、図3(j)に示すように、該絶縁樹脂層12の開口部により露出した導体層11上及び上記絶縁樹脂層12上の少なくともその上層に導体層が形成される領域にシード層13を設ける。シード層13の構成については前述したシード層8と同様で、適宜構成、厚みを変更可能である。本発明の一実施形態ではTi:50nm、Cu:300nmをスパッタリング法で形成する。
次に、図3(k)に示すように、シード層13上にレジストパターン14を形成し、その開口部に電解めっきにより導体層(配線層)15を形成する。導体層15は、インターポーザ3の内部の配線層となる。本発明の一実施形態では導体層15を銅により形成した。その後、図3(l)に示すようにレジストパターン14を除去する。その後、不要なシード層13をエッチング除去する。
次に、図3(h)から図3(l)の工程を繰り返し、図3(m)に示すような、導体層(配線層)15が多層化された基板を得る。最表面に形成される導体層(第2電極)16は、FC−BGA用配線基板1との接合用の電極となる。
次に、図3(n)に示すように、インターポーザ3に最表面絶縁樹脂層17を形成し、該最表面絶縁樹脂層17には、フォトリソグラフィーにより、導体層16の少なくとも一部を露出させる開口部を形成する。本発明の実施形態では、感光性エポキシ樹脂を使用して最表面絶縁樹脂層17を形成する。なお、最表面絶縁樹脂層17は絶縁樹脂層12と同一材料でも構わない。
次に、図3(h)から図3(l)の工程を繰り返し、図3(m)に示すような、導体層(配線層)15が多層化された基板を得る。最表面に形成される導体層(第2電極)16は、FC−BGA用配線基板1との接合用の電極となる。
次に、図3(n)に示すように、インターポーザ3に最表面絶縁樹脂層17を形成し、該最表面絶縁樹脂層17には、フォトリソグラフィーにより、導体層16の少なくとも一部を露出させる開口部を形成する。本発明の実施形態では、感光性エポキシ樹脂を使用して最表面絶縁樹脂層17を形成する。なお、最表面絶縁樹脂層17は絶縁樹脂層12と同一材料でも構わない。
次に、図3(o)に示すように導体層16の表面の酸化防止とはんだバンプの濡れ性をよくするため、表面処理層18を設けてもよい。本発明の実施形態では、表面処理層18として無電解Ni/Pd/Auめっきを成膜する。なお、表面処理層18には、OSP(Organic Soiderability Preservative 水溶性プレフラックスによる表面処理)膜を形成してもよい。また、無電解スズめっき、無電解Ni/Auめっきなどから適宜用途に応じて選択しても良い。
次に、図3(p)に示すように、表面処理層18上に、はんだ材料を搭載した後、一度溶融冷却して固着させることで、はんだバンプ等からなるインターポーザ3側の接合部19aを得る。これにより、支持体5上に形成されたインターポーザ(第2配線基板)3が完成する。
次に、図3(p)に示すように、表面処理層18上に、はんだ材料を搭載した後、一度溶融冷却して固着させることで、はんだバンプ等からなるインターポーザ3側の接合部19aを得る。これにより、支持体5上に形成されたインターポーザ(第2配線基板)3が完成する。
続けて、図4(a)から図4(e)を用いて、支持体5上に形成されたインターポーザ(第2配線基板)3とFC−BGA用配線基板(第1配線基板)1の本発明の一実施形態に係る接合工程の一例を説明する。
図4(a)に示すように、インターポーザ3側の接合部19aに合わせてはんだバンプ等からなるFC−BGA用配線基板側の接合部19bを設計し、製造したFC−BGA用配線基板1に対して、支持体5上に形成されたインターポーザ3を配置し、図4(b)に示すように、支持体5上に形成されたインターポーザ3とFC−BGA用配線基板1を接合した後、アンダーフィル2を充填し、インターポーザ3とFC−BGA用配線基板1の固定及び接合部の封止を行う。
次に図4(c)に示すように、支持体5を剥離する。剥離層6は、UV光をレーザ光20で照射して剥離する。支持体5の背面より、すなわち、支持体5のFC−BGA用配線基板1とは逆側の面からレーザ光20を支持体5との界面に形成された剥離層6に照射し剥離可能な状態とすることで、図4(d)に示すように支持体5を取り外すことが可能となる。
図4(a)に示すように、インターポーザ3側の接合部19aに合わせてはんだバンプ等からなるFC−BGA用配線基板側の接合部19bを設計し、製造したFC−BGA用配線基板1に対して、支持体5上に形成されたインターポーザ3を配置し、図4(b)に示すように、支持体5上に形成されたインターポーザ3とFC−BGA用配線基板1を接合した後、アンダーフィル2を充填し、インターポーザ3とFC−BGA用配線基板1の固定及び接合部の封止を行う。
次に図4(c)に示すように、支持体5を剥離する。剥離層6は、UV光をレーザ光20で照射して剥離する。支持体5の背面より、すなわち、支持体5のFC−BGA用配線基板1とは逆側の面からレーザ光20を支持体5との界面に形成された剥離層6に照射し剥離可能な状態とすることで、図4(d)に示すように支持体5を取り外すことが可能となる。
次に、保護層7とシード層8を除去し、図4(e)に示すような基板を得る。本発明の実施形態では、保護層7は、アクリル系樹脂を用いており、アルカリ系溶剤(1%NaOH、2.3%TMAH)によって除去することができる。更に、シード層8は、保護層7側からチタンと銅を用いており、それぞれアルカリ系のエッチング剤と、酸系のエッチング剤にて溶解除去することができる。このようにして、インターポーザ(第2配線基板)3とFC−BGA用配線基板(第1配線基板)1が接合される。
続いて、図4(e)のA部を拡大した図5(a)から図5(d)を用いて、配線基板における半導体素子4との接合電極である導体層(第1電極)11の形成工程について説明する。
続いて、図4(e)のA部を拡大した図5(a)から図5(d)を用いて、配線基板における半導体素子4との接合電極である導体層(第1電極)11の形成工程について説明する。
図5(a)に示すように、支持体5上に形成されたインターポーザ3とFC−BGA用配線基板1を接合した後、支持体5を剥離し、保護層7とシード層8を除去したことにより、無機絶縁層9と導体層11が上部表面に露出した状態となる。
この状態に対して、図5(b)に示すように無機絶縁層9のみを選択的にエッチングを行う。エッチング方法は化学エッチング法、ドライエッチング法等、いずれも公知の方法を用いることができる。より好ましくは、エッチングレートの選択比が取りやすく、異方性エッチングが容易なドライエッチングが望ましい。例えば、無機絶縁層9にシリコンナイトライドを用いた場合、フッ素系のガスを用いてドライエッチングを実施すると導体層11をエッチングすることなく、無機絶縁層9をエッチング可能である。
この状態に対して、図5(b)に示すように無機絶縁層9のみを選択的にエッチングを行う。エッチング方法は化学エッチング法、ドライエッチング法等、いずれも公知の方法を用いることができる。より好ましくは、エッチングレートの選択比が取りやすく、異方性エッチングが容易なドライエッチングが望ましい。例えば、無機絶縁層9にシリコンナイトライドを用いた場合、フッ素系のガスを用いてドライエッチングを実施すると導体層11をエッチングすることなく、無機絶縁層9をエッチング可能である。
図5(c)の示すように、無機絶縁層9をエッチングすることで導体層11を凸形状にすることが可能となる。また、図5(d)に示すように、無機絶縁層9を全てエッチングすることによっても凸形状が可能である。無機絶縁層9を残存させるようにエッチングを行う場合、残存する無機絶縁層9の厚さは0.01μm以上10μm以下であることが望ましい。0.01μm以下である場合、無機絶縁層9が連続膜として成り立たず層としての機能が発現せず、10μm以上の場合、最初に無機絶縁層9を形成する時に成膜時間がかかりすぎて量産性に欠けるからである。凸形状の高さは、半導体素子4の接合電極の設計に応じてエッチング量を適宜調整することにより制御できる。絶縁樹脂層12の表面粗さに対して十分に突出した凸形状を得るためには、0.1μm以上とするのが望ましい。また、凸形状の高さを達成するために最初に形成する無機絶縁層9に必要とされる厚さを考慮すると、量産性の観点から5μm以下であることが望ましい。
この後、表面に露出した導体層11上に、酸化防止とはんだバンプの濡れ性をよくするため、無電解Ni/Pd/Auめっき、OSP、無電解スズめっき、無電解Ni/Auめっきなどの表面処理を施してもよい。以上により配線基板23(図1参照)が完成する。
この後、表面に露出した導体層11上に、酸化防止とはんだバンプの濡れ性をよくするため、無電解Ni/Pd/Auめっき、OSP、無電解スズめっき、無電解Ni/Auめっきなどの表面処理を施してもよい。以上により配線基板23(図1参照)が完成する。
<作用効果>
次に、上述したような配線基板23の構成とその製造方法を用いた場合の作用効果について、図6(比較例)、及び、図7を参照にして説明する。
図6は、無機絶縁層9を形成せずに作製した配線基板の拡大図である。この配線基板の上部表面は絶縁樹脂層12と導体層11からなり、その形状面は支持体5から転写されるため平坦面となる。これを比較例とする。
本発明の実施形態である構成(図5(c))、及び、比較例の構成(図6)に対して、半導体素子4を接合したものをそれぞれ図7(a)、及び、図7(b)に示す。
次に、上述したような配線基板23の構成とその製造方法を用いた場合の作用効果について、図6(比較例)、及び、図7を参照にして説明する。
図6は、無機絶縁層9を形成せずに作製した配線基板の拡大図である。この配線基板の上部表面は絶縁樹脂層12と導体層11からなり、その形状面は支持体5から転写されるため平坦面となる。これを比較例とする。
本発明の実施形態である構成(図5(c))、及び、比較例の構成(図6)に対して、半導体素子4を接合したものをそれぞれ図7(a)、及び、図7(b)に示す。
図7(b)に示すように、比較例の導体層11の場合、半導体素子の銅ピラー21a先端のはんだ21bとは平面のみで接合することとなる。この場合、環境温度変化などに起因する応力が発生すると、その力は導体層11とはんだ21bが接触する端部に集中し、クラックが発生しやすくなり信頼性が低下する。
一方、図7(a)に示すように、本発明の実施形態においては導体層11が凸形状であるため、導体層11の側面に渡ってはんだ21bと接触することが可能となる。この場合、応力が発生したとしても、その応力は一点に集中することなく分散されるため、高い信頼性を得ることが可能となる。また比較例に対して、導体層11と銅ピラー21a先端のはんだ21bとの接触面積が多くなるため電気抵抗値を低く安定させることができる。
一方、図7(a)に示すように、本発明の実施形態においては導体層11が凸形状であるため、導体層11の側面に渡ってはんだ21bと接触することが可能となる。この場合、応力が発生したとしても、その応力は一点に集中することなく分散されるため、高い信頼性を得ることが可能となる。また比較例に対して、導体層11と銅ピラー21a先端のはんだ21bとの接触面積が多くなるため電気抵抗値を低く安定させることができる。
上述の実施形態は一例であって、その他、具体的な細部構造などについては適宜に変更可能であることは勿論である。
本発明は、主基板とICチップとの間に介在するインターポーザ等を備えた配線基板を有する半導体装置に利用可能である。
1 FC−BGA用配線基板(第1配線基板)
2、22 アンダーフィル
3 インターポーザ(第2配線基板)
4 半導体素子
5 支持体
6 剥離層
7 保護層
8、13 シード層
9 無機絶縁層
10、14 レジストパターン
11 導体層(第1電極)
12 絶縁樹脂層
15 導体層(配線層)
16 導体層(第2電極)
17 最表面絶縁樹脂層
18 表面処理層
19 インターポーザ‐FC−BGA接合部
19a インターポーザ側の接合部
19b FC−BGA用配線基板側の接合部
20 レーザ光
21 半導体素子‐インターポーザ接合部
21a 銅ピラー
21b はんだ
23 配線基板
2、22 アンダーフィル
3 インターポーザ(第2配線基板)
4 半導体素子
5 支持体
6 剥離層
7 保護層
8、13 シード層
9 無機絶縁層
10、14 レジストパターン
11 導体層(第1電極)
12 絶縁樹脂層
15 導体層(配線層)
16 導体層(第2電極)
17 最表面絶縁樹脂層
18 表面処理層
19 インターポーザ‐FC−BGA接合部
19a インターポーザ側の接合部
19b FC−BGA用配線基板側の接合部
20 レーザ光
21 半導体素子‐インターポーザ接合部
21a 銅ピラー
21b はんだ
23 配線基板
Claims (13)
- 第1配線基板と、
前記第1配線基板に接合された、前記第1配線基板より微細な配線が形成された第2配線基板を備え、
前記第2配線基板の前記第1配線基板との接合面とは反対側の面に半導体素子が実装される配線基板において、
前記第2配線基板の、前記半導体素子が実装される側の面に形成された前記半導体素子との接合のための電極が、該面から突出した凸形状であることを特徴とする配線基板。 - 前記半導体素子がフリップチップ実装方式により実装される配線基板であることを特徴とする請求項1記載の配線基板。
- 前記半導体素子が実装される側の面の、前記半導体素子との接合のための電極を除く領域に無機物質からなる無機絶縁層が形成されていることを特徴とする請求項1または2に記載の配線基板。
- 前記無機絶縁層はシリコンナイトライドからなることを特徴とする請求項3に記載の配線基板。
- 前記第2配線基板は、配線層と絶縁樹脂層とにより形成された多層配線層を含み、
前記無機絶縁層は、前記多層配線層の前記半導体素子が実装される側の最表層をなす前記絶縁樹脂層上に形成されていることを特徴とする請求項3または4に記載の配線基板。 - 前記第2配線基板の前記半導体素子との接合のための電極は、前記第2配線基板表面から0.1μm以上5μm以下の高さで突出した凸形状であることを特徴とする請求項1〜5のいずれか一項に記載の配線基板。
- 第1配線基板と、前記第1配線基板に接合された、前記第1配線基板より微細な配線が形成された第2配線基板とを備え、前記第2配線基板の前記第1配線基板との接合面とは反対の面に半導体素子が実装される配線基板の製造方法であって、
支持体の一面上に剥離層を形成する工程と、
前記剥離層上に無機絶縁層を形成する工程と、
前記無機絶縁層をパターニングする工程と、
前記パターニングにより前記無機絶縁層が除去された領域に前記半導体素子との接合のための第1電極を形成する工程と、
前記第1電極及び前記無機絶縁層上に絶縁樹脂層と配線層からなる多層配線層を形成する工程と、
前記多層配線層の前記支持体とは反対側の面に前記第1配線基板との接合のための第2電極を形成する工程と、を有する前記第2配線基板を形成する工程と、
前記第1配線基板の一方の面に前記第2配線基板との接合のための第3電極を形成し、前記第2配線基板と前記第1配線基板を、前記第3電極と前記第2電極とで接合する工程と、
前記支持体を前記剥離層により前記第2配線基板から剥離し、その後前記第1電極と前記無機絶縁層を表面に露出させる工程と
前記無機絶縁層をドライエッチングすることで前記第1電極を凸形状にする工程と、を含むことを特徴とする配線基板の製造方法。 - 前記無機絶縁層をパターニングする工程が、前記無機絶縁層上にレジストパターンを形成する工程と、該レジストパターンをマスクとしてドライエッチングする工程とを含み、
前記第1電極を形成する工程において、前記第1電極を前記無機絶縁層よりも厚く形成することを特徴とする請求項7に記載の配線基板の製造方法。 - 前記第1電極を凸形状にする工程において、前記無機絶縁層を残存させるようにドライエッチングすることを特徴とする請求項7または8に記載の配線基板の製造方法。
- 前記第1電極を凸形状にする工程において、前記絶縁樹脂層を露出させるように前記無機絶縁層をドライエッチングすることを特徴とする請求項7または8に記載の配線基板の製造方法。
- 前記無機絶縁層を、シリコンナイトライドをCVD法で蒸着させることにより形成することを特徴とする請求項7〜10のいずれか一項に記載の配線基板の製造方法。
- 前記支持体はガラスであることを特徴とする請求項7〜11のいずれか一項に記載の配線基板の製造方法。
- 前記無機絶縁層の開口部を、前記半導体素子が接合される領域の平面視において前記最表層をなす絶縁樹脂層の開口部と略同一形状となるように形成することを特徴とする請求項7〜12のいずれか一項に記載の配線基板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019057400A JP2020161572A (ja) | 2019-03-25 | 2019-03-25 | 配線基板及び配線基板の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019057400A JP2020161572A (ja) | 2019-03-25 | 2019-03-25 | 配線基板及び配線基板の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020161572A true JP2020161572A (ja) | 2020-10-01 |
Family
ID=72639827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019057400A Pending JP2020161572A (ja) | 2019-03-25 | 2019-03-25 | 配線基板及び配線基板の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020161572A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025094490A1 (ja) * | 2023-10-30 | 2025-05-08 | Toppanホールディングス株式会社 | 多層配線基板および多層配線基板の製造方法 |
-
2019
- 2019-03-25 JP JP2019057400A patent/JP2020161572A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025094490A1 (ja) * | 2023-10-30 | 2025-05-08 | Toppanホールディングス株式会社 | 多層配線基板および多層配線基板の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7092031B2 (ja) | 配線基板の製造方法 | |
WO2020090601A1 (ja) | 半導体パッケージ用配線基板及び半導体パッケージ用配線基板の製造方法 | |
US20220078921A1 (en) | Method of producing circuit boards | |
WO2020085382A1 (ja) | 半導体パッケージ用配線基板、および半導体パッケージ用配線基板の製造方法 | |
WO2022124394A1 (ja) | 支持体付き基板ユニット、基板ユニット、および支持体付き基板ユニットの製造方法 | |
JP7650624B2 (ja) | 配線基板及び配線基板の製造方法 | |
JP7351107B2 (ja) | 配線基板及び配線基板の製造方法 | |
JP7497576B2 (ja) | 配線基板及び配線基板の製造方法 | |
JP7196936B2 (ja) | 半導体装置用配線基板の製造方法、及び半導体装置用配線基板 | |
JP2021114534A (ja) | 配線基板および配線基板の製造方法 | |
JP2020161572A (ja) | 配線基板及び配線基板の製造方法 | |
JP7528455B2 (ja) | 配線基板及び配線基板の製造方法 | |
JP7658101B2 (ja) | 支持体付き配線基板、支持体付き配線基板の製造方法、複合配線基板の製造方法及び機能デバイス付き配線基板の製造方法 | |
JP7635531B2 (ja) | 配線基板の製造方法 | |
JP2020077696A (ja) | 配線基板、及びそれを用いた半導体装置 | |
JP2022170158A (ja) | 多層配線基板 | |
JP7512644B2 (ja) | 配線基板及び配線基板の製造方法 | |
JP7528578B2 (ja) | 支持体付き基板ユニット、基板ユニット、半導体装置、および、支持体付き基板ユニットの製造方法 | |
JP7508879B2 (ja) | 支持体付き配線基板、配線基板、及び半導体装置 | |
JP7703859B2 (ja) | 支持体付き基板ユニット、基板ユニット、半導体装置、およびこれらの製造方法 | |
JP2021097104A (ja) | 複合配線基板及び複合配線基板の製造方法 | |
JP7491000B2 (ja) | 配線基板および配線基板の製造方法 | |
JP2020191380A (ja) | 配線基板の製造方法 | |
JP7516803B2 (ja) | 半導体装置、及び半導体装置の製造方法 | |
JP7552102B2 (ja) | 配線基板及び配線基板の製造方法 |