JP2020151805A - Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance - Google Patents
Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance Download PDFInfo
- Publication number
- JP2020151805A JP2020151805A JP2019052352A JP2019052352A JP2020151805A JP 2020151805 A JP2020151805 A JP 2020151805A JP 2019052352 A JP2019052352 A JP 2019052352A JP 2019052352 A JP2019052352 A JP 2019052352A JP 2020151805 A JP2020151805 A JP 2020151805A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- tool
- tin
- cutting tool
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010410 layer Substances 0.000 claims description 108
- 238000005520 cutting process Methods 0.000 claims description 46
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 43
- 239000000758 substrate Substances 0.000 claims description 31
- 239000011247 coating layer Substances 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 4
- 229910002090 carbon oxide Inorganic materials 0.000 claims description 3
- 238000005755 formation reaction Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000010935 stainless steel Substances 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 238000005299 abrasion Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000012495 reaction gas Substances 0.000 description 5
- 230000006378 damage Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この発明は、ステンレス鋼等を、高熱発生を伴い、刃先に高負荷が作用する高速連続切削加工した場合に、硬質被覆層が優れた耐チッピング性を備え、長期の使用にわって優れた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 According to the present invention, the hard coating layer has excellent chipping resistance when high-speed continuous cutting of stainless steel or the like is accompanied by high heat generation and a high load acts on the cutting edge, and is excellent in long-term use. It relates to a surface-coated cutting tool (hereinafter, may be referred to as a coated tool) that exhibits abrasion resistance.
切削工具の切削性能の改善を目的として、従来、炭化タングステン(以下、WCで示す)基超硬合金等で構成された工具基体(以下、これらを総称して工具基体ということがある)の表面に、硬質被覆層を形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
前記従来の硬質被覆層を形成した被覆工具は、比較的耐摩耗性に優れるものの、高速切削条件で用いた場合に、高温強度が不足し、チッピング等の異常損耗を発生しやすいことから、硬質被覆層の高温強度の改善について、工具基体からの元素の拡散によりTiNやTiCN皮膜に他の元素を添加する提案がなされている。
For the purpose of improving the cutting performance of cutting tools, the surface of a tool substrate (hereinafter, these may be collectively referred to as a tool substrate) made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or the like. There are coating tools in which a hard coating layer is formed, and these are known to exhibit excellent wear resistance.
Although the coating tool on which the conventional hard coating layer is formed has relatively excellent wear resistance, it is hard because it lacks high-temperature strength and is prone to abnormal wear such as chipping when used under high-speed cutting conditions. Regarding the improvement of the high temperature strength of the coating layer, it has been proposed to add other elements to the TiN or TiCN film by diffusing the elements from the tool substrate.
例えば、特許文献1には、工具基体表面より2層以上被覆し、1層目の厚さを1.0〜5μm、2層目以降の厚さを0.5〜10μmとする被覆工具において、前記工具基体表面より被覆外層に向かって前記工具基体中の主成分であるW、Coの拡散がx線強度比に於いて、W強度比:0≦W/(4a+5a+6a+Fe族)≦0.04、Co強度比:0≦Co/(4a+5a+6a+Fe族)≦0.02の範囲内であることを特徴とする被覆工具が記載されている。 For example, Patent Document 1 describes a covering tool that covers two or more layers from the surface of a tool substrate and has a thickness of the first layer of 1.0 to 5 μm and a thickness of the second and subsequent layers of 0.5 to 10 μm. The diffusion of W and Co, which are the main components in the tool substrate, from the surface of the tool substrate toward the outer layer of the coating is the W intensity ratio: 0 ≦ W / (4a + 5a + 6a + Fe group) ≦ 0.04 in the x-ray intensity ratio. A covering tool characterized in that the Co strength ratio is within the range of 0 ≦ Co / (4a + 5a + 6a + Fe group) ≦ 0.02 is described.
また、例えば、特許文献2には、工具基体と該工具基体上に形成された1または2以上の層を有する被覆層とを含み、前記層のうち前記工具基体と接する層は、TiN層であり、前記TiN層は、TiNとともにCを含み、前記Cは、前記TiN層の厚み方向に濃度分布を有しており、前記濃度分布は、前記Cの濃度が前記工具基体側から前記被覆層の表面側にかけて減少する領域を含み、前記濃度分布において、前記Cの最大濃度と最小濃度の差は、10原子%以上である、被覆工具が記載されている。 Further, for example, Patent Document 2 includes a tool substrate and a coating layer having one or more layers formed on the tool substrate, and the layer in contact with the tool substrate is a TiN layer. The TiN layer contains C together with TiN, and the C has a concentration distribution in the thickness direction of the TiN layer. In the concentration distribution, the concentration of C is from the tool substrate side to the coating layer. A covering tool is described in which the difference between the maximum concentration and the minimum concentration of C is 10 atomic% or more in the concentration distribution, which includes a region that decreases toward the surface side of the above.
近年の切削加工では、ステンレス鋼等の難切削材に対しても省力化および省エネ化の要求は強く、被覆工具に対する加工時の負荷が一段と高まっており、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわって優れた耐摩耗性が求められている。 In recent cutting, there is a strong demand for labor saving and energy saving even for difficult-to-cut materials such as stainless steel, and the load during machining on the covering tool is increasing, and the covering tool is even more resistant to chipping. Abnormal damage resistance such as resistance, fracture resistance, and peel resistance is required, and excellent wear resistance is required for long-term use.
しかし、前記特許文献1に記載された被覆工具は、ステンレス鋼等の難切削材の高速連続切削加工に供した場合には、早期に寿命に至っていた。 However, the covering tool described in Patent Document 1 has reached the end of its life at an early stage when it is subjected to high-speed continuous cutting of a difficult-to-cut material such as stainless steel.
また、前記特許文献2に記載された被覆工具も、ステンレス鋼等の難切削材の高速連続切削加工に供した場合、満足する耐チッピング性、耐摩耗性を有していなかった。 Further, the covering tool described in Patent Document 2 also does not have satisfactory chipping resistance and abrasion resistance when subjected to high-speed continuous cutting of difficult-to-cut materials such as stainless steel.
そこで、本発明は、ステンレス鋼等の高速連続切削加工に供した場合であっても、その被覆層が優れた靭性を備え、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することを目的とする。 Therefore, according to the present invention, the coating layer has excellent toughness even when subjected to high-speed continuous cutting of stainless steel or the like, and exhibits excellent chipping resistance and abrasion resistance over a long period of use. The purpose is to provide tools.
本発明者は、前記特許文献1〜2に記載された被覆工具がステンレス鋼等の高速断続切削加工に供した場合に、早期に寿命に至るのかを鋭意検討したところ、工具基体と被覆層との間の密着性が十分でないことを発見し、工具基体と被覆層の密着性は、工具基体に接する被覆層部分の特定部分にのみ所定量のCを拡散させることによりなし得るという新規な知見を得た。 The present inventor diligently examined whether the covering tool described in Patent Documents 1 and 2 would reach the end of its life at an early stage when it was subjected to high-speed intermittent cutting of stainless steel or the like. It was discovered that the adhesion between the tools was not sufficient, and a new finding that the adhesion between the tool substrate and the coating layer could be achieved by diffusing a predetermined amount of C only in a specific portion of the coating layer portion in contact with the tool substrate. Got
本発明は、この知見に基づくものであって、
「(1)工具基体の表面に、第1層とその上部に第2層を含む複数の層が積層された硬質被覆層を設けた表面被覆切削工具であって、
前記硬質被覆層のうち、前記工具基材と接する前記第1層はTiN層であり、前記工具基体と前記TiN層との界面から0.1μmの範囲内の界面領域における前記TiN層を構成するTiN結晶粒子の平均粒径が30nm以下であり、該界面領域には5.0〜35.0原子%のCを含むことを特徴とする、表面被覆切削工具。
(2)前記界面領域には、工具基体との界面から0.1μmの範囲内で、前記TiN結晶粒子の粒界に、3.0〜15.0原子%のCo、3.0〜15.0原子%のWの少なくとも一方を含むことを特徴とする、前記(1)に記載の表面被覆切削工具。
(3)前記界面領域では、前記TiN結晶粒の粒界におけるCの含有割合がその粒内における含有割合よりも3.0〜10.0原子%高いことを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(4)前記TiN層は、0.1〜1.0μmの平均層厚であることを特徴とする前記(1)〜(3)のいずれかに記載の表面被覆切削工具。
(5)前記第2層として、周期表の4〜6族元素およびAlからなる群より選ばれた1または2以上の元素からなる炭化物層、窒化物層、酸化物層、炭窒化物層、炭酸化物層、炭窒酸化物層のいずれか1層または2以上の層が、1.0〜20.0μmの合計層厚で形成されていることを特徴とする前記(1)〜(4)のいずれかに記載の表面被覆切削工具。」
である。
The present invention is based on this finding.
"(1) A surface-coated cutting tool provided with a hard coating layer in which a first layer and a plurality of layers including a second layer are laminated on the surface of a tool substrate.
Among the hard coating layers, the first layer in contact with the tool substrate is a TiN layer, which constitutes the TiN layer in an interface region within 0.1 μm from the interface between the tool substrate and the TiN layer. A surface coating cutting tool characterized in that the average particle size of TiN crystal particles is 30 nm or less, and the interface region contains 5.0 to 35.0 atomic% of C.
(2) In the interface region, within a range of 0.1 μm from the interface with the tool substrate, at the grain boundaries of the TiN crystal particles, Co, 3.0 to 15.0 atomic%, 3.0 to 15. The surface coating cutting tool according to (1) above, which contains at least one of 0 atomic% W.
(3) In the interface region, the content ratio of C at the grain boundary of the TiN crystal grains is 3.0 to 10.0 atomic% higher than the content ratio in the grains. The surface coating cutting tool according to 2).
(4) The surface coating cutting tool according to any one of (1) to (3) above, wherein the TiN layer has an average layer thickness of 0.1 to 1.0 μm.
(5) As the second layer, a carbide layer, a nitride layer, an oxide layer, a carbonitride layer, which is composed of one or more elements selected from the group consisting of Group 4 to 6 elements and Al in the periodic table. The above (1) to (4), wherein any one layer or two or more layers of the carbon oxide layer and the carbonitride oxide layer are formed with a total layer thickness of 1.0 to 20.0 μm. The surface coating cutting tool described in any of. "
Is.
本発明は、ステンレス鋼等の高速連続切削加工に供した場合であっても、その被覆層が優れた靭性を備え、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する。 According to the present invention, the coating layer has excellent toughness even when subjected to high-speed continuous cutting of stainless steel or the like, and exhibits excellent chipping resistance and abrasion resistance over a long period of use.
以下、本発明について詳述する。本明細書、特許請求の範囲で「X〜Y」と表記して範囲を記載する場合は、範囲の上限と下限を含むこと(すなわち、X以上Y以下)を表しており、Xに単位の記載がなくYにのみ単位の記載がされているときは、Xの単位はYの単位と同じである。 Hereinafter, the present invention will be described in detail. In the present specification, when the range is described as "X to Y" in the claims, it means that the upper limit and the lower limit of the range are included (that is, X or more and Y or less), and the unit is X. When there is no description and the unit is described only in Y, the unit of X is the same as the unit of Y.
硬質被覆層:
硬質被覆層は、第1層とその上部(工具表面側)の第2層からなり、工具基体に接する第1層はCを含むTiN層であり、第2層は、周期表の4〜6族元素およびAlからなる群より選ばれた1または2以上の元素からなる炭化物層、窒化物層、酸化物層、炭窒化物層、炭酸化物層、炭窒酸化物層のいずれか1層または2以上の層である。
Hard coating layer:
The hard coating layer is composed of a first layer and a second layer above it (on the tool surface side), the first layer in contact with the tool substrate is a TiN layer containing C, and the second layer is 4 to 6 in the periodic table. Any one of a carbide layer, a nitride layer, an oxide layer, a carbon nitride layer, a carbon oxide layer, and a carbon dioxide oxide layer selected from the group consisting of group elements and Al or two or more elements. Two or more layers.
(1)第1層:
第1層は、TiN層であり(ここでいうTiNとは、化学量論的にTiとNが化合しているものに限らない)、工具基体と硬質被覆層との密着性を向上させる目的のために設けるものである。その平均層厚は0.1〜1.0μmである。この平均層厚の範囲とした理由は、0.1μm未満であると第1層を設ける前記目的が達成できず、1.0μmを超えると上部層を薄くせざるを得ず、耐摩耗性が低下するためである。
(1) First layer:
The first layer is a TiN layer (the TiN here is not limited to a stoichiometric combination of Ti and N), and the purpose is to improve the adhesion between the tool substrate and the hard coating layer. It is provided for the purpose. Its average layer thickness is 0.1 to 1.0 μm. The reason for setting the average layer thickness within this range is that if it is less than 0.1 μm, the above-mentioned purpose of providing the first layer cannot be achieved, and if it exceeds 1.0 μm, the upper layer must be thinned and the wear resistance is improved. This is because it decreases.
第1層であるTiN層は、前記目的を達成するために、工具基体の界面から0.1μmまでの界面領域では、C含有量が5.0〜35.0原子%となるようにCが存在し、前記界面領域におけるTiN結晶粒の平均粒径が30nm以下であることが好ましい。この理由は、前記界面領域にCが存在することにより、TiN結晶粒の粒径が小さくなって、工具基体中成分が拡散する経路が増加して、工具基体とTiN層との密着性が向上するためである。 In order to achieve the above purpose, the TiN layer, which is the first layer, contains C so as to have a C content of 5.0 to 35.0 atomic% in the interface region from the interface of the tool substrate to 0.1 μm. It is present, and the average particle size of TiN crystal grains in the interface region is preferably 30 nm or less. The reason for this is that the presence of C in the interface region reduces the particle size of the TiN crystal grains, increases the path for the components in the tool substrate to diffuse, and improves the adhesion between the tool substrate and the TiN layer. To do.
すなわち、前記界面領域を工具基体の界面から0.1μmまでの領域とする理由は、0.1μm未満であると第1層を設ける前記目的が達成できないためである。そして、拡散させるCを含有量が5.0〜35.0原子%とする理由は、5.0原子%未満では、後述する前記目的を達成するために必要なTiN結晶粒の結晶粒を30nm以下とすることができず、また、35.0原子%超えるとCの含有量が過剰となり、TiN層の靱性が損なわれるため工具寿命の低下につながるためである。 That is, the reason why the interface region is a region from the interface of the tool substrate to 0.1 μm is that if it is less than 0.1 μm, the purpose of providing the first layer cannot be achieved. The reason why the content of C to be diffused is 5.0 to 35.0 atomic% is that if the content is less than 5.0 atomic%, the crystal grains of TiN crystal grains necessary for achieving the above-mentioned object described later are 30 nm. This is because the following cannot be achieved, and if it exceeds 35.0 atomic%, the C content becomes excessive and the toughness of the TiN layer is impaired, which leads to a decrease in tool life.
ここで、前記界面領域のTiN粒子において、その結晶粒界におけるCの含有割合が粒内における含有割合よりも3〜10原子%高いことがより好ましい。その理由は、3原子%未満である場合はCの拡散量が少ないため、付着強度向上の効果が十分ではなく、一方で10原子%を超える場合は、C原子が過剰に粒界に存在することにより、破壊の起点となり得るためである。 Here, it is more preferable that the content ratio of C at the grain boundary of the TiN particles in the interface region is 3 to 10 atomic% higher than the content ratio in the particles. The reason is that when it is less than 3 atomic%, the amount of diffusion of C is small, so that the effect of improving the adhesion strength is not sufficient, while when it exceeds 10 atomic%, C atoms are excessively present at the grain boundaries. This is because it can be a starting point of destruction.
また、前記界面領域には、TiN粒子の粒界に、3〜15原子%のCo、または、3〜15原子%のWの少なくとも一方を含むことがより好ましい。その理由は、CoおよびWの含有量がそれぞれ3原子%未満である場合は母材からの拡散量が少ないため、付着強度向上の効果が十分ではなく、一方で、CoおよびWの含有量がそれぞれ15原子%を超えると、これらの原子が過剰に粒界に存在することにより、破壊の起点となり得るためである。 Further, it is more preferable that the interface region contains at least one of Co in 3 to 15 atomic% or W in 3 to 15 atomic% in the grain boundary of TiN particles. The reason is that when the contents of Co and W are less than 3 atomic%, the amount of diffusion from the base metal is small, so that the effect of improving the adhesion strength is not sufficient, while the contents of Co and W are high. This is because if each exceeds 15 atomic%, these atoms are excessively present at the grain boundaries and can be a starting point of destruction.
粒界は、硬質被覆層の縦断面(工具基体に垂直な断面)を電界放出型電子顕微鏡で観察し、EsB検出器を用いた組成像により判断し、TiN粒子の粒界および粒内におけるCの含有量、および粒界のCo、Wの含有量は、それぞれ、透過型電子顕微鏡を用いて観察し、エネルギー分散型X線分光法により測定する。 The grain boundaries are determined by observing the vertical cross section of the hard coating layer (cross section perpendicular to the tool substrate) with a field emission electron microscope and judging from the composition image using an EsB detector, and the grain boundaries of TiN particles and C in the grains. The content of Co and W at the grain boundaries are observed using a transmission electron microscope and measured by energy dispersion type X-ray spectroscopy.
TiN結晶粒の粒径は30nmを超えると、工具基体中のCo、W等の成分が拡散する経路の増加が十分ではなく、第1層を設ける前記目的が達成できない。なお、TiN結晶粒の粒径の下限値は特に制約がないが、1.0nmとすることが好ましい。 If the particle size of the TiN crystal grains exceeds 30 nm, the number of paths through which components such as Co and W in the tool substrate are diffused is not sufficiently increased, and the above-mentioned purpose of providing the first layer cannot be achieved. The lower limit of the particle size of the TiN crystal grains is not particularly limited, but is preferably 1.0 nm.
そして、TiNの結晶粒の粒径は、TiN層領域に工具基体に平行な0.5μmの長さの直線を横切る粒界の数を数え、0.75/(横切る粒界の数)μmとして求める。 The grain size of the TiN crystal grains is 0.75 / (the number of grain boundaries crossing) μm by counting the number of grain boundaries crossing a straight line having a length of 0.5 μm parallel to the tool substrate in the TiN layer region. Ask.
(2)第2層
第1層(TiN層)の上部(工具表面側)の第2層は、耐摩耗性、耐チッピング性を与えるものであり、周期表の4〜6族元素およびAlからなる群より選ばれた1または2以上の元素からなる炭化物層、窒化物層、酸化物層、炭窒化物層、炭酸化物層、炭窒酸化物層のいずれか1層または2以上を適宜選択したものであり、その合計層厚は1.0〜20.0μmであることが好ましい。合計層厚をこの範囲とする理由は、1.0μm未満では第2層の効果が十分に発揮されず、20.0μmを超えると第2層の結晶粒が粗大化しやすくなって、チッピングが発生しやすくなるためである。
(2) Second layer The second layer on the upper part (tool surface side) of the first layer (TiN layer) provides abrasion resistance and chipping resistance, and is derived from Group 4 to 6 elements and Al in the periodic table. One or more of a carbide layer, a nitride layer, an oxide layer, a nitride layer, a coal oxide layer, and a carbon dioxide oxide layer composed of one or more elements selected from the above group is appropriately selected. The total layer thickness is preferably 1.0 to 20.0 μm. The reason why the total layer thickness is within this range is that if it is less than 1.0 μm, the effect of the second layer is not sufficiently exhibited, and if it exceeds 20.0 μm, the crystal grains of the second layer tend to be coarsened and chipping occurs. This is because it becomes easier to do.
なお、各層の平均層厚は、工具基体に垂直な方向の断面(層厚方向の断面、縦断面)を、走査型電子顕微鏡を用いて、適切な倍率、例えば、倍率5000倍で観察し、刃先稜線部近傍の観察視野内5点の層厚を測定し、平均して求めた。 For the average layer thickness of each layer, a cross section in the direction perpendicular to the tool substrate (cross section in the layer thickness direction, vertical cross section) was observed using a scanning electron microscope at an appropriate magnification, for example, a magnification of 5000 times. The layer thicknesses at 5 points in the observation field near the ridgeline of the cutting edge were measured and averaged.
工具基体
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
Tool Base As the tool base, any base material conventionally known as this type of tool base can be used as long as it does not hinder the achievement of the object of the present invention. For example, cemented carbide (WC-based cemented carbide, WC, as well as those containing Co or added with carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, etc.) , TiCN or the like as a main component), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body is preferable.
製造方法
本発明に係る硬質被覆層は、第1層の成膜後に第2層を成膜するものであって、それぞれの成膜は、例えば、以下のようにして成膜することができる。ここで、第2層の成膜は、特に制約がなく、公知の成膜方法を適用することができるが、一例として、TiCN層を示す。
Manufacturing Method The hard coating layer according to the present invention forms a second layer after the first layer is formed, and each of the hard coating layers can be formed as follows, for example. Here, the film formation of the second layer is not particularly limited, and a known film formation method can be applied, but the TiCN layer is shown as an example.
1.第1層成膜工程
次の2工程を有する。
(1)TiN成膜前の工程
反応ガス組成(容量%):N2:40.0〜60.0%、H2:残
反応雰囲気温度:900〜1100℃
反応雰囲気圧力:5.0〜20.0kPa
反応時間:120分〜180分
(2)TiN成膜工程
反応ガス組成(容量%):TiCl4:3.5〜5.0%、
N2:15.0〜35.0%、H2:残
反応雰囲気温度:900〜1100℃
反応雰囲気圧力:5.0〜20.0kPa
1. 1. First layer film formation process It has the following two steps.
(1) Process before TiN film formation Reaction gas composition (volume%): N 2 : 40.0 to 60.0%, H 2 : Residual reaction atmosphere temperature: 900 to 1100 ° C.
Reaction atmosphere pressure: 5.0-20.0 kPa
Reaction time: 120 minutes to 180 minutes (2) TiN film formation process Reaction gas composition (volume%): TiCl 4 : 3.5 to 5.0%,
N 2 : 15.0 to 35.0%, H 2 : Residual reaction atmosphere temperature: 900 to 1100 ° C
Reaction atmosphere pressure: 5.0-20.0 kPa
2.第2層成膜工程(TiCN層を成膜する場合)
反応ガス組成(容量%):TiCl4:1.0〜5.0%、
CH3CN:0.5〜1.5%、N2:8.0〜25.0%、
H2:残
反応雰囲気温度:850〜920℃
反応雰囲気圧力:5.0〜9.0kPa
2. 2. Second layer film formation process (when forming a TiCN layer)
Reaction gas composition (volume%): TiCl 4 : 1.0 to 5.0%,
CH 3 CN: 0.5-1.5%, N 2 : 8.0-25.0%,
H 2 : Residual reaction atmosphere temperature: 850 to 920 ° C
Reaction atmosphere pressure: 5.0-9.0 kPa
次に、実施例について説明する。
ここでは、本発明被覆工具の実施例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体として、前述のものを用いた場合であっても同様であるし、ドリル、エンドミルに適用した場合も同様である。
Next, an embodiment will be described.
Here, as an example of the coated tool of the present invention, a tool applied to an insert cutting tool using a WC-based cemented carbide as a tool base will be described, but the same applies even when the above-mentioned tool base is used. The same applies when applied to drills and end mills.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr3C2粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. It was blended into the composition, further added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was pressed in a vacuum of 5 Pa at 1370. Vacuum sintered at a predetermined temperature within the range of ~ 1470 ° C. under the condition of holding for 1 hour, and after sintering, manufacture tool bases A to C made of WC-based superhard alloy having an insert shape of ISO standard CNMG120412. did.
次に、これら工具基体A〜Cの表面に、CVD装置を用いて、順に第1層、第2層を形成し、表4に示される本発明被覆工具1〜12を得た。
成膜条件は、表2〜3に記載したとおりであるが、第1層の成膜工程は、概ね、次のとおりであった。
Next, a first layer and a second layer were formed on the surfaces of these tool bases A to C in order using a CVD apparatus to obtain the coated tools 1 to 12 of the present invention shown in Table 4.
The film forming conditions are as shown in Tables 2 and 3, but the film forming process of the first layer was generally as follows.
第1層成膜工程
(1)TiN成膜前の工程
反応ガス組成(容量%):N2:40.0〜60.0%、H2:残
反応雰囲気温度:900〜1100℃
反応雰囲気圧力:5.0〜20.0kPa
反応時間:120分〜180分
(2)TiN成膜工程
反応ガス組成(容量%):TiCl4:3.5〜5.0%、
N2:15.0〜35.0%、H2:残
反応雰囲気温度:900〜1100℃
反応雰囲気圧力:5.0〜20.0kPa
2.第2層成膜工程
第2層の成膜工程は、表3に示したとおりであった。
First layer film formation step (1) Step before TiN film formation Reaction gas composition (volume%): N 2 : 40.0 to 60.0%, H 2 : Residual reaction atmosphere temperature: 900 to 1100 ° C.
Reaction atmosphere pressure: 5.0-20.0 kPa
Reaction time: 120 minutes to 180 minutes (2) TiN film formation process Reaction gas composition (volume%): TiCl 4 : 3.5 to 5.0%,
N 2 : 15.0 to 35.0%, H 2 : Residual reaction atmosphere temperature: 900 to 1100 ° C
Reaction atmosphere pressure: 5.0-20.0 kPa
2. 2. Second layer film formation step The second layer film formation step was as shown in Table 3.
また、比較の目的で、工具基体A〜Cの表面に、表2〜3に示される条件によりCVDを行うことにより、表4に示す比較被覆工具1〜12を製造した。 Further, for the purpose of comparison, comparative covering tools 1 to 12 shown in Table 4 were manufactured by performing CVD on the surfaces of the tool bases A to C under the conditions shown in Tables 2 and 3.
表4において、平均層厚は、本発明被覆工具1〜12、比較被覆工具1〜12の各構成層の縦断面(工具基体表面に垂直な方向の断面)を、走査型電子顕微鏡を用いて適切な倍率(倍率5000倍)を選択して観察し、観察視野内の5点の層厚を測って平均して求めた。また、前記界面領域におけるC、Co、Wの含有量は前述の方法により求めた。 In Table 4, the average layer thickness is the vertical cross section (cross section in the direction perpendicular to the surface of the tool substrate) of each constituent layer of the covering tools 1 to 12 of the present invention and the comparative covering tools 1 to 12, using a scanning electron microscope. An appropriate magnification (magnification of 5000 times) was selected and observed, and the layer thicknesses of 5 points in the observation field were measured and averaged. The contents of C, Co, and W in the interface region were determined by the above-mentioned method.
続いて、前記本発明被覆工具1〜12および比較被覆工具1〜12について、いずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、以下に示す、ステンレス鋼の湿式切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。表5に、切削試験の結果を示す。なお、比較被覆工具1〜12については、チッピング発生が原因で切削時間終了前に寿命に至ったため、寿命に至るまでの時間を示す。 Subsequently, with respect to the covering tools 1 to 12 and the comparative covering tools 1 to 12 of the present invention, all of the stainless steel shown below are clamped to the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig. A wet cutting test was carried out, and the flank wear width of the cutting edge was measured. Table 5 shows the results of the cutting test. The comparative covering tools 1 to 12 have reached the end of their life before the end of the cutting time due to the occurrence of chipping, so the time until the end of the life is shown.
切削試験1
被削材:JIS・SUS304 外径100mmの丸棒
切削速度:200m/秒
切り込み:1.5mm
1回転当たりの送り:0.3mm
切削時間:15分
Cutting test 1
Work material: JIS / SUS304 Round bar with an outer diameter of 100 mm Cutting speed: 200 m / sec Cutting: 1.5 mm
Feed per rotation: 0.3 mm
Cutting time: 15 minutes
切削試験2
被削材:JIS・SUS316 外径100mmの丸棒
切削速度:150m/秒
切り込み:2.0mm
1回転当たりの送り:0.2mm
切削時間:15分
Cutting test 2
Work material: JIS / SUS316 Round bar with an outer diameter of 100 mm Cutting speed: 150 m / sec Cutting: 2.0 mm
Feed per rotation: 0.2 mm
Cutting time: 15 minutes
切削試験3
被削材:JIS・SUS630 外径100mmの丸棒
切削速度:120m/秒
切り込み:2.0mm
1回転当たりの送り:0.15mm
切削時間:8分
Cutting test 3
Work material: JIS / SUS630 Round bar with an outer diameter of 100 mm Cutting speed: 120 m / sec Cutting: 2.0 mm
Feed per rotation: 0.15 mm
Cutting time: 8 minutes
表5に示される結果から、本発明被覆工具は、ステンレス鋼等の高速連続切削において、優れた耐チッピング性、耐摩耗性を発揮しているが、これに対して、本発明に規定する界面領域におけるTiN層を構成するTiN結晶粒子の平均粒径、該領域に含まれているC含有量を満足しない比較被覆工具は、チッピングを発生し短時間で工具寿命に至っていることが明らかである。 From the results shown in Table 5, the coated tool of the present invention exhibits excellent chipping resistance and abrasion resistance in high-speed continuous cutting of stainless steel and the like, whereas the interface specified in the present invention is used. It is clear that a comparative covering tool that does not satisfy the average particle size of the TiN crystal particles constituting the TiN layer in the region and the C content contained in the region causes chipping and reaches the tool life in a short time. ..
この発明の被覆工具は、ステンレス鋼の高速連続切削加工ばかりでなく、各種の被削材の被覆工具として使用することができ、しかも、長期の使用にわたって耐チッピング性を有するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネルギー化、さらには、低コスト化にも十分満足に対応できるものである。 The covering tool of the present invention can be used not only for high-speed continuous cutting of stainless steel but also as a covering tool for various work materials, and has chipping resistance over a long period of time. It is possible to fully satisfy the improvement of the performance of the equipment, the labor saving and the energy saving of the cutting process, and the cost reduction.
Claims (5)
前記硬質被覆層のうち、前記工具基材と接する前記第1層はTiN層であり、前記工具基体と前記TiN層との界面から0.1μmの範囲内の界面領域における前記TiN層を構成するTiN結晶粒子の平均粒径が30nm以下であり、該界面領域には5.0〜35.0原子%のCを含むことを特徴とする、表面被覆切削工具。 A surface-coated cutting tool provided with a hard coating layer in which a first layer and a plurality of layers including a second layer are laminated on the surface of a tool substrate.
Among the hard coating layers, the first layer in contact with the tool substrate is a TiN layer, which constitutes the TiN layer in an interface region within 0.1 μm from the interface between the tool substrate and the TiN layer. A surface coating cutting tool characterized in that the average particle size of TiN crystal particles is 30 nm or less, and the interface region contains 5.0 to 35.0 atomic% of C.
As the second layer, a carbide layer, a nitride layer, an oxide layer, a carbonitride layer, a carbon oxide layer composed of one or more elements selected from the group consisting of Group 4 to 6 elements and Al in the periodic table. The invention according to any one of claims 1 to 4, wherein any one layer or two or more layers of the carbonitride oxide layer is formed with a total layer thickness of 1.0 to 20.0 μm. Surface coating cutting tool.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019052352A JP7373110B2 (en) | 2019-03-20 | 2019-03-20 | Surface-coated cutting tools with hard coating layer that exhibits excellent wear resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019052352A JP7373110B2 (en) | 2019-03-20 | 2019-03-20 | Surface-coated cutting tools with hard coating layer that exhibits excellent wear resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020151805A true JP2020151805A (en) | 2020-09-24 |
JP7373110B2 JP7373110B2 (en) | 2023-11-02 |
Family
ID=72557128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019052352A Active JP7373110B2 (en) | 2019-03-20 | 2019-03-20 | Surface-coated cutting tools with hard coating layer that exhibits excellent wear resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7373110B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115786875A (en) * | 2022-11-23 | 2023-03-14 | 中南大学 | A coating with enhanced toughness and wear resistance, its preparation method and application |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05237707A (en) * | 1992-02-26 | 1993-09-17 | Hitachi Tool Eng Ltd | Coated tool |
JPH08187608A (en) * | 1995-01-05 | 1996-07-23 | Mitsubishi Materials Corp | Cutting tool of surface coated wc based cemented carbide |
JPH08318406A (en) * | 1995-05-19 | 1996-12-03 | Sumitomo Electric Ind Ltd | Coated cutting tools |
JPH1015707A (en) * | 1996-07-02 | 1998-01-20 | Sumitomo Electric Ind Ltd | Coated silicon nitride based tool |
JP2000355777A (en) * | 1999-06-14 | 2000-12-26 | Toshiba Tungaloy Co Ltd | Surface coated sintered alloy excellent in adhesion and its production |
JP2011152602A (en) * | 2010-01-27 | 2011-08-11 | Mitsubishi Materials Corp | Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance |
JP2011218543A (en) * | 2009-12-25 | 2011-11-04 | Mitsubishi Materials Corp | Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance |
WO2013157472A1 (en) * | 2012-04-19 | 2013-10-24 | 住友電工ハードメタル株式会社 | Surface-coated cutting tool |
CN103510061A (en) * | 2013-10-12 | 2014-01-15 | 萨姆森涂层纳米科技(上海)有限公司 | Method for preparing high-rigidity and high-elasticity modulus TiSiN protection coating |
WO2017038762A1 (en) * | 2015-08-29 | 2017-03-09 | 京セラ株式会社 | Coated tool |
-
2019
- 2019-03-20 JP JP2019052352A patent/JP7373110B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05237707A (en) * | 1992-02-26 | 1993-09-17 | Hitachi Tool Eng Ltd | Coated tool |
JPH08187608A (en) * | 1995-01-05 | 1996-07-23 | Mitsubishi Materials Corp | Cutting tool of surface coated wc based cemented carbide |
JPH08318406A (en) * | 1995-05-19 | 1996-12-03 | Sumitomo Electric Ind Ltd | Coated cutting tools |
JPH1015707A (en) * | 1996-07-02 | 1998-01-20 | Sumitomo Electric Ind Ltd | Coated silicon nitride based tool |
JP2000355777A (en) * | 1999-06-14 | 2000-12-26 | Toshiba Tungaloy Co Ltd | Surface coated sintered alloy excellent in adhesion and its production |
JP2011218543A (en) * | 2009-12-25 | 2011-11-04 | Mitsubishi Materials Corp | Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance |
JP2011152602A (en) * | 2010-01-27 | 2011-08-11 | Mitsubishi Materials Corp | Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance |
WO2013157472A1 (en) * | 2012-04-19 | 2013-10-24 | 住友電工ハードメタル株式会社 | Surface-coated cutting tool |
JP6041160B2 (en) * | 2012-04-19 | 2016-12-07 | 住友電工ハードメタル株式会社 | Surface coated cutting tool |
CN103510061A (en) * | 2013-10-12 | 2014-01-15 | 萨姆森涂层纳米科技(上海)有限公司 | Method for preparing high-rigidity and high-elasticity modulus TiSiN protection coating |
WO2017038762A1 (en) * | 2015-08-29 | 2017-03-09 | 京セラ株式会社 | Coated tool |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115786875A (en) * | 2022-11-23 | 2023-03-14 | 中南大学 | A coating with enhanced toughness and wear resistance, its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JP7373110B2 (en) | 2023-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5328653B2 (en) | Ti-based cermet, coated cermet and cutting tool | |
EP3747575B1 (en) | Coated tool, and cutting tool comprising same | |
WO2011052767A1 (en) | Surface coated cutting tool with excellent chip resistance | |
WO2016148056A1 (en) | Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance | |
JP4474646B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
EP3747577B1 (en) | Coated tool and cutting tool comprising said coated tool | |
WO2018030329A1 (en) | Surface-coated cutting tool with excellent adhesion-induced chipping resistance and peel resistance | |
JP6614446B2 (en) | Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer | |
JP5041222B2 (en) | Surface coated cutting tool | |
JP2004122269A (en) | Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting | |
JP2010274330A (en) | Surface coated cutting tool | |
JP2020151805A (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance | |
JP2019155570A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance | |
JP5267767B2 (en) | Surface coated cutting tool | |
JP4863071B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP2018164951A (en) | Surface-coated cutting tool | |
EP3747576A1 (en) | Coated tool, and cutting tool comprising same | |
JP2018051674A (en) | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and peeling resistance | |
JP2017179474A (en) | Hard metal used for tool for processing nonmetallic material | |
JP2017177237A (en) | Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer | |
JP2019155569A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance | |
EP3964310B1 (en) | Coated cutting tool with improved chipping resistance | |
JP2018164950A (en) | Surface-coated cutting tool | |
JP4474647B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4849221B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231004 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7373110 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |