[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020009620A - Heat-resistant core for electric wire - Google Patents

Heat-resistant core for electric wire Download PDF

Info

Publication number
JP2020009620A
JP2020009620A JP2018129291A JP2018129291A JP2020009620A JP 2020009620 A JP2020009620 A JP 2020009620A JP 2018129291 A JP2018129291 A JP 2018129291A JP 2018129291 A JP2018129291 A JP 2018129291A JP 2020009620 A JP2020009620 A JP 2020009620A
Authority
JP
Japan
Prior art keywords
heat
cable
fiber
resistant
resistant core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018129291A
Other languages
Japanese (ja)
Inventor
弘展 山下
Hironobu Yamashita
弘展 山下
正治 小出
Shoji Koide
正治 小出
文弘 松田
Fumihiro Matsuda
文弘 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seiko Co Ltd
Original Assignee
Tokyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seiko Co Ltd filed Critical Tokyo Seiko Co Ltd
Priority to JP2018129291A priority Critical patent/JP2020009620A/en
Priority to CN201920973179.7U priority patent/CN209859654U/en
Priority to CN201910561367.3A priority patent/CN110690005A/en
Publication of JP2020009620A publication Critical patent/JP2020009620A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/182Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments
    • H01B7/1825Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments forming part of a high tensile strength core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Insulated Conductors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

To provide a heat-resistant core for electric wires capable of maintaining tensile strength even when exposed to a high temperature over a long term or suppressing the reduction of the tensile strength.SOLUTION: A heat-resistant core 10 for electric wires for supporting a plurality of aluminum wires 21 and 31 twisted therearound from the center is formed by twisting seven heat-resistant CFRP cables 11. Each of the heat-resistant CFRP cables 11 comprises: a CFRP cable formed of a fiber bundle obtained by bundling a plurality of carbon fibers continuous in the longitudinal direction and an epoxy resin impregnated into the fiber bundle; and an oxygen blocking layer provided on the surface of the CFRP cable and capable of preventing oxygen in the air from touching the CFRP cable.SELECTED DRAWING: Figure 1

Description

この発明は,電線用耐熱コアに関する。   The present invention relates to a heat-resistant core for electric wires.

鉄塔と鉄塔との間に長距離にわたって張り渡される架空送電線には,軽量であること,引張強度が大きいこと,大電流を流すことができること等が求められる。亜鉛メッキ鋼線の単線または撚り線(鋼線コア)が中心に配置され,その周囲に複数本のアルミ線が撚り合わされた鋼心アルミ線(ACSR)(Aluminum Conductor Steel Reinforced )が架空送電線として主流であるが,近年では,さらなる軽量化や引張強度の増強を図るために,鋼線コアに代えて繊維強化プラスチック製コアを採用した繊維心アルミ線(ACFR)(Aluminum Conductor Fiber Reinforced )も架空送電線として用いられている。繊維強化プラスチック製コアは電線の補強材としての利用に適している。   Overhead transmission lines spanning long distances between towers are required to be lightweight, have high tensile strength, and be able to carry large currents. Single conductor or stranded wire (steel wire core) of galvanized steel wire is placed at the center, and multiple aluminum wires are twisted around it, and Aluminum Conductor Steel Reinforced (ACSR) is used as overhead transmission line In recent years, in order to further reduce weight and increase tensile strength, in recent years, fiber-conducting aluminum wires (ACFR) (Aluminum Conductor Fiber Reinforced), which use fiber-reinforced plastic cores instead of steel wire cores, are also fictitious. Used as transmission lines. The fiber reinforced plastic core is suitable for use as a reinforcing material for electric wires.

アルミ線を流れる電流によって架空送電線は恒常的に 100℃を超える熱に晒される。架空送電線を構成するアルミ線については,アルミニウムにジルコニウム等を添加した耐熱アルミ合金を用いることで軟化温度を高め,引張強度を維持することが行われている。他方,架空送電線を構成する繊維強化プラスチック製コアについては,耐熱性に優れるビスフェノールA型エポキシ樹脂,多官能型エポキシ樹脂等を,繊維に含浸させるといった耐熱対策が行われている。また,特許文献1は,エポキシ樹脂とアルミニウムまたはニッケルのいずれかとの混合物を繊維強化複合材に被覆することによって耐摩耗性,耐食性を繊維強化複合材に持たせるものを記載する。   The overhead transmission line is constantly exposed to heat exceeding 100 ° C due to the current flowing through the aluminum wire. As for the aluminum wire constituting the overhead power transmission line, a heat-resistant aluminum alloy obtained by adding zirconium or the like to aluminum is used to increase the softening temperature and maintain the tensile strength. On the other hand, for fiber-reinforced plastic cores constituting overhead power transmission lines, heat resistance measures such as impregnating fibers with bisphenol A type epoxy resin, polyfunctional type epoxy resin, etc. having excellent heat resistance have been taken. Patent Document 1 describes a fiber reinforced composite material having abrasion resistance and corrosion resistance by coating a fiber reinforced composite material with a mixture of an epoxy resin and either aluminum or nickel.

特開2001−287312号公報JP-A-2001-287312

一般的に,架空送電線は,山岳地帯,着氷雪地帯,海峡や河川横断など,地形的条件または自然条件の過酷な地域に張り渡され,長期にわたって張り替えられることなく使用される。したがって,架空送電線の補強材として用いられる繊維強化プラスチック製コアについても, 100℃を超える熱に長期間にわたって晒されてもその引張強度の低下をできるだけ抑制することが求められる。   In general, overhead power transmission lines are installed over severe areas of topographical or natural conditions such as mountainous areas, icing snow areas, straits and river crossings, and are used without being replaced for a long time. Therefore, it is required that the fiber-reinforced plastic core used as a reinforcing material for overhead power transmission lines be kept as low as possible in the tensile strength even if it is exposed to heat exceeding 100 ° C for a long period of time.

この発明は,長期間にわたって高温に晒されても所定の引張強度を維持することができる,または引張強度の低下を緩やかにすることができる,電線用耐熱コアを提供することを目的とする。   An object of the present invention is to provide a heat-resistant core for electric wires that can maintain a predetermined tensile strength even when exposed to a high temperature for a long period of time, or can moderate a decrease in the tensile strength.

この発明による電線用耐熱コアは,周囲に撚り合わされる複数本の導電性金属線を中心から支持するものであって,長手方向に連続する複数本の繊維を束ねた繊維束と上記繊維束に含浸される樹脂とから構成される繊維強化樹脂ケーブル,および上記繊維強化樹脂ケーブルの表面に設けられ,空気中の酸素を上記繊維強化樹脂ケーブルに触れにくくする酸素遮断層を備えている。   A heat-resistant core for electric wires according to the present invention supports a plurality of conductive metal wires twisted around the center from the center, and includes a fiber bundle in which a plurality of fibers continuous in a longitudinal direction are bundled and the fiber bundle. A fiber reinforced resin cable composed of a resin to be impregnated, and an oxygen barrier layer provided on the surface of the fiber reinforced resin cable and making it difficult for oxygen in air to touch the fiber reinforced resin cable.

繊維強化樹脂ケーブルを構成する繊維は,炭素繊維,ガラス繊維,ボロン繊維,アラミド繊維,ポリエチレン繊維,PBO(poly p-phenylenebenzobisoxazole )繊維,その他の繊維を含む。これらの繊維は非常に細く,複数本の繊維を束ねることで樹脂を含浸させることができる。   The fibers constituting the fiber reinforced resin cable include carbon fibers, glass fibers, boron fibers, aramid fibers, polyethylene fibers, PBO (poly p-phenylenebenzobisoxazole) fibers, and other fibers. These fibers are very thin and can be impregnated with resin by bundling a plurality of fibers.

繊維強化樹脂ケーブルを構成する樹脂は,熱硬化性樹脂または熱可塑性樹脂のいずれであってもよい。エポキシ,飽和ポリエステル,ビニルエステル,フェノール,ポリアミド,ポリカーボネート等を用いることができる。   The resin constituting the fiber reinforced resin cable may be either a thermosetting resin or a thermoplastic resin. Epoxy, saturated polyester, vinyl ester, phenol, polyamide, polycarbonate and the like can be used.

この発明による電線用耐熱コアは,繊維強化樹脂ケーブルの表面に酸素遮断層を設けたものである。酸素遮断層が表面に設けられているので,電線用耐熱コアを構成する繊維強化樹脂ケーブルは空気中の酸素に触れにくい。繊維強化樹脂ケーブル,より詳細には繊維強化樹脂ケーブルを構成する樹脂の酸化を防止する,または少なくとも酸化の進行を抑制する(遅らせる)ことができる。   The heat-resistant core for electric wires according to the present invention is obtained by providing an oxygen barrier layer on the surface of a fiber-reinforced resin cable. Since the oxygen barrier layer is provided on the surface, the fiber-reinforced resin cable constituting the heat-resistant core for electric wires is hardly exposed to oxygen in the air. The fiber reinforced resin cable, more specifically, the resin constituting the fiber reinforced resin cable can be prevented from being oxidized, or at least the progress of the oxidation can be suppressed (delayed).

樹脂(プラスチック)は高温下において容易に酸化され,その結果として物性低下が生じる。ここで電線は,電流が流れることによる発熱を避けることができず,したがって電線の補強材として電線の中心に設けられる電線用コアも長期間にわたって高温に晒され,酸化されやすい雰囲気下に長期間にわたって置かれることになる。この発明によると,上述のように,酸素遮断層によって電線用コアの酸化が防止されるまたは少なくとも抑制されるので,電線用コアが高温環境下で早期に酸化劣化し,早期にその引張強度が低下してしまうのを防止することができる。この発明による電線用耐熱コアは長期耐熱性をその特性として具備する。   Resins (plastics) are easily oxidized at high temperatures, resulting in deterioration of physical properties. Here, the electric wire cannot avoid heat generation due to the flow of electric current. Therefore, the wire core provided at the center of the electric wire as a reinforcing material for the electric wire is also exposed to high temperatures for a long period of time and exposed to an oxidizing atmosphere for a long time. Will be placed over According to the present invention, as described above, the oxidation of the electric wire core is prevented or at least suppressed by the oxygen barrier layer, so that the electric wire core is oxidized and deteriorated early in a high-temperature environment, and its tensile strength is reduced early. It can be prevented from lowering. The heat-resistant core for electric wires according to the present invention has long-term heat resistance as its characteristic.

一実施態様では,上記繊維強化樹脂ケーブルが,それぞれが,樹脂が含浸された複数本の繊維を有し,これらがそれぞれ束にまとめられた複数本の樹脂含浸繊維束を備えている。電線用耐熱コアを構成する繊維強化樹脂ケーブルを,複数本の樹脂含浸繊維束を束ねたものとすることによって,電線用耐熱コアに柔軟性を付与することができる。   In one embodiment, the fiber-reinforced resin cable has a plurality of resin-impregnated fiber bundles each having a plurality of resin-impregnated fibers, each of which is bundled into a bundle. Flexibility can be imparted to the heat-resistant core for electric wires by forming the fiber-reinforced resin cable constituting the heat-resistant core for electric wires by bundling a plurality of resin-impregnated fiber bundles.

好ましくは,上記複数本の樹脂含浸繊維束が,中心に配置された心線と,上記心線の周囲に撚り合わされた複数本の側線とを含む。柔軟性に加えて,高い引張強度や優れた耐疲労性を,電線用耐熱コアに付与することができる。   Preferably, the plurality of resin-impregnated fiber bundles include a core wire arranged in the center and a plurality of side wires twisted around the core wire. In addition to flexibility, high tensile strength and excellent fatigue resistance can be imparted to the heat-resistant core for electric wires.

複数本の樹脂含浸繊維束を束ねることによって構成される繊維強化樹脂ケーブルを備える電線用耐熱コアについては,上記酸素遮断層は,上記繊維強化樹脂ケーブルの表面に設けてもよいし,複数本の樹脂含浸繊維束のそれぞれの表面に設けてもよい。   For a heat-resistant core for electric wire provided with a fiber-reinforced resin cable formed by bundling a plurality of resin-impregnated fiber bundles, the oxygen barrier layer may be provided on the surface of the fiber-reinforced resin cable, It may be provided on each surface of the resin-impregnated fiber bundle.

たとえば,上記酸素遮断層がテープ状であり,上記繊維強化樹脂ケーブルの表面に,または上記繊維強化樹脂ケーブルを構成する複数本の樹脂含浸繊維束のそれぞれの表面に,巻き付けられている。他の実施態様では,上記酸素遮断層が液状またはペースト状であり,上記繊維強化樹脂ケーブルの表面に,または上記繊維強化樹脂ケーブルを構成する複数本の樹脂含浸繊維束のそれぞれの表面に塗布されている。   For example, the oxygen barrier layer is in the form of a tape, and is wound around the surface of the fiber-reinforced resin cable or around each surface of a plurality of resin-impregnated fiber bundles constituting the fiber-reinforced resin cable. In another embodiment, the oxygen barrier layer is in the form of a liquid or a paste, and is applied to the surface of the fiber-reinforced resin cable or to each surface of a plurality of resin-impregnated fiber bundles constituting the fiber-reinforced resin cable. ing.

一実施態様では,上記酸素遮断層が酸素透過を阻止する高分子材料によって構成されている。他の実施態様では,上記酸素遮断層が酸素を吸着除去する無機粒子によって構成されている。いずれにしても,繊維強化樹脂ケーブルの酸化を少なくとも遅らせるために酸素遮断層が用いられる。   In one embodiment, the oxygen barrier layer is made of a polymer material that blocks oxygen permeation. In another embodiment, the oxygen barrier layer is made of inorganic particles that adsorb and remove oxygen. In any case, an oxygen barrier is used to at least slow the oxidation of the fiber reinforced resin cable.

上記無機粒子は,上記繊維強化樹脂ケーブルの表面に接着されるバインダー中にコンパウンドしてもよいし,上記繊維強化樹脂ケーブルの表面に接着されるバインダーの表面に付着させてもよい。無機粒子を繊維強化樹脂ケーブルの表面に接着するためのバインダーに,上述した酸素透過を阻止する高分子材料を用いてもよい。   The inorganic particles may be compounded in a binder adhered to the surface of the fiber reinforced resin cable, or may be adhered to the surface of the binder adhered to the surface of the fiber reinforced resin cable. As the binder for bonding the inorganic particles to the surface of the fiber-reinforced resin cable, the above-described polymer material that blocks oxygen permeation may be used.

電線の斜視図である。It is a perspective view of an electric wire. 耐熱CFRPケーブルの拡大断面図である。It is an expanded sectional view of a heat resistant CFRP cable. (A)は一実施態様の耐熱CFRPケーブルの斜視図を,(B)は他の実施態様の耐熱CFRPケーブルの斜視図を,それぞれ示す。(A) is a perspective view of a heat-resistant CFRP cable of one embodiment, and (B) is a perspective view of a heat-resistant CFRP cable of another embodiment. (A)および(B)は他の実施態様の耐熱CFRPケーブルの横断面の一部を示す拡大断面図である。(A) And (B) is an expanded sectional view showing a part of cross section of heat resistant CFRP cable of other embodiments. (A)および(B)は耐熱CFRPケーブルおよびCFRPケーブルの劣化試験の試験結果を示すグラフである。(A) and (B) are graphs showing test results of a heat-resistant CFRP cable and a deterioration test of the CFRP cable. 他の実施態様の電線用耐熱コアの拡大断面図である。It is an expanded sectional view of the heat resistant core for electric wires of other embodiments.

図1は電線1の斜視図であり,電線1の中心に位置する電線用耐熱コア10,および電線用耐熱コア10の周囲の導電層20のそれぞれの一部を露出して示している。図2は,図1に示す電線用耐熱コア10を構成する,後述する耐熱CFRP(Carbon Fiber Reinforced Plastics)(炭素繊維強化プラスチック)ケーブル11の拡大断面図である。図示の便宜上,図1と図2の縮尺を異ならせている。   FIG. 1 is a perspective view of the electric wire 1, and shows a part of a heat-resistant core 10 for an electric wire located at the center of the electric wire 1 and a part of a conductive layer 20 around the heat-resistant core 10 for the electric wire. FIG. 2 is an enlarged cross-sectional view of a heat-resistant CFRP (Carbon Fiber Reinforced Plastics) (carbon fiber reinforced plastic) cable 11 described later, which constitutes the electric wire heat-resistant core 10 shown in FIG. For convenience of illustration, the scales of FIGS. 1 and 2 are different.

電線1は,電線用耐熱コア10と,電線用耐熱コア10の周囲を包囲する導電層20,30とから構成される。電線用耐熱コア10は電線1の補強材として用いられる。電流は電線用耐熱コア10の周囲の導電層20,30を流れる。   The electric wire 1 includes a heat-resistant core 10 for electric wires and conductive layers 20 and 30 surrounding the heat-resistant core 10 for electric wires. The heat-resistant core 10 for electric wires is used as a reinforcing material for the electric wires 1. The current flows through the conductive layers 20 and 30 around the heat-resistant core 10 for electric wires.

図1を参照して,電線用耐熱コア10は,中心に位置する1本の長尺の耐熱CFRPケーブル11(心線)と,その周囲に撚り合わされた6本の長尺の耐熱CFRPケーブル11(側線)の,合計7本の耐熱CFRPケーブル11によって構成されている。図2を参照して,耐熱CFRPケーブル11のそれぞれは,多数本の長尺の炭素繊維(素線)13を断面円形に束ね,これにエポキシ樹脂14を含浸し,その後にエポキシ樹脂14を硬化させることによって形成されるCFRPケーブル(炭素繊維トウ,炭素繊維ストランド)12の表面に,酸素遮断層(ガスバリア層)15を被覆したものである。CFRPケーブル12には数万本から数十万本の炭素繊維13が含まれており,電線用耐熱コア10の全体には数十万本から数百万本の炭素繊維13を含ませることができる。炭素繊維13の本数または耐熱CFRPケーブル11の本数によって,電線用耐熱コア10の直径は任意に調整することができる。心線としての耐熱CFRPケーブル11と,その周囲に撚り合わされる複数本の側線としての耐熱CFRPケーブル11とによって電線用耐熱コア10を形成することによって,高い破断強度と優れた柔軟性をもち,耐疲労性にも優れた電線用耐熱コア10とすることができる。もっとも,心線と側線とに区別することなく複数本の耐熱CFRPケーブル11を一緒に束ねたまたは撚り合わせたものを電線用耐熱コア10としてもよい。さらに,特に電線1の直径が細ければ,単線の耐熱CFRPケーブル11をそのまま電線用耐熱コア10として用いてもよい。   Referring to FIG. 1, a heat-resistant core 10 for an electric wire is composed of one long heat-resistant CFRP cable 11 (core wire) located at the center and six long heat-resistant CFRP cables 11 twisted around the cable. (Side line), and a total of seven heat-resistant CFRP cables 11. Referring to FIG. 2, each heat-resistant CFRP cable 11 has a number of long carbon fibers (element wires) bundled in a circular cross section, impregnated with epoxy resin 14, and then cured with epoxy resin 14. The surface of a CFRP cable (carbon fiber tow, carbon fiber strand) 12 formed by this is covered with an oxygen barrier layer (gas barrier layer) 15. The CFRP cable 12 contains tens of thousands to hundreds of thousands of carbon fibers 13, and the entire heat-resistant core 10 for electric wires may contain hundreds of thousands to millions of carbon fibers 13. it can. The diameter of the heat-resistant core 10 for electric wires can be arbitrarily adjusted according to the number of carbon fibers 13 or the number of heat-resistant CFRP cables 11. The heat-resistant CFRP cable 11 as a core wire and the heat-resistant CFRP cable 11 as a plurality of side wires twisted around the core form the heat-resistant core 10 for electric wires, thereby having high breaking strength and excellent flexibility. The heat-resistant core for electric wires 10 having excellent fatigue resistance can be obtained. However, a plurality of heat-resistant CFRP cables 11 may be bundled or twisted together without distinction between the core wire and the side wire, and may be used as the heat-resistant core 10 for electric wires. Furthermore, if the diameter of the electric wire 1 is particularly small, the heat-resistant single-wire CFRP cable 11 may be used as it is as the heat-resistant core 10 for the electric wire.

酸素遮断層15は,CFRPケーブル12,より詳細にはCFRPケーブル12に含まれるエポキシ樹脂14が酸素に触れないようにする,または触れにくくするためのものである。これはエポキシ樹脂14の酸化劣化,特に高温雰囲気下における酸化劣化を遅らせ,エポキシ樹脂14の酸化劣化に起因する耐熱CFRPケーブル11ないし電線用耐熱コア10の引張強度の低下を抑制するためであり,詳しくは後述する。高温雰囲気下におけるCFRPケーブルの引張強度の低下を抑制することを主目的とすることから,酸素遮断層15を備えるCFRPケーブル12を,この明細書において耐熱CFRPケーブル11と呼んでいる。   The oxygen blocking layer 15 is for preventing or preventing the epoxy resin 14 included in the CFRP cable 12, more specifically, the CFRP cable 12, from touching oxygen. This is to delay the oxidative deterioration of the epoxy resin 14, particularly in a high-temperature atmosphere, and to suppress a decrease in the tensile strength of the heat-resistant CFRP cable 11 or the heat-resistant core 10 for electric wires caused by the oxidative deterioration of the epoxy resin 14. Details will be described later. The CFRP cable 12 including the oxygen barrier layer 15 is referred to as a heat-resistant CFRP cable 11 in this specification because its main purpose is to suppress a decrease in tensile strength of the CFRP cable in a high-temperature atmosphere.

CFRPケーブル12が酸素に極力触れないようにすることに着目すれば,酸素遮断層15としては気体透過係数の小さい高分子材料が適当である。しかしながら,気体透過係数のみならず,機械的特性(引張り特性,圧縮特性,曲げ特性,せん断特性など),成形加工性など,電線1の補強材として用いられる電線用耐熱コア10の特性を考慮した高分子材料を選択するのが好ましい。シリコン,ポリイミド,ポリカーボネート,ポリ塩化ビニル,ポリアクリロニトリル,ポリビニルアルコール,その他の高分子材料を,たとえば10μm〜 300μmの層厚とした酸素遮断層15が,7本のCFRPケーブル12のそれぞれの表面全体に設けられる。   Focusing on preventing the CFRP cable 12 from touching oxygen as much as possible, a polymer material having a small gas permeability coefficient is suitable for the oxygen barrier layer 15. However, in addition to the gas permeability coefficient, the characteristics of the heat-resistant core 10 for electric wires used as a reinforcing material of the electric wire 1 such as mechanical characteristics (tensile characteristics, compressive characteristics, bending characteristics, shear characteristics, etc.) and formability are considered. Preferably, a polymeric material is selected. An oxygen barrier layer 15 made of silicon, polyimide, polycarbonate, polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, or another polymer material having a thickness of, for example, 10 μm to 300 μm is provided on the entire surface of each of the seven CFRP cables 12. Provided.

導電層20,30は,上述した電線用耐熱コア10の周囲に配列される複数本のアルミ線21,31によって形成される。図1に示す電線1は,電線用耐熱コア10を包囲する断面台形の6本のアルミ線21によって構成される導電層20と,導電層20を包囲する断面台形の10本のアルミ線31によって構成される導電層30の2層構造を持つ。アルミ線21,31は,いずれも電線1の長手方向に伸びかつ緩やかに捩じられており,電線用耐熱コア10の周囲にらせん状に巻き付けられている。電線用耐熱コア10を包囲する導電層の層数,ならびに導電層20,30の各層を構成するアルミ線21,31の本数および形状は,適宜変更することができる。たとえばアルミ線21,31の断面形状は円形であってもよい。   The conductive layers 20 and 30 are formed by a plurality of aluminum wires 21 and 31 arranged around the above-described heat-resistant core 10 for electric wires. The electric wire 1 shown in FIG. 1 includes a conductive layer 20 composed of six aluminum wires 21 having a trapezoidal cross section surrounding the heat-resistant core 10 for electric wires, and ten aluminum wires 31 having a trapezoidal cross section surrounding the conductive layer 20. The conductive layer 30 has a two-layer structure. Each of the aluminum wires 21 and 31 extends in the longitudinal direction of the electric wire 1 and is gently twisted, and is spirally wound around the heat-resistant core 10 for electric wires. The number of conductive layers surrounding the heat-resistant core 10 for electric wires and the number and shape of the aluminum wires 21 and 31 constituting each layer of the conductive layers 20 and 30 can be appropriately changed. For example, the cross-sectional shape of the aluminum wires 21 and 31 may be circular.

図3(A)および(B)は酸素遮断層15の具体的構成を示している。   3A and 3B show a specific configuration of the oxygen barrier layer 15. FIG.

図3(A)に示すように,たとえばポリイミドテープ17によって,酸素遮断層15を形成することができる。たとえば幅15mmのポリイミドテープ17が,端部同士をわずかに重ね合わせながら,CFRPケーブル12にすき間なくらせん状に密着して巻き付けられる。   As shown in FIG. 3A, the oxygen barrier layer 15 can be formed by, for example, a polyimide tape 17. For example, a polyimide tape 17 having a width of 15 mm is spirally wound around the CFRP cable 12 without any gaps while slightly overlapping the ends.

図3(B)に示すように,液状またはペースト状の樹脂18,たとえばシリコンオイルやシリコンゴムを,酸素遮断層15として用いることもできる。押出し機を用いることによって,または樹脂18を溜めた槽内にCFRPケーブル12を通過させることによって,CFRPケーブル12の表面全体に樹脂18をほぼ等厚に密着して被覆することができる。   As shown in FIG. 3B, a liquid or paste-like resin 18, for example, silicone oil or silicone rubber can be used as the oxygen barrier layer 15. By using an extruder or by passing the CFRP cable 12 through a tank in which the resin 18 is stored, the entire surface of the CFRP cable 12 can be coated with the resin 18 in close contact with almost the same thickness.

上述した図3(A)および図3(B)に示す態様の酸素遮断層15は,空気中の酸素を遮断してCFRPケーブル12に酸素が極力触れないようにするものである。空気(酸素)の遮断に代えてまたは加えて,CFRPケーブル12の表面の酸素を吸収除去し,これによってCFRPケーブル12に酸素が極力触れないようにすることも考えられる。   The oxygen blocking layer 15 in the embodiment shown in FIGS. 3A and 3B blocks oxygen in the air so that the CFRP cable 12 is prevented from touching oxygen as much as possible. Instead of or in addition to shutting off air (oxygen), it is conceivable to absorb and remove oxygen on the surface of the CFRP cable 12 so that the oxygen does not touch the CFRP cable 12 as much as possible.

図4(A)は,多数の無機粒子42がコンパウンドされたエポキシ樹脂14が表面に被覆されたCFRPケーブル12の一部拡大断面図を示している。無機粒子42には,酸素吸収性を有する無機粒子,たとえば鉄,マンガン,白金,アルミニウム,亜鉛,スズ,マグネシウム,クロム,珪素,セリウム,チタン,銅等の粒子を用いることができる。2つ以上の上記金属含む合金であってもよい。この実施態様では,多数の無機粒子42をCFRPケーブル12の表面に固着させるバインダーとしてエポキシ樹脂14が用いられている。無機粒子42および無機粒子42がコンパウンドされたエポキシ樹脂14が酸素遮断層15として機能する。無機粒子42には,たとえば数nm〜 200μm程度の比較的細かい直径(平均直径)を有するものを用いることができる。   FIG. 4A is a partially enlarged cross-sectional view of the CFRP cable 12 whose surface is coated with the epoxy resin 14 in which a large number of inorganic particles 42 are compounded. As the inorganic particles 42, inorganic particles having an oxygen absorbing property, for example, particles of iron, manganese, platinum, aluminum, zinc, tin, magnesium, chromium, silicon, cerium, titanium, copper and the like can be used. An alloy containing two or more of the above metals may be used. In this embodiment, the epoxy resin 14 is used as a binder for fixing a large number of inorganic particles 42 to the surface of the CFRP cable 12. The inorganic particles 42 and the epoxy resin 14 in which the inorganic particles 42 are compounded function as the oxygen barrier layer 15. As the inorganic particles 42, those having a relatively small diameter (average diameter) of, for example, about several nm to 200 μm can be used.

図4(B)は,CFRPケーブル12の表面にエポキシ樹脂14を塗布し,塗布されたエポキシ樹脂14をバインダーとして用いて,エポキシ樹脂14の表面に多数の無機粒子42を付着させたものである。エポキシ樹脂14およびエポキシ樹脂14の表面に付着した多数の無機粒子42が酸素遮断層15として機能する。   FIG. 4B shows a state in which an epoxy resin 14 is applied to the surface of the CFRP cable 12 and a large number of inorganic particles 42 are adhered to the surface of the epoxy resin 14 using the applied epoxy resin 14 as a binder. . The epoxy resin 14 and many inorganic particles 42 attached to the surface of the epoxy resin 14 function as the oxygen barrier layer 15.

いずれにしても,酸素遮断層15によってCFRPケーブル12に酸素が触れにくくなるので,CFRPケーブル12の酸化劣化を遅らせることができる。   In any case, the oxygen blocking layer 15 makes it difficult for oxygen to contact the CFRP cable 12, so that the oxidation deterioration of the CFRP cable 12 can be delayed.

図5(A),(B)は電線1の電線用耐熱コア10を構成する上述した耐熱CFRPケーブル11(被試験体)についての劣化試験の試験結果を示すグラフである。図5(A)は,横軸を経過時間(単位は時間(hr)),縦軸を破断荷重(単位はkN)とするグラフを,図5(B)は,横軸を経過時間,縦軸を強度保持率(単位は%)とするグラフを,それぞれ示している。強度保持率は劣化試験後の破断荷重を初期破断荷重によって除算して100 を乗算した値である。   FIGS. 5A and 5B are graphs showing test results of a deterioration test on the above-described heat-resistant CFRP cable 11 (test object) constituting the heat-resistant core 10 for electric wires of the electric wire 1. FIG. 5A is a graph in which the horizontal axis indicates elapsed time (unit is time (hr)) and the vertical axis indicates breaking load (unit is kN). FIG. 5B is a graph in which the horizontal axis indicates elapsed time and vertical axis. Each graph shows the strength retention rate (unit:%) on the axis. The strength retention is a value obtained by dividing the breaking load after the deterioration test by the initial breaking load and multiplying by 100.

電線1に高電流が通されたときに生じる温度は電流量によって変動するが,典型的には約120℃である。劣化試験は,より過酷な温度条件,具体的には240℃の環境下に被試験体を置き,時間経過に応じて被試験体の破断荷重および強度保持率がどのように変化するかを測定したものである。プラスチックの酸化は高温下において加速するので,この劣化試験は加速劣化試験と位置づけられる。   The temperature generated when a high current is passed through the electric wire 1 varies depending on the amount of current, but is typically about 120 ° C. In the degradation test, the test specimen is placed under more severe temperature conditions, specifically, an environment of 240 ° C, and the change of the breaking load and the strength retention of the test specimen over time is measured. It was done. Since the oxidation of plastic accelerates at high temperatures, this deterioration test is regarded as an accelerated deterioration test.

直径 2.6mmのCFRPケーブル12に酸素遮断層15としてポリイミドテープ17を巻き付けた耐熱CFRPケーブル11(図3(A)参照)を作成し,これを 240℃の加熱炉の中に入れ,試験開始時, 600時間経過後,1000時間経過後に,破断荷重をそれぞれ測定した。また,比較のために,酸素遮断層15を持たない直径 2.6mmのCFRPケーブル12も加熱炉に入れ,試験開始時,408時間経過後,600時間経過後, 984時間経過後に,破断荷重をそれぞれ測定した。図5(A)に示すグラフにおいて,実線が耐熱CFRPケーブル11の破断荷重を,破線が酸素遮断層15を持たないCFRPケーブル12の破断荷重を,それぞれ示している。図5(B)に示すグラフも同様であり,実線が耐熱CFRPケーブル11の強度保持率を,破線がCFRPケーブル12の強度保持率を,それぞれ示している。   A heat-resistant CFRP cable 11 (see Fig. 3 (A)) was prepared by wrapping a polyimide tape 17 as an oxygen barrier layer 15 around a 2.6 mm diameter CFRP cable 12 and placed in a heating furnace at 240 ° C. After 600 hours and 1000 hours, the breaking load was measured. For comparison, a 2.6 mm diameter CFRP cable 12 without an oxygen barrier layer 15 was also placed in the heating furnace, and the breaking load was measured at the beginning of the test, after 408 hours, after 600 hours, and after 984 hours. It was measured. In the graph shown in FIG. 5A, the solid line indicates the breaking load of the heat-resistant CFRP cable 11, and the broken line indicates the breaking load of the CFRP cable 12 without the oxygen barrier layer 15. The same applies to the graph shown in FIG. 5B, where the solid line indicates the strength retention of the heat-resistant CFRP cable 11 and the broken line indicates the strength retention of the CFRP cable 12.

耐熱CFRPケーブル11(実線)およびCFRPケーブル12(破線)のいずれについても,時間が経過するにしたがって破断荷重は低下している。しかしながら,酸素遮断層15を持たないCFRPケーブル12(破線)に比べて,酸素遮断層15を備える耐熱CFRPケーブル11(実線)の破断荷重の減少は明らかに緩やかであり,高温環境下において,引張強度の経時的低下を遅らせる(緩やかにする)ことができている。耐熱CFRPケーブル11を用いることで,電線用耐熱コア10が所定の引張強度に低下するまでの時間を,CFRPケーブル12を用いる場合に比べて確実に延ばすことができる。   For both the heat-resistant CFRP cable 11 (solid line) and the CFRP cable 12 (dashed line), the breaking load decreases as time passes. However, as compared with the CFRP cable 12 without the oxygen barrier layer 15 (dashed line), the reduction in the breaking load of the heat-resistant CFRP cable 11 with the oxygen barrier layer 15 (solid line) is clearly more gradual, and the tensile strength in a high-temperature environment is lower. It is possible to slow down (gradually decrease) the strength over time. By using the heat-resistant CFRP cable 11, the time required for the heat-resistant core for electric wire 10 to decrease to a predetermined tensile strength can be extended more reliably than when the CFRP cable 12 is used.

上述した実施例においては,7本のCFRPケーブル12のそれぞれの表面に酸素遮断層15を被覆した7本の耐熱CFRPケーブル11によって形成された電線用耐熱コア10(図1参照)を説明したが,図6に示すように,7本のCFRPケーブル12を束ね,これに酸素遮断層15を被覆することによって電線用耐熱コア10Aを作成してもよい。図6に示すように,酸素遮断層15によって外側の6本のCFRPケーブル12(側線)の表面が直接的に覆われ,中心に位置する1本のCFRPケーブル12(心線)についても酸素遮断層15によって間接的に覆われるので,7本のCFRPケーブル12の酸化劣化が抑制され,高温環境下における電線用耐熱コア10Aの引張強度の経時的低下を遅らせる(緩やかにする)ことができる。なお,酸素遮断層15として液状またはペースト状の樹脂を用いることで,心線と側線との間の間隙に酸素遮断層15を入り込ませ,心線および側線の表面の大部分に酸素遮断層15を設けることもできる。   In the above-described embodiment, the heat-resistant core 10 for electric wires (see FIG. 1) formed by the seven heat-resistant CFRP cables 11 in which the respective surfaces of the seven CFRP cables 12 are coated with the oxygen blocking layer 15 has been described. As shown in FIG. 6, seven heat-resistant cores 10A for electric wires may be produced by bundling seven CFRP cables 12 and coating them with an oxygen barrier layer 15. As shown in FIG. 6, the outer surfaces of the six outer CFRP cables 12 (side wires) are directly covered by the oxygen barrier layer 15, and the one CFRP cable 12 (core wire) located at the center is also oxygen-shielded. Since the CFRP cable 12 is indirectly covered with the layer 15, the oxidative deterioration of the seven CFRP cables 12 is suppressed, and the temporal decrease in the tensile strength of the heat-resistant core 10A for electric wires in a high-temperature environment can be delayed (gradually reduced). In addition, by using a liquid or paste-like resin as the oxygen barrier layer 15, the oxygen barrier layer 15 enters the gap between the core wire and the side wire, and the oxygen barrier layer 15 covers most of the surface of the core wire and the side wire. Can also be provided.

1 電線
10,10A 電線用耐熱コア
11 耐熱CFRPケーブル
12 CFRPケーブル(樹脂含浸繊維束)
13 炭素繊維
14 エポキシ樹脂
15 酸素遮断層
17 ポリイミドテープ
20,30 導電層
21,31 アルミ線
42 無機粒子
1 Electric wire
10,10A Heat resistant core for electric wire
11 Heat resistant CFRP cable
12 CFRP cable (resin impregnated fiber bundle)
13 Carbon fiber
14 Epoxy resin
15 Oxygen barrier
17 Polyimide tape
20, 30 conductive layer
21, 31 Aluminum wire
42 inorganic particles

Claims (9)

周囲に撚り合わされる複数本の導電性金属線を中心から支持する電線用耐熱コアであって,
長手方向に連続する複数本の繊維を束ねた繊維束と上記繊維束に含浸される樹脂とから構成される繊維強化樹脂ケーブル,および
上記繊維強化樹脂ケーブルの表面に設けられ,空気中の酸素を上記繊維強化樹脂ケーブルに触れにくくする酸素遮断層を備えている,
電線用耐熱コア。
A heat-resistant core for electric wires that supports a plurality of conductive metal wires twisted around from the center,
A fiber reinforced resin cable composed of a fiber bundle obtained by bundling a plurality of fibers continuous in a longitudinal direction and a resin impregnated in the fiber bundle; It has an oxygen barrier layer that makes it difficult to touch the fiber reinforced resin cable.
Heat resistant core for electric wires.
上記繊維強化樹脂ケーブルが,
それぞれが,樹脂が含浸された複数本の繊維を有し,これらがそれぞれ束にまとめられた複数本の樹脂含浸繊維束を備えている,
請求項1に記載の電線用耐熱コア。
The above fiber reinforced resin cable
Each has a plurality of resin-impregnated fiber bundles, each of which has a plurality of resin-impregnated fiber bundles bundled into a bundle.
The heat-resistant core for an electric wire according to claim 1.
上記複数本の樹脂含浸繊維束が,
中心に配置された心線と,
上記心線の周囲に撚り合わされた複数本の側線とを含む,
請求項2に記載の電線用耐熱コア。
The plurality of resin-impregnated fiber bundles are
A centrally located cord,
A plurality of side wires twisted around the core wire,
The heat-resistant core for an electric wire according to claim 2.
上記酸素遮断層がテープ状であり,上記繊維強化樹脂ケーブルの表面に,または上記繊維強化樹脂ケーブルを構成する複数本の樹脂含浸繊維束のそれぞれの表面に,巻き付けられている,
請求項2に記載の電線用耐熱コア。
The oxygen barrier layer is in the form of a tape, and is wound around the surface of the fiber-reinforced resin cable or around the surface of each of a plurality of resin-impregnated fiber bundles constituting the fiber-reinforced resin cable;
The heat-resistant core for an electric wire according to claim 2.
上記酸素遮断層が液状またはペースト状であり,上記繊維強化樹脂ケーブルの表面に,または上記繊維強化樹脂ケーブルを構成する複数本の樹脂含浸繊維束のそれぞれの表面に塗布されている,
請求項2に記載の電線用耐熱コア。
The oxygen barrier layer is in the form of a liquid or a paste, and is applied to the surface of the fiber-reinforced resin cable or to the surface of each of a plurality of resin-impregnated fiber bundles constituting the fiber-reinforced resin cable;
The heat-resistant core for an electric wire according to claim 2.
上記酸素遮断層が酸素透過を阻止する高分子材料によって構成されている,
請求項1から5のいずれか一項に記載の電線用耐熱コア。
The oxygen barrier layer is made of a polymer material that blocks oxygen permeation;
The heat-resistant core for electric wires according to any one of claims 1 to 5.
上記酸素遮断層が,酸素を吸着除去する無機粒子によって構成されている,
請求項1から5のいずれか一項に記載の電線用耐熱コア。
The oxygen barrier layer is composed of inorganic particles that adsorb and remove oxygen;
The heat-resistant core for electric wires according to any one of claims 1 to 5.
上記無機粒子が,上記繊維強化樹脂ケーブルの表面に接着されるバインダー中にコンパウンドされている,
請求項7に記載の電線用耐熱コア。
The inorganic particles are compounded in a binder adhered to the surface of the fiber reinforced resin cable;
The heat-resistant core for an electric wire according to claim 7.
上記無機粒子が,上記繊維強化樹脂ケーブルの表面に接着されるバインダーの表面に付着されている,
請求項7に記載の電線用耐熱コア。
The inorganic particles are attached to a surface of a binder adhered to a surface of the fiber reinforced resin cable;
The heat-resistant core for an electric wire according to claim 7.
JP2018129291A 2018-07-06 2018-07-06 Heat-resistant core for electric wire Pending JP2020009620A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018129291A JP2020009620A (en) 2018-07-06 2018-07-06 Heat-resistant core for electric wire
CN201920973179.7U CN209859654U (en) 2018-07-06 2019-06-26 Heat-resistant core for electric wire
CN201910561367.3A CN110690005A (en) 2018-07-06 2019-06-26 Heat-resistant core for electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018129291A JP2020009620A (en) 2018-07-06 2018-07-06 Heat-resistant core for electric wire

Publications (1)

Publication Number Publication Date
JP2020009620A true JP2020009620A (en) 2020-01-16

Family

ID=68942593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018129291A Pending JP2020009620A (en) 2018-07-06 2018-07-06 Heat-resistant core for electric wire

Country Status (2)

Country Link
JP (1) JP2020009620A (en)
CN (2) CN110690005A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009620A (en) * 2018-07-06 2020-01-16 東京製綱株式会社 Heat-resistant core for electric wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129606A (en) * 1989-07-27 1991-06-03 Hitachi Cable Ltd Aerial power cable
JPH10321048A (en) * 1997-05-16 1998-12-04 Furukawa Electric Co Ltd:The Tension member and lightweight/low slackness overhead wire using the tension member
JP2001287312A (en) * 2000-02-18 2001-10-16 Praxair St Technol Inc Fiber reinforced composite material and method for coating the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594658B1 (en) * 2005-01-29 2006-06-30 엘에스전선 주식회사 Fiber reinforced plastic wire for overhead trasmission cable strength member, method for manufacturing the same, and overhead transmission cable using the same
CN2847470Y (en) * 2005-05-26 2006-12-13 江苏远东集团有限公司 Carbon fiber composite core aluminum stranded conductor and insulation cable
US8525033B2 (en) * 2008-08-15 2013-09-03 3M Innovative Properties Company Stranded composite cable and method of making and using
EP2617043B1 (en) * 2010-09-17 2018-12-19 3M Innovative Properties Company Fiber-reinforced nanoparticle-loaded thermoset polymer composite wires and cables as well as processes for their production
CN104005513A (en) * 2014-06-09 2014-08-27 天津大学 Carbon fiber reinforced plastics (CFRP) inhaul cable of cable-supported structure
CN105719768B (en) * 2016-05-03 2018-09-25 上海电缆研究所有限公司 Aerial condutor aluminium packet fiber-reinforced composite core and its manufacturing method
JP2020009620A (en) * 2018-07-06 2020-01-16 東京製綱株式会社 Heat-resistant core for electric wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129606A (en) * 1989-07-27 1991-06-03 Hitachi Cable Ltd Aerial power cable
JPH10321048A (en) * 1997-05-16 1998-12-04 Furukawa Electric Co Ltd:The Tension member and lightweight/low slackness overhead wire using the tension member
JP2001287312A (en) * 2000-02-18 2001-10-16 Praxair St Technol Inc Fiber reinforced composite material and method for coating the same

Also Published As

Publication number Publication date
CN209859654U (en) 2019-12-27
CN110690005A (en) 2020-01-14

Similar Documents

Publication Publication Date Title
JP5631592B2 (en) Conductors and cores for conductors
JP5568131B2 (en) Insulated composite power cable and method of making and using the same
AU2007200369B2 (en) An Electricity Transport Conductor for Overhead Lines
US3717720A (en) Electrical transmission cable system
RU2568188C2 (en) Wire for overhead transmission lines and method of its manufacturing
US20120170900A1 (en) Aluminum Alloy Conductor Composite Reinforced for High Voltage Overhead Power Lines
US20160099090A1 (en) Energy Efficient Conductors With Reduced Thermal Knee Points and The Method of Manufacture Thereof
US10886036B2 (en) Energy efficient conductors with reduced thermal knee points and the method of manufacture thereof
CN105788738A (en) Energy efficient wire with reduced thermal knee points and the method of manufacture thereof
RU86345U1 (en) STRENGTHENING CORE WIRE
JP2020009620A (en) Heat-resistant core for electric wire
US20050205287A1 (en) Electrical conductor cable and method for forming the same
JP6161964B2 (en) Fiber optic cable
JP7370994B2 (en) Overhead electrical cable and method of manufacturing the overhead electrical cable
RU120279U1 (en) ELECTRIC AIR TRANSMISSION WIRE
JPH04229507A (en) Optical wave conductor areal cable for long high-tention pole interval and manufacture thereof
JP5933730B2 (en) Protective external metal mantle and composite wire with fibers inside
US20230352212A1 (en) Dynamic cables with fibre reinforced thermoplastic composite sheath
JP2023165412A (en) Dynamic cables with thermoplastic sheath reinforced by wound fibers
JPH04263680A (en) Rope of cross-sectional material of combined fibers
EA020445B1 (en) Cable for overhead power transmission lines
SE465595B (en) ELECTRICAL CABLE WITH ONE OR MULTIPLE conductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004