[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020060521A - Foreign matter detection device, exposure device, and method for manufacturing article - Google Patents

Foreign matter detection device, exposure device, and method for manufacturing article Download PDF

Info

Publication number
JP2020060521A
JP2020060521A JP2018193518A JP2018193518A JP2020060521A JP 2020060521 A JP2020060521 A JP 2020060521A JP 2018193518 A JP2018193518 A JP 2018193518A JP 2018193518 A JP2018193518 A JP 2018193518A JP 2020060521 A JP2020060521 A JP 2020060521A
Authority
JP
Japan
Prior art keywords
foreign matter
transparent member
light
unit
irradiation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018193518A
Other languages
Japanese (ja)
Other versions
JP7170491B2 (en
Inventor
裕己 中野
Yuki Nakano
裕己 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018193518A priority Critical patent/JP7170491B2/en
Priority to KR1020190118499A priority patent/KR102634513B1/en
Priority to CN201910951717.7A priority patent/CN111045291B/en
Publication of JP2020060521A publication Critical patent/JP2020060521A/en
Application granted granted Critical
Publication of JP7170491B2 publication Critical patent/JP7170491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • G01N2021/945Liquid or solid deposits of macroscopic size on surfaces, e.g. drops, films, or clustered contaminants

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

To provide a foreign matter detection device that is advantageous for detecting a foreign matter on a transparent member.SOLUTION: A foreign matter detection device for detecting a foreign matter on a transparent member includes: an irradiation unit for performing irradiation with light obliquely to the transparent member; a light receiving unit for detecting scattered light from the foreign matter on the transparent member which is irradiated with the light by the irradiation unit; and a processing unit for performing processing to detect the foreign matter. The processing includes: a first mode for detecting the foreign matter based on a distribution of the scattered light detected by the light receiving unit in a first state where relative positions of the irradiation unit and the light receiving unit are in the first state where a distance between the irradiation unit and the light receiving unit becomes a first distance; and a second mode for detecting the foreign matter based on the distribution of the scattered light detected by the light receiving unit in a second state where the relative positions of the irradiation unit and the light receiving unit are in the second state where the distance between the irradiation unit and the light receiving unit becomes a second distance longer than the first distance.SELECTED DRAWING: Figure 1

Description

本発明は、異物検出装置、露光装置及び物品の製造方法に関する。   The present invention relates to a foreign matter detection device, an exposure device, and an article manufacturing method.

半導体デバイスや液晶表示デバイスは、マスク(原版)に形成された微細なパターンを基板(ガラス基板など)に転写する露光工程を経て製造されている。かかる露光工程において、マスク上や基板上に埃、塵、傷などの異物が存在していると、基板に転写されるパターンに欠陥が発生してしまう。そこで、一般的には、露光工程を実施する前に、異物検出装置を用いて、マスク上や基板上の異物を検出している(異物の有無を検査している)。   Semiconductor devices and liquid crystal display devices are manufactured through an exposure step of transferring a fine pattern formed on a mask (original plate) onto a substrate (such as a glass substrate). In this exposure step, if foreign matter such as dust, dust, or scratches is present on the mask or the substrate, defects will occur in the pattern transferred to the substrate. Therefore, in general, before performing the exposure step, a foreign matter detection device is used to detect foreign matter on the mask or the substrate (existence of foreign matter is inspected).

異物検出装置は、主に、マスクや基板(検出対象物)に対して光を斜めから照射する照射部と、照射領域に存在する異物からの光(反射光や散乱光)を検出する受光部とを有する。ここで、受光部は、マスクや基板の上面からの正反射光やマスクや基板の下面で屈折又は反射された光を検出しないように配置されている。このような異物検出装置に関する技術は、従来から提案されている(特許文献1乃至3参照)。   The foreign matter detection device mainly includes an irradiation unit that obliquely irradiates a mask or a substrate (detection target) with light, and a light receiving unit that detects light (reflected light or scattered light) from a foreign matter existing in an irradiation region. Have and. Here, the light receiving unit is arranged so as not to detect specularly reflected light from the upper surface of the mask or the substrate and light refracted or reflected by the lower surface of the mask or the substrate. Techniques relating to such a foreign matter detection device have been conventionally proposed (see Patent Documents 1 to 3).

特許文献1には、照射部と受光部との間に遮光板を設けることで、異物の誤検出を抑制する技術が開示されている。かかる遮光板は、照射部からの光を検出対象物側に通過させるとともに、検出対象物の上面からの反射光を受光部側に通過させ、且つ、検出対象物の下面からの反射光が受光部側に通過することを防止する。   Japanese Patent Application Laid-Open No. 2004-242242 discloses a technique of suppressing an erroneous detection of foreign matter by providing a light shielding plate between the irradiation unit and the light receiving unit. The light shielding plate allows the light from the irradiation unit to pass to the detection target side, allows the reflected light from the upper surface of the detection target to pass to the light receiving unit side, and receives the reflected light from the lower surface of the detection target. Prevents passage to the department side.

特許文献2には、検出対象物をライン状の光で照射する照射部と、ラインセンサ(カメラ)を含む受光部とを有する異物検出装置において、照射部又は受光部の角度を変更することで、検出対象物の上面及び下面に存在する異物を検出する技術が開示されている。   Patent Document 2 discloses a foreign matter detection apparatus that includes an irradiation unit that irradiates a detection target with linear light and a light receiving unit that includes a line sensor (camera), by changing the angle of the irradiation unit or the light receiving unit. A technique for detecting foreign matter existing on the upper and lower surfaces of a detection target is disclosed.

特許文献3には、透明な板状の検出対象物の割断面を検査する技術として、照射部と受光部とを割断面に対して平行移動させながら割断面からの反射光を検出すること(反射光の検出の有無)によって、割断面の検査を行うことが開示されている。   In Patent Document 3, as a technique of inspecting a fractured surface of a transparent plate-shaped detection target, the reflected light from the fractured surface is detected while moving the irradiation unit and the light receiving unit in parallel with the fractured surface ( It is disclosed that the fractured surface is inspected depending on whether or not the reflected light is detected.

特開2010−107471号公報JP, 2010-107471, A 特許第4157037号公報Japanese Patent No. 4157037 特開2008−115031号公報JP, 2008-115031, A

従来の異物検出装置では、マスクのパターンで発生した回折光が受光部で検出されることに起因する異物の誤検出を、例えば、遮光板を用いることで防止している。しかしながら、検出対象物が厚みのある透明な部材(以下、透明部材)で、且つ、透明部材の側面が荒摺り面である場合、透明部材を照明する光が内部に進入し、透明部材の側面(荒摺り面)で回折光が発生してしまう。透明部材の側面からの回折光は、透明部材に形成されたパターンを照明する光となり(即ち、透明部材の側面が2次光源として機能し)、受光部で検出されることになるため、かかる回折光によるノイズが異物として誤検出されてしまう。   In the conventional foreign matter detection device, erroneous detection of foreign matter due to detection of diffracted light generated by the mask pattern at the light receiving unit is prevented by using, for example, a light shielding plate. However, when the detection target is a thick transparent member (hereinafter, a transparent member) and the side surface of the transparent member is a rough surface, the light illuminating the transparent member enters inside and the side surface of the transparent member. Diffracted light is generated on the (rough surface). The diffracted light from the side surface of the transparent member becomes light for illuminating the pattern formed on the transparent member (that is, the side surface of the transparent member functions as a secondary light source) and is detected by the light receiving unit. The noise due to the diffracted light is erroneously detected as a foreign substance.

本発明は、このような従来技術の課題に鑑みてなされ、透明部材上の異物を検出するのに有利な異物検出装置を提供することを例示的目的とする。   The present invention has been made in view of the above problems of the conventional art, and an exemplary object of the present invention is to provide a foreign matter detection device which is advantageous for detecting a foreign matter on a transparent member.

上記目的を達成するために、本発明の一側面としての異物検出装置は、透明部材上の異物を検出する異物検出装置であって、前記透明部材に対して斜めに光を照射する照射部と、前記照射部によって前記光が照射された前記透明部材上の異物からの散乱光を検出する受光部と、前記異物を検出する処理を行う処理部と、を有し、前記処理は、前記照射部と前記受光部との相対位置を、前記照射部と前記受光部との間の距離が第1距離となる第1状態とし、前記第1状態において前記受光部で検出される前記散乱光の分布に基づいて前記異物を検出する第1モードと、前記照射部と前記受光部との相対位置を、前記照射部と前記受光部との間の距離が前記第1距離よりも長い第2距離となる第2状態とし、前記第2状態において前記受光部で検出される前記散乱光の分布に基づいて前記異物を検出する第2モードと、を含むことを特徴とする。   In order to achieve the above object, the foreign matter detection device according to one aspect of the present invention is a foreign matter detection device that detects a foreign matter on a transparent member, and an irradiation unit that obliquely irradiates the transparent member with light. A light receiving unit that detects scattered light from a foreign substance on the transparent member irradiated with the light by the irradiation unit, and a processing unit that performs a process of detecting the foreign substance, wherein the process is the irradiation. The relative position between the light receiving unit and the light receiving unit is set to a first state in which the distance between the irradiation unit and the light receiving unit is a first distance, and the scattered light detected by the light receiving unit in the first state is The first mode in which the foreign matter is detected based on the distribution and the relative position between the irradiation unit and the light receiving unit are the second distance in which the distance between the irradiation unit and the light receiving unit is longer than the first distance. In the second state, the light receiving section detects the second state. A second mode for detecting the foreign object based on the distribution of the scattered light, characterized in that it comprises a.

本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。   Further objects and other aspects of the present invention will be made clear by the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば、例えば、透明部材上の異物を検出するのに有利な異物検出装置を提供することができる。   According to the present invention, it is possible to provide, for example, a foreign matter detection device that is advantageous for detecting foreign matter on a transparent member.

本発明の第1実施形態における異物検出装置の構成を示す概略図である。It is a schematic diagram showing composition of a foreign substance detecting device in a 1st embodiment of the present invention. 透明平板の側面の特性の違いに起因する受光部への影響を説明するための図である。It is a figure for demonstrating the influence on the light-receiving part resulting from the difference in the characteristic of the side surface of a transparent flat plate. 透明平板の側面の特性の違いに起因する受光部への影響を説明するための図である。It is a figure for demonstrating the influence on the light-receiving part resulting from the difference in the characteristic of the side surface of a transparent flat plate. 図1に示す異物検出装置の照射部と受光部との相対位置の一例を示す図である。It is a figure which shows an example of the relative position of the irradiation part and light-receiving part of the foreign material detection apparatus shown in FIG. 本実施形態における異物検出処理を説明するための図である。It is a figure for explaining foreign substance detection processing in this embodiment. 本発明の第2実施形態における異物検出装置の構成を示す概略図である。It is the schematic which shows the structure of the foreign material detection apparatus in 2nd Embodiment of this invention. 本発明の一側面としての露光装置の構成を示す概略図である。It is a schematic diagram showing the composition of the exposure device as one side of the present invention.

以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In each drawing, the same reference numerals are given to the same members, and duplicate description will be omitted.

<第1実施形態>
図1は、本発明の第1実施形態における異物検出装置100の構成を示す概略図である。異物検出装置100は、異物検出対象物上の異物を検出する装置である。異物検出装置100は、図1に示すように、ステージ6と、照射部10と、受光部11と、処理部12と、生成部13と、駆動部30とを有する。
<First Embodiment>
FIG. 1 is a schematic diagram showing the configuration of a foreign matter detection device 100 according to the first embodiment of the present invention. The foreign matter detection device 100 is a device that detects a foreign matter on a foreign matter detection target. As shown in FIG. 1, the foreign matter detection device 100 includes a stage 6, an irradiation unit 10, a light receiving unit 11, a processing unit 12, a generation unit 13, and a driving unit 30.

本実施形態では、異物検査対象物を、透明な部材(透明部材)、例えば、一定の厚さを有する、比較的厚さのある透明平板3とする。透明平板3は、透明平板3の上面(表面)の異物検査対象領域内の異物検出を実施するために、ステージ6に保持されている。異物検出装置100は、本実施形態では、透明平板3を保持したステージ6をY方向に移動させながら、透明平板上の異物検出を実施するが、これに限定されるものではない。例えば、照射部10及び受光部11を保持するステージ(不図示)をY方向に移動させながら、透明平板上(透明部材上)の異物検出を実施してもよい。   In the present embodiment, the foreign matter inspection target is a transparent member (transparent member), for example, a transparent flat plate 3 having a constant thickness and a relatively large thickness. The transparent flat plate 3 is held by the stage 6 in order to detect a foreign substance in the foreign substance inspection target region on the upper surface (front surface) of the transparent flat plate 3. In the present embodiment, the foreign matter detection device 100 detects the foreign matter on the transparent flat plate while moving the stage 6 holding the transparent flat plate 3 in the Y direction, but the present invention is not limited to this. For example, foreign matter may be detected on the transparent flat plate (on the transparent member) while moving a stage (not shown) holding the irradiation unit 10 and the light receiving unit 11 in the Y direction.

照射部10は、光を射出する光源1と、照射レンズ2とを含み、透明平板3に対して斜めに光を照射する。照射部10からの光は、透明平板3の上面の異物検出対象領域内に、法線に対して角度を有して(斜めの方向から)入射する。また、照射部10は、透明平板上の異物からの散乱光を受光部11で検出するために、透明平板3に入射させる光の角度を調整する角度調整部を含んでいてもよい。   The irradiation unit 10 includes a light source 1 that emits light and an irradiation lens 2, and obliquely irradiates the transparent flat plate 3 with light. The light from the irradiation unit 10 enters the foreign object detection target region on the upper surface of the transparent flat plate 3 at an angle (from an oblique direction) with respect to the normal line. Further, the irradiation unit 10 may include an angle adjustment unit that adjusts the angle of the light incident on the transparent plate 3 so that the light receiving unit 11 detects the scattered light from the foreign matter on the transparent plate.

受光部11は、受光レンズ4と、ディテクタ5とを含み、照射部10によって光が照射された透明平板上の異物で散乱した光(散乱光)を受光する。透明平板上の異物からの散乱光は、受光レンズ4を介して、ディテクタ5に入射する。また、受光部11は、透明平板3の上面からの正反射光がディテクタ5に入射しないように、透明平板3に対する受光部11の角度を調整する角度調整部を含む。   The light receiving unit 11 includes a light receiving lens 4 and a detector 5, and receives light (scattered light) scattered by foreign matter on the transparent flat plate irradiated with light by the irradiation unit 10. The scattered light from the foreign matter on the transparent flat plate enters the detector 5 via the light receiving lens 4. Further, the light receiving unit 11 includes an angle adjusting unit that adjusts the angle of the light receiving unit 11 with respect to the transparent flat plate 3 so that the specularly reflected light from the upper surface of the transparent flat plate 3 does not enter the detector 5.

処理部12は、例えば、CPUやメモリなどを含むコンピュータで構成され、記憶部に記憶されたプログラムに従って異物検出装置100の各部を統括的に制御して異物検出装置100を動作させる。処理部12は、本実施形態では、透明平板上の異物を検出する処理(異物検出処理)を行う。   The processing unit 12 is composed of, for example, a computer including a CPU, a memory, and the like, and comprehensively controls each unit of the foreign matter detection device 100 according to a program stored in the storage unit to operate the foreign matter detection device 100. In the present embodiment, the processing unit 12 performs a process of detecting a foreign substance on the transparent flat plate (foreign substance detection process).

駆動部30は、透明平板3の表面に平行な方向(Y方向)に沿って、照射部10を移動させる。駆動部30には、当業界で周知のいかなる技術をも適用可能であるため、その構成などの詳細な説明は省略する。   The drive unit 30 moves the irradiation unit 10 along a direction (Y direction) parallel to the surface of the transparent flat plate 3. Since any technology known in the art can be applied to the drive unit 30, detailed description of its configuration and the like will be omitted.

ここで、図2及び図3を参照して、透明平板3の側面3aの面加工処理の違い、即ち、透明平板3の側面3aの特性の違いに起因する受光部11への影響について説明する。図2は、透明平板3の側面3aが研磨面である場合を示し、図3は、透明平板3の側面3aが荒摺り面である場合を示している。照射部10から透明平板3に照射される光のうち、その殆どは、透明平板3の上面で正反射されるが、その一部は、透明平板3の内部に進入する。透明平板3の内部に進入した光は、透明平板3の側面3aが研磨面である場合には、図2に示すように、透明平板3の側面3aを透過するが、透明平板3の側面3aが荒摺り面である場合には、図3に示すように、透明平板3の側面3aで反射される。従って、透明平板3の側面3aが荒摺り面である場合には、かかる荒摺り面が2次光源として機能するため、透明平板3の側面3aで反射した光が透明平板3の上面とは反対側の下面に形成されたパターン8に照射される。パターン8に照射された光は、パターン8で反射され、透明平板上の異物からの散乱光とは異なる光として受光部11に入射するため、異物として誤検出されてしまう。   Here, with reference to FIG. 2 and FIG. 3, the influence on the light receiving unit 11 due to the difference in the surface processing of the side surface 3a of the transparent flat plate 3, that is, the difference in the characteristics of the side surface 3a of the transparent flat plate 3 will be described. . 2 shows a case where the side surface 3a of the transparent flat plate 3 is a polishing surface, and FIG. 3 shows a case where the side surface 3a of the transparent flat plate 3 is a rough surface. Most of the light emitted from the irradiation unit 10 to the transparent flat plate 3 is specularly reflected by the upper surface of the transparent flat plate 3, but a part of the light enters the transparent flat plate 3. When the side surface 3a of the transparent plate 3 is a polishing surface, the light that has entered the inside of the transparent plate 3 is transmitted through the side surface 3a of the transparent plate 3 as shown in FIG. Is a rough surface, it is reflected by the side surface 3a of the transparent flat plate 3 as shown in FIG. Therefore, when the side surface 3a of the transparent flat plate 3 is a rough surface, since the rough surface functions as a secondary light source, the light reflected by the side surface 3a of the transparent flat plate 3 is opposite to the upper surface of the transparent flat plate 3. The pattern 8 formed on the lower surface of the side is irradiated. The light applied to the pattern 8 is reflected by the pattern 8 and enters the light receiving unit 11 as light different from the scattered light from the foreign matter on the transparent flat plate, so that it is erroneously detected as a foreign matter.

本実施形態では、透明平板3の側面3aが荒摺り面である場合には、駆動部30によって、照射部10をY方向に、具体的には、透明平板3の側面3aから離れる方向に移動させる。これにより、透明平板3の側面3aで反射される光を低減し、透明平板3の側面3aで反射した光に起因する異物の誤検出を抑制することができる。   In this embodiment, when the side surface 3a of the transparent flat plate 3 is a rough surface, the drive unit 30 moves the irradiation unit 10 in the Y direction, specifically, in the direction away from the side surface 3a of the transparent flat plate 3. Let Thereby, the light reflected by the side surface 3a of the transparent flat plate 3 can be reduced, and erroneous detection of a foreign substance due to the light reflected by the side surface 3a of the transparent flat plate 3 can be suppressed.

図4に示すように、照射部10と受光部11との相対位置が理想的な状態である場合を考える。ここで、照射部10と受光部11との相対位置が理想的な状態とは、照射部10の光軸と透明平板3の上面との交点と、受光部11の光軸と透明平板3の上面との交点とが一致する状態である。この場合、照射部10から透明平板3に照射された光の強度分布LD1は、照射部10の光軸上(入射光軸上)で最大となり、照射部10の光軸から離れるにつれて小さくなる傾向を有する。これは、透明平板3の形状が異なることにより、透明平板上の受光部11の光軸と、強度分布を有する照明領域との相対位置関係が異物検出領域内で変化し、結果として、同じ大きさの異物の検出結果にばらつきが発生することを意味する。   As shown in FIG. 4, consider a case where the relative positions of the irradiation unit 10 and the light receiving unit 11 are in an ideal state. Here, the state where the relative position between the irradiation unit 10 and the light receiving unit 11 is ideal means that the intersection between the optical axis of the irradiation unit 10 and the upper surface of the transparent flat plate 3, and the optical axis of the light receiving unit 11 and the transparent flat plate 3. It is in a state where the intersection with the upper surface coincides. In this case, the intensity distribution LD1 of the light emitted from the irradiation unit 10 to the transparent flat plate 3 has a maximum on the optical axis of the irradiation unit 10 (on the incident optical axis) and tends to decrease as the distance from the optical axis of the irradiation unit 10 increases. Have. This is because, because the shape of the transparent plate 3 is different, the relative positional relationship between the optical axis of the light receiving unit 11 on the transparent plate and the illumination area having the intensity distribution changes in the foreign matter detection area, and as a result, the same size is obtained. It means that the detection result of the foreign matter is uneven.

そこで、本実施形態では、異物検出処理として、第1モードと、第2モードとを含み、透明平板3の側面3aの特性に応じて、第1モード又は第2モードを選択する。第1モードでは、照射部10と受光部11との相対位置を、照射部10と受光部11との間の透明平板3の上面に平行な方向(Y方向)に沿った距離が第1距離となる第1状態とする。そして、かかる第1状態において受光部11で検出される、透明平板上の異物からの散乱光の分布に基づいて異物を検出する。また、第2モードでは、照射部10と受光部11との相対位置を、照射部10と受光部11との間の透明平板3の上面に平行な方向(Y方向)に沿った距離が第1距離よりも長い第2距離となる第2状態とする。そして、かかる第2状態において受光部11で検出される、透明平板上の異物からの散乱光の分布に基づいて異物を検出する。なお、第1距離と第2距離との差は、微少であり、例えば、10mm以上、且つ、20mm以下の範囲である。   Therefore, in the present embodiment, the foreign matter detection process includes the first mode and the second mode, and selects the first mode or the second mode according to the characteristics of the side surface 3a of the transparent flat plate 3. In the first mode, the relative position between the irradiation unit 10 and the light receiving unit 11 is the first distance between the irradiation unit 10 and the light receiving unit 11 along the direction parallel to the upper surface of the transparent flat plate 3 (Y direction). The first state is as follows. Then, the foreign matter is detected based on the distribution of scattered light from the foreign matter on the transparent flat plate, which is detected by the light receiving unit 11 in the first state. Further, in the second mode, the relative position between the irradiation unit 10 and the light receiving unit 11 is the distance between the irradiation unit 10 and the light receiving unit 11 along the direction parallel to the upper surface of the transparent flat plate 3 (Y direction). The second state is a second distance that is longer than one distance. Then, the foreign matter is detected based on the distribution of scattered light from the foreign matter on the transparent flat plate, which is detected by the light receiving unit 11 in the second state. The difference between the first distance and the second distance is very small, for example, in the range of 10 mm or more and 20 mm or less.

図5(a)、図5(b)及び図5(c)を参照して、本実施形態における異物検出処理、即ち、第1モード及び第2モードについて具体的に説明する。図5(a)は、透明平板3の側面3aが研磨面であり、且つ、異物検出処理として第1モードが選択された場合を示している。ここでは、図5(a)に示すように、照射部10と受光部11との相対位置が理想的な状態を第1状態としている。また、照射部10と受光部11との間の透明平板3の上面に平行な方向(Y方向)に沿った距離を、光源1が光を射出する位置とディテクタ5が光を検出する位置との間の距離としている。図5(a)に示すように、透明平板3の側面3aが研磨面である場合、透明平板3の側面3aは、2次光源として機能しないため、受光部11の光軸付近の強度変化が小さい。従って、この場合、強度分布LD2は、図4に示す強度分布LD1と同様に、照射部10から透明平板3に照射される光の強度変化の影響を受けにくい。   The foreign matter detection process, that is, the first mode and the second mode according to the present embodiment will be specifically described with reference to FIGS. 5A, 5B, and 5C. FIG. 5A shows a case where the side surface 3a of the transparent flat plate 3 is a polished surface and the first mode is selected as the foreign matter detection processing. Here, as shown in FIG. 5A, the first state is the state in which the relative position between the irradiation unit 10 and the light receiving unit 11 is ideal. Further, the distance along the direction (Y direction) parallel to the upper surface of the transparent flat plate 3 between the irradiation unit 10 and the light receiving unit 11 is the position where the light source 1 emits light and the position where the detector 5 detects light. And the distance between. As shown in FIG. 5A, when the side surface 3a of the transparent flat plate 3 is a polished surface, the side surface 3a of the transparent flat plate 3 does not function as a secondary light source, so that the intensity change in the vicinity of the optical axis of the light receiving unit 11 is small. small. Therefore, in this case, the intensity distribution LD2, like the intensity distribution LD1 shown in FIG. 4, is unlikely to be affected by the change in the intensity of the light emitted from the irradiation unit 10 to the transparent flat plate 3.

図5(b)は、透明平板3の側面3aが荒摺り面であり、且つ、異物検出処理として第1モードが選択された場合を示している。図5(b)に示すように、透明平板3の側面3aが荒摺り面である場合、透明平板3の側面3aが2次光源として機能するため、受光部11には、透明平板3の側面3a及びパターン8で反射した光も入射する。従って、この場合、強度分布LD3は、図5に示す強度分布LD2とは異なり、照射部10から透明平板3に照射される光の強度変化の影響を受け、異物検出領域内の様々な箇所において異物と誤検出する可能性がある。   FIG. 5B shows a case where the side surface 3a of the transparent flat plate 3 is a rough surface and the first mode is selected as the foreign matter detection processing. As shown in FIG. 5B, when the side surface 3 a of the transparent flat plate 3 is a rough surface, the side surface 3 a of the transparent flat plate 3 functions as a secondary light source. The light reflected by 3a and the pattern 8 is also incident. Therefore, in this case, unlike the intensity distribution LD2 shown in FIG. 5, the intensity distribution LD3 is affected by a change in the intensity of the light emitted from the irradiation unit 10 to the transparent flat plate 3, and at various points in the foreign matter detection region. There is a possibility of false detection as a foreign substance.

図5(c)は、透明平板3の側面3aが荒摺り面であり、且つ、異物検出処理として第2モードが選択された場合を示している。第2モードでは、照射部10を透明平板3の側面3aから離れる方向に移動させ、上述したように、照射部10と受光部11との間の透明平板3の上面に平行な方向(Y方向)に沿った距離を第1距離よりも長い第2距離とする。図5(c)に示すように、照射部10を透明平板3の側面3aから離れる方向に移動させることで、透明平板3の側面3aまで進む光を減少させることができる。従って、この場合、強度分布LD4は、図5(a)に示す強度分布LD2と同様に、照射部10から透明平板3に照射される光の強度変化の影響を受けにくくすることができる。   FIG. 5C shows a case where the side surface 3a of the transparent flat plate 3 is a rough surface and the second mode is selected as the foreign matter detection processing. In the second mode, the irradiation unit 10 is moved in a direction away from the side surface 3a of the transparent flat plate 3, and as described above, a direction (Y direction) parallel to the upper surface of the transparent flat plate 3 between the irradiation unit 10 and the light receiving unit 11. ) Is a second distance longer than the first distance. As shown in FIG. 5C, by moving the irradiation unit 10 in a direction away from the side surface 3 a of the transparent flat plate 3, it is possible to reduce the light traveling to the side surface 3 a of the transparent flat plate 3. Therefore, in this case, similarly to the intensity distribution LD2 shown in FIG. 5A, the intensity distribution LD4 can be made less susceptible to the change in intensity of the light emitted from the irradiation unit 10 to the transparent flat plate 3.

従って、本実施形態では、処理部12は、透明平板3の側面3aの特性を示す情報を取得し、かかる情報が透明平板3の側面3aが研磨面であることを示す場合には、異物検出処理として第1モードを選択する(図5(a)参照)。一方、透明平板3の側面3aの特性を示す情報が透明平板3の側面3aが荒摺り面であることを示す場合には、異物検出処理として第2モードを選択する(図5(c)参照)。これにより、異物検出対象物が透明平板3で、且つ、透明平板3の側面3aが荒摺り面である場合であっても、透明平板3の側面3aで反射される光を低減することができるため、かかる光による異物の誤検出を抑制することができる。なお、透明平板3の側面3aで反射される光による異物の誤検出を更に抑制するために、第1モードでの異物検出対象領域と、第2モードでの異物検出対象領域とを異ならせてもよい。具体的には、第2モードでは、透明平板3の側面3aで反射される光の影響を受ける領域を異物検出対象領域から外してもよい。   Therefore, in the present embodiment, the processing unit 12 acquires information indicating the characteristics of the side surface 3a of the transparent flat plate 3, and when such information indicates that the side surface 3a of the transparent flat plate 3 is a polishing surface, foreign matter detection is performed. The first mode is selected as the process (see FIG. 5A). On the other hand, when the information indicating the characteristics of the side surface 3a of the transparent flat plate 3 indicates that the side surface 3a of the transparent flat plate 3 is a rough surface, the second mode is selected as the foreign matter detection processing (see FIG. 5C). ). Thereby, even when the foreign object detection target is the transparent flat plate 3 and the side surface 3a of the transparent flat plate 3 is a rough surface, the light reflected by the side surface 3a of the transparent flat plate 3 can be reduced. Therefore, erroneous detection of foreign matter due to such light can be suppressed. In order to further suppress the erroneous detection of the foreign matter due to the light reflected by the side surface 3a of the transparent flat plate 3, the foreign matter detection target area in the first mode and the foreign matter detection target area in the second mode are made different. Good. Specifically, in the second mode, the region affected by the light reflected by the side surface 3a of the transparent flat plate 3 may be excluded from the foreign matter detection target region.

また、本実施形態では、照射部10と受光部11との距離に関して、透明平板3の表面に平行な方向の距離を変えることで第1モード及び第2モードを設定する場合について説明したが、これに限定されるものではない。例えば、照射部10を上下方向(Z方向)に移動させる(即ち、照射部10と透明平板3の表面との間の鉛直方向の距離を変える)ことで第1モード及び第2モードを設定することも可能である。   Further, in the present embodiment, the case where the first mode and the second mode are set by changing the distance between the irradiation unit 10 and the light receiving unit 11 in the direction parallel to the surface of the transparent flat plate 3 has been described. It is not limited to this. For example, the first mode and the second mode are set by moving the irradiation unit 10 in the vertical direction (Z direction) (that is, changing the vertical distance between the irradiation unit 10 and the surface of the transparent flat plate 3). It is also possible.

本実施形態では、透明平板3の側面3aの特性を示す情報は、生成部13で生成され、処理部12は、生成部13で生成された透明平板3の側面3aの特性を示す情報を取得する。生成部13は、駆動部30によって照射部10を移動させる前後において、照射部10から透明平板3に照射される光によって透明平板上に形成される強度分布に基づいて、透明平板3の側面3aの特性を示す情報を生成する。例えば、生成部13は、照射部10と受光部11との相対位置が上述した第1状態である場合に透明平板上に形成される強度分布と、照射部10と受光部11との相対位置が上述した第2状態である場合に透明平板上に形成される強度分布とを比較する。そして、生成部13は、その差が閾値以下である場合には、透明平板3の側面3aが研磨面であることを示す情報を生成し、その差が閾値よりも大きい場合には、透明平板3の側面3aが荒摺り面であることを示す情報を生成する。   In the present embodiment, the information indicating the characteristics of the side surface 3a of the transparent flat plate 3 is generated by the generation unit 13, and the processing unit 12 acquires the information indicating the characteristics of the side surface 3a of the transparent flat plate 3 generated by the generation unit 13. To do. The generation unit 13 determines the side surface 3 a of the transparent flat plate 3 based on the intensity distribution formed on the transparent flat plate by the light emitted from the irradiation unit 10 to the transparent flat plate 3 before and after moving the irradiation unit 10 by the driving unit 30. Generates information indicating the characteristics of. For example, when the relative position between the irradiation unit 10 and the light receiving unit 11 is in the above-described first state, the generation unit 13 determines the intensity distribution formed on the transparent flat plate and the relative position between the irradiation unit 10 and the light receiving unit 11. Is compared with the intensity distribution formed on the transparent flat plate in the second state described above. When the difference is less than or equal to the threshold value, the generation unit 13 generates information indicating that the side surface 3a of the transparent flat plate 3 is a polishing surface, and when the difference is greater than the threshold value, the transparent flat plate is generated. Information indicating that the side surface 3a of 3 is a rough surface is generated.

また、生成部13は、図4に示す強度分布LD1と、照射部10と受光部11との相対位置が上述した第1状態である場合に透明平板上に形成される強度分布とを比較することで、透明平板3の側面3aの特性を示す情報を生成してもよい。この場合、図4に示す強度分布LD1は、予め取得しておく必要がある。   Further, the generation unit 13 compares the intensity distribution LD1 shown in FIG. 4 with the intensity distribution formed on the transparent flat plate when the relative positions of the irradiation unit 10 and the light receiving unit 11 are in the above-described first state. Thus, information indicating the characteristics of the side surface 3a of the transparent flat plate 3 may be generated. In this case, the intensity distribution LD1 shown in FIG. 4 needs to be acquired in advance.

また、異物検出装置100においては、透明平板3の側面3aの特性に応じて、透明平板3に対する照射部10及び受光部11の角度を任意に変更し、透明平板3を照射する光の強度変化の影響を調整してもよい。   Further, in the foreign matter detection device 100, the angles of the irradiation unit 10 and the light receiving unit 11 with respect to the transparent flat plate 3 are arbitrarily changed according to the characteristics of the side surface 3 a of the transparent flat plate 3 to change the intensity of the light with which the transparent flat plate 3 is irradiated. The effect of may be adjusted.

また、処理部12は、透明平板3を保持したステージ6をY方向に往復させながら受光部11で検出される散乱光の分布に基づいて、透明平板上の異物と、透明平板3の側面3aで反射した光によるノイズとを識別する機能を有していてもよい。   Further, the processing unit 12 reciprocates the stage 6 holding the transparent flat plate 3 in the Y direction based on the distribution of scattered light detected by the light receiving unit 11 and the foreign matter on the transparent flat plate 3 and the side surface 3 a of the transparent flat plate 3. It may have a function of distinguishing from noise due to the light reflected by.

本実施形態では、照射部10と受光部11との相対位置を、照射部10と受光部11との間の透明平板3の上面に平行な方向(Y方向)に沿った距離で規定する場合について説明した。但し、照射部10と受光部11との相対位置を、照射部10の光軸と、受光部11の光軸と、透明平板3の上面との関係で規定することも可能である。この場合、照射部10と受光部11との相対位置として、照射部10の光軸と透明平板3の上面との交点と、受光部11の光軸と透明平板3の上面との交点との間の透明平板3の上面に平行な方向に沿った距離が第1距離となる状態を第1状態とする。また、照射部10と受光部11との相対位置として、照射部10の光軸と透明平板3の上面との交点と、受光部11の光軸と透明平板3の上面との交点との間の透明平板3の上面に平行な方向に沿った距離が第1距離よりも長い第2距離となる状態を第2状態とする。なお、上述した距離は、照射部10の光軸と受光部11の光軸とを含む面における距離としても表現することができる。   In the present embodiment, the relative position between the irradiation unit 10 and the light receiving unit 11 is defined by the distance along the direction (Y direction) parallel to the upper surface of the transparent flat plate 3 between the irradiation unit 10 and the light receiving unit 11. I explained. However, it is also possible to define the relative position between the irradiation unit 10 and the light receiving unit 11 by the relationship between the optical axis of the irradiation unit 10, the optical axis of the light receiving unit 11, and the upper surface of the transparent flat plate 3. In this case, as the relative position of the irradiation unit 10 and the light receiving unit 11, the intersection of the optical axis of the irradiation unit 10 and the upper surface of the transparent flat plate 3 and the intersection of the optical axis of the light receiving unit 11 and the upper surface of the transparent flat plate 3 are set. A state in which the distance along the direction parallel to the upper surface of the transparent flat plate 3 between them is the first distance is referred to as a first state. Further, as a relative position of the irradiation unit 10 and the light receiving unit 11, between the intersection of the optical axis of the irradiation unit 10 and the upper surface of the transparent flat plate 3 and the intersection of the optical axis of the light receiving unit 11 and the upper surface of the transparent flat plate 3. A state in which the distance along the direction parallel to the upper surface of the transparent flat plate 3 is a second distance longer than the first distance is referred to as a second state. The above-mentioned distance can also be expressed as a distance in a plane including the optical axis of the irradiation unit 10 and the optical axis of the light receiving unit 11.

<第2実施形態>
図6は、本発明の第2実施形態における異物検出装置100の構成を示す概略図である。第2実施形態における異物検出装置100は、照射部10を制御する照射制御部14を更に有する。また、照射部10は、光源1から射出された光の広がりを規定する開口を含む絞り15を含む。
<Second Embodiment>
FIG. 6 is a schematic diagram showing the configuration of the foreign matter detection device 100 according to the second embodiment of the present invention. The foreign matter detection device 100 according to the second embodiment further includes an irradiation control unit 14 that controls the irradiation unit 10. The irradiation unit 10 also includes a diaphragm 15 including an opening that defines the spread of the light emitted from the light source 1.

本実施形態では、照射部10が絞り15を含んでいるため、光源1から射出される光の広がりを抑え、透明平板3の側面3a(荒摺り面)に入射する光の領域を限定し、パターン8で反射される光を抑制することができる。但し、絞り15を設けることで、透明平板3に照射される光の光量が減少する。そこで、照射制御部14は、絞り15の開口の大きさに基づいて、光源1から射出する光の光量を制御する。なお、絞り15の開口の大きさは、透明平板3の厚さに基づいて、照射制御部14によって決定される。これにより、透明平板3の側面3a(荒摺り面)からの光の影響を最小限に抑え、受光部11に入射する光を異物からの散乱光のみにすることができる。従って、透明平板3の側面3aで反射される光による異物の誤検出を抑制することができる。   In the present embodiment, since the irradiation unit 10 includes the diaphragm 15, the spread of the light emitted from the light source 1 is suppressed, and the area of the light incident on the side surface 3a (rough surface) of the transparent flat plate 3 is limited, The light reflected by the pattern 8 can be suppressed. However, the provision of the diaphragm 15 reduces the amount of light emitted to the transparent flat plate 3. Therefore, the irradiation controller 14 controls the amount of light emitted from the light source 1 based on the size of the aperture of the diaphragm 15. The size of the aperture of the diaphragm 15 is determined by the irradiation controller 14 based on the thickness of the transparent flat plate 3. As a result, the influence of light from the side surface 3a (roughened surface) of the transparent flat plate 3 can be minimized, and the light incident on the light receiving unit 11 can be only scattered light from the foreign matter. Therefore, it is possible to suppress erroneous detection of foreign matter due to light reflected by the side surface 3a of the transparent flat plate 3.

<第3実施形態>
図7を参照して、本発明の一側面としての露光装置500について説明する。露光装置500は、半導体デバイスや液晶表示デバイスの製造工程であるリソグラフィ工程に採用され、基板にパターンを形成するリソグラフィ装置である。露光装置500は、マスク(原版)を介して基板を露光して、マスクのパターンを基板に転写する。
<Third Embodiment>
An exposure apparatus 500 according to one aspect of the present invention will be described with reference to FIG. 7. The exposure apparatus 500 is a lithography apparatus that is used in a lithography process that is a manufacturing process of a semiconductor device or a liquid crystal display device and forms a pattern on a substrate. The exposure device 500 exposes the substrate through the mask (original plate) and transfers the pattern of the mask onto the substrate.

露光装置500は、図7に示すように、照明光学系510と、投影光学系520と、マスク530を保持して移動するマスクステージ540と、基板550を保持して移動する基板ステージ560と、異物検出装置100とを有する。更に、露光装置500は、CPUやメモリなどを含むコンピュータで構成され、記憶部に記憶されたプログラムに従って露光装置500の各部を統括的に制御して露光装置500を動作させる制御部570を有する。   As shown in FIG. 7, the exposure apparatus 500 includes an illumination optical system 510, a projection optical system 520, a mask stage 540 that holds and moves a mask 530, a substrate stage 560 that holds and moves a substrate 550, and The foreign matter detection device 100 is included. Further, the exposure apparatus 500 is composed of a computer including a CPU, a memory, and the like, and has a control unit 570 that integrally controls each unit of the exposure apparatus 500 according to a program stored in the storage unit to operate the exposure apparatus 500.

照明光学系510は、光源からの光でマスク530を照明する光学系である。マスク530は、透明平板で構成され、その上面とは反対側の下面には、基板550に形成すべきパターンに対応するパターンが形成されている。マスク530は、マスクステージ540に保持されている。マスク530の上面に存在する異物を検出する異物検出装置として、上述した異物検出装置100を適用する。異物検出装置100は、異物の誤検出を抑制し、マスク上の異物を高精度に検出することができる。   The illumination optical system 510 is an optical system that illuminates the mask 530 with light from a light source. The mask 530 is formed of a transparent flat plate, and a pattern corresponding to the pattern to be formed on the substrate 550 is formed on the lower surface opposite to the upper surface thereof. The mask 530 is held on the mask stage 540. The above-described foreign matter detection device 100 is applied as a foreign matter detection device that detects foreign matter existing on the upper surface of the mask 530. The foreign matter detection device 100 can suppress the false detection of the foreign matter and detect the foreign matter on the mask with high accuracy.

基板550は、基板ステージ560に保持されている。マスク530と基板550とは、投影光学系520を介して、光学的にほぼ共役な位置(投影光学系520の物体面及び像面の位置)に配置されている。基板上に存在する異物の検出に、上述した異物検出装置100を適用することも可能である。投影光学系520は、物体を像面に投影する光学系である。投影光学系520には、反射系、屈折系、反射屈折系を適用することができる。投影光学系520は、本実施形態では、所定の投影倍率を有し、マスク530に形成されたパターンを基板550に投影する。そして、マスクステージ540及び基板ステージ560を、投影光学系520の物体面と平行な方向(例えば、X方向)に、投影光学系520の投影倍率に応じた速度比で走査する。これにより、マスク530に形成されたパターンを基板550に転写することができる。   The substrate 550 is held on the substrate stage 560. The mask 530 and the substrate 550 are arranged at positions that are optically conjugate with each other (positions of the object plane and the image plane of the projection optical system 520) via the projection optical system 520. It is also possible to apply the above-described foreign matter detection device 100 to the detection of foreign matter existing on the substrate. The projection optical system 520 is an optical system that projects an object on an image plane. A reflection system, a refraction system, and a catadioptric system can be applied to the projection optical system 520. In this embodiment, the projection optical system 520 has a predetermined projection magnification and projects the pattern formed on the mask 530 onto the substrate 550. Then, the mask stage 540 and the substrate stage 560 are scanned in a direction parallel to the object plane of the projection optical system 520 (for example, the X direction) at a speed ratio according to the projection magnification of the projection optical system 520. Thus, the pattern formed on the mask 530 can be transferred to the substrate 550.

<第4実施形態>
本発明の実施形態における物品の製造方法は、例えば、デバイス(半導体デバイス、磁気記憶媒体、液晶表示デバイスなど)、カラーフィルタ、光学部品、MEMSなどの物品を製造するのに好適である。かかる製造方法は、露光装置500を用いて、感光剤が塗布された基板を露光する工程と、露光された感光剤を現像する工程とを含む。また、現像された感光剤のパターンをマスクとして基板に対してエッチング工程やイオン注入工程などを行い、基板上に回路パターンが形成される。これらの露光、現像、エッチングなどの工程を繰り返して、基板上に複数の層からなる回路パターンを形成する。後工程で、回路パターンが形成された基板に対してダイシング(加工)を行い、チップのマウンティング、ボンディング、検査工程を行う。また、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、レジスト剥離など)を含みうる。本実施形態における物品の製造方法は、従来に比べて、物品の性能、品質、生産性及び生産コストの少なくとも1つにおいて有利である。
<Fourth Embodiment>
The method of manufacturing an article according to the embodiment of the present invention is suitable for manufacturing an article such as a device (semiconductor device, magnetic storage medium, liquid crystal display device, etc.), color filter, optical component, MEMS or the like. The manufacturing method includes a step of exposing the substrate coated with the photosensitizer using the exposure apparatus 500 and a step of developing the exposed photosensitizer. In addition, a circuit pattern is formed on the substrate by performing an etching process, an ion implantation process, or the like on the substrate using the developed photosensitive agent pattern as a mask. By repeating these steps of exposure, development and etching, a circuit pattern composed of a plurality of layers is formed on the substrate. In a subsequent step, dicing (processing) is performed on the substrate on which the circuit pattern is formed, and chip mounting, bonding, and inspection steps are performed. Further, the manufacturing method may include other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, resist stripping, etc.). The method for manufacturing an article according to the present embodiment is advantageous in at least one of performance, quality, productivity, and production cost of the article as compared with the conventional method.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   The preferred embodiments of the present invention have been described above, but it goes without saying that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof.

100:異物検出装置 3:透明平板 10:照射部 11:受光部 12:処理部 100: Foreign matter detection device 3: Transparent plate 10: Irradiation unit 11: Light receiving unit 12: Processing unit

Claims (12)

透明部材上の異物を検出する異物検出装置であって、
前記透明部材に対して斜めに光を照射する照射部と、
前記照射部によって前記光が照射された前記透明部材上の異物からの散乱光を検出する受光部と、
前記異物を検出する処理を行う処理部と、を有し、
前記処理は、
前記照射部と前記受光部との相対位置を、前記照射部と前記受光部との間の距離が第1距離となる第1状態とし、前記第1状態において前記受光部で検出される前記散乱光の分布に基づいて前記異物を検出する第1モードと、
前記照射部と前記受光部との相対位置を、前記照射部と前記受光部との間の距離が前記第1距離よりも長い第2距離となる第2状態とし、前記第2状態において前記受光部で検出される前記散乱光の分布に基づいて前記異物を検出する第2モードと、
を含むことを特徴とする異物検出装置。
A foreign matter detection device for detecting foreign matter on a transparent member,
An irradiation unit that obliquely irradiates light on the transparent member,
A light receiving unit that detects scattered light from a foreign matter on the transparent member that is irradiated with the light by the irradiation unit,
A processing unit that performs processing for detecting the foreign matter,
The processing is
The relative position between the irradiation unit and the light receiving unit is set to a first state in which the distance between the irradiation unit and the light receiving unit is a first distance, and the scattering detected by the light receiving unit in the first state. A first mode for detecting the foreign matter based on the distribution of light,
The relative position between the irradiation unit and the light receiving unit is set to a second state in which the distance between the irradiation unit and the light receiving unit is a second distance longer than the first distance, and the light reception is performed in the second state. A second mode for detecting the foreign matter based on the distribution of the scattered light detected in the section,
A foreign matter detection device comprising:
前記処理部は、前記透明部材の側面の特性を示す情報を取得し、前記情報に応じて、前記第1モード又は前記第2モードを選択することを特徴とする請求項1に記載の異物検出装置。   The foreign matter detection according to claim 1, wherein the processing unit acquires information indicating a characteristic of a side surface of the transparent member, and selects the first mode or the second mode according to the information. apparatus. 前記処理部は、前記情報が前記透明部材の側面が研磨面であることを示す場合には、前記第1モードを選択し、前記情報が前記透明部材の側面が荒摺り面であることを示す場合には、前記第2モードを選択することを特徴とする請求項2に記載の異物検出装置。   When the information indicates that the side surface of the transparent member is a polishing surface, the processing unit selects the first mode, and the information indicates that the side surface of the transparent member is a rough surface. In this case, the second mode is selected, and the foreign matter detection device according to claim 2. 前記第1距離と前記第2距離との差は、10mm以上、且つ、20mm以下であることを特徴とする請求項1乃至3のうちいずれか1項に記載の異物検出装置。   The foreign matter detection device according to any one of claims 1 to 3, wherein a difference between the first distance and the second distance is 10 mm or more and 20 mm or less. 前記第1状態は、前記照射部の光軸と前記透明部材の表面との交点と、前記受光部の光軸と前記透明部材の表面との交点とが一致する状態であり、
前記第2状態は、前記照射部の光軸と前記透明部材の表面との交点と、前記受光部の光軸と前記透明部材の表面との交点とが一致しない状態であることを特徴とする請求項1乃至4のうちいずれか1項に記載の異物検出装置。
The first state is a state in which the intersection of the optical axis of the irradiation unit and the surface of the transparent member and the intersection of the optical axis of the light receiving unit and the surface of the transparent member match,
The second state is characterized in that the intersection of the optical axis of the irradiation unit and the surface of the transparent member does not coincide with the intersection of the optical axis of the light receiving unit and the surface of the transparent member. The foreign matter detection device according to any one of claims 1 to 4.
前記第1状態において前記照射部から前記透明部材に照射される光によって前記透明部材上に形成される強度分布と、前記第2状態において前記照射部から前記透明部材に照射される光によって前記透明部材上に形成される強度分布とに基づいて、前記情報を生成する生成部を更に有し、
前記処理部は、前記生成部から前記情報を取得することを特徴とする請求項2に記載の異物検出装置。
The intensity distribution formed on the transparent member by the light emitted from the irradiation unit to the transparent member in the first state, and the transparency by the light emitted from the irradiation unit to the transparent member in the second state. Based on the intensity distribution formed on the member, further has a generation unit for generating the information,
The foreign matter detection device according to claim 2, wherein the processing unit acquires the information from the generation unit.
前記生成部は、
前記第1状態において前記照射部から前記透明部材に照射される光によって前記透明部材上に形成される強度分布と、前記第2状態において前記照射部から前記透明部材に照射される光によって前記透明部材上に形成される強度分布との差が閾値以下である場合には、前記透明部材の側面が研磨面であることを示す前記情報を生成し、
前記第1状態において前記照射部から前記透明部材に照射される光によって前記透明部材上に形成される強度分布と、前記第2状態において前記照射部から前記透明部材に照射される光によって前記透明部材上に形成される強度分布との差が前記閾値よりも大きい場合には、前記透明部材の側面が荒摺り面であることを示す前記情報を生成することを特徴とする請求項6に記載の異物検出装置。
The generator is
The intensity distribution formed on the transparent member by the light emitted from the irradiation unit to the transparent member in the first state, and the transparency by the light emitted from the irradiation unit to the transparent member in the second state. When the difference between the intensity distribution formed on the member is less than or equal to a threshold value, the information indicating that the side surface of the transparent member is a polished surface is generated,
The intensity distribution formed on the transparent member by the light emitted from the irradiation unit to the transparent member in the first state, and the transparency by the light emitted from the irradiation unit to the transparent member in the second state. The information indicating that the side surface of the transparent member is a rough surface is generated when the difference from the intensity distribution formed on the member is larger than the threshold value. Foreign matter detection device.
前記照射部は、
前記光を射出する光源と、
前記光源から射出された前記光の広がりを規定する開口を含む絞りと、
を含み、
前記絞りの前記開口の大きさに基づいて、前記光源から射出する前記光の光量を制御する照射制御部を更に有することを特徴とする請求項1乃至7のうちいずれか1項に記載の異物検出装置。
The irradiation unit,
A light source that emits the light,
A diaphragm including an aperture that defines the spread of the light emitted from the light source,
Including,
The foreign matter according to any one of claims 1 to 7, further comprising an irradiation control unit that controls a light amount of the light emitted from the light source based on a size of the opening of the diaphragm. Detection device.
前記照射制御部は、前記透明部材の厚さに基づいて、前記絞りの前記開口の大きさを決定することを特徴とする請求項8に記載の異物検出装置。   The foreign matter detection device according to claim 8, wherein the irradiation control unit determines the size of the opening of the diaphragm based on the thickness of the transparent member. 透明部材上の異物を検出する異物検出装置であって、
前記透明部材に対して斜めに光を照射する照射部と、
前記照射部によって前記光が照射された前記透明部材上の異物からの散乱光を検出する受光部と、
前記異物を検出する処理を行う処理部と、を有し、
前記処理は、
前記照射部と前記受光部との相対位置を、前記照射部の光軸と前記透明部材の表面との交点と、前記受光部の光軸と前記透明部材の表面との交点との間の距離が第1距離となる第1状態とし、前記第1状態において前記受光部で検出される前記散乱光の分布に基づいて前記異物を検出する第1モードと、
前記照射部と前記受光部との相対位置を、前記照射部の光軸と前記透明部材の表面との交点と、前記受光部の光軸と前記透明部材の表面との交点との間の距離が前記第1距離よりも長い第2距離となる第2状態とし、前記第2状態において前記受光部で検出される前記散乱光の分布に基づいて前記異物を検出する第2モードと、
を含むことを特徴とする異物検出装置。
A foreign matter detection device for detecting foreign matter on a transparent member,
An irradiation unit that obliquely irradiates light on the transparent member,
A light receiving unit that detects scattered light from a foreign matter on the transparent member that is irradiated with the light by the irradiation unit,
A processing unit that performs processing for detecting the foreign matter,
The processing is
The relative position of the irradiation unit and the light receiving unit, the distance between the intersection of the optical axis of the irradiation unit and the surface of the transparent member, and the intersection of the optical axis of the light receiving unit and the surface of the transparent member. In a first state in which the first distance is a first distance, and a first mode in which the foreign matter is detected based on the distribution of the scattered light detected by the light receiving section in the first state,
The relative position of the irradiation unit and the light receiving unit, the distance between the intersection of the optical axis of the irradiation unit and the surface of the transparent member, and the intersection of the optical axis of the light receiving unit and the surface of the transparent member. A second state in which a second distance is longer than the first distance, and a second mode in which the foreign matter is detected based on a distribution of the scattered light detected by the light receiving section in the second state,
A foreign matter detection device comprising:
基板を露光する露光装置であって、
前記基板にマスクのパターンを投影する投影光学系と、
前記マスク上の異物を検出する異物検出装置と、
を有し、
前記マスクは、前記パターンが形成された透明部材で構成され、
前記異物検出装置は、請求項1乃至10のうちいずれか1項に記載の異物検出装置を含むことを特徴とする露光装置。
An exposure apparatus for exposing a substrate,
A projection optical system for projecting a mask pattern on the substrate,
A foreign matter detection device for detecting foreign matter on the mask,
Have
The mask is composed of a transparent member on which the pattern is formed,
The said foreign substance detection apparatus contains the foreign substance detection apparatus in any one of Claim 1 thru | or 10, The exposure apparatus characterized by the above-mentioned.
請求項11に記載の露光装置を用いて基板を露光する工程と、
露光した前記基板を現像する工程と、
現像された前記基板から物品を製造する工程と、
を有することを特徴とする物品の製造方法。
Exposing a substrate using the exposure apparatus according to claim 11;
Developing the exposed substrate,
Manufacturing an article from the developed substrate,
A method for manufacturing an article, comprising:
JP2018193518A 2018-10-12 2018-10-12 Foreign matter detection device, exposure device, and article manufacturing method Active JP7170491B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018193518A JP7170491B2 (en) 2018-10-12 2018-10-12 Foreign matter detection device, exposure device, and article manufacturing method
KR1020190118499A KR102634513B1 (en) 2018-10-12 2019-09-26 Foreign substance detection apparatus, exposure apparatus and manufacturing method of article
CN201910951717.7A CN111045291B (en) 2018-10-12 2019-10-09 Foreign matter detection device, exposure device, and method for manufacturing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193518A JP7170491B2 (en) 2018-10-12 2018-10-12 Foreign matter detection device, exposure device, and article manufacturing method

Publications (2)

Publication Number Publication Date
JP2020060521A true JP2020060521A (en) 2020-04-16
JP7170491B2 JP7170491B2 (en) 2022-11-14

Family

ID=70218984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193518A Active JP7170491B2 (en) 2018-10-12 2018-10-12 Foreign matter detection device, exposure device, and article manufacturing method

Country Status (3)

Country Link
JP (1) JP7170491B2 (en)
KR (1) KR102634513B1 (en)
CN (1) CN111045291B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051759A (en) * 2018-09-21 2020-04-02 キヤノン株式会社 Foreign matter inspection device, exposure device, and article production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301303A (en) * 2005-04-20 2006-11-02 Canon Inc Device and method for inspecting foreign matter, exposing device, and method for manufacturing device
JP2016133357A (en) * 2015-01-16 2016-07-25 キヤノン株式会社 Foreign matter inspection device, exposure device, and device manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312849B2 (en) * 1996-06-25 2002-08-12 松下電工株式会社 Defect detection method for object surface
JPWO2007119821A1 (en) * 2006-04-14 2009-08-27 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JP5235480B2 (en) 2008-04-17 2013-07-10 キヤノン株式会社 Foreign matter inspection apparatus, exposure apparatus, and device manufacturing method
JP2010133864A (en) * 2008-12-05 2010-06-17 Nikon Corp Apparatus and method for detecting foreign substance, and apparatus and method for exposure
JP2010210527A (en) * 2009-03-11 2010-09-24 Horiba Ltd Apparatus and program for inspecting and removing foreign substance
JP6373074B2 (en) * 2014-06-06 2018-08-15 株式会社ニューフレアテクノロジー Mask inspection apparatus and mask inspection method
JP5850447B1 (en) * 2015-04-06 2016-02-03 レーザーテック株式会社 Inspection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301303A (en) * 2005-04-20 2006-11-02 Canon Inc Device and method for inspecting foreign matter, exposing device, and method for manufacturing device
JP2016133357A (en) * 2015-01-16 2016-07-25 キヤノン株式会社 Foreign matter inspection device, exposure device, and device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051759A (en) * 2018-09-21 2020-04-02 キヤノン株式会社 Foreign matter inspection device, exposure device, and article production method
JP7292842B2 (en) 2018-09-21 2023-06-19 キヤノン株式会社 Foreign Matter Inspection Apparatus, Exposure Apparatus, and Article Manufacturing Method

Also Published As

Publication number Publication date
KR20200041779A (en) 2020-04-22
JP7170491B2 (en) 2022-11-14
CN111045291A (en) 2020-04-21
KR102634513B1 (en) 2024-02-07
CN111045291B (en) 2023-08-11

Similar Documents

Publication Publication Date Title
KR102335198B1 (en) Extreme ultraviolet (euv) substrate inspection system with simplified optics and method of manufacturing thereof
JP2796316B2 (en) Defect or foreign matter inspection method and apparatus
JP4110095B2 (en) Pattern profile inspection apparatus, inspection method, and exposure apparatus
KR20080065940A (en) Position detection apparatus and exposure apparatus
JP2010008177A (en) Defect detecting apparatus and method therefor
JPH075115A (en) Surface condition inspection apparatus
US8339568B2 (en) Foreign particle inspection apparatus, exposure apparatus, and method of manufacturing device
KR100740601B1 (en) Particle inspection apparatus and method, exposure apparatus, and device manufacturing method
US8384888B2 (en) Mask defect measurement method, mask quality determination and method, and manufacturing method of semiconductor device
CN109564397B (en) Measuring apparatus, exposure apparatus, and method of manufacturing article
US7767982B2 (en) Optical auto focusing system and method for electron beam inspection tool
JP7170491B2 (en) Foreign matter detection device, exposure device, and article manufacturing method
JP2019194569A (en) Optical system for automatic optical inspection
JP6762746B2 (en) Exposure equipment and exposure method, and manufacturing method of articles
KR102523304B1 (en) Exposure apparatus and method of manufacturing article
JP3102493B2 (en) Foreign matter inspection method and apparatus
JP3050431B2 (en) Face plate foreign matter inspection device
JP7022611B2 (en) Exposure device control method, exposure device, and article manufacturing method
KR101087628B1 (en) Foreign particle inspection apparatus, exposure apparatus, and method of manufacturing device
TW202008080A (en) Lithography projection apparatus
JP2017215219A (en) Measurement device, pattern formation device, and article manufacturing method
JP2022175005A (en) Inspection device
JP2947916B2 (en) Surface condition inspection device
JP2004247349A (en) Position measuring apparatus and method therefor, exposure device, and its manufacturing method
JP2017215218A (en) Measurement device, pattern formation device, and article manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221101

R151 Written notification of patent or utility model registration

Ref document number: 7170491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151