[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020057503A - Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery - Google Patents

Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery Download PDF

Info

Publication number
JP2020057503A
JP2020057503A JP2018186849A JP2018186849A JP2020057503A JP 2020057503 A JP2020057503 A JP 2020057503A JP 2018186849 A JP2018186849 A JP 2018186849A JP 2018186849 A JP2018186849 A JP 2018186849A JP 2020057503 A JP2020057503 A JP 2020057503A
Authority
JP
Japan
Prior art keywords
positive electrode
solid
active material
ion battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018186849A
Other languages
Japanese (ja)
Other versions
JP7118843B2 (en
Inventor
幸毅 ▲柳▼川
幸毅 ▲柳▼川
Yukitake Yanagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018186849A priority Critical patent/JP7118843B2/en
Publication of JP2020057503A publication Critical patent/JP2020057503A/en
Application granted granted Critical
Publication of JP7118843B2 publication Critical patent/JP7118843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】Nb被覆された全固体リチウムイオン電池用正極活物質の簡便な製造方法を提供する。【解決手段】ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体をロッキングミキサー中に投入し、シュウ酸ニオブ水溶液を噴霧してシュウ酸ニオブが被覆された前駆体粉体を作製する工程と、シュウ酸ニオブが被覆された前駆体粉体とリチウム化合物とを混合して焼成する工程とを含む全固体リチウムイオン電池用正極活物質の製造方法。【選択図】なしPROBLEM TO BE SOLVED: To provide a simple method for producing an Nb-coated positive electrode active material for an all-solid-state lithium ion battery. A transition metal hydroxide precursor composed of nickel, cobalt, and manganese is charged into a rocking mixer, and a niobium oxalate aqueous solution is sprayed to produce a precursor powder coated with niobium oxalate. And a step of mixing a precursor powder coated with niobium oxalate and a lithium compound and firing the mixture, and a method for producing a positive electrode active material for an all-solid-state lithium ion battery. [Selection diagram] None

Description

本発明は、全固体リチウムイオン電池用正極活物質の製造方法、及び全固体リチウムイオン電池の製造方法に関する。   The present invention relates to a method for producing a positive electrode active material for an all-solid lithium-ion battery and a method for producing an all-solid-state lithium-ion battery.

現在、使用されているリチウムイオン電池は、正極活物質として層状化合物LiMeO2(Meは平均で+III価となるように選択されるカチオンであり、レドックスカチオンを必ず含む)、スピネル化合物LiMeQO4(Qは平均で+IV価となるように選択されるカチオン)、オリビン系化合物LiX1X2O4(X1は+II価となるように選択されるカチオンであり、レドックスカチオンを必ず含む、X2は+V価となるように選択されるカチオン)や蛍石型化合物Li5MeO4等を用いており、一方でその特性を生かすことができるよう、電解液その他構成要件が年々改善されてきている。 Currently used lithium ion batteries include, as a positive electrode active material, a layered compound LiMeO 2 (Me is a cation selected to have an average of + III valence and necessarily contains a redox cation), and a spinel compound LiMeQO 4 (Q Is a cation selected to have a + IV valence on average), and the olivine-based compound LiX1X2O 4 (X1 is a cation selected to have a + II valency, always contains a redox cation, and X2 has a + V valence. (A selected cation), a fluorite-type compound Li 5 MeO 4, and the like, and on the other hand, the electrolytic solution and other components are being improved year by year so that the characteristics can be utilized.

ただ、リチウムイオン電池の場合は、電解液は有機化合物が大半であり、たとえ難燃性の化合物を用いたとしても火災に至る危険性が全くなくなるとは言いきれない。こうした液系リチウムイオン電池(以下、液系LIBとも称する)の代替候補として、電解質を固体とした全固体リチウムイオン電池(以下、全固体LIBとも称する)が近年注目を集めている(特許文献1等)。その中でも、固体電解質としてLi2S−P25などの硫化物やそれにハロゲン化リチウムを添加した全固体リチウムイオン電池が主流となりつつある。 However, in the case of a lithium ion battery, most of the electrolyte is an organic compound, and even if a flame-retardant compound is used, it cannot be said that there is no danger of fire. As an alternative candidate for such a liquid-based lithium-ion battery (hereinafter, also referred to as a liquid-based LIB), an all-solid-state lithium-ion battery (hereinafter, also referred to as an all-solid-state LIB) having a solid electrolyte has attracted attention in recent years (Patent Document 1). etc). Among them, sulfides such as Li 2 S—P 2 S 5 as solid electrolytes and all-solid lithium ion batteries to which lithium halide is added are becoming mainstream.

また、従来、リチウムイオン電池用正極活物質の製造方法として、例えば特許文献1に開示されているように、あらかじめ正極活物質を構成する全元素を含む前駆体原料とリチウム源(水酸化リチウム等)を混合して焼成して酸化物正極活物質を作製した後、ニオブ酸リチウムの前駆体等のコート溶液を酸化物正極活物質の表面上に塗布し、更に焼成を行うことで所望のリチウムイオン電池用正極活物質を作製している。   Conventionally, as a method for producing a positive electrode active material for a lithium ion battery, for example, as disclosed in Patent Document 1, a precursor material containing all elements constituting the positive electrode active material and a lithium source (such as lithium hydroxide) ) Is mixed and baked to produce an oxide positive electrode active material, and then a coating solution such as a lithium niobate precursor is applied on the surface of the oxide positive electrode active material, and further calcination is performed to obtain a desired lithium. We are producing positive electrode active materials for ion batteries.

特開2010−225309号公報JP 2010-225309 A

しかしながら、上述のように従来は正極活物質のコア粒子を製造するために少なくとも一度焼成工程があり、さらに、正極活物質のコア粒子の表面上に被覆物を塗布した後、再度焼成工程を行う必要がある。このように、焼成工程が複数回あると、熱処理コストが大きくなり、また生産のリードタイムも嵩んでしまうという問題がある。このため、より簡便な方法で正極活物質を製造することができる技術の開発が望まれている。ここで、全固体リチウムイオン電池用の正極活物質の場合は特許文献1にあるようにNbが表面に存在すると特性が大幅に改善することが知られており、この点からもNb被覆の簡便な方法が求められていたが、現在の一般的な転動流動装置では、均一に被覆しようとすると上記コア粒子の転動時間を長くとらねばならず、この間にせっかく被覆した粒子同士がぶつかって割れてしまうリスクがあった。割れた粒子はそのまま転動しているので、そのまま再被覆できれば問題なく全固体リチウムイオン電池用正極活物質として用いることができるが、再被覆がなされないまま転動流動装置から取り出されることがあり、これを正極活物質として全固体リチウムイオン電池を作製すると、時々特性が悪いものができることが判明した。従って、被覆時間の短い簡便なNb被覆方法を開発することが重要となっていた。   However, as described above, conventionally, there is at least one firing step for producing the core particles of the positive electrode active material, and further, after applying the coating on the surface of the core particles of the positive electrode active material, the firing step is performed again. There is a need. As described above, when the firing step is performed a plurality of times, there is a problem that the heat treatment cost increases and the production lead time increases. For this reason, development of a technique that can produce a positive electrode active material by a simpler method is desired. Here, in the case of a positive electrode active material for an all-solid lithium ion battery, it is known that the properties are greatly improved if Nb is present on the surface, as described in Patent Document 1, and from this point also, the Nb coating is simple. However, in the current general rolling fluidizing apparatus, in order to coat uniformly, the rolling time of the core particles must be long, and during this time the coated particles collide with each other. There was a risk of breaking. Since the broken particles are tumbling as they are, they can be used as a positive electrode active material for an all-solid lithium-ion battery without any problems if they can be recoated as they are, but they may be taken out of the tumbling fluidizer without recoating. It has been found that when this is used as a positive electrode active material to produce an all-solid-state lithium-ion battery, a battery sometimes having poor characteristics can be obtained. Therefore, it has been important to develop a simple Nb coating method with a short coating time.

そこで、本発明の実施形態は、Nb被覆された全固体リチウムイオン電池用正極活物質の簡便な製造方法を提供することを課題とする。   Thus, an object of the present invention is to provide a simple method for producing a cathode active material for an Nb-coated all-solid-state lithium ion battery.

本発明は一実施形態において、ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体をロッキングミキサー中に投入し、シュウ酸ニオブ水溶液を噴霧してシュウ酸ニオブが被覆された前駆体粉体を作製する工程と、前記シュウ酸ニオブが被覆された前駆体粉体とリチウム化合物とを混合して焼成する工程とを含む全固体リチウムイオン電池用正極活物質の製造方法である。   In one embodiment, the present invention provides a precursor coated with niobium oxalate by charging a transition metal hydroxide precursor composed of nickel, cobalt and manganese into a rocking mixer and spraying an aqueous niobium oxalate solution. A method for producing a positive electrode active material for an all-solid lithium ion battery, comprising a step of preparing a powder and a step of mixing and firing a lithium compound and a precursor powder coated with niobium oxalate.

本発明の別の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法は、前記ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体におけるニッケルとコバルトとマンガンとの物質量比が、前記ニッケル、コバルト及びマンガンの総物質量を100とすると、85〜90:7〜9:0〜7.5(ただし、0を除く)で表され、前記リチウム化合物がLiOH・H2Oである。 The method for producing a positive electrode active material for an all-solid-state lithium ion battery according to another embodiment of the present invention is a method of producing a nickel, cobalt, and manganese material in a transition metal hydroxide precursor composed of nickel, cobalt, and manganese. Assuming that the total amount of nickel, cobalt and manganese is 100, the amount ratio is expressed as 85 to 90: 7 to 9: 0 to 7.5 (excluding 0), and the lithium compound is LiOH.H 2 O.

本発明の更に別の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法は、前記ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体の比表面積が6.9m2/g以上である。 The method for producing a cathode active material for an all-solid-state lithium-ion battery according to still another embodiment of the present invention is characterized in that the transition metal hydroxide precursor composed of nickel, cobalt and manganese has a specific surface area of 6.9 m 2. / G or more.

本発明の別の実施形態は、本発明の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、前記正極層、固体電解質層及び負極層を用いて全固体リチウムイオン電池を製造する全固体リチウムイオン電池の製造方法である。   Another embodiment of the present invention is to form a positive electrode layer using an all-solid lithium-ion battery positive electrode active material manufactured by the method for manufacturing an all-solid lithium-ion battery positive electrode active material according to an embodiment of the present invention, This is a method for manufacturing an all-solid lithium-ion battery in which an all-solid-state lithium-ion battery is manufactured using the positive electrode layer, the solid electrolyte layer, and the negative electrode layer.

本発明の実施形態によれば、Nb被覆された全固体リチウムイオン電池用正極活物質の簡便な製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to embodiment of this invention, the simple manufacturing method of the positive electrode active material for all-solid-state lithium ion batteries coated with Nb can be provided.

(全固体リチウムイオン電池用正極活物質の製造方法)
ニッケル源:コバルト源:マンガン源が、モル比でNi:Co:Mn=85〜90:7〜9:0〜7.5(ただし、Mn=0を除く)となるように調製した遷移金属水溶液を準備する。ニッケル源、コバルト源、マンガン源は、それぞれ硫酸塩、硝酸塩、塩酸塩等であってもよい。
(Method of producing positive electrode active material for all solid-state lithium ion battery)
A transition metal aqueous solution prepared such that the nickel source: cobalt source: manganese source is molar ratio of Ni: Co: Mn = 85-90: 7-9-9-0-7.5 (excluding Mn = 0). Prepare The nickel source, cobalt source, and manganese source may be sulfate, nitrate, hydrochloride, and the like, respectively.

次に、当該遷移金属水溶液と、水酸化ナトリウム水溶液と、アンモニア水とを別々の槽に用意し、これらを一つの反応槽に投入して晶析法により反応させる。続いて、反応物をろ過、水洗及び乾燥を行うことで組成式:NiaCobMnc(OH)2[式中、a:b:c=85〜90:7〜9:0〜7.5(ただし、c=0を除く)]で示される前駆体粉体を作製する。 Next, the transition metal aqueous solution, the sodium hydroxide aqueous solution, and the ammonia water are prepared in separate tanks, and these are charged into one reaction tank and reacted by a crystallization method. Subsequently, the reaction product is filtered, washed with water and dried to obtain a composition formula: Ni a Co b M n c (OH) 2 [where a: b: c = 85 to 90: 7 to 9: 0 to 7.0. 5 (excluding c = 0)].

このとき、該ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体粉体の比表面積が6.9m2/g以上であるのが好ましい。なお、該比表面積は、例えば水酸化物の製造条件(温度、pH、雰囲気等)によって当業者が常識と考える程度で制御することができる。当該前駆体粉体の比表面積が6.9m2/g以上であると、前駆体粉体の細孔容積が大きくなり、表面に付着する水分の許容量が向上する。このため、前駆体粉体が水分を多くしても粉体のままで維持できるため、「だま」になり難い。このように水分の影響が低減するため、後述のように焼成工程が1度であっても正極活物質の製造がより容易となる。 At this time, the transition metal hydroxide precursor powder composed of nickel, cobalt and manganese preferably has a specific surface area of 6.9 m 2 / g or more. The specific surface area can be controlled, for example, by hydroxide production conditions (temperature, pH, atmosphere, etc.) to such an extent that a person skilled in the art would consider it common sense. When the specific surface area of the precursor powder is 6.9 m 2 / g or more, the pore volume of the precursor powder is increased, and the allowable amount of water adhering to the surface is improved. For this reason, even if the precursor powder has a large amount of water, the precursor powder can be maintained as it is, so that it does not easily become a "dama". As described above, since the influence of moisture is reduced, the production of the positive electrode active material becomes easier even when the firing step is performed once, as described later.

次に、該前駆体粉体をロッキングミキサー(乾式粉体混合機)に投入する。続いて、Nbを63〜189g/Lの濃度で含むシュウ酸ニオブ水溶液を、物質量百分率Nb/(Ni+Co+Mn)が0.27〜0.55となるように、室温で噴霧時間17〜35秒、噴霧後均し時間900秒、回転数30Hz、揺動数30Hzでロッキングミキサー中の該前駆体粉体表面へ噴霧する操作を行い、ロッキングミキサーによって10〜15分撹拌し、シュウ酸ニオブが被覆された前駆体粉体を得る。   Next, the precursor powder is charged into a rocking mixer (dry powder mixer). Subsequently, an aqueous niobium oxalate solution containing Nb at a concentration of 63 to 189 g / L was sprayed at room temperature for 17 to 35 seconds so that the substance percentage Nb / (Ni + Co + Mn) would be 0.27 to 0.55, An operation of spraying the precursor powder surface in a rocking mixer at a averaging time of 900 seconds, a rotation speed of 30 Hz, and a rocking speed of 30 Hz is performed, and the mixture is stirred by a rocking mixer for 10 to 15 minutes to be coated with niobium oxalate. To obtain a precursor powder.

ここで、ロッキングミキサーは、回転と揺動が個別に可変できる乾式粉体混合機であり、回転による拡散混合と揺動による移動混合を同時に行なうことで短時間での均一混合が可能である。   Here, the rocking mixer is a dry powder mixer in which rotation and oscillation can be individually varied, and uniform mixing can be performed in a short time by simultaneously performing diffusion mixing by rotation and moving mixing by oscillation.

続いて、シュウ酸ニオブが被覆された前駆体粉体とリチウム化合物とを乾式混合して焼成する。具体的には、まず、ロッキングミキサーからシュウ酸ニオブが被覆された前駆体粉体を取り出し、該前駆体粉体とLiOH・H2Oとを、湿度が40〜65%の大気雰囲気にて質量百分率Li/(Ni+Co+Mn)が1.0〜1.03となるように一つの袋に計量する。次に、袋を粗混合して得た粉体(以下、「粗混合粉」とも称する)を袋から全てヘンシェルミキサーに入れて、10〜30Hzで5〜15分間混合する。 Subsequently, the precursor powder coated with niobium oxalate and the lithium compound are dry-mixed and fired. Specifically, first, a precursor powder coated with niobium oxalate is taken out from a rocking mixer, and the precursor powder and LiOH · H 2 O are mass-mixed in an air atmosphere having a humidity of 40 to 65%. Weigh into one bag so that the percentage Li / (Ni + Co + Mn) is 1.0 to 1.03. Next, the powder obtained by roughly mixing the bags (hereinafter, also referred to as “coarse mixed powder”) is put into the Henschel mixer from the bags and mixed at 10 to 30 Hz for 5 to 15 minutes.

続いて、混合した粉体(以下、「混合粉」とも称する)をアルミナ匣鉢に充填する。次に、焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて、酸素雰囲気下で、350℃で2時間、続いて490℃で8時間、750℃で4時間焼成する。これを室温まで冷却した後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕して正極活物質を得る。   Subsequently, the mixed powder (hereinafter, also referred to as “mixed powder”) is filled in an alumina sagger. Next, oxygen is filled in the firing furnace, and the alumina sagger is placed in the firing furnace, and fired at 350 ° C. for 2 hours, subsequently at 490 ° C. for 8 hours, and at 750 ° C. for 4 hours under an oxygen atmosphere. . After cooling to room temperature, the alumina sagger is taken out of the firing furnace into dry air, and crushed by a roll crusher and an ACM pulverizer to obtain a positive electrode active material.

上記の方法によれば、焼成工程が1度でよいため、熱処理コストが低減し、生産のリードタイムも減少する。このように、本発明の実施形態に係る製造方法によれば、非常に簡便な方法でNb被覆正極活物質を製造することができる。また、当該正極活物質は、リチウムニッケルコバルトマンガン複合酸化物の表面にNbが均一に被覆されている。   According to the above method, the firing step only needs to be performed once, so that the heat treatment cost is reduced and the production lead time is also reduced. As described above, according to the manufacturing method according to the embodiment of the present invention, the Nb-coated positive electrode active material can be manufactured by a very simple method. Further, in the positive electrode active material, the surface of the lithium nickel cobalt manganese composite oxide is uniformly coated with Nb.

(全固体リチウムイオン電池の製造方法)
本発明の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、固体電解質層、当該正極層及び負極層を備えた全固体リチウムイオン電池を作製することができる。
(Method of manufacturing all-solid lithium-ion battery)
A positive electrode layer is formed using the positive electrode active material for an all solid lithium ion battery manufactured by the method for manufacturing a positive electrode active material for an all solid lithium ion battery according to the embodiment of the present invention, and a solid electrolyte layer, the positive electrode layer, and the negative electrode are formed. An all-solid lithium-ion battery with layers can be made.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Hereinafter, examples for better understanding of the present invention and its advantages will be provided, but the present invention is not limited to these examples.

(実施例1)
硫酸ニッケル:硫酸コバルト:硫酸マンガンがモル比で90:7:3となるように調製した遷移金属水溶液、水酸化ナトリウム水溶液、アンモニア水を別々の槽に用意し、これらを一つの反応槽に投入して晶析法により反応させ、ろ過、水洗及び乾燥を行うことで組成式:Ni0.90Co0.07Mn0.03(OH)2で示される前駆体粉体を得た。この前駆体(以下、コア前駆体とも称する)の平均粒径D50は6μmであり、比表面積(BET)は6.9m2/gであった。
(Example 1)
A transition metal aqueous solution, a sodium hydroxide aqueous solution, and an aqueous ammonia solution prepared so that the molar ratio of nickel sulfate: cobalt sulfate: manganese sulfate is 90: 7: 3 are prepared in separate tanks, and these are charged into one reaction tank. The mixture was reacted by a crystallization method, filtered, washed with water and dried to obtain a precursor powder represented by a composition formula: Ni 0.90 Co 0.07 Mn 0.03 (OH) 2 . This precursor (hereinafter, also referred to as core precursor) had an average particle size D50 of 6 μm and a specific surface area (BET) of 6.9 m 2 / g.

次に、コア前駆体の粉体をロッキングミキサーに投入した。続いて、Nbを63〜189g/Lの濃度で含むシュウ酸ニオブ水溶液を、室温で噴霧時間17秒、噴霧後均し時間900秒、回転数30Hz、揺動数30Hzでロッキングミキサー中の該前駆体粉体表面へ噴霧する操作を行い、ロッキングミキサーによって20分撹拌した。   Next, the powder of the core precursor was charged into a rocking mixer. Subsequently, an aqueous niobium oxalate solution containing Nb at a concentration of 63 to 189 g / L was sprayed at room temperature for 17 seconds, after spraying for 900 seconds, at a rotation speed of 30 Hz and a rocking speed of 30 Hz, and the precursor in a rocking mixer was used. The operation of spraying on the body powder surface was performed, and the mixture was stirred for 20 minutes by a rocking mixer.

次に、該前駆体粉体とLiOH・H2Oとを、湿度が60%の大気雰囲気にて質量百分率Li/(Ni+Co+Mn)が1.01となるように一つの袋に計量した。次に、袋を膨らませたまま開口部を手で握って粉が漏れないようにして、握ってない方の手を袋の底にあてて両方の手で袋を揺らして粗混合した。この粗混合した粉体(以下、「粗混合粉」とも称する)を袋から全てヘンシェルミキサーに入れて、10〜30Hzで5〜15分間混合した。 Next, the precursor powder and LiOH.H 2 O were weighed in one bag so that the mass percentage Li / (Ni + Co + Mn) became 1.01 in an air atmosphere with a humidity of 60%. Next, while the bag was inflated, the opening was grasped by hand to prevent the powder from leaking, and the hand not grasping was placed on the bottom of the bag, and the bag was shaken with both hands to perform coarse mixing. All of the coarsely mixed powder (hereinafter also referred to as “coarse mixed powder”) was put into a Henschel mixer from the bag and mixed at 10 to 30 Hz for 5 to 15 minutes.

続いて、混合した粉体(以下、「混合粉」とも称する)をアルミナ匣鉢に充填した。次に、焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて0.1MPaの酸素雰囲気とし、750℃で8時間焼成した。これを室温まで冷却した後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕して実施例1の正極活物質とした。実施例1の正極活物質の組成は、物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。また、被覆部のNb被覆量を、前駆体の組成分析結果、及びシュウ酸ニオブのニオブ濃度に基づいて算出した。   Subsequently, the mixed powder (hereinafter, also referred to as “mixed powder”) was filled in an alumina sagger. Next, the firing furnace was filled with oxygen, and the alumina sagger was placed in the firing furnace to form an oxygen atmosphere of 0.1 MPa and fired at 750 ° C. for 8 hours. After cooling to room temperature, the alumina sagger was taken out of the firing furnace into dry air, and crushed with a roll crusher and an ACM pulverizer to obtain a positive electrode active material of Example 1. The composition of the positive electrode active material of Example 1 was Ni: Co: Mn = 90: 7: 3 in mass ratio, Li / (Ni + Co + Mn) = 1.01 in mass percentage, and mass percentage Nb / (Ni + Co + Mn). = 0.27. Further, the Nb coating amount of the coating portion was calculated based on the composition analysis result of the precursor and the niobium concentration of niobium oxalate.

(実施例2)
コア前駆体の組成と平均粒径D50及び比表面積を表1の通りとした以外は、実施例1と同様の方法でNb被覆正極活物質を作製した。実施例2の正極活物質の組成は、物質量比でNi:Co:Mn=87:9:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。
(Example 2)
An Nb-coated positive electrode active material was produced in the same manner as in Example 1, except that the composition of the core precursor, the average particle diameter D50, and the specific surface area were as shown in Table 1. The composition of the positive electrode active material of Example 2 was as follows: Ni: Co: Mn = 87: 9: 3 in mass ratio, Li / (Ni + Co + Mn) = 1.01 in mass percentage, and mass percentage Nb / (Ni + Co + Mn). = 0.27.

(実施例3)
コア前駆体の表面のNbが被覆した部分(表1の被覆部)のNb被覆量、シュウ酸ニオブの添加量、被覆時間を表1に示す通りとした以外は、実施例2と同様の方法でNb被覆正極活物質を作製した。実施例3の正極活物質の組成は物質量比でNi:Co:Mn=87:9:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Example 3)
A method similar to that of Example 2 except that the Nb coating amount, the addition amount of niobium oxalate, and the coating time of the Nb-coated portion (coated portion in Table 1) on the surface of the core precursor were as shown in Table 1. Thus, an Nb-coated positive electrode active material was prepared. The composition of the positive electrode active material of Example 3 was Ni: Co: Mn = 87: 9: 3 in mass ratio, Li / (Ni + Co + Mn) = 1.01 in mass percentage, and mass percentage Nb / (Ni + Co + Mn) = 0.55.

(実施例4)
コア前駆体の平均粒径D50及び比表面積を表1の通りとした以外は、実施例1と同様の方法でNb被覆正極活物質を作製した。実施例4の正極活物質の組成は物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.03、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。
(Example 4)
An Nb-coated positive electrode active material was produced in the same manner as in Example 1, except that the average particle diameter D50 and the specific surface area of the core precursor were as shown in Table 1. The composition of the positive electrode active material of Example 4 was Ni: Co: Mn = 90: 7: 3 in mass ratio, Li / (Ni + Co + Mn) = 1.03 in mass percentage, and mass percentage Nb / (Ni + Co + Mn) = 0.27.

(実施例5)
コア前駆体の組成と平均粒径D50及び比表面積を表1の通りとした以外は、実施例3と同様の方法でNb被覆正極活物質を作製した。実施例5の正極活物質の組成は物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.03、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Example 5)
An Nb-coated positive electrode active material was produced in the same manner as in Example 3, except that the composition of the core precursor, the average particle diameter D50, and the specific surface area were as shown in Table 1. The composition of the positive electrode active material of Example 5 was Ni: Co: Mn = 90: 7: 3 in mass ratio, Li / (Ni + Co + Mn) = 1.03 in mass percentage, and mass percentage Nb / (Ni + Co + Mn) = 0.55.

(実施例6)
コア前駆体の組成と平均粒径D50及び比表面積を表1の通りとした以外は、実施例3と同様の方法でNb被覆正極活物質を作製した。実施例6の正極活物質の組成は物質量比でNi:Co:Mn=85:7.5:7.5、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Example 6)
An Nb-coated positive electrode active material was produced in the same manner as in Example 3, except that the composition of the core precursor, the average particle diameter D50, and the specific surface area were as shown in Table 1. The composition of the positive electrode active material of Example 6 was Ni: Co: Mn = 85: 7.5: 7.5 in mass ratio, Li / (Ni + Co + Mn) = 1.01 in mass percentage, and mass percentage Nb / (Ni + Co + Mn) = 0.55.

実施例1〜6の正極活物質の粒子断面をEPMAで観察したところ、いずれもリチウムニッケルコバルトマンガン複合酸化物の表面にNbが均一に被覆されており、粒子表面にリチウムニッケルコバルトマンガン複合酸化物が露出していることはなかった。   When the cross section of the particles of the positive electrode active materials of Examples 1 to 6 was observed by EPMA, the surface of the lithium nickel cobalt manganese composite oxide was uniformly coated with Nb, and the surface of the particles was lithium nickel cobalt manganese composite oxide. Was never exposed.

(比較例1)
硫酸ニッケル:硫酸コバルト:硫酸マンガンがモル比で90:7:3となるように調製した遷移金属水溶液、水酸化ナトリウム水溶液、アンモニア水を別々の槽に用意し、これらを一つの反応槽に投入して晶析法により反応させ、ろ過、水洗及び乾燥を行うことで組成式:Ni0.90Co0.07Mn0.03(OH)2で示される前駆体粉体を得た。この前駆体(コア前駆体とも称する)の平均粒径D50は6μmであり、比表面積(BET)は6.9m2/gであった。次に、当該前駆体と水酸化リチウムを実施例1と同様の方法で混合した後、アルミナ匣鉢に充填した。次に、焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて0.1MPaの酸素雰囲気とし、750℃で8時間焼成した。これを室温まで冷却した後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕し、正極材を得た。
(Comparative Example 1)
A transition metal aqueous solution, a sodium hydroxide aqueous solution, and an aqueous ammonia solution prepared so that the molar ratio of nickel sulfate: cobalt sulfate: manganese sulfate is 90: 7: 3 are prepared in separate tanks, and these are charged into one reaction tank. The mixture was reacted by a crystallization method, filtered, washed with water and dried to obtain a precursor powder represented by a composition formula: Ni 0.90 Co 0.07 Mn 0.03 (OH) 2 . This precursor (also referred to as core precursor) had an average particle size D50 of 6 μm and a specific surface area (BET) of 6.9 m 2 / g. Next, the precursor and lithium hydroxide were mixed in the same manner as in Example 1, and then charged into an alumina sagger. Next, the firing furnace was filled with oxygen, and the alumina sagger was placed in the firing furnace to form an oxygen atmosphere of 0.1 MPa and fired at 750 ° C. for 8 hours. After cooling to room temperature, the alumina sagger was taken out of the firing furnace in dry air, and crushed with a roll crusher and an ACM pulverizer to obtain a positive electrode material.

続いて、当該正極材の粉体をロッキングミキサーに投入した。Nbを63〜189g/Lの濃度で含むシュウ酸ニオブ水溶液を、室温で噴霧時間17秒、噴霧後均し時間900秒、回転数30Hz、揺動数30Hzでロッキングミキサー中の該前駆体粉体表面へ噴霧する操作を行い、500℃で6時間焼成した。これを室温まで冷却した後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕し、比較例1の正極活物質とした。比較例1の正極活物質の組成は、物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。   Subsequently, the powder of the positive electrode material was put into a rocking mixer. The precursor powder in a rocking mixer was sprayed with an aqueous niobium oxalate solution containing Nb at a concentration of 63 to 189 g / L at room temperature for a spraying time of 17 seconds, a spraying time of 900 seconds, a rotation speed of 30 Hz, and a rocking speed of 30 Hz. An operation of spraying on the surface was performed, and firing was performed at 500 ° C. for 6 hours. After cooling to room temperature, the alumina sagger was taken out of the firing furnace in dry air, and crushed with a roll crusher and an ACM pulverizer to obtain a positive electrode active material of Comparative Example 1. The composition of the positive electrode active material of Comparative Example 1 was Ni: Co: Mn = 90: 7: 3 in mass ratio, Li / (Ni + Co + Mn) = 1.01 in mass percentage, and mass percentage Nb / (Ni + Co + Mn). = 0.27.

(比較例2)
コア前駆体の組成、平均粒径D50、比表面積を表1の通りとした以外は、比較例1と同様の方法でNb被覆正極活物質を作製した。比較例2の正極活物質の組成は物質量比でNi:Co:Mn=87:9:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。
(Comparative Example 2)
An Nb-coated positive electrode active material was produced in the same manner as in Comparative Example 1, except that the composition of the core precursor, the average particle diameter D50, and the specific surface area were as shown in Table 1. The composition of the positive electrode active material of Comparative Example 2 was Ni: Co: Mn = 87: 9: 3 in mass ratio, Li / (Ni + Co + Mn) = 1.01 in mass percentage, and mass percentage Nb / (Ni + Co + Mn) = 0.27.

(比較例3)
被覆部のNb被覆量、シュウ酸ニオブの添加量、被覆時間を表1の通りとした以外は、比較例2と同様の方法でNb被覆正極活物質を作製した。比較例3の正極活物質の組成は物質量比でNi:Co:Mn=87:9:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Comparative Example 3)
An Nb-coated positive electrode active material was produced in the same manner as in Comparative Example 2, except that the coating amount of Nb, the amount of niobium oxalate added, and the coating time were as shown in Table 1. The composition of the positive electrode active material of Comparative Example 3 was Ni: Co: Mn = 87: 9: 3 in mass ratio, Li / (Ni + Co + Mn) = 1.01 in mass percentage, and mass percentage Nb / (Ni + Co + Mn) = 0.55.

(比較例4)
コア前駆体の平均粒径D50、比表面積を表1の通りとした以外は、比較例1と同様の方法でNb被覆正極活物質を作製した。比較例4の正極活物質の組成は物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.03、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。
(Comparative Example 4)
An Nb-coated positive electrode active material was produced in the same manner as in Comparative Example 1, except that the average particle size D50 and the specific surface area of the core precursor were as shown in Table 1. The composition of the positive electrode active material of Comparative Example 4 was Ni: Co: Mn = 90: 7: 3 in mass ratio, Li / (Ni + Co + Mn) = 1.03 in mass percentage, and mass percentage Nb / (Ni + Co + Mn) = 0.27.

(比較例5)
コア前駆体の組成、平均粒径D50、比表面積を表1の通りとした以外は、比較例3と同様の方法でNb被覆正極活物質を作製した。比較例5の正極活物質の組成は物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.03、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Comparative Example 5)
An Nb-coated positive electrode active material was prepared in the same manner as in Comparative Example 3, except that the composition of the core precursor, the average particle diameter D50, and the specific surface area were as shown in Table 1. The composition of the positive electrode active material of Comparative Example 5 was Ni: Co: Mn = 90: 7: 3 in mass ratio, Li / (Ni + Co + Mn) = 1.03 in mass percentage, and mass percentage Nb / (Ni + Co + Mn) = 0.55.

(比較例6)
コア前駆体の組成、平均粒径D50、比表面積を表1の通りとした以外は、比較例3と同様の方法でNb被覆正極活物質を作製した。比較例6の正極活物質の組成は物質量比でNi:Co:Mn=85:7.5:7.5、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Comparative Example 6)
An Nb-coated positive electrode active material was prepared in the same manner as in Comparative Example 3, except that the composition of the core precursor, the average particle diameter D50, and the specific surface area were as shown in Table 1. The composition of the positive electrode active material of Comparative Example 6 was Ni: Co: Mn = 85: 7.5: 7.5 in mass ratio, Li / (Ni + Co + Mn) = 1.01 in mass percentage, and mass percentage Nb / (Ni + Co + Mn) = 0.55.

−電池特性の評価(全固体リチウムイオン電池)−
実施例および比較例の正極活物質と、LiI−Li2S−P25とを、7:3の質量比で秤量し、混合して正極合剤とした。内径10mmの金型中にLi−In合金、LiI−Li2S−P25、正極合剤、Al箔をこの順で充填し、500MPaでプレスした。このプレス後の成形体を、金属製治具を用いて100MPaで拘束することにより、全固体リチウムイオン電池を作製した。この電池について、充放電レート0.05Cで得られた初期放電容量(25℃、充電上限電圧:3.7V、放電下限電圧:2.5V)を測定した。次に充放電レート1Cで充放電を10回繰り返した(55℃、充電上限電圧:3.7V、放電下限電圧:2.5V)。充放電レート1Cでの1回目の放電で得られた容量を放電容量1とし、充放電レート1Cでの10回目の放電で得られた容量を放電容量2とし、(放電容量2)/(放電容量1)の比を百分率としてサイクル特性:「10サイクル(%)」とした。
試験条件及び評価結果を表1に示す。
-Evaluation of battery characteristics (All-solid-state lithium-ion battery)-
Positive active materials of Examples and Comparative Examples, a LiI-Li 2 S-P 2 S 5, 7: weighed at a weight ratio of 3, and a positive electrode mixture by mixing. Li-an In alloy into a mold having an inner diameter of 10mm, LiI-Li 2 S- P 2 S 5, the positive electrode mixture, filling the Al foil in this order, and pressed at 500 MPa. The pressed compact was restrained at 100 MPa using a metal jig to produce an all-solid-state lithium-ion battery. For this battery, the initial discharge capacity (25 ° C., charge upper limit voltage: 3.7 V, discharge lower limit voltage: 2.5 V) obtained at a charge / discharge rate of 0.05 C was measured. Next, charge / discharge was repeated 10 times at a charge / discharge rate of 1 C (55 ° C., charge upper limit voltage: 3.7 V, discharge lower limit voltage: 2.5 V). The capacity obtained by the first discharge at the charge / discharge rate 1C is defined as the discharge capacity 1, the capacity obtained by the 10th discharge at the charge / discharge rate 1C is defined as the discharge capacity 2, and (discharge capacity 2) / (discharge capacity) The cycle characteristics were defined as "10 cycles (%)" with the ratio of the capacity 1) as a percentage.
Table 1 shows the test conditions and evaluation results.

Figure 2020057503
Figure 2020057503

前駆体の組成及び処理方法が同様の実施例1と比較例1とを対比すると、実施例1は焼成工程が1回で済むにもかかわらず、比較例1に対して電池特性が同程度または優れていた。
同様に、実施例2〜6についても、焼成工程が1回で済むにもかかわらず、前駆体の組成及び処理方法がそれぞれ同様である比較例2〜6に対して電池特性が同程度または優れていた。
Comparing Example 1 and Comparative Example 1 in which the precursor composition and the treatment method are the same, Example 1 has the same or better battery characteristics as Comparative Example 1 even though only one firing step is required. It was excellent.
Similarly, the battery characteristics of Examples 2 to 6 are comparable to or superior to those of Comparative Examples 2 to 6 in which the precursor composition and the treatment method are the same, though the firing step is only required once. I was

Claims (4)

ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体をロッキングミキサー中に投入し、シュウ酸ニオブ水溶液を噴霧してシュウ酸ニオブが被覆された前駆体粉体を作製する工程と、
前記シュウ酸ニオブが被覆された前駆体粉体とリチウム化合物とを混合して焼成する工程と、
を含む全固体リチウムイオン電池用正極活物質の製造方法。
A step of introducing a hydroxide precursor of a transition metal composed of nickel, cobalt and manganese into a rocking mixer, spraying an aqueous niobium oxalate solution to prepare a precursor powder coated with niobium oxalate,
A step of mixing and baking the precursor powder coated with the niobium oxalate and a lithium compound,
A method for producing a positive electrode active material for an all-solid lithium ion battery, comprising:
前記ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体におけるニッケルとコバルトとマンガンとの物質量比が、前記ニッケル、コバルト及びマンガンの総物質量を100とすると、Ni:Co:Mn=85〜90:7〜9:0〜7.5(ただし、0を除く)で表され、前記リチウム化合物がLiOH・H2Oである請求項1に記載の全固体リチウムイオン電池用正極活物質の製造方法。 When the mass ratio of nickel, cobalt, and manganese in the transition metal hydroxide precursor composed of nickel, cobalt, and manganese is 100 with the total mass of nickel, cobalt, and manganese being Ni: Co: Mn = 85~90: 7~9: 0~7.5 (excluding 0) are represented by a positive electrode for all-solid-state lithium-ion battery according to claim 1 wherein the lithium compound is LiOH · H 2 O Active material manufacturing method. 前記ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体の比表面積が6.9m2/g以上である請求項1または2に記載の全固体リチウムイオン電池用正極活物質の製造方法。 The production of the positive electrode active material for an all solid-state lithium ion battery according to claim 1 or 2, wherein a specific surface area of the transition metal hydroxide precursor composed of nickel, cobalt and manganese is 6.9 m 2 / g or more. Method. 請求項1〜3のいずれか一項に記載の全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、前記正極層、固体電解質層及び負極層を用いて全固体リチウムイオン電池を製造する全固体リチウムイオン電池の製造方法。   A positive electrode layer is formed by using the positive electrode active material for an all-solid lithium ion battery manufactured by the method for manufacturing a positive electrode active material for an all solid lithium ion battery according to claim 1, wherein the positive electrode layer is formed. A method for manufacturing an all-solid-state lithium-ion battery using the solid electrolyte layer and the negative electrode layer to manufacture an all-solid-state lithium-ion battery.
JP2018186849A 2018-10-01 2018-10-01 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery Active JP7118843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018186849A JP7118843B2 (en) 2018-10-01 2018-10-01 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186849A JP7118843B2 (en) 2018-10-01 2018-10-01 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2020057503A true JP2020057503A (en) 2020-04-09
JP7118843B2 JP7118843B2 (en) 2022-08-16

Family

ID=70107539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186849A Active JP7118843B2 (en) 2018-10-01 2018-10-01 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery

Country Status (1)

Country Link
JP (1) JP7118843B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380995A (en) * 2021-04-29 2021-09-10 厦门大学 Modification method of lithium-rich cathode material
JP2021170494A (en) * 2020-04-16 2021-10-28 日産自動車株式会社 Rechargeable battery
KR20230061171A (en) * 2021-10-28 2023-05-08 주식회사 에코프로비엠 Method for manufacturing positive electrode active material for solid secondary battery
KR20230061730A (en) * 2021-10-29 2023-05-09 주식회사 에코프로비엠 Method for manufacturing positive electrode active material for solid secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002120A (en) * 2013-06-17 2015-01-05 住友金属鉱山株式会社 Nickel cobalt manganese composite hydroxide, and method for manufacturing the same
JP2017098196A (en) * 2015-11-27 2017-06-01 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and method for manufacturing coating liquid
JP2018073686A (en) * 2016-10-31 2018-05-10 住友化学株式会社 Positive electrode active material precursor for lithium secondary battery and method of producing positive electrode active material for lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002120A (en) * 2013-06-17 2015-01-05 住友金属鉱山株式会社 Nickel cobalt manganese composite hydroxide, and method for manufacturing the same
JP2017098196A (en) * 2015-11-27 2017-06-01 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and method for manufacturing coating liquid
JP2018073686A (en) * 2016-10-31 2018-05-10 住友化学株式会社 Positive electrode active material precursor for lithium secondary battery and method of producing positive electrode active material for lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021170494A (en) * 2020-04-16 2021-10-28 日産自動車株式会社 Rechargeable battery
CN113380995A (en) * 2021-04-29 2021-09-10 厦门大学 Modification method of lithium-rich cathode material
CN113380995B (en) * 2021-04-29 2022-08-12 厦门大学 A kind of modification method of lithium-rich cathode material
KR20230061171A (en) * 2021-10-28 2023-05-08 주식회사 에코프로비엠 Method for manufacturing positive electrode active material for solid secondary battery
KR102707545B1 (en) 2021-10-28 2024-09-13 주식회사 에코프로비엠 Method for manufacturing positive electrode active material for solid secondary battery
KR20230061730A (en) * 2021-10-29 2023-05-09 주식회사 에코프로비엠 Method for manufacturing positive electrode active material for solid secondary battery
KR102707546B1 (en) 2021-10-29 2024-09-13 주식회사 에코프로비엠 Method for manufacturing positive electrode active material for solid secondary battery

Also Published As

Publication number Publication date
JP7118843B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
JP5742935B2 (en) Positive electrode active material particles, and positive electrode and all solid state battery using the same
JP6744880B2 (en) Positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP6943985B2 (en) Positive electrode for solid-state battery, solid-state battery, and method for manufacturing solid-state battery
JP7109334B2 (en) Method for manufacturing positive electrode for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
JP2020057503A (en) Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery
JP6737930B1 (en) Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for producing positive-electrode active material for all-solid-state lithium-ion battery
JP7118851B2 (en) Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery
US20160351898A1 (en) Method for preparing a positive active material for a lithium secondary battery
CN104078669B (en) A kind of preparation method of polynary positive pole material
CN103137976B (en) Nano composite material and preparation method thereof and positive electrode and battery
JP6640434B1 (en) Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery
JP2016526008A5 (en)
JP7392464B2 (en) Positive electrode active material for all-solid-state lithium ion secondary battery, its manufacturing method, and all-solid-state lithium ion secondary battery
CN111180689A (en) Micron hollow porous composite spherical sodium ion battery cathode material and preparation method thereof
CN108023068B (en) 4.40V high-voltage lithium cobaltate material and preparation method thereof
KR20190116999A (en) Positive electrode active material, its manufacturing method, and positive electrode and lithium ion battery
JP6984185B2 (en) Positive electrode active material, positive electrode and sodium ion battery, and method for manufacturing positive electrode active material
CN103996838A (en) Lithium zirconate-cladded lithium-rich positive material for lithium ion battery and preparation method thereof
Lin et al. Stabilization of high-energy cathode materials of metal-ion batteries: Control strategies and synthesis protocols
CN115312735A (en) Positive electrode material and preparation method and application thereof
CN106654224B (en) A kind of cobalt acid lithium composite material and preparation method, positive electrode
CN107732234A (en) A kind of Er, Zr metal ion mixing and doping tertiary cathode material and preparation method thereof
JP2003146662A (en) Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
JP7292026B2 (en) Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery
CN108417783A (en) Niobium manganese modified tin oxide coated nickel cobalt lithium manganate positive electrode material and preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R151 Written notification of patent or utility model registration

Ref document number: 7118843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151