[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7118851B2 - Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery - Google Patents

Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery Download PDF

Info

Publication number
JP7118851B2
JP7118851B2 JP2018193804A JP2018193804A JP7118851B2 JP 7118851 B2 JP7118851 B2 JP 7118851B2 JP 2018193804 A JP2018193804 A JP 2018193804A JP 2018193804 A JP2018193804 A JP 2018193804A JP 7118851 B2 JP7118851 B2 JP 7118851B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
ion battery
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018193804A
Other languages
Japanese (ja)
Other versions
JP2020061338A (en
Inventor
幸毅 ▲柳▼川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018193804A priority Critical patent/JP7118851B2/en
Publication of JP2020061338A publication Critical patent/JP2020061338A/en
Application granted granted Critical
Publication of JP7118851B2 publication Critical patent/JP7118851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、全固体リチウムイオン電池用正極活物質の製造方法、及び、全固体リチウムイオン電池の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a positive electrode active material for an all-solid lithium ion battery and a method for producing an all-solid lithium ion battery.

現在、使用されているリチウムイオン電池は、正極活物質として層状化合物LiMeO2(Meは平均で+III価となるように選択されるカチオンであり、レドックスカチオンを必ず含む)、スピネル化合物LiMeQO4(Qは平均で+IV価となるように選択されるカチオン)、オリビン系化合物LiX1X2O4(X1は+II価となるように選択されるカチオンであり、レドックスカチオンを必ず含む、X2は+V価となるように選択されるカチオン)や蛍石型化合物Li5MeO4等を用いており、一方でその特性を生かすことができるよう、電解液その他構成要件が年々改善されてきている。 Lithium-ion batteries currently in use employ layered compound LiMeO 2 (Me is a cation selected to have +III valence on average and always contains a redox cation), spinel compound LiMeQO 4 (Q is a cation selected to have a +IV valence on average), an olivine compound LiX1X2O 4 (X1 is a cation selected to have a +II valence and always contains a redox cation, and X2 has a +V valence Selected cations) and fluorite-type compounds such as Li 5 MeO 4 are used.

ただ、リチウムイオン電池の場合は、電解液は有機化合物が大半であり、たとえ難燃性の化合物を用いたとしても火災に至る危険性が全くなくなるとは言いきれない。こうした液系リチウムイオン電池(以下、液系LIBとも称する)の代替候補として、電解質を固体とした全固体リチウムイオン電池(以下、全固体LIBとも称する)が近年注目を集めている(特許文献1等)。その中でも、固体電解質としてLi2S-P25などの硫化物やそれにハロゲン化リチウムを添加した全固体リチウムイオン電池が主流となりつつある。 However, in the case of lithium-ion batteries, most of the electrolytes are organic compounds, and even if flame-retardant compounds are used, the risk of fire cannot be completely eliminated. As an alternative candidate for such a liquid-type lithium ion battery (hereinafter also referred to as a liquid-type LIB), an all-solid-state lithium-ion battery (hereinafter also referred to as an all-solid-state LIB) with a solid electrolyte has been attracting attention in recent years (Patent Document 1 etc). Among them, all-solid-state lithium ion batteries in which sulfides such as Li 2 SP 2 S 5 and lithium halide are added as solid electrolytes are becoming mainstream.

特許第5971109号公報Japanese Patent No. 5971109

全固体LIBでは、予想外の電池燃焼の可能性が液系LIBに比べて著しく低い反面、電流を取り出しにくいといった欠点があり、このための対策として、例えば、正極で用いる活物質の粒子を小さくしたり、正極中に固体電解質を2~3割程度混合したり、正極活物質粒子の表面にLi-Nb酸化物を被覆するといった技術が開発されている。 In all-solid-state LIBs, the possibility of unexpected battery combustion is significantly lower than that of liquid-based LIBs, but on the other hand, it has the disadvantage that it is difficult to extract current. Alternatively, techniques have been developed such as mixing about 20 to 30% of the solid electrolyte into the positive electrode, and coating the surface of the positive electrode active material particles with Li—Nb oxide.

このLi-Nb酸化物被覆は、正極活物質と固体電解質との間に緩衝層を作ることで、正極活物質からリチウムイオンを引き抜いたり正極活物質中へリチウムイオンを挿入したりすることがたやすくできるようになった点で画期的な技術と言える。ただし、これまでになされた検討では、中実粒子への被覆がメインであり、中空粒子等の比表面積の高い粒子への適用が難しい点があった。その理由として、(1)たいていの被覆方法では、リチウムアルコキシドとニオブアルコキシドとを混合した液体の有機物を用意し、転動流動装置などを用いて被覆する形をとるが、該液体が中空粒子内部に染み込まないか、小粒子に優先的に吸着されてしまって均一な被覆にならない、(2)被覆物による引っ掛かりがあって固体電解質との混合の際に正極活物質と固体電解質との密接した接触を阻害する、などが挙げられる。 This Li—Nb oxide coating can extract lithium ions from the positive electrode active material or insert lithium ions into the positive electrode active material by forming a buffer layer between the positive electrode active material and the solid electrolyte. It is an epoch-making technology in that it has become easy to do. However, in the investigations made so far, the coating is mainly applied to solid particles, and it is difficult to apply to particles having a high specific surface area such as hollow particles. The reasons for this are (1) In most coating methods, a liquid organic substance obtained by mixing lithium alkoxide and niobium alkoxide is prepared and coated using a tumbling flow device or the like. (2) the positive electrode active material and the solid electrolyte are in close contact with each other when mixed with the solid electrolyte due to the coating being caught by the small particles; blocking contact, and the like.

一方で、液系LIBでは、主にHEV用に中空粒子等の比表面積の大きい正極活物質を検討することが増えてきた。液系LIBの場合は、Li-Nb酸化物で被覆することも特に必要ではなく、真空含浸等の技術により容易に電極中に電解質が染み込むため、高出力化に係るアプローチも数多くなされてきている。しかしながら、全固体LIBの場合はLi-Nb酸化物で被覆することも必要であり、また電解質の染み込みも起こらないので、このような検討がまだなされていない状態であった。そこで発明者らが比表面積の大きい正極活物質を作製できるよう、既知の一般的なLi-Nb酸化物被覆方法である転動流動法や、被覆原料を徐々に添加するようなやり方について検討したが、場合によっては均一なLi-Nb酸化物被覆が可能となりうるが、条件設定が複雑になったり、長い滞留時間が必要だったり、作業に熟練度が求められたりしたため、あまり量産向きのプロセスと言えるようなものではなく、これらに代わってより簡便な正極活物質へのLi-Nb酸化物被覆方法が求められていた。 On the other hand, in the case of liquid LIBs, there has been an increasing number of investigations into positive electrode active materials having a large specific surface area, such as hollow particles, mainly for HEVs. In the case of liquid LIB, it is not particularly necessary to coat with Li—Nb oxide, and the electrolyte easily penetrates into the electrodes by techniques such as vacuum impregnation, so many approaches related to high output have been made. . However, in the case of an all-solid LIB, it is necessary to coat it with a Li--Nb oxide, and the electrolyte does not permeate. Therefore, in order for the inventors to produce a positive electrode active material with a large specific surface area, a tumbling flow method, which is a known general Li—Nb oxide coating method, and a method of gradually adding the coating raw material were investigated. However, although uniform Li-Nb oxide coating may be possible in some cases, the process is not suitable for mass production because the condition setting is complicated, a long residence time is required, and a high degree of skill is required. Instead of these methods, a simpler method of coating Li—Nb oxide on the positive electrode active material has been demanded.

ここで、均一被覆への粒子径の影響について考えてみる。小粒径のものはもともと比表面積が高く、また粒子径との関係から粒子表面の凹凸もそれほどあるわけでもないので、大粒径かつ低比表面積の粒子への被覆の条件が固まってさえいれば、それから溶媒量などの製造条件に関する多少の変更を行うことで比較的容易に均一な被覆を得ることができる場合が多い。ところが、大粒径かつ高比表面積のものを得ようとした場合、かなりの長時間をかけてもLi-Nb酸化物被覆原料が凹部の最深部に浸透せず、コア粒子から離れた状態でLi-Nb酸化物が形成されることがあった(以下、「単独Li-Nb酸化物」と称する)。これをそのまま焼成すると、例えばパルベライザーでの解砕等の際の衝撃で単独Li-Nb酸化物が容易に割れてしまい、そのまま例えば気流に乗ってバグフィルターに飛んでしまう等、Nb組成のズレや凹部の最深部での無被覆状態を発生させてしまうことがあった。しかしながら、EV(電気自動車)やフォークリフト等の容量も出力も求められる用途では、容量の点から大粒径の正極活物質が求められており、また、出力の点から高比表面積の正極活物質が求められていた。 Now consider the effect of particle size on uniform coating. Small particle size particles originally have a high specific surface area, and the particle surface does not have much unevenness in relation to the particle size. For example, it is often possible to obtain a uniform coating relatively easily by making some changes in manufacturing conditions such as the amount of solvent. However, when it is attempted to obtain a material having a large particle size and a high specific surface area, the Li—Nb oxide coating raw material does not penetrate into the deepest part of the concave portion even if it takes a considerably long time, and remains separated from the core particle. A Li—Nb oxide was sometimes formed (hereinafter referred to as “single Li—Nb oxide”). If this is fired as it is, for example, the single Li-Nb oxide will easily crack due to the impact during pulverization with a pulverizer, etc., and it will fly into the bag filter as it is, for example, in an air current. In some cases, the deepest portion of the concave portion is left uncoated. However, in applications where both capacity and output are required, such as EVs (electric vehicles) and forklifts, a positive electrode active material with a large particle size is required from the viewpoint of capacity, and a positive electrode active material with a high specific surface area is required from the point of output. was sought.

そこで、本発明の実施形態は、大粒径かつ高比表面積でLi-Nb酸化物被覆された全固体リチウムイオン電池用正極活物質の簡便な製造方法を提供することを課題とする。 Accordingly, an object of the embodiments of the present invention is to provide a simple method for producing a positive electrode active material for an all-solid-state lithium-ion battery, which is coated with Li—Nb oxide with a large particle size and a high specific surface area.

本発明は一実施形態において、ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物であって、且つ、平均粒径D50が10μm以上で比表面積が20m2/g以上である水酸化物前駆体をロッキングミキサー中に投入し、シュウ酸ニオブ水溶液を噴霧してシュウ酸ニオブが被覆された前駆体粉体を作製する工程と、シュウ酸ニオブが被覆された前駆体粉体とリチウム化合物とを乾式混合して焼成する工程とを含む全固体リチウムイオン電池用正極活物質の製造方法である。 In one embodiment of the present invention, a transition metal hydroxide composed of nickel, cobalt and manganese and having an average particle diameter D50 of 10 μm or more and a specific surface area of 20 m 2 /g or more A step of putting the precursor into a rocking mixer and spraying a niobium oxalate aqueous solution to prepare a precursor powder coated with niobium oxalate; A method for producing a positive electrode active material for an all-solid-state lithium-ion battery, comprising a step of dry-mixing and baking.

本発明の別の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法は、前記ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体におけるニッケルとコバルトとマンガンとの物質量比が、前記ニッケル、コバルト及びマンガンの総物質量を100とすると、85~90:7~9:0~7.5(ただし、0を除く)で表され、前記リチウム化合物がLiOH・H2Oである。 A method for producing a positive electrode active material for an all-solid-state lithium-ion battery according to another embodiment of the present invention is a transition metal hydroxide precursor composed of nickel, cobalt, and manganese. The amount ratio is represented by 85 to 90:7 to 9:0 to 7.5 (excluding 0) when the total amount of nickel, cobalt and manganese is 100, and the lithium compound is LiOH.H 2 O.

本発明の更に別の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法は、前記LiOH・H2OのD90が20μm以下である。 In a method for producing a positive electrode active material for an all-solid lithium ion battery according to still another embodiment of the present invention, D90 of LiOH.H 2 O is 20 μm or less.

本発明の更に別の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法は、前記正極活物質の平均粒径D50が10μm以上かつ比表面積が0.5m2/g以上である。 In a method for producing a positive electrode active material for an all-solid-state lithium ion battery according to still another embodiment of the present invention, the positive electrode active material has an average particle size D50 of 10 μm or more and a specific surface area of 0.5 m 2 /g or more.

本発明の別の実施形態は、本発明の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、前記正極層、固体電解質層及び負極層を用いて全固体リチウムイオン電池を製造する全固体リチウムイオン電池の製造方法である。 Another embodiment of the present invention forms a positive electrode layer using a positive electrode active material for an all-solid lithium ion battery manufactured by the method for manufacturing a positive electrode active material for an all-solid lithium ion battery according to an embodiment of the present invention, A method for manufacturing an all-solid lithium ion battery using the positive electrode layer, the solid electrolyte layer and the negative electrode layer.

本発明の実施形態によれば、大粒径かつ高比表面積でLi-Nb酸化物被覆された全固体リチウムイオン電池用正極活物質の簡便な製造方法を提供することができる。 According to the embodiments of the present invention, it is possible to provide a simple method for producing a positive electrode active material for an all-solid-state lithium ion battery, which is coated with Li—Nb oxide with a large particle size and a high specific surface area.

(全固体リチウムイオン電池用正極活物質の製造方法)
ニッケル源:コバルト源:マンガン源が、モル比でNi:Co:Mn=85~90:7~9:0~7.5(ただし、Mn=0を除く)となるように調製した遷移金属水溶液を準備する。ニッケル源、コバルト源、マンガン源は、以下の実施例ではいずれも硫酸塩を用いているが、それぞれ硫酸塩、硝酸塩、酢酸塩等から選択される少なくとも1種の組み合わせであってもよい。
(Method for producing positive electrode active material for all-solid-state lithium ion battery)
An aqueous transition metal solution prepared so that the molar ratio of nickel source:cobalt source:manganese source is Ni:Co:Mn=85-90:7-9:0-7.5 (excluding Mn=0) prepare. Sulfates are used as the nickel source, the cobalt source, and the manganese source in the following examples, but they may be a combination of at least one selected from sulfates, nitrates, acetates, and the like.

次に、当該遷移金属水溶液と、水酸化ナトリウム水溶液と、アンモニア水とを別々の槽に用意し、これらを一つの反応槽に投入して晶析法により反応させる。続いて、反応物をろ過、水洗及び乾燥を行うことで組成式:NiaCobMnc(OH)2[式中、a:b:c=85~90:7~9:0~7.5(ただし、c=0を除く)]で示され、平均粒径D50が10μm以上で比表面積が20m2/g以上の前駆体粉体を作製する。該平均粒径D50および比表面積は、例えば水酸化物の製造条件(温度、pH、雰囲気等)によって当業者が常識と考える程度で制御することができる。 Next, the transition metal aqueous solution, the sodium hydroxide aqueous solution, and the ammonia water are prepared in separate tanks, and these are put into one reaction tank and reacted by the crystallization method. Subsequently, the reactant was filtered, washed with water and dried to obtain a composition formula: NiaCobMnc (OH) 2 [wherein a: b : c =85-90:7-9:0-7. 5 (excluding c=0)], an average particle size D50 of 10 μm or more and a specific surface area of 20 m 2 /g or more. The average particle size D50 and the specific surface area can be controlled, for example, by the hydroxide production conditions (temperature, pH, atmosphere, etc.) to the extent considered common sense by those skilled in the art.

前駆体粉体の該平均粒径D50は、12μm以上、15μm以上、20μm以上であってもよい。また、前駆体粉体の該平均粒径D50は、45μm以下、40μm以下、35μm以下であってもよい。 The average particle size D50 of the precursor powder may be 12 μm or more, 15 μm or more, or 20 μm or more. Also, the average particle size D50 of the precursor powder may be 45 μm or less, 40 μm or less, or 35 μm or less.

前駆体粉体の該比表面積は、22m2/g以上、25m2/g以上、30m2/g以上であってもよい。また、前駆体粉体の該比表面積は、150m2/g以下、120m2/g以下であってもよい。 The specific surface area of the precursor powder may be 22 m 2 /g or more, 25 m 2 /g or more, or 30 m 2 /g or more. Further, the specific surface area of the precursor powder may be 150 m 2 /g or less and 120 m 2 /g or less.

次に、該前駆体粉体と、Nbを63~189g/Lの濃度で含むシュウ酸ニオブ水溶液とを、NiとCoとMnとの総物質量とNbの物質量との比:(Ni+Co+Mn):Nbが1:0.0027~0.0055となるように秤量する。次に、該前駆体粉体をロッキングミキサーに投入する。続いて、該シュウ酸ニオブ水溶液を、噴霧時間17~35秒、噴霧後均し時間900秒、回転数30Hz、揺動数30Hzでロッキングミキサー中の該前駆体粉体表面へ噴霧する操作を行い、シュウ酸ニオブが被覆された前駆体粉体を得る。 Next, the precursor powder and an aqueous niobium oxalate solution containing Nb at a concentration of 63 to 189 g/L were mixed, and the ratio of the total amount of Ni, Co, and Mn to the amount of Nb: (Ni+Co+Mn) : Weigh so that Nb becomes 1:0.0027 to 0.0055. Next, the precursor powder is put into a rocking mixer. Subsequently, the niobium oxalate aqueous solution is sprayed onto the surface of the precursor powder in the rocking mixer at a spraying time of 17 to 35 seconds, a smoothing time of 900 seconds after spraying, a rotation speed of 30 Hz, and a rocking speed of 30 Hz. , to obtain a precursor powder coated with niobium oxalate.

続いて、シュウ酸ニオブが被覆された前駆体粉体とリチウム化合物とを乾式混合して焼成する。具体的には、まず、ロッキングミキサーからシュウ酸ニオブが被覆された前駆体粉体を取り出し、該前駆体粉体とD90が20μm以下であるLiOH・H2Oとを、湿度が40~65%の大気雰囲気にて物質量比Li/(Ni+Co+Mn)が1.00~1.03となるように一つの袋に計量する。次に、袋を粗混合して得た粉体(以下、「粗混合粉」とも称する)を袋から全てヘンシェルミキサーに入れて、10~30Hzで5~15分間乾式混合する。ここで、当該LiOH・H2OのD90を20μm以下としているが、これは、該D90が20μmより大きいような粗粒を含むLiOH・H2Oを用いると、混合時にLiOH・H2Oの塊が見られることがあり、そのような状態で焼成した場合、正極活物質中にLi2CO3やLiOHが多く含まれる可能性があり、該正極活物質を用いた全固体リチウムイオン電池の性能についてバラつきが大きいことが予想されるためである。 Subsequently, the precursor powder coated with niobium oxalate and the lithium compound are dry-mixed and fired. Specifically, first, the precursor powder coated with niobium oxalate is taken out from the rocking mixer, and LiOH.H 2 O having a D90 of 20 μm or less is mixed with the precursor powder at a humidity of 40 to 65%. are weighed into one bag so that the material amount ratio Li/(Ni+Co+Mn) is 1.00 to 1.03 in an air atmosphere. Next, the powder obtained by roughly mixing the bag (hereinafter also referred to as "coarsely mixed powder") is put entirely from the bag into a Henschel mixer and dry-mixed at 10 to 30 Hz for 5 to 15 minutes. Here, the D90 of the LiOH.H 2 O is 20 μm or less. Lumps may be seen, and if baked in such a state, the positive electrode active material may contain a large amount of Li 2 CO 3 and LiOH. This is because it is expected that there will be large variations in performance.

続いて、混合した粉体(以下、「混合粉」とも称する)をアルミナ匣鉢に充填する。次に、焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れ酸素雰囲気下で、350℃で2時間、続いて490℃で8時間、750℃で4時間焼成する。これを室温まで冷却した後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕して正極活物質を得る。 Subsequently, the mixed powder (hereinafter also referred to as “mixed powder”) is filled in an alumina sagger. Next, the firing furnace is filled with oxygen, and the alumina sagger is placed in the firing furnace and fired in an oxygen atmosphere at 350° C. for 2 hours, followed by firing at 490° C. for 8 hours and 750° C. for 4 hours. After cooling this to room temperature, the alumina sagger is taken out from the firing furnace into dry air and crushed by a roll crusher and an ACM pulverizer to obtain a positive electrode active material.

上記の方法によれば、従来のように条件設定が複雑になったり、長い滞留時間が必要だったり、作業に熟練度が求められる等も問題も無く、非常に簡便な方法で、平均粒径D50が10μm以上で比表面積が0.5m2/g以上という大粒径かつ高比表面積を有するLi-Nb酸化物被覆正極活物質を製造することができる。また、当該正極活物質は、リチウムニッケルコバルトマンガン複合酸化物の表面にLi-Nb酸化物が均一に被覆されている。ロッキングミキサーを用いることで、一般的な転動流動法に比べて、Li-Nb原料がコア粒子凹部により積極的に押し付けられる力が働くため、このように大粒径かつ高比表面積を有するLi-Nb酸化物被覆正極活物質ができ、しかも均一な被覆となるものと推定される。 According to the above method, there are no problems such as complicated condition setting, long residence time, or skill required for work, as in the conventional method, and it is a very simple method. A Li—Nb oxide-coated positive electrode active material having a large particle size and a high specific surface area, such as D50 of 10 μm or more and a specific surface area of 0.5 m 2 /g or more, can be produced. In the positive electrode active material, the surface of the lithium-nickel-cobalt-manganese composite oxide is uniformly coated with the Li—Nb oxide. By using a rocking mixer, compared to a general tumbling flow method, the Li—Nb raw material is actively pressed by the concave portion of the core particle. -Nb oxide-coated positive electrode active material is produced, and it is presumed that the coating will be uniform.

(全固体リチウムイオン電池の製造方法)
本発明の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、固体電解質層、当該正極層及び負極層を備えた全固体リチウムイオン電池を作製することができる。
(Manufacturing method of all-solid-state lithium-ion battery)
A positive electrode layer is formed using a positive electrode active material for an all-solid lithium ion battery manufactured by the method for manufacturing a positive electrode active material for an all-solid lithium ion battery according to an embodiment of the present invention, and a solid electrolyte layer, the positive electrode layer and the negative electrode All-solid-state lithium-ion batteries with the layers can be made.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。 The following examples are provided for a better understanding of the invention and its advantages, but the invention is not limited to these examples.

(実施例1)
硫酸ニッケル:硫酸コバルト:硫酸マンガンがモル比で88:9:3となるように調製した遷移金属水溶液、水酸化ナトリウム水溶液、アンモニア水を別々の槽に用意し、これらを一つの反応槽に投入して晶析法により反応させ、ろ過、水洗及び乾燥を行うことで組成式:Ni0.88Co0.09Mn0.03(OH)2で示される前駆体粉体を得た。この前駆体の比表面積を測定したところ、21m2/gであった。また、この前駆体の平均粒径D50を測定したところ、14μmであった。
(Example 1)
An aqueous transition metal solution, an aqueous sodium hydroxide solution, and an aqueous ammonia prepared at a molar ratio of nickel sulfate:cobalt sulfate:manganese sulfate of 88:9:3 are prepared in separate tanks, and these are added to one reaction tank. The mixture was reacted by a crystallization method, filtered, washed with water and dried to obtain a precursor powder represented by the composition formula: Ni 0.88 Co 0.09 Mn 0.03 (OH) 2 . The specific surface area of this precursor was measured and found to be 21 m 2 /g. Moreover, when the average particle diameter D50 of this precursor was measured, it was 14 μm.

次に、該Ni0.88Co0.09Mn0.03(OH)2前駆体粉体とNbを232g/Lの濃度で含むシュウ酸ニオブ水溶液とを、NiとCoとMnとの総物質量とNbの物質量との比:(Ni+Co+Mn):Nbが1:0.0033となるように秤量した。次に、該前駆体粉体をロッキングミキサーに投入した。続いて、該シュウ酸ニオブ水溶液を、噴霧時間17秒、噴霧後均し時間15分、回転数30Hz、揺動数30Hzでロッキングミキサー中の該前駆体粉体表面へ噴霧する操作を行い、ロッキングミキサーによって20分撹拌した。 Next, the Ni 0.88 Co 0.09 Mn 0.03 (OH) 2 precursor powder and a niobium oxalate aqueous solution containing Nb at a concentration of 232 g/L were added to the total amount of Ni, Co and Mn and the amount of Nb. The ratio of (Ni+Co+Mn):Nb was 1:0.0033. Next, the precursor powder was put into a rocking mixer. Subsequently, the niobium oxalate aqueous solution is sprayed onto the surface of the precursor powder in the rocking mixer at a spraying time of 17 seconds, a smoothing time of 15 minutes after spraying, a rotation speed of 30 Hz, and a rocking speed of 30 Hz. Stirred with a mixer for 20 minutes.

続いて、ロッキングミキサーからシュウ酸ニオブが被覆された前駆体粉体を取り出し、該シュウ酸ニオブが被覆された前駆体粉体とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にて物質量比Li/(Ni+Co+Mn+Nb)が1.01となるように一つの袋に計量した。次に、袋を膨らませたまま開口部を手で握って粉が漏れないようにして、握ってない方の手を袋の底にあてて両方の手で袋を揺らして粗混合した。この粗混合した粉体を袋から全てヘンシェルミキサーに入れて、1500rpmで5分間混合した。 Subsequently, the niobium oxalate-coated precursor powder was taken out from the rocking mixer, and the niobium oxalate-coated precursor powder and LiOH.H 2 O having a D90 of 20 μm or less were mixed together at a humidity of 60. %, and weighed into one bag so that the material amount ratio Li/(Ni+Co+Mn+Nb) was 1.01. Next, while the bag was inflated, the opening was gripped with a hand to prevent the powder from leaking out, and the non-gripped hand was placed on the bottom of the bag and the bag was shaken with both hands to roughly mix the powders. All of the loosely mixed powders were placed in a Henschel mixer from the bag and mixed at 1500 rpm for 5 minutes.

続いて、この混合した粉体をアルミナ匣鉢に充填した。次に、焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて0.1MPaの酸素雰囲気とし、350℃で2時間保持した後、490℃で8時間保持し、さらに昇温して750℃で4時間保持した。これを5℃/minで室温まで冷却した後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕して実施例1の正極活物質とした。実施例1の正極活物質の比表面積を測定したところ、0.7m2/gであった。また、実施例1の正極活物質の粒子断面をEPMAで観察したところ、リチウムニッケルコバルトマンガン複合酸化物の表面にNbが均一に被覆されており、粒子表面にリチウムニッケルコバルトマンガン複合酸化物が露出していることはなかった。さらに、実施例1の正極活物質の平均粒径D50を測定したところ、14μmであった。 The mixed powder was then filled into an alumina sagger. Next, the firing furnace is filled with oxygen, the alumina sagger is placed in the firing furnace to create an oxygen atmosphere of 0.1 MPa, held at 350 ° C. for 2 hours, held at 490 ° C. for 8 hours, and further heated. It was heated and held at 750° C. for 4 hours. After cooling this to room temperature at 5° C./min, the alumina sagger was taken out from the firing furnace into dry air and pulverized with a roll crusher and an ACM pulverizer to obtain a positive electrode active material of Example 1. When the specific surface area of the positive electrode active material of Example 1 was measured, it was 0.7 m 2 /g. Further, when the particle cross section of the positive electrode active material of Example 1 was observed by EPMA, the surface of the lithium-nickel-cobalt-manganese composite oxide was uniformly coated with Nb, and the lithium-nickel-cobalt-manganese composite oxide was exposed on the particle surface. I never did. Furthermore, when the average particle size D50 of the positive electrode active material of Example 1 was measured, it was 14 μm.

(比較例1)
実施例1と同じ前駆体粉体を用い、D90が20μm以下であるLiOH・H2Oとともに、湿度が60%の大気雰囲気にて物質量比Li/(Ni+Co+Mn+Nb)が1.01となるように一つの袋に計量し、袋を膨らませたまま開口部を手で握って粉が漏れないようにして、握ってない方の手を袋の底にあてて両方の手で袋を揺らして粗混合した。この粗混合した粉体を袋から全てヘンシェルミキサーに入れて、1500rpmで5分間混合し、この混合した粉体をアルミナ匣鉢に充填した。焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて0.1MPaの酸素雰囲気とし、350℃で2時間保持した後、490℃で8時間保持し、さらに昇温して750℃で4時間保持した。これを5℃/minで室温まで冷却した。冷却後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕した。解砕した粉を、リチウムエトキシド、ニオブペンタエトキシドとともに、(Ni+Co+Mn):LiOC25:Nb(OC255=1:0.0033:0.0033の物質量比になるようにドライエアー中で秤量し、両アルコキシドをエタノール中に分散させて分散液となし、該解砕した粉および該分散液とともに常法にて転動流動装置によるリチウムニオブ酸化物被覆を行って比較例1の正極活物質とした。比較例1の正極活物質の比表面積を測定したところ、0.9m2/gであった。また、比較例1の正極活物質の粒子断面をEPMAで観察したところ、リチウムニッケルコバルトマンガン複合酸化物の表面にNbが被覆されていたが、ところどころ無被覆の部分が存在していて粒子表面が露出しており、しかも粒子表面で凹部になっているところに多く存在していた。さらに、比較例1の正極活物質の平均粒径D50を測定したところ、14μmであった。
(Comparative example 1)
The same precursor powder as in Example 1 was used, together with LiOH.H 2 O having a D90 of 20 μm or less, in an air atmosphere with a humidity of 60% so that the substance amount ratio Li/(Ni+Co+Mn+Nb) was 1.01. Weigh into one bag, hold the opening with your hand while the bag is inflated to prevent the powder from leaking out, place your other hand on the bottom of the bag and shake the bag with both hands to mix roughly. did. All of the loosely mixed powders were placed in a Henschel mixer from the bag and mixed at 1500 rpm for 5 minutes, and the mixed powders were filled in an alumina sagger. Oxygen is filled in the firing furnace, the alumina sagger is placed in the firing furnace to create an oxygen atmosphere of 0.1 MPa, held at 350 ° C. for 2 hours, held at 490 ° C. for 8 hours, and further heated. It was held at 750° C. for 4 hours. This was cooled to room temperature at 5°C/min. After cooling, the alumina sagger was taken out from the kiln into dry air and pulverized with a roll crusher and an ACM pulverizer. The pulverized powder was added together with lithium ethoxide and niobium pentaethoxide so that the material amount ratio of (Ni+Co+Mn):LiOC 2 H 5 :Nb(OC 2 H 5 ) 5 =1:0.0033:0.0033. Then, both alkoxides were dispersed in ethanol to form a dispersion, and the crushed powder and the dispersion were coated with lithium niobium oxide using a tumbling flow apparatus in a conventional manner for comparison. The positive electrode active material of Example 1 was used. When the specific surface area of the positive electrode active material of Comparative Example 1 was measured, it was 0.9 m 2 /g. Further, when the particle cross section of the positive electrode active material of Comparative Example 1 was observed by EPMA, the surface of the lithium-nickel-cobalt-manganese composite oxide was coated with Nb. Many of them were exposed and existed in concave portions on the particle surface. Furthermore, when the average particle diameter D50 of the positive electrode active material of Comparative Example 1 was measured, it was 14 μm.

(参考例1)
実施例1および比較例1で用いた前駆体粉体に代えて、平均粒径D50が14μmで比表面積が6m2/gの前駆体粉体を用いたこと以外は比較例1と同様に正極活物質を作製した。この正極活物質の比表面積を測定したところ、0.3m2/gとなった。この正極活物質の粒子断面をEPMAで観察したところ、リチウムニッケルコバルトマンガン複合酸化物の表面にNbが均一に被覆されており、粒子表面にリチウムニッケルコバルトマンガン複合酸化物が露出していることはなかった。さらに、参考例1の正極活物質の平均粒径D50を測定したところ、14μmであった。
(Reference example 1)
A positive electrode was prepared in the same manner as in Comparative Example 1 except that the precursor powder used in Example 1 and Comparative Example 1 was replaced with a precursor powder having an average particle diameter D50 of 14 μm and a specific surface area of 6 m 2 /g. An active material was produced. When the specific surface area of this positive electrode active material was measured, it was 0.3 m 2 /g. When the particle cross section of this positive electrode active material was observed by EPMA, it was found that the surface of the lithium-nickel-cobalt-manganese composite oxide was uniformly coated with Nb and the lithium-nickel-cobalt-manganese composite oxide was exposed on the particle surface. I didn't. Furthermore, when the average particle diameter D50 of the positive electrode active material of Reference Example 1 was measured, it was 14 μm.

(比較例2)
実施例1においてロッキングミキサーでなく、振動ミルを用いて試験を行った。具体的には実施例1と同量の前駆体粉体、同量のシュウ酸ニオブ水溶液を直径5mmのアルミナメディアとともに振動ミルポットに入れ、60分混合した。このようにして得られたシュウ酸ニオブが被覆された前駆体粉体を用いて実施例1と同じように正極活物質を作製した。この正極活物質の比表面積は0.8m2/gであった。この正極活物質の粒子断面をEPMAで観察したところ、リチウムニッケルコバルトマンガン複合酸化物の表面にNbが部分的にのみ被覆されていて、一部はリチウムニッケルコバルトマンガン複合酸化物が粒子表面に露出していた。さらに、比較例2の正極活物質の平均粒径D50を測定したところ、10μmであった。
(Comparative example 2)
Instead of the rocking mixer in Example 1, the test was conducted using a vibrating mill. Specifically, the same amount of precursor powder and the same amount of niobium oxalate aqueous solution as in Example 1 were placed in a vibrating mill pot together with alumina media having a diameter of 5 mm, and mixed for 60 minutes. A positive electrode active material was produced in the same manner as in Example 1 using the precursor powder coated with niobium oxalate thus obtained. The specific surface area of this positive electrode active material was 0.8 m 2 /g. When the particle cross section of this positive electrode active material was observed by EPMA, it was found that the surface of the lithium-nickel-cobalt-manganese composite oxide was only partially coated with Nb, and the lithium-nickel-cobalt-manganese composite oxide was partially exposed on the particle surface. Was. Furthermore, when the average particle size D50 of the positive electrode active material of Comparative Example 2 was measured, it was 10 μm.

(参考例2)
実施例1においてロッキングミキサーでなく、手混練による試験を行った。具体的には実施例1と同量の前駆体粉体をガラス面上に載せ、実施例1と同量のシュウ酸ニオブ水溶液をビュレットから徐々に滴下しながらペイントナイフを用いて混練し、シュウ酸ニオブが被覆された前駆体粉体を得た。これをD90が20μm以下であるLiOH・H2Oとともに、湿度が60%の大気雰囲気にて物質量比Li/(Ni+Co+Mn+Nb)が1.01となるように一つの袋に計量し、袋を膨らませたまま開口部を手で握って粉が漏れないようにして、握ってない方の手を袋の底にあてて両方の手で袋を揺らして粗混合した。この粗混合した粉体を袋から全てヘンシェルミキサーに入れて、1500rpmで5分間混合し、この混合した粉体をアルミナ匣鉢に充填した。焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて0.1MPaの酸素雰囲気とし、350℃で2時間保持した後、490℃で8時間保持し、さらに昇温して750℃で4時間保持した。これを5℃/minで室温まで冷却した。冷却後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕して参考例2の正極活物質とした。参考例2の正極活物質の比表面積を測定したところ、0.7m2/gであった。参考例2の正極活物質の粒子断面をEPMAで観察したところ、リチウムニッケルコバルトマンガン複合酸化物の表面にNbが均一に被覆されており、粒子表面にリチウムニッケルコバルトマンガン複合酸化物が露出していることはなかった。さらに、参考例2の正極活物質の平均粒径D50を測定したところ、14μmであった。
(Reference example 2)
In Example 1, a test was conducted by hand kneading instead of using a rocking mixer. Specifically, the same amount of precursor powder as in Example 1 was placed on a glass surface, and the same amount of niobium oxalate aqueous solution as in Example 1 was gradually dropped from a burette and kneaded using a paint knife. A precursor powder coated with niobium oxide was obtained. This is weighed into one bag together with LiOH·H 2 O having a D90 of 20 µm or less so that the material amount ratio Li/(Ni + Co + Mn + Nb) is 1.01 in an air atmosphere with a humidity of 60%, and the bag is inflated. The opening was gripped with a hand to prevent the powder from leaking out, and the non-gripped hand was applied to the bottom of the bag and the bag was shaken with both hands to roughly mix. All of the loosely mixed powders were placed in a Henschel mixer from the bag and mixed at 1500 rpm for 5 minutes, and the mixed powders were filled in an alumina sagger. Oxygen is filled in the firing furnace, the alumina sagger is placed in the firing furnace to create an oxygen atmosphere of 0.1 MPa, held at 350 ° C. for 2 hours, held at 490 ° C. for 8 hours, and further heated. It was held at 750° C. for 4 hours. This was cooled to room temperature at 5°C/min. After cooling, the alumina sagger was taken out from the kiln into dry air and pulverized with a roll crusher and an ACM pulverizer to obtain a positive electrode active material of Reference Example 2. When the specific surface area of the positive electrode active material of Reference Example 2 was measured, it was 0.7 m 2 /g. When the particle cross section of the positive electrode active material of Reference Example 2 was observed by EPMA, the surface of the lithium-nickel-cobalt-manganese composite oxide was uniformly coated with Nb, and the lithium-nickel-cobalt-manganese composite oxide was exposed on the particle surface. I never was. Furthermore, when the average particle diameter D50 of the positive electrode active material of Reference Example 2 was measured, it was 14 μm.

Claims (5)

ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物であって、且つ、平均粒径D50が10μm以上で比表面積が20m2/g以上である水酸化物前駆体をロッキングミキサー中に投入し、シュウ酸ニオブ水溶液を噴霧してシュウ酸ニオブが被覆された前駆体粉体を作製する工程と、
前記シュウ酸ニオブが被覆された前駆体粉体とリチウム化合物とを乾式混合して焼成する工程と、
を含む全固体リチウムイオン電池用正極活物質の製造方法。
A hydroxide precursor which is a transition metal hydroxide composed of nickel, cobalt and manganese and has an average particle size D50 of 10 μm or more and a specific surface area of 20 m 2 /g or more is charged into a rocking mixer. and spraying a niobium oxalate aqueous solution to prepare a precursor powder coated with niobium oxalate;
a step of dry-mixing the precursor powder coated with niobium oxalate and a lithium compound and firing the mixture;
A method for producing a positive electrode active material for an all-solid-state lithium ion battery, comprising:
前記ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体におけるニッケルとコバルトとマンガンとの物質量比が、前記ニッケル、コバルト及びマンガンの総物質量を100とすると、85~90:7~9:0~7.5(ただし、0を除く)で表され、前記リチウム化合物がLiOH・H2Oである請求項1に記載の全固体リチウムイオン電池用正極活物質の製造方法。 When the total material amount of nickel, cobalt and manganese is 100, the material amount ratio of nickel, cobalt and manganese in the transition metal hydroxide precursor composed of nickel, cobalt and manganese is 85 to 90: 7-9: 0-7.5 (excluding 0), and the lithium compound is LiOH.H 2 O. 前記LiOH・H2OのD90が20μm以下である請求項2に記載の全固体リチウムイオン電池用正極活物質の製造方法。 3. The method for producing a positive electrode active material for an all-solid lithium ion battery according to claim 2 , wherein D90 of said LiOH.H2O is 20 [mu]m or less. 前記正極活物質の平均粒径D50が10μm以上かつ比表面積が0.5m2/g以上である請求項1~3のいずれか一項に記載の全固体リチウムイオン電池用正極活物質の製造方法。 The method for producing a positive electrode active material for an all-solid lithium ion battery according to any one of claims 1 to 3, wherein the positive electrode active material has an average particle size D50 of 10 µm or more and a specific surface area of 0.5 m 2 /g or more. . 請求項1~4のいずれか一項に記載の全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、前記正極層、固体電解質層及び負極層を用いて全固体リチウムイオン電池を製造する全固体リチウムイオン電池の製造方法。 A positive electrode layer is formed using the positive electrode active material for an all-solid lithium ion battery produced by the method for producing a positive electrode active material for an all-solid lithium ion battery according to any one of claims 1 to 4, and the positive electrode layer , A method for manufacturing an all-solid lithium ion battery using a solid electrolyte layer and a negative electrode layer.
JP2018193804A 2018-10-12 2018-10-12 Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery Active JP7118851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018193804A JP7118851B2 (en) 2018-10-12 2018-10-12 Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193804A JP7118851B2 (en) 2018-10-12 2018-10-12 Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2020061338A JP2020061338A (en) 2020-04-16
JP7118851B2 true JP7118851B2 (en) 2022-08-16

Family

ID=70219071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193804A Active JP7118851B2 (en) 2018-10-12 2018-10-12 Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery

Country Status (1)

Country Link
JP (1) JP7118851B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7266988B2 (en) * 2018-10-19 2023-05-01 Jx金属株式会社 Method for coating powder particles, method for producing positive electrode active material for all-solid-state lithium-ion battery, method for producing all-solid-state lithium-ion battery
CN111916729B (en) * 2020-08-06 2021-09-14 合肥工业大学 Ternary lithium nickel cobalt manganese oxide material and preparation method and application thereof
KR102707545B1 (en) * 2021-10-28 2024-09-13 주식회사 에코프로비엠 Method for manufacturing positive electrode active material for solid secondary battery
KR102707546B1 (en) * 2021-10-29 2024-09-13 주식회사 에코프로비엠 Method for manufacturing positive electrode active material for solid secondary battery
JP2023115699A (en) * 2022-02-08 2023-08-21 住友化学株式会社 Solid lithium secondary battery positive electrode active material, and production method for solid lithium secondary battery positive electrode active material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002120A (en) 2013-06-17 2015-01-05 住友金属鉱山株式会社 Nickel cobalt manganese composite hydroxide, and method for manufacturing the same
JP2017098196A (en) 2015-11-27 2017-06-01 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and method for manufacturing coating liquid
JP2018073686A (en) 2016-10-31 2018-05-10 住友化学株式会社 Positive electrode active material precursor for lithium secondary battery and method of producing positive electrode active material for lithium secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173966A (en) * 1997-07-01 1999-03-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002120A (en) 2013-06-17 2015-01-05 住友金属鉱山株式会社 Nickel cobalt manganese composite hydroxide, and method for manufacturing the same
JP2017098196A (en) 2015-11-27 2017-06-01 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and method for manufacturing coating liquid
JP2018073686A (en) 2016-10-31 2018-05-10 住友化学株式会社 Positive electrode active material precursor for lithium secondary battery and method of producing positive electrode active material for lithium secondary battery

Also Published As

Publication number Publication date
JP2020061338A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP7118851B2 (en) Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery
JP5742935B2 (en) Positive electrode active material particles, and positive electrode and all solid state battery using the same
US10050258B2 (en) Active material for all-solid lithium secondary battery, method for manufacturing same, and all-solid lithium secondary battery comprising same
JP5681427B2 (en) Lithium-transition metal oxide powder and production method thereof, positive electrode active material for lithium ion battery, and lithium ion secondary battery
JP6136765B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN109671924B (en) Preparation method of nickel-cobalt-manganese ternary cathode material
CN111261851B (en) Ternary cathode material of lithium ion battery and preparation method thereof
JP7118843B2 (en) Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery
CN108878798A (en) Including the cathode material and preparation method thereof for all-solid-state battery group for preventing the coating layer of diffusion
JP2017188211A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode mixture paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN106848213B (en) The manufacturing method of active agent complex
JP2020507550A (en) Lithium mixed oxide particles coated with aluminum oxide and titanium dioxide and method for producing the same
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
CN108400321B (en) Nickel-cobalt-lithium ferrite cathode material and preparation method thereof
JP2015195176A (en) Positive electrode active material for nonaqueous secondary batteries and method for manufacturing the same
CN109728277A (en) The method and product and battery be surface-treated to nickelic tertiary cathode material
JP2021163580A (en) Positive electrode composite active material particle and production method thereof, positive electrode, and solid battery
JP7271945B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
CN106067545B (en) A kind of sodium metaaluminate makees raw material cladding stratiform method for preparing anode material
CN112437992B (en) Positive electrode active material for all-solid lithium ion battery, positive electrode for all-solid lithium ion battery, and method for producing positive electrode active material for all-solid lithium ion battery
KR20190116999A (en) Positive electrode active material, its manufacturing method, and positive electrode and lithium ion battery
JP7109334B2 (en) Method for manufacturing positive electrode for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
KR20180074340A (en) Method of manufacturing positive active material for lithium secondary battery
JP6511761B2 (en) Method of producing coated composite oxide particles for positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using coated composite oxide particles produced by the method
JP7518118B2 (en) Method for producing coated active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R151 Written notification of patent or utility model registration

Ref document number: 7118851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151