[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019125651A - Pile core and electric device - Google Patents

Pile core and electric device Download PDF

Info

Publication number
JP2019125651A
JP2019125651A JP2018004344A JP2018004344A JP2019125651A JP 2019125651 A JP2019125651 A JP 2019125651A JP 2018004344 A JP2018004344 A JP 2018004344A JP 2018004344 A JP2018004344 A JP 2018004344A JP 2019125651 A JP2019125651 A JP 2019125651A
Authority
JP
Japan
Prior art keywords
yoke
legs
pile
soft magnetic
electromagnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018004344A
Other languages
Japanese (ja)
Inventor
政男 籔本
Masao Yabumoto
政男 籔本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018004344A priority Critical patent/JP2019125651A/en
Publication of JP2019125651A publication Critical patent/JP2019125651A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To reduce loss and noise of a pile core used in an electric device to which three-phase AC power is applied.SOLUTION: A pile core 200 includes relays 221 and 222 each having a hollow substantially regular hexagonal shape when viewing the pile core 200 from the height direction of the pile core 200, which are arranged to face each other at an interval in the height direction of the pile core 200, and legs 211, 212, and 213 extending in the height direction of the pile core 200, which are joined to the relays 221 and 222.SELECTED DRAWING: Figure 2

Description

本発明は、積鉄心および電気機器に関し、特に、三相交流電力が印加される電気機器に用いて好適なものである。   The present invention relates to a pile core and an electric device, and particularly to an electric device to which three-phase AC power is applied.

三相交流電力が印加される電気機器の一例として三相変圧器がある。三相変圧器には鉄心が用いられる。三相変圧器の鉄心には大きく分けて積鉄心と巻鉄心がある。何れの鉄心も、例えば、複数の脚部と、当該脚部を磁気的に結合され、当該脚部と共に閉磁路を構成する複数の継鉄部とを有する。特許文献1には、三相変圧器用の積鉄心が開示されており、特許文献2には、三相変圧器用の巻鉄心が開示されている。何れの鉄心も、一方向(直線上)に間隔を有して配置される3つの脚部と、当該脚部の上端部・下端部の領域において当該脚部と接合される2つの継鉄部と、を有する。   There is a three-phase transformer as an example of an electric device to which three-phase AC power is applied. An iron core is used for the three-phase transformer. Cores of three-phase transformers are roughly divided into stacked iron cores and wound iron cores. Each iron core has, for example, a plurality of legs and a plurality of yokes that are magnetically coupled to the legs and that form a closed magnetic path together with the legs. Patent Document 1 discloses a pile core for a three-phase transformer, and Patent Document 2 discloses a wound core for a three-phase transformer. In each of the iron cores, there are three legs arranged at intervals in one direction (on a straight line), and two yokes connected to the legs in the region of the upper end and lower end of the legs. And.

特開2000−200722号公報Japanese Patent Laid-Open No. 2000-200722 特開2009−252795号公報JP, 2009-252795, A

しかしながら、特許文献1に記載の積鉄心を三相変圧器に用いると、継鉄部と中央の脚部との境界の領域付近等で回転磁界が発生しやすい。回転磁界とは、磁界の向きが一定の周期で楕円状または円状に変化する磁界をいう。特許文献1に記載のような積鉄心では、このような回転磁界が発生し易いこと等の理由で、ビルディングファクタ(電気機器の鉄損÷鉄心を構成する材料の鉄損)が大きくなる虞がある。   However, when the piled iron core described in Patent Document 1 is used for a three-phase transformer, a rotating magnetic field is likely to be generated in the vicinity of the region of the boundary between the yoke portion and the central leg. The rotating magnetic field refers to a magnetic field in which the direction of the magnetic field changes in an elliptical or circular shape with a constant period. In the case of the piled iron core as described in Patent Document 1, there is a possibility that the building factor (iron loss of the material constituting the iron loss iron core of the electric device) may increase due to the fact that such a rotating magnetic field is easily generated. is there.

一方、特許文献2に記載のような巻鉄心を三相変圧器に用いると、磁束は圧延方向に沿うため、回転磁界は発生しづらい。しかしながら、巻鉄心を製造する場合には、鉄心としての形状とした後に、歪取り焼鈍が行われる。軟磁性体板を巻き回して鉄心の形状とする際に軟磁性体板に歪みが導入されるからである。歪取り焼鈍が行われると、磁区細分化により軟磁性体板により導入された歪が低減・消失する虞がある。磁区細分化とは、軟磁性体板の表面に局部的な歪を導入し、磁区を細分化する手法である。例えば、軟磁性体板に対するレーザービームの照射を行うことにより、磁区細分化を実現することができる。磁区細分化は、軟磁性体板の鉄損の低減に大きく寄与するが、以上のように巻鉄心に対して磁区細分化の技術を適用することが容易ではない。   On the other hand, when a wound iron core as described in Patent Document 2 is used for a three-phase transformer, the magnetic flux is in the rolling direction, so that a rotating magnetic field is hard to generate. However, in the case of manufacturing a wound iron core, strain relief annealing is performed after being shaped as an iron core. It is because distortion is introduced into the soft magnetic material plate when the soft magnetic material plate is wound into an iron core shape. When strain relief annealing is performed, there is a possibility that the strain introduced by the soft magnetic material plate may be reduced or eliminated by magnetic domain refinement. Magnetic domain fragmentation is a method of introducing local strain on the surface of a soft magnetic plate to fragment magnetic domains. For example, magnetic domain fragmentation can be realized by irradiating the soft magnetic material plate with a laser beam. Although the magnetic domain fragmentation greatly contributes to the reduction of the iron loss of the soft magnetic material plate, it is not easy to apply the technique of the magnetic domain fragmentation to the wound iron core as described above.

更に、特許文献1、2に記載の技術のように、脚部が一方向に並ぶ構成とすると、中央の脚部に対して巻き回されたコイルに励磁電流を流すことにより発生する磁路と、当該中央の脚部の隣にある脚部に対して巻き回されたコイルに励磁電流を流すことにより発生する磁路とが異なる。このため、三相の磁気回路が均等にならない。従って、鉄損を増加や、鉄心の振動による騒音をさせる要因となる高調波の磁束が鉄心内に発生する虞がある。   Furthermore, as in the technology described in Patent Documents 1 and 2, when the legs are arranged in one direction, a magnetic path generated by flowing an exciting current through a coil wound around the center leg and The magnetic path is different from that generated by applying an exciting current to a coil wound around a leg adjacent to the central leg. For this reason, the three-phase magnetic circuit is not uniform. Therefore, there is a possibility that the magnetic flux of the harmonic which becomes a factor which makes an iron loss increase and causes noise by vibration of an iron core may be generated in an iron core.

本発明は、以上のような問題点に鑑みてなされたものであり、三相交流電力が印加される電気機器に用いられる積鉄心の損失および騒音を低減することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to reduce the loss and noise of a pile core used for an electric device to which three-phase AC power is applied.

本発明の積鉄心は、積層された複数の軟磁性体板を有し、略同じ構成を有する3つの脚部と、積層された複数の軟磁性体板を有し、略同じ構成を有する2つの継鉄部とを有し、当該3つの脚部と当該2つの継鉄部とが磁気的に結合された状態の積鉄心であって、前記3つの脚部は、それぞれ、前記積鉄心の高さ方向に延設され、前記3つの脚部の横断面において、当該3つの脚部の軸の位置は、前記積鉄心の軸の位置を重心の位置とする三角形の頂点の位置と略同じ位置にあり、前記3つの脚部を構成する前記軟磁性体板の板面が、前記三角形の重心と、当該脚部が位置する前記三角形の頂点とを相互に結ぶ仮想線が延びる方向に対して略垂直な方向を向くように、前記3つの脚部を構成する前記軟磁性体板は積層された状態であり、前記継鉄部を構成する軟磁性体板は、少なくとも1箇所において折り曲げられた状態であり、前記2つの継鉄部のうち、一方の前記継鉄部は、前記3つの脚部の長手方向の一方の端部の領域と接合された状態であり、他方の前記継鉄部は、前記3つの脚部の長手方向の他方の端部の領域と接合された状態であり、前記継鉄部および前記脚部の接合される領域において、前記継鉄部および前記脚部を構成する軟磁性体板の積層方向は、略同じ方向であることを特徴とする。
本発明の電気機器は、三相交流電力が印加される電気機器であって、前記積鉄心と、前記脚部に巻き回されたコイルと、を有することを特徴とする。
The laminated core according to the present invention has a plurality of soft magnetic plates stacked, three legs having substantially the same configuration, and a plurality of soft magnetic plates stacked, and has substantially the same configuration 2 A pile iron core having three yoke parts, wherein the three legs and the two yoke parts are magnetically coupled, wherein the three legs are respectively the pile iron core The cross-sections of the three legs extend in the height direction, and the positions of the axes of the three legs in the cross section of the three legs are substantially the same as the positions of the apexes of the triangle whose center of gravity is the position of the axis of the pile core. With respect to a direction in which a virtual line which is located and which constitutes the three legs, connects the plate surface of the soft magnetic plate to the center of gravity of the triangle and the apex of the triangle on which the legs are located The soft magnetic material plates constituting the three legs are in a stacked state so as to face a substantially vertical direction. The soft magnetic plate constituting the part is in a state of being bent at at least one place, and one of the two of the two yoke parts is one end of the three legs in the longitudinal direction The other yoke part is joined to the area of the other end of the three legs in the longitudinal direction, and the yoke part and the leg In the region to be joined, the laminating directions of the soft magnetic material plates constituting the yoke portion and the leg portion are substantially the same.
An electric device according to the present invention is an electric device to which three-phase AC power is applied, and includes the pile core and a coil wound around the leg.

本発明によれば、三相交流電力が印加される電気機器に用いられる積鉄心の損失および騒音を低減することができる。   According to the present invention, it is possible to reduce the loss and noise of a pile core used for an electric device to which three-phase AC power is applied.

三相変圧器の構成の第1の例を示す正面図である。It is a front view which shows the 1st example of a structure of a three phase transformer. 三相変圧器の構成の第1の例を示す上面図、横断面図、および底面図である。It is a top view, a cross-sectional view, and a bottom view which show the 1st example of composition of a three-phase transformer. 第1の例の積鉄心を展開した様子の第1の例を示す図である。It is a figure which shows the 1st example of a mode that the piled iron core of the 1st example was expanded. 第1の例の積鉄心を展開した様子の第2の例を示す図である。It is a figure which shows the 2nd example of a mode that the piled iron core of the 1st example was expanded. 三相変圧器の第1の例の変形例の構成を示す上面図、横断面、および底面図である。It is a top view, a cross section, and a bottom view showing composition of a modification of the 1st example of a three phase transformer. 三相変圧器の構成の第2の例を示す正面図である。It is a front view which shows the 2nd example of a structure of a three phase transformer. 三相変圧器の構成の第2の例を示す上面図および底面図である。It is a top view and a bottom view showing the 2nd example of composition of a three phase transformer. 第2の例の積鉄心を展開した様子の第1の例を示す図である。It is a figure which shows the 1st example of a mode that the piled iron core of the 2nd example was expanded. 第2の例の積鉄心を展開した様子の第2の例を示す図である。It is a figure which shows the 2nd example of a mode that the piled iron core of the 2nd example was expanded.

単相の交流電力が印加される電気機器で用いられる積鉄心として、一方向(直線上)に間隔を有して配置される2つの脚部と、当該2つの脚部の上端部の領域・下端部の領域にそれぞれ接合される2つの継鉄部とを有する積鉄心(正面から見た形状が略口の字状の積鉄心)がある。本発明者らは、このような積鉄心では、ビルディングファクタが1に近いことに着目した。以下の説明では、このような積鉄心を必要に応じて2脚鉄心と称する。   As a pile core used in electrical equipment to which single-phase AC power is applied, two legs arranged at intervals in one direction (on a straight line), a region of the upper end of the two legs, There is a pile iron core (a pile iron core having a substantially mouth-like shape when viewed from the front) having two yoke portions joined respectively to the area of the lower end. The present inventors focused on the fact that the building factor is close to 1 in such a core. In the following description, such a piled iron core will be referred to as a two-legged iron core if necessary.

2脚鉄心において、継鉄部を曲げた状態にしても磁路が大きく変わるわけではないので、鉄損が多少劣化する継鉄部の曲げ部分の体積が継鉄部全体の体積に比べ十分小さくすれば、ビルディングファクタは、継鉄部を曲げない場合と大きく変わることはない。そこで、本発明者らは、継鉄部を曲げた3つの2脚鉄心を、積鉄心の周方向(積鉄心の軸回り)において組み合わせて鉄心を構成すれば、ビルディングファクタを低減することなく、三相の磁気回路を均等に近づけて高調波の磁束の発生を抑制できることを着想した。以下に説明する各実施形態は、このような着想に基づいてなされたものである。   In a two-legged iron core, the magnetic path does not change significantly even when the yoke portion is bent, so the volume of the bent portion of the yoke portion where iron loss is slightly deteriorated is sufficiently smaller than the volume of the entire yoke portion. If so, the building factor does not change much from the case without bending the yoke. Therefore, the present inventors combine three two-legged iron cores with bent yoke portions in the circumferential direction of the pile core (around the pile iron core axis) to construct the iron core, without reducing the building factor. It was conceived that the three-phase magnetic circuit could be equally brought close to suppress the generation of harmonic magnetic flux. Each embodiment described below is made based on such an idea.

また、本発明者らは、B8(800A/mの磁界強度における磁束密度)が大きい方向性電磁鋼板は方位集積度も大きいのにも関わらず、B8が大きい方向性電磁鋼板を三相変圧器の鉄心として用いると、鉄心の鉄損の改善率が、方向性電磁鋼板自体の鉄損の改善率に基づく期待値よりも小さくなるという知見を得た。これは、方向性電磁鋼板のB8を大きくすると、方向性電磁鋼板における磁気異方性が向上するため、方向性電磁鋼板の圧延方向への磁束の直進性が増すためであると考えられる。尚、B8は、方向性電磁鋼板の方位集積度を反映し、B8が大きいほど、方向性電磁鋼板の方位集積度は大きくなる。方位集積度とは、ミラー指数のゴス方位への配向の度合いを示すものであり、方位集積度が大きいほど、ミラー指数がゴス方位に配向している結晶粒が多いことを示す。   In addition, although the present inventors have a B8 (a magnetic flux density at a magnetic field strength of 800 A / m) that is large in directional magnetic steel sheets, the directional magnetic steel sheets that are large in B8 are three-phase transformers When used as an iron core, it has been found that the improvement rate of iron loss of the iron core is smaller than an expected value based on the improvement rate of iron loss of the grain-oriented electrical steel sheet itself. This is considered to be because when B8 of the grain-oriented electrical steel sheet is increased, the magnetic anisotropy in the grain-oriented electrical steel sheet is improved, and thus the straightness of the magnetic flux in the rolling direction of the grain-oriented electrical steel sheet is increased. B8 reflects the degree of orientation integration of the grain-oriented electrical steel sheet, and the degree of orientation integration of the grain-oriented electrical steel sheet increases as B8 increases. The azimuthal integration degree indicates the degree of orientation of the Miller index to the Goss orientation, and indicates that the higher the azimuthal integration degree, the more grains having the Miller index oriented to the Goss orientation.

以下の各実施形態で説明する積鉄心を構成する軟磁性体板は、方向性電磁鋼板に限らず、例えば、無方向性電磁鋼板や電磁鋼板以外の軟磁性体板であってもよいが、以上の知見から、以下の各実施形態では、積鉄心を構成する軟磁性体板が方向性電磁鋼板である場合を例に挙げて説明する。
また、以下の各実施形態では、三相交流電力が印加される電気機器として三相変圧器を例に挙げて説明する。ただし、三相交流電力が印加される電気機器は、三相変圧器に限定されず、例えば、三相リアクトルであってもよい。
The soft magnetic material plate constituting the pile core described in each of the following embodiments is not limited to the directional magnetic steel plate, and may be, for example, a non-oriented magnetic steel plate or a soft magnetic material plate other than the magnetic steel plate, From the above findings, in each of the following embodiments, the case where the soft magnetic plate constituting the pile core is a directional electromagnetic steel sheet will be described as an example.
In each of the following embodiments, a three-phase transformer will be described as an example of an electric device to which three-phase AC power is applied. However, the electric equipment to which three-phase AC power is applied is not limited to the three-phase transformer, and may be, for example, a three-phase reactor.

以下、図面を参照しながら、本発明の実施形態を説明する。各図において、X、Y、Z座標は、各図における向きの関係を示し、○の中に×を付しているものは、紙面の手前側から奥側に向かう方向を示し、○の中に●を付しているものは、紙面の奥側から手前側に向かう方向を示す。また、以下の各図では、表記および説明の都合上、説明に必要なもののみを必要に応じて簡略化して示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, the X, Y, and Z coordinates indicate the relationship of the direction in each figure, and those with an x in the 示 し indicate the direction from the near side to the far side of the sheet, and in the ○ Those marked with a ● indicate the direction from the back to the front of the paper. Further, in the following drawings, for convenience of notation and explanation, only those necessary for the explanation are shown as simplified as necessary.

(第1の実施形態)
まず、第1の実施形態を説明する。
図1は、三相変圧器の構成の一例を示す図であり、三相変圧器をその正面から見た図である。図2は、三相変圧器の構成の一例を示す図であり、三相変圧器をその上方(Z軸方向)から見た上面図(図2(a))と、三相変圧器のZ軸方向の中央における横断面を示す横断面図(図1のI−I断面図、図2(b))と、三相変圧器をその下方(Z軸方向)から見た底面図(図2(c))である。
三相変圧器は、積鉄心200と、3つのコイル群310、320、330とを有する。
First Embodiment
First, the first embodiment will be described.
FIG. 1 is a view showing an example of the configuration of a three-phase transformer, and a view of the three-phase transformer as viewed from the front thereof. FIG. 2 is a view showing an example of the configuration of the three-phase transformer, and a top view (FIG. 2 (a)) of the three-phase transformer viewed from above (Z-axis direction) and Z of the three-phase transformer The cross section which shows the cross section in the center of the direction of an axis (II cross section figure of Drawing 1, Drawing 2 (b)), the bottom view which looked at the three phase transformer from the lower part (Z-axis direction) (figure 2) (C)).
The three-phase transformer has a piled iron core 200 and three coil groups 310, 320, 330.

積鉄心200は、3つの脚部211、212、213と、2つの継鉄部221、222とを有する。
3つの脚部211、212、213は、略同じもの(形状および大きさが略同じ)である。3つの脚部211、212、213は、積層された(積み重ねられた)複数の方向性電磁鋼板を有する。3つの脚部211、212、213は、その長手方向が、積鉄心200の高さ方向(Z軸方向)に沿うように配置される。図2(b)に示すように、脚部211、212、213の横断面(積鉄心200の高さ方向(Z軸方向)に垂直な方向に切った断面)の形状は四角形である。
The pile core 200 has three legs 211, 212, 213 and two yokes 221, 222.
The three legs 211, 212, 213 are substantially the same (the shape and the size are substantially the same). The three legs 211, 212, 213 have a plurality of stacked electromagnetic steel sheets. The three legs 211, 212, 213 are arranged such that their longitudinal direction is along the height direction of the pile core 200 (Z-axis direction). As shown in FIG. 2B, the shape of the cross sections (sections cut in the direction perpendicular to the height direction (Z-axis direction) of the pile core 200) of the legs 211, 212, 213 is a quadrangle.

また、3つの脚部211、212、213の横断面において、3つの脚部211、212、213を構成する方向性電磁鋼板の板面方向の長さ(幅)は、略同じである。また、3つの脚部211、212、213の横断面において、3つの脚部211、212、213の重心(軸)211a、212a、213aは、積鉄心200の軸200a(積鉄心200の重心の位置を通り高さ方向(Z軸方向)に延びる軸)を重心の位置とする略正三角形の頂点と略同じ位置に位置する。3つの脚部211、212、213は、積鉄心200の軸200aを軸として略3回対称となるように配置される。   Moreover, in the cross section of three leg part 211, 212, 213, the length (width | variety) of the plate surface direction of the directionality electromagnetic steel plate which comprises three leg part 211, 212, 213 is substantially the same. Further, in the cross section of the three legs 211, 212, 213, the center of gravity (axis) 211a, 212a, 213a of the three legs 211, 212, 213 corresponds to the axis 200a of the pile core 200 (at the center of gravity of the pile core 200). It is located at substantially the same position as the vertex of a substantially regular triangle whose center of gravity is the axis passing through the position and extending in the height direction (Z-axis direction). The three legs 211, 212, and 213 are arranged so as to be approximately three-fold symmetrical about the axis 200a of the pile core 200.

また、3つの脚部211、212、213の横断面において、3つの脚部211、212、213を構成する方向性電磁鋼板の板面が、それぞれ、積鉄心200の軸200aと、当該脚部211、212、213の重心(軸)211a、212a、213aとを相互に結ぶ仮想線が延びる方向に対して略垂直な方向を向くように、3つの脚部211、212、213を構成する方向性電磁鋼板は積層される。   Moreover, in the cross section of three legs 211, 212, 213, the plate surface of the directionality electromagnetic steel plate which constitutes three legs 211, 212, 213 is the axis 200a of pile iron core 200, and the leg concerned, respectively. A direction in which the three legs 211, 212, 213 are configured to face a direction substantially perpendicular to the direction in which virtual lines connecting the centers of gravity (axes) 211a, 212a, 213a of 211, 212, 213 extend. Magnetic steel sheets are laminated.

2つの継鉄部221、222は、略同じもの(形状および大きさが略同じ)である。図2(a)および図2(c)に示すように2つの継鉄部221、222は、積鉄心200の軸200aの回りを周回する形状を有する。具体的に2つの継鉄部221、222の形状は、積鉄心200の軸200aと略同軸の、中空のn角柱である。ここで、nは、3以上の3の倍数の整数であり、6以上が好ましい。また、n角柱の上面および下面(底面)の外縁の形状は略正3角形であるのが好ましい。即ち、n角柱は、正3角柱の各角部をn/3個の折り曲げ部とすることが好ましい。このように2つの継鉄部221、222は、3個以上の折り曲げ部を有する(図2(a)に示す例では、6個の折り曲げ部を有する(2つの継鉄部221、222の形状は、積鉄心200の軸200aと略同軸の、中空の6角柱であるので、正3角柱の各角部を2(=6/3)個の折り曲げ部としている))。尚、中空の領域は、積鉄心200の軸200aの方向において貫通する領域である。図2では、2つの継鉄部221、222の形状が、中空の正六角柱である場合を例に挙げて説明する。   The two yoke portions 221 and 222 are substantially the same (the shape and the size are substantially the same). As shown in FIGS. 2 (a) and 2 (c), the two yoke portions 221, 222 have a shape that orbits around the axis 200a of the pile core 200. Specifically, the shapes of the two yoke portions 221 and 222 are hollow n-prisms which are substantially coaxial with the axis 200 a of the pile core 200. Here, n is an integer of 3 or more and a multiple of 3, preferably 6 or more. In addition, it is preferable that the shapes of the outer edges of the upper surface and the lower surface (bottom surface) of the n-prism be approximately regular triangle. That is, in the n-prism, it is preferable that each corner of the regular triangular prism be n / 3 bent portions. Thus, the two yoke portions 221 and 222 have three or more bent portions (in the example shown in FIG. 2A, the six bent portions (the shape of the two yoke portions 221 and 222) Is a hollow hexagonal prism substantially coaxial with the shaft 200a of the pile core 200, so each corner of the regular triangular prism is made into 2 (= 6/3) bent portions)). The hollow region is a region which penetrates in the direction of the axis 200 a of the pile core 200. In FIG. 2, the case where the shape of the two yoke portions 221 and 222 is a hollow regular hexagonal column will be described as an example.

2つの継鉄部221、222は、それぞれ、3つの脚部211、212、213の上端部の領域、下端部の領域と接合された状態で配置される。これにより、継鉄部221、222および脚部211、212、213は磁気的に結合される。この際、継鉄部221、222と脚部211、212、213とは、それらを構成する方向性電磁鋼板の板面の一部の領域が相互に重なるようにするのが好ましい。尚、接合とは、板厚部分同士を突き合わせることをいい、物理的に取り外し不能にされることを意味するものではない(このことは、以降の記載でも同じである)。   The two yoke portions 221 and 222 are disposed in a state of being joined to the region of the upper end and the region of the lower end of the three legs 211, 212 and 213, respectively. Thus, the yoke portions 221 and 222 and the legs 211, 212 and 213 are magnetically coupled. Under the present circumstances, it is preferable to make it the area | regions of a part of the plate surface of the directionality electromagnetic steel plate which comprises them as a yoke part 221, 222 and leg part 211, 212, 213 mutually overlap. The term "joining" means that the thick portions are butted, and does not mean that they are physically not removable (this is the same in the following description).

継鉄部221は、積層された(積み重ねられた)複数の方向性電磁鋼板の組として同じ構成の組221a〜221cを3つ有する。以下の説明では、この組を、必要に応じて継鉄構成部分221a〜221cと称する。各継鉄構成部分221a〜221cを構成する複数の方向性電磁鋼板は、長手方向の長さおよび折り曲げ位置が異なる。各継鉄構成部分221a〜221cを構成する複数の方向性電磁鋼板は、その長手方向の2箇所の位置で、略同じ折り曲げ角度で折り曲げられた形状(折り曲げ部)を有する。図2(a)に示す例では、当該折り曲げ角度は、略60°である。ここで、折り曲げ角度とは、継鉄構成部分221a〜221cを構成する方向性電磁鋼板の、平面の状態からの折り曲げ角度である。従って、継鉄構成部分221a〜221cの2つの角部の角度(のうち小さい方の角度)は、それぞれ略120°である。   The yoke portion 221 has three sets 221 a to 221 c of the same configuration as a set of stacked (stacked) plural directional electromagnetic steel sheets. In the following description, this set will be referred to as yoke components 221a to 221c as needed. The plurality of directional electromagnetic steel plates constituting each of the yoke structural portions 221a to 221c have different lengths in the longitudinal direction and bending positions. The plurality of directional electromagnetic steel plates constituting each of the yoke forming portions 221a to 221c have shapes (bent portions) bent at substantially the same bending angle at two positions in the longitudinal direction. In the example shown to Fig.2 (a), the said bending angle is about 60 degrees. Here, a bending angle is a bending angle from the state of the plane of the directionality electromagnetic steel plate which constitutes yoke part constituent parts 221a-221c. Therefore, the angle (smaller one of the two angles) of the two corner portions of the yoke portions 221a to 221c is approximately 120 °.

図2(a)に示すように、各継鉄構成部分221a〜221cは、それらを構成する複数の方向性電磁鋼板の折り曲げ部の凹面が、積鉄心200の軸200a側を向き、且つ、当該複数の方向性電磁鋼板の板面が、積鉄心200の軸200aに垂直な仮想平面に対して略垂直な方向を向き、且つ、各継鉄構成部分221a〜221cと積鉄心200の軸200aとの距離が略等距離になるように配置される。従って、各継鉄構成部分221a〜221cの長手方向の端部同士が接合される。   As shown in FIG. 2 (a), in each of the yoke construction parts 221a to 221c, the concave surfaces of the bent portions of the plurality of directional electromagnetic steel plates constituting them are directed to the shaft 200a side of the pile core 200 and The plate surfaces of the plurality of directional electromagnetic steel plates face in a direction substantially perpendicular to a virtual plane perpendicular to the axis 200a of the pile core 200, and each yoke component 221a to 221c and the axis 200a of the pile core 200 Are arranged so as to be approximately equidistant. Accordingly, the longitudinal ends of the respective yoke components 221a to 221c are joined.

本実施形態では、積鉄心200をその上方および下方から見た場合(高さ方向(Z軸方向)から見た場合)に、相互に隣接する位置に配置される2つの継鉄構成部分221a・221b、221b・221c、221c・221aの接合部231a、231b、231cの領域が、それぞれ、脚部211、212、213の領域に含まれるようにする。即ち、相互に隣接する位置に配置される2つの継鉄構成部分221a・221b、221a・221c、221b・221cの接合部231a、231b、231cの、積鉄心200の軸200aに垂直な仮想平面(X−Y平面)上の座標は、それぞれ、脚部211、212、213の、積鉄心200の軸200aに垂直な仮想平面(X−Y平面)上の座標に含まれる。   In the present embodiment, when the piled iron core 200 is viewed from above and below (when viewed from the height direction (Z-axis direction)), the two yoke component parts 221a disposed at positions adjacent to each other. The regions of the joint portions 231a, 231b, 231c of the regions 221b, 221b, 221c, 221c, 221a are included in the regions of the legs 211, 212, 213, respectively. That is, a virtual plane (perpendicular to the axis 200a of the pile core 200) of the joint portions 231a, 231b, 231c of the two yoke component parts 221a, 221b, 221a, 221c, 221b, 221c arranged at mutually adjacent positions Coordinates on the X-Y plane) are included in coordinates on a virtual plane (X-Y plane) perpendicular to the axis 200a of the pile core 200 of the legs 211, 212, and 213, respectively.

以上のようにして各継鉄構成部分221a〜221cを構成および配置することで、各継鉄構成部分221a〜221cにおいて、当該継鉄構成部分221a〜221cを構成する複数の方向性電磁鋼板の折り曲げられた2箇所の位置の間の領域が、継鉄部221の平面形状である中空の略正六角形の一辺を構成する。また、当該継鉄構成部分221a〜221cを構成する複数の方向性電磁鋼板のその他の領域(折り曲げられた2箇所の位置の間の領域以外の領域)と、当該継鉄構成部分221a〜221cと接合される継鉄構成部分221a〜221cの当該その他の領域(折り曲げられた2箇所の位置の間の領域以外の領域)とで、継鉄部221の平面形状である中空の略六角形の一辺を構成する。従って、継鉄部221の折り曲げられる箇所は合計6箇所になる。尚、各継鉄構成部分を構成する複数の方向性電磁鋼板の箇所の数は、継鉄部の平面形状に応じて定められる。例えば、継鉄部の平面形状が中空の三角形である場合、尚、各継鉄構成部分を構成する複数の方向性電磁鋼板の折り曲げられる箇所の数は、1つでよい(1つの継鉄部の折り曲げられる箇所は合計3箇所になる)。   By configuring and arranging the respective yoke components 221a to 221c as described above, in each of the yoke components 221a to 221c, bending of the plurality of directional electromagnetic steel plates constituting the respective yoke components 221a to 221c is performed. A region between the two positions described above constitutes one side of a hollow substantially regular hexagon which is a planar shape of the yoke portion 221. In addition, the other regions (regions other than the region between the two bent positions) of the plurality of directional electromagnetic steel plates constituting the yoke components 221a to 221c, and the yoke components 221a to 221c A side of a hollow substantially hexagonal shape which is a planar shape of the yoke portion 221 with the other regions (regions other than the region between the two bent positions) of the yoke components 221a to 221c to be joined. Configure Therefore, a total of six bending portions of the yoke portion 221 are provided. In addition, the number of the location of the several directionality electromagnetic steel plates which comprise each yoke part is decided according to the planar shape of a yoke part. For example, when the planar shape of the yoke portion is a hollow triangle, the number of bent portions of the plurality of directional electromagnetic steel plates constituting each yoke component may be one (one yoke portion). There will be a total of three places where it can be folded).

図2(a)〜図2(c)に示すように、継鉄部221を構成する複数の方向性電磁鋼板のうち、脚部211、212、213と接合される領域に配置される複数の方向性電磁鋼板の積層方向は、当該脚部211、212、213を構成する複数の方向性電磁鋼板の積層方向と略同じになる。継鉄部221(継鉄構成部分221a〜221c)を構成する複数の方向性電磁鋼板の積層方向は、前述した折り曲げ位置において異なる方向に変更される。継鉄部221(継鉄構成部分221a〜221c)を構成する複数の方向性電磁鋼板の積層方向であって、相互に異なる積層方向のなす角度は略60°である。   As shown in FIGS. 2 (a) to 2 (c), a plurality of directional electromagnetic steel plates constituting the yoke portion 221 are disposed in regions joined to the legs 211, 212 and 213. The stacking direction of the grain-oriented electrical steel sheet is substantially the same as the stacking direction of the plurality of grain-oriented magnetic steel sheets that make up the legs 211, 212, 213. The stacking direction of the plurality of directional electromagnetic steel plates constituting the yoke portion 221 (the yoke forming portions 221a to 221c) is changed to a different direction at the bending position described above. It is a lamination direction of a plurality of directionality electromagnetic steel plates which constitute the yoke part 221 (the yoke constituent parts 221a to 221c), and an angle formed by mutually different lamination directions is approximately 60 °.

ここで、方向性電磁鋼板の折り曲げは、例えば、ユニコア加工機等、公知の技術を用いて行うことができる。
また、少なくとも方向性電磁鋼板の折り曲げ部に熱処理を施すことにより折り曲げ加工により導入された塑性歪を軽減し、その結果、方向性電磁鋼板の折り曲げ部における鉄損値(塑性歪に伴い増加する)の、方向性電磁鋼板のその他の領域における鉄損値に対する比が、1.5以下となっていることが好ましい。折り曲げ加工によるビルディングファクタの劣化を抑制することができるからである。
前述したように継鉄部222は、継鉄部221と略同じものであり、継鉄部222の説明は、以上の継鉄部221の説明において、符号221を222に、符号231を232に置き換えたものになる。従って、継鉄部222の詳細な説明を省略する。
Here, the bending of the grain-oriented electrical steel sheet can be performed using, for example, a known technique such as a unicore processing machine.
In addition, heat treatment is applied to at least the bent portion of the grain-oriented electrical steel sheet to reduce the plastic strain introduced by bending, and as a result, the iron loss value at the bent portion of the grain-oriented electrical steel sheet (increases with plastic strain) It is preferable that the ratio with respect to the core loss value in the other area | region of the grain oriented electrical steel sheet is 1.5 or less. It is because deterioration of the building factor by bending can be suppressed.
As described above, the yoke portion 222 is substantially the same as the yoke portion 221, and in the description of the yoke portion 221 described above, the reference numeral 221 is for reference 222, and the reference numeral 231 is for 232. It will be replaced. Therefore, the detailed description of the yoke portion 222 is omitted.

また、脚部211、212、213および継鉄部221、222を構成する方向性電磁鋼板に対して磁区細分化を行うのが好ましい。例えば、方向性電磁鋼板の表面に対して、ボールペンによる罫書き、レーザービームの照射、電子ビームの照射、またはプラズマの照射を行うことにより、磁区細分化を実現することができる。これらの手法により、例えば、方向性電磁鋼板の圧延方向に対して略直交するように線状に歪を導入することができる。折り曲げ部に前述した熱処理を行う場合には、方向性電磁鋼板のその他の領域に熱処理の影響を及ぼさないことが好ましい。   Further, it is preferable to carry out magnetic domain refinement on the grain-oriented electrical steel sheets constituting the legs 211, 212, 213 and the yoke portions 221, 222. For example, magnetic domain fragmentation can be realized by scribing with a ballpoint pen, irradiation of a laser beam, irradiation of an electron beam, or irradiation of plasma on the surface of a grain-oriented electrical steel sheet. By these methods, for example, strain can be linearly introduced so as to be substantially orthogonal to the rolling direction of the grain-oriented electrical steel sheet. When the above-described heat treatment is performed on the bent portion, it is preferable that the other regions of the grain-oriented electrical steel sheet are not affected by the heat treatment.

コイル群310、320、330は、それぞれ、積鉄心200の脚部211、212、213に対して巻き回されるコイルを有する。本実施形態では、三相変圧器を例に挙げて説明するので、コイル群310、320、330は、例えば、それぞれ、U相、V相、W相に対応し、それぞれが、一次コイル(励磁コイル)と二次コイル(二次電圧を出力するコイル)とを有する。コイル群310、320、330は、三相変圧器に適用される公知のコイルにより実現することができる。従って、コイル群310、320、330の詳細な説明を省略する。   The coil groups 310, 320, 330 have coils wound around the legs 211, 212, 213 of the stack core 200, respectively. In the present embodiment, since the three-phase transformer is described as an example, the coil groups 310, 320, and 330 correspond to, for example, the U-phase, the V-phase, and the W-phase, respectively. And a secondary coil (a coil that outputs a secondary voltage). The coil groups 310, 320, 330 can be realized by known coils applied to a three-phase transformer. Therefore, the detailed description of the coil groups 310, 320, 330 is omitted.

前述したように、3つの継鉄構成部分221a〜221c、222a〜222cを接合することにより(1つの)継鉄部221、222が構成される。また、脚部211〜213と継鉄部221、222とを接合することにより、積鉄心200が構成される。以下に、これらの接合方法の一例を説明する。   As described above, the joining of the three yoke component parts 221a to 221c and 222a to 222c constitutes a (one) yoke part 221, 222. Moreover, the piled iron core 200 is comprised by joining the leg parts 211-213 and the yoke parts 221 and 222. FIG. Below, an example of these joining methods is demonstrated.

図3は、積鉄心200を展開した様子の第1の例を示す図である。図3(a)は、積鉄心200の内周面の領域を展開して示す図である。図3(b)は、積鉄心200の上面の領域(Z軸の正の方向から負の方向に向けて見た場合の積鉄心200の領域)を展開して示す図である。図3(c)は、積鉄心200の下面の領域(Z軸の負の方向から正の方向に向けて見た場合の積鉄心200の領域)を展開して示す図である。尚、図3では、表記の都合上、方向性電磁鋼板の積層枚数を、図2と異ならせている。また、図3(a)において、破線は、最表面の方向性電磁鋼板の裏側(Y軸の正の方向側)にある方向性電磁鋼板の輪郭を示す。   FIG. 3 is a view showing a first example of a state in which the piled iron core 200 is expanded. FIG. 3A is a developed view of the area of the inner circumferential surface of the pile core 200. As shown in FIG. FIG. 3B is a developed view of a region on the upper surface of the pile core 200 (a region of the pile core 200 when viewed from the positive direction of the Z-axis toward the negative direction). FIG.3 (c) is a figure which expand | deploys and shows the area | region (The area | region of the pile core 200 when it sees toward the positive direction from the negative direction of Z-axis) of the lower surface of the pile core 200. FIG. In FIG. 3, for convenience of description, the number of laminated directional electromagnetic steel sheets is different from that in FIG. 2. Moreover, in FIG. 3 (a), a broken line shows the outline of the directionality electromagnetic steel plate in the back side (the positive direction side of the Y-axis) of the directionality steel plate of the outermost surface.

図3(a)〜図3(c)に示すように、継鉄部221、222の継鉄構成部分221a〜221c、222a〜222cは、五角形の複数の方向性電磁鋼板を、当該五角形の最も長い辺に沿う方向(長手方向)の端部の位置が階段状に繰り返しずれるように積層することにより構成される。ここで、当該方向性電磁鋼板の圧延方向は、当該五角形の最も長い辺(長手方向)に沿う方向(継鉄部221、222の長手方向)と略平行である(図3の継鉄構成部分221a〜221c、222a〜222cの中に示す両矢印線を参照)。   As shown in FIGS. 3 (a) to 3 (c), the yoke parts 221a to 221c and 222a to 222c of the yoke parts 221 and 222 are a plurality of pentagonal directional electromagnetic steel plates, respectively. It is configured by laminating so that the position of the end in the direction (longitudinal direction) along the long side is repeatedly displaced in a step-like manner. Here, the rolling direction of the grain-oriented electrical steel sheet is substantially parallel to the direction (longitudinal direction of the yoke portions 221 and 222) along the longest side (longitudinal direction) of the pentagon (the yoke component shown in FIG. 3) 221a-221c, 222a-222c (see the double arrow lines).

図3(a)ではこのようにして積層された複数の方向性電磁鋼板を、それぞれ方向性電磁鋼板群301〜306として示す。継鉄構成部分221a〜221c、222a〜222cを構成する複数の方向性電磁鋼板は、継鉄構成部分221a〜221c、222a〜222cの折り曲げ位置と合う位置で、折り曲げ角度が略60°になるように折り曲げられる。図2(a)、図2(c)に示す、継鉄構成部分221a〜221c、222a〜222cを構成する複数の方向性電磁鋼板の長手方向の長さは、積鉄心200の内周側よりも外周側(図3(a)の紙面の手前側よりも奥側)の方が長い。折り曲げ位置が相互に合うように方向性電磁鋼板を積層した際に、積層された方向性電磁鋼板の長手方向の端の位置が揃うように、継鉄構成部分221a〜221c、222a〜222cを構成する複数の方向性電磁鋼板の長手方向の長さおよび折り曲げ位置が定められる。   In FIG. 3A, a plurality of directional electromagnetic steel plates stacked in this manner are shown as directional electromagnetic steel plate groups 301 to 306, respectively. The plurality of directional electromagnetic steel plates constituting the yoke construction parts 221a to 221c and 222a to 222c have a bending angle of approximately 60 ° at a position matching the bending positions of the yoke construction parts 221a to 221c and 222a to 222c It is bent to The lengths in the longitudinal direction of the plurality of directional electromagnetic steel plates constituting the yoke components 221a to 221c and 222a to 222c shown in FIGS. 2 (a) and 2 (c) are from the inner circumferential side of the pile core 200. Also, the outer peripheral side (the back side than the front side of the paper surface of FIG. 3A) is longer. The yoke component portions 221a to 221c and 222a to 222c are configured such that the longitudinal ends of the laminated directional electromagnetic steel plates are aligned when the directional electromagnetic steel plates are laminated so that the bending positions match each other. Longitudinal lengths and bending positions of the plurality of oriented electromagnetic steel sheets are determined.

図3(a)に示すように、脚部211〜213は、六角形の複数の方向性電磁鋼板を、当該六角形の最も長い辺に沿う方向(脚部211〜213の長手方向)の位置が階段状に繰り返しずれるように積層することにより構成される。ここで、当該方向性電磁鋼板の圧延方向は、当該六角形の最も長い辺に沿う方向(脚部211〜213の長手方向)と略平行である(図3(a)の脚部211〜213の中に示す両矢印線を参照)。   As shown to Fig.3 (a), the legs 211-213 are a position of the direction (longitudinal direction of the legs 211-213) along the longest side of the hexagon concerned with a plurality of hexagonal directional electromagnetic steel plates. Are stacked in a stepwise manner so as to be repeatedly displaced. Here, the rolling direction of the grain-oriented electrical steel sheet is substantially parallel to the direction (longitudinal direction of the legs 211 to 213) along the longest side of the hexagon (legs 211 to 213 in FIG. 3A). See the double arrow line shown in).

図3(a)ではこのようにして積層された複数の方向性電磁鋼板を、それぞれ方向性電磁鋼板群307〜309として示す。脚部211〜213を構成する六角形の複数の方向性電磁鋼板の長手方向の長さは同じであり、且つ、折り曲げられていない。   In FIG. 3A, a plurality of directional electromagnetic steel plates stacked in this manner are shown as directional electromagnetic steel plate groups 307 to 309, respectively. The lengths in the longitudinal direction of the plurality of hexagonal directional electromagnetic steel plates constituting the legs 211 to 213 are the same and are not bent.

このようにして構成した方向性電磁鋼板群301〜309を接合することにより積鉄心200が構成される。図3に示す例では、方向性電磁鋼板群301〜309の接合(突き合わせ)の方式をステップラップ接合とする場合を示す。ステップラップ接合は、板の長手方向における板厚部分を見た場合に、板の長手方向の端部の位置が、周期的に階段状にずれるように板を積層することにより実現される。   A pile iron core 200 is configured by joining the directional electromagnetic steel plate groups 301 to 309 configured in this manner. In the example shown in FIG. 3, the case where the method of joining (butting) of the directional electromagnetic steel plate groups 301 to 309 is used as step lap joining is shown. The step-lap bonding is realized by laminating the plates so that the positions of the longitudinal end portions of the plates are periodically shifted in a step-like manner when the thick portion in the longitudinal direction of the plates is viewed.

図3に示す例では、継鉄構成部分221aを構成する方向性電磁鋼板群301の長手方向の一端と、継鉄構成部分221bを構成する方向性電磁鋼板群302の長手方向の一端と、脚部211を構成する方向性電磁鋼板群307の長手方向の一端とがステップラップ接合される。また、継鉄構成部分221bを構成する方向性電磁鋼板群302の長手方向の他端と、継鉄構成部分221cを構成する方向性電磁鋼板群303の長手方向の一端と、脚部213を構成する方向性電磁鋼板群308の長手方向の一端とがステップラップ接合される。また、継鉄構成部分221cを構成する方向性電磁鋼板群303の長手方向の他端と、継鉄構成部分221aを構成する方向性電磁鋼板群302の長手方向の他端と、脚部212を構成する方向性電磁鋼板群309の長手方向の一端とがステップラップ接合される。継鉄構成部分222a〜222cについても継鉄構成部分221a〜221cと同様に、脚部211〜213、および、当該継鉄構成部分に隣接して配置される2つの継鉄構成部分とステップラップ接合される。   In the example shown in FIG. 3, one end in the longitudinal direction of the directional electromagnetic steel plate group 301 constituting the yoke component portion 221a, one end in the longitudinal direction of the directional electromagnetic steel plate group 302 constituting the yoke component portion 221b, and a leg Step lap bonding is performed with one end in the longitudinal direction of the directional electromagnetic steel plate group 307 that constitutes the portion 211. Further, the other end in the longitudinal direction of the directional electromagnetic steel plate group 302 constituting the yoke construction portion 221b, one end in the longitudinal direction of the directional electromagnetic steel plate group 303 constituting the yoke construction portion 221c, and the leg portion 213 are configured. Step lap welding is performed with one end of the longitudinal electromagnetic steel plate group 308 in the longitudinal direction. Further, the other end in the longitudinal direction of the directional electromagnetic steel plate group 303 constituting the yoke construction portion 221c, the other end in the longitudinal direction of the directional electromagnetic steel plate group 302 constituting the yoke construction portion 221a, and the leg portion 212 Step wrap bonding is performed with one end in the longitudinal direction of the directional electromagnetic steel sheet group 309 to be configured. As in the case of the yoke components 221a to 221c, the step parts of the yoke components 222a to 222c and the legs 211 to 213 and two yoke components disposed adjacent to the yoke component are connected to the step-lap joint. Be done.

図3に示す例では、方向性電磁鋼板の長手方向(図3(b)ではX軸方向、図3(c)ではY軸方向)における方向性電磁鋼板の板厚部分を見た場合に、方向性電磁鋼板の板厚方向で隣接する6つの方向性電磁鋼板毎に、方向性電磁鋼板の長手方向の端部のそれぞれの位置が、周期的に階段状にずれるようにする場合を示す。
尚、図3に示す例では、方向性電磁鋼板の長手方向の端部の位置を、1つの方向性電磁鋼板毎にずらす場合を示すが、方向性電磁鋼板の長手方向の端部の位置を、複数の方向性電磁鋼板毎にずらすようにしてもよい。
In the example shown in FIG. 3, when the thickness portion of the grain-oriented electrical steel sheet in the longitudinal direction of the grain-oriented electrical steel sheet (X-axis direction in FIG. 3B and Y-axis direction in FIG. The case where each position of the end of the longitudinal direction of a directionality electromagnetic steel plate is made to shift periodically in the shape of a step is shown for every six directionality electromagnetic steel plates which adjoin in the thickness direction of a directionality electromagnetic steel plate.
In the example shown in FIG. 3, although the case where the position of the end in the longitudinal direction of the directional electromagnetic steel sheet is shifted for each directional electromagnetic steel sheet, the position of the end in the longitudinal direction of the directional electromagnetic steel sheet is The plurality of directional electromagnetic steel plates may be shifted.

以上のようなステップラップ接合を採用することによって、方向性電磁鋼板の長手方向における板厚部分を見た場合に、当該方向性電磁鋼板の長手方向の端部の位置が、徐々に変化するため、当該方向性電磁鋼板の長手方向の端部の板厚方向の各位置における磁束の集中(即ち、当該方向性電磁鋼板の長手方向の端部の板厚方向において磁束が不均一になること)を抑制することができる。   By adopting the above-described step lap bonding, when the thickness portion in the longitudinal direction of the grain-oriented electrical steel sheet is viewed, the position of the longitudinal end of the grain-oriented electrical steel sheet gradually changes The concentration of magnetic flux at each position in the thickness direction of the longitudinal electromagnetic steel sheet (that is, the magnetic flux becomes uneven in the thickness direction of the longitudinal magnetic steel sheet) Can be suppressed.

図4は、積鉄心200を展開した様子の第2の例を示す図である。図4(a)は、積鉄心200の内周面の領域を展開して示す図である。図4(b)は、積鉄心200の上面の領域(Z軸の正の方向から負の方向に向けて見た場合の積鉄心200の領域)を展開して示す図である。図4(c)は、積鉄心200の下面の領域(Z軸の負の方向から正の方向に向けて見た場合の積鉄心200の領域)を展開して示す図である。尚、図4でも、図3と同様に、表記の都合上、方向性電磁鋼板の積層枚数を、図2と異ならせている。また、図4(a)において、破線は、最表面の方向性電磁鋼板の裏側(Y軸の正の方向側)にある方向性電磁鋼板の輪郭を示す。   FIG. 4 is a view showing a second example of the state in which the piled iron core 200 is expanded. FIG. 4A is a developed view of the area of the inner circumferential surface of the pile core 200. FIG. 4B is a developed view of a region on the upper surface of the pile core 200 (a region of the pile core 200 when viewed from the positive direction of the Z-axis toward the negative direction). FIG.4 (c) is a figure which expand | deploys and shows the area | region (The area | region of the pile core 200 when it sees from the negative direction of Z-axis toward the positive direction) of the lower surface of the pile iron core 200. FIG. In FIG. 4 as well as in FIG. 3, the number of laminated directional magnetic steel sheets is different from that in FIG. 2 for convenience of description. Moreover, in FIG. 4 (a), a broken line shows the outline of the directionality electromagnetic steel plate in the back side (the positive direction side of the Y-axis) of the directionality steel plate of the outermost surface.

図4(a)〜図4(c)に示すように、継鉄部221、222の継鉄構成部分221a〜221c、222a〜222cは、五角形の複数の方向性電磁鋼板を、その長手方向の端部が第1の位置および第2の位置の2つの位置に交互に配置されるように積層することにより構成される。ここで、当該方向性電磁鋼板の圧延方向は、当該五角形の最も長い辺(長手方向)に沿う方向(継鉄部221、222の長手方向)と略平行である(図4の継鉄構成部分221a〜221c、222a〜222cの中に示す両矢印線を参照)。   As shown in FIGS. 4 (a) to 4 (c), the yoke parts 221a to 221c and 222a to 222c of the yoke parts 221 and 222 are formed of a plurality of pentagonal directional electromagnetic steel plates in the longitudinal direction thereof. It is comprised by laminating | stacking so that an edge part may be arrange | positioned alternately by two positions of a 1st position and a 2nd position. Here, the rolling direction of the grain-oriented electrical steel sheet is substantially parallel to the direction (longitudinal direction of the yoke portions 221 and 222) along the longest side (longitudinal direction) of the pentagon (the yoke constituent portion in FIG. 4) 221a-221c, 222a-222c (see the double arrow lines).

図4(a)ではこのようにして積層された複数の方向性電磁鋼板を、それぞれ方向性電磁鋼板群401〜406として示す。継鉄構成部分221a〜221c、222a〜222cを構成する複数の方向性電磁鋼板は、継鉄構成部分221a〜221c、222a〜222cの折り曲げ位置と合う位置で、折り曲げ角度が略60°になるように折り曲げられる。図2(a)、図2(c)に示すように、継鉄構成部分221a〜221c、222a〜222cを構成する複数の方向性電磁鋼板の長手方向の長さは、積鉄心200の内周側よりも外周側(図4(a)の紙面の手前側よりも奥側)の方が長い。折り曲げ位置が相互に合うように方向性電磁鋼板を積層した際に、積層された方向性電磁鋼板の長手方向の端の位置が揃うように、継鉄構成部分221a〜221c、222a〜222cを構成する複数の方向性電磁鋼板の長手方向の長さおよび折り曲げ位置が定められる。   In FIG. 4A, a plurality of directional electromagnetic steel plates stacked in this manner are shown as directional electromagnetic steel plate groups 401 to 406, respectively. The plurality of directional electromagnetic steel plates constituting the yoke construction parts 221a to 221c and 222a to 222c have a bending angle of approximately 60 ° at a position matching the bending positions of the yoke construction parts 221a to 221c and 222a to 222c It is bent to As shown in FIGS. 2 (a) and 2 (c), the length in the longitudinal direction of the plurality of directional electromagnetic steel plates constituting the yoke components 221a to 221c and 222a to 222c is the inner circumference of the pile iron core 200. The outer peripheral side (the back side than the front side of the sheet of FIG. 4A) is longer than the side. The yoke component portions 221a to 221c and 222a to 222c are configured such that the longitudinal ends of the laminated directional electromagnetic steel plates are aligned when the directional electromagnetic steel plates are laminated so that the bending positions match each other. Longitudinal lengths and bending positions of the plurality of oriented electromagnetic steel sheets are determined.

図4(a)に示すように、脚部211〜213は、六角形の複数の方向性電磁鋼板を、その長手方向の端部が第1の位置および第2の位置の2つの位置に交互に配置されるように積層することにより構成される。ここで、当該方向性電磁鋼板の圧延方向は、当該六角形の最も長い辺(長手方向)に沿う方向(脚部211〜213の長手方向)と略平行である(図4(a)の脚部211〜213の中に示す両矢印線を参照)。   As shown in FIG. 4 (a), the legs 211 to 213 alternately have a plurality of hexagonal directional electromagnetic steel plates, and their longitudinal ends alternate in two positions, a first position and a second position. It is comprised by laminating | stacking so that it may be arrange | positioned. Here, the rolling direction of the grain-oriented electrical steel sheet is substantially parallel to the direction (longitudinal direction of the legs 211 to 213) along the longest side (longitudinal direction) of the hexagon (the leg of FIG. 4A) See the double arrow lines shown in sections 211-213).

図4(a)ではこのようにして積層された複数の方向性電磁鋼板を、それぞれ方向性電磁鋼板群407〜409として示す。脚部211〜213を構成する六角形の複数の方向性電磁鋼板の長手方向の長さは同じであり、且つ、折り曲げられていない。   In FIG. 4A, a plurality of directional electromagnetic steel plates stacked in this manner are shown as directional electromagnetic steel plate groups 407 to 409, respectively. The lengths in the longitudinal direction of the plurality of hexagonal directional electromagnetic steel plates constituting the legs 211 to 213 are the same and are not bent.

このようにして構成した方向性電磁鋼板群401〜409を接合することにより積鉄心200が構成される。図4に示す例では、方向性電磁鋼板群301〜309の接合(突き合わせ)の方式を交互ラップ接合とする場合を示す。交互ラップ接合は、板の長手方向における板厚部分を見た場合に、板の長手方向の端部の位置が、第1の位置および第2の位置の2つの位置に交互に配置されるように板を積層することにより実現される。方向性電磁鋼板群401〜409を接合する方法は、前述した方向性電磁鋼板群301〜309を接合する方法の説明において、符号301〜309を401〜409に、ステップラップ接合を交互ラップ接合に置き換えたものになる。従って、方向性電磁鋼板群401〜409を接合する方法の詳細な説明を省略する。   A pile iron core 200 is configured by joining the directional electromagnetic steel sheet groups 401 to 409 configured in this manner. In the example shown in FIG. 4, the case where the system of joining (butting) of the directionality electromagnetic steel plate groups 301-309 is made into an alternate lap joining is shown. The alternate lap joint is such that when looking at the thick portion in the longitudinal direction of the plate, the positions of the longitudinal ends of the plate are alternately arranged at two positions of the first position and the second position It is realized by laminating the plates on the In the method of joining the directional electromagnetic steel sheet groups 401 to 409, in the description of the method of joining the directional electromagnetic steel sheet groups 301 to 309 described above, reference numerals 301 to 309 are 401 to 409, and step lap joint is alternate lap joint It will be replaced. Therefore, the detailed description of the method of joining the directional electromagnetic steel plate groups 401 to 409 is omitted.

交互ラップ接合としても、ステップラップ接合と同様に、方向性電磁鋼板の長手方向の端部の板厚方向の各位置における磁束の集中(即ち、当該方向性電磁鋼板の長手方向の端部の板厚方向において磁束が不均一になること)を抑制することができる。交互ラップ接合よりもステップラップ接合の方が、当該磁束の集中を抑制する効果は大きいが、交互ラップ接合の方がステップラップ接合よりも積層が容易になる。
尚、ステップラップ接合および交互ラップ接合自体は、公知の技術で実現することができ、ステップラップ接合および交互ラップ接合の方法として、図3および図4に示す以外にも種々の方法を採用することができる。
Even in the case of the alternate lap joint, like the step lap joint, the concentration of the magnetic flux at each position in the thickness direction of the longitudinal end of the directional electromagnetic steel sheet (that is, the plate of the longitudinal end of the directional electromagnetic steel sheet Uneven magnetic flux can be suppressed in the thickness direction. Although the effect of suppressing the concentration of the magnetic flux is larger in the step wrap junction than in the alternate wrap junction, the alternate wrap junction is easier to stack than the step wrap junction.
The step lap bonding and the alternate lap bonding itself can be realized by known techniques, and various methods other than those shown in FIGS. 3 and 4 may be adopted as the method of the step lap bonding and the alternate lap bonding. Can.

方向性電磁鋼板群301〜309、401〜409の固定は、例えば、方向性電磁鋼板に穴をあけて、当該穴に、当該方向性電磁鋼板と電気的に絶縁された状態でボルトを通し、当該ボルトを、当該方向性電磁鋼板と電気的に絶縁された状態でナットを用いて締めたり、ケースを用いたり、溶接を行ったりすることにより実現される。
以上のようにして積鉄心200が構成される。
For fixing the directional electromagnetic steel plate groups 301 to 309 and 401 to 409, for example, a hole is made in the directional electromagnetic steel plate, and a bolt is passed through the hole in a state electrically insulated from the directional electromagnetic steel plate, It is realized by tightening the bolt with a nut in a state of being electrically insulated from the grain-oriented electrical steel sheet, using a case, or performing welding.
A piled iron core 200 is configured as described above.

以上のように本実施形態では、積鉄心200は、積鉄心200の高さ方向から積鉄心200を見た場合に、中空の略正六角形の形状を有する継鉄部221、222であって、積鉄心200の高さ方向において間隔をあけて相互に対向するように配置された継鉄部221、222と、積鉄心200の高さ方向に延設される脚部211、212、213であって、継鉄部221、222と接合される脚部211、212、213とを有する。また、相互に隣接する位置に配置される2つの継鉄構成部分(例えば、継鉄構成部分221a・221b)の接合部(例えば、231a)の領域のX−Y平面上の座標が、脚部(例えば、脚部211)の領域のX−Y平面上の座標に含まれるようにする。従って、積鉄心200を構成する方向性電磁鋼板の板面の方向に沿って流れる磁束が、特許文献1、2に記載の技術よりも、三相交流の各相において均等に近づき、各相の磁気回路を均等に近づけることができるため、回転磁界の発生を抑制することができる。よって、例えば、B8が大きい方向性電磁鋼板を用いても、ビルディングファクタが低下することを抑制することができると共に、高調波の磁束が積鉄心200内に発生することを抑制することができる。よって、積鉄心200の損失および騒音を低減することができる。   As described above, in the present embodiment, when the piled iron core 200 is viewed from the height direction of the piled iron core 200, the piled iron core 200 is a yoke part 221, 222 having a hollow substantially regular hexagonal shape, The yoke portions 221 and 222 are arranged to face each other at intervals in the height direction of the pile core 200, and the leg portions 211, 212 and 213 are extended in the height direction of the pile core 200. And leg portions 211, 212, and 213 joined to the yoke portions 221 and 222, respectively. In addition, the coordinates on the XY plane of the area of the joint (for example, 231a) of the two yoke parts (for example, yoke parts 221a and 221b) arranged at mutually adjacent positions are the legs. It is made to be included in the coordinates on the XY plane of the area of the leg portion 211, for example. Therefore, the magnetic flux flowing along the direction of the plate surface of the direction-oriented electrical steel sheet constituting the pile core 200 approaches equally in each phase of the three-phase alternating current than in the techniques described in Patent Documents 1 and 2, Since the magnetic circuit can be made to approach equally, generation | occurrence | production of a rotating magnetic field can be suppressed. Therefore, for example, even when using a grain-oriented electrical steel sheet having a large B8, it is possible to suppress the reduction of the building factor and to suppress the generation of the magnetic flux of harmonics in the stack iron core 200. Thus, the loss and noise of the pile core 200 can be reduced.

本実施形態では、脚部211、212、213の横断面が四角形である場合を例に挙げて説明した。しかしながら、脚部211、212、213の横断面の形状は四角形に限定されない。図5は、三相変圧器の変形例の構成を示す図であり、三相変圧器をその上方から見た上面図(図5(a))と、三相変圧器の高さ方向の中央における横断面を示す横断面図(図5(b))と、三相変圧器をその下方から見た底面図(図5(c))である。   In the present embodiment, the case where the cross sections of the legs 211, 212, and 213 are square is described as an example. However, the shape of the cross section of the legs 211, 212, 213 is not limited to a square. FIG. 5 is a view showing the configuration of a modification of the three-phase transformer, and is a top view of the three-phase transformer seen from above (FIG. 5 (a)) and the center in the height direction of the three-phase transformer They are a cross-sectional view (FIG. 5 (b)) which shows the cross-section in (a), and the bottom view which looked at the three-phase transformer from the downward direction (FIG. 5 (c)).

図5において、三相変圧器は、積鉄心500と、3つのコイル群510、520、530とを有する。
積鉄心500は、3つの脚部511、512、513と、2つの継鉄部621、622とを有する。
図2(b)に示す例では、脚部211、212、213の横断面は、四角形である。これに対し、図5(b)に示す例では、脚部511、512、513の横断面において、方向性電磁鋼板の板面方向の長さ(幅)が、方向性電磁鋼板の積層方向の中央から端に向けて段階的に小さくなるようにする。具体的に図5(b)に示す例では、脚部511、512、513の横断面において、方向性電磁鋼板の積層方向の中央に位置する方向性電磁鋼板の板面方向の長さが最も長く、方向性電磁鋼板の積層方向の端に位置する方向性電磁鋼板の板面方向の長さが最も短くなるように、方向性電磁鋼板の積層方向の中央から端に向けて複数枚の方向性電磁鋼板毎に多段階で、方向性電磁鋼板の板面方向の長さが短くなるようにする。
In FIG. 5, the three-phase transformer has a piled iron core 500 and three coil groups 510, 520, 530.
The pile core 500 has three legs 511, 512, 513 and two yokes 621, 622.
In the example illustrated in FIG. 2B, the cross sections of the legs 211, 212, and 213 are square. On the other hand, in the example shown in FIG. 5B, in the cross sections of the leg portions 511, 512, 513, the length (width) in the plate surface direction of the grain oriented electromagnetic steel plate is in the lamination direction of the grain oriented electromagnetic steel plate. Make it smaller gradually from the center to the edge. Specifically, in the example shown in FIG. 5 (b), in the cross sections of the legs 511, 512, 513, the length in the plate surface direction of the directional electromagnetic steel sheet positioned at the center in the lamination direction of the directional electromagnetic steel sheets is the most A plurality of directions from the center to the end in the lamination direction of the directionality electromagnetic steel sheets so that the length in the plane direction of the directionality steel sheets located at the end in the lamination direction of the long directionality steel sheets is the shortest. The length of the grain direction of the grain-oriented electrical steel sheet in a multistage manner for each of the magnetic grain steel sheets.

このような脚部511、512、513の形状に合わせて、継鉄部521、522を構成する方向性電磁鋼板の長さや積層枚数を定める。
以上のようにすることにより、脚部511、512、513の横断面の形状を円に近づけることができ、コイル群510、520、530を構成するコイルを円状に近い形状で巻き回すことができる。
The length and the number of laminated directional electromagnetic steel plates constituting the yoke portions 521 and 522 are determined in accordance with the shapes of the leg portions 511, 512, and 513.
By doing as above, the shape of the cross section of the legs 511, 512, 513 can be made close to a circle, and the coils constituting the coil groups 510, 520, 530 can be wound in a near circular shape. it can.

尚、図5のように積鉄心500を構成する場合も、図2に示す積鉄心200と同様に、3つの脚部511、512、513の横断面において、3つの脚部511、512、513を構成する方向性電磁鋼板の板面は、それぞれ、積鉄心500の軸500aと、当該脚部511、512、513の重心(軸)511a、512a、513aとを相互に結ぶ仮想線が延びる方向に対して略垂直な方向を向くように、3つの脚部511、512、513を構成する方向性電磁鋼板は積層される。
また、継鉄部521、522を構成する複数の方向性電磁鋼板のうち、脚部511、512、513と接合される領域に配置される複数の方向性電磁鋼板の積層方向は、当該脚部511、512、513を構成する複数の方向性電磁鋼板の積層方向と略同じになる。
In the case where the piled iron core 500 is configured as shown in FIG. 5, as in the piled iron core 200 shown in FIG. 2, the three legs 511, 512, 513 in the cross section of the three legs 511, 512, 513. The plate surface of the directional electromagnetic steel plate constituting the direction is a direction in which an imaginary line connecting the axis 500a of the pile core 500 and the center of gravity (axis) 511a, 512a, 513a of the legs 511, 512, 513 extends. The directional electromagnetic steel plates constituting the three legs 511, 512, 513 are laminated so as to face a direction substantially perpendicular to the above.
Further, among the plurality of directional electromagnetic steel plates constituting the yoke portions 521 and 522, the stacking direction of the plurality of directional electromagnetic steel plates disposed in the region joined to the legs 511, 512 and 513 is the leg It becomes substantially the same as the lamination direction of a plurality of directionality electromagnetic steel plates which constitute 511, 512, 513.

また、本実施形態のように、3つの脚部211、212、213の横断面において、3つの脚部211、212、213の重心(軸)211a、212a、213aが、積鉄心200の軸200aを重心の位置とする略正三角形の頂点と略同じ位置に位置するようにすれば、3相の磁気回路をより均等に近づけることができるので好ましいが、3つの脚部の横断面において、3つの脚部の重心が、積鉄心の軸を重心の位置とする三角形の頂点と略同じ位置に位置するようにしていれば、当該三角形は必ずしも略正三角形でなくてもよい。   Further, as in the present embodiment, in the cross section of the three legs 211, 212, 213, the center of gravity (axis) 211a, 212a, 213a of the three legs 211, 212, 213 is the axis 200a of the pile core 200. It is preferable that the three-phase magnetic circuit can be made to approach more evenly if the three-phase magnetic circuit can be made to approach more uniformly if the three-phase magnetic circuit is positioned approximately at the same position as the vertex of the substantially regular triangle. The triangle may not necessarily be a substantially equilateral triangle, as long as the center of gravity of the two legs is positioned substantially at the same position as the apex of the triangle whose center of gravity is at the center of the core.

(第2の実施形態)
次に、第2の実施形態を説明する。第1の実施形態では、相互に隣接する位置に配置される2つの継鉄構成部分(例えば、継鉄構成部分221a・221b)の接合部(例えば、接合部231a)の領域のX−Y平面上の座標が、脚部(例えば、脚部211)の領域のX−Y平面上の座標に含まれる場合を例に挙げて説明した。これに対し、本実施形態では、このようにせずに、2つの継鉄構成部分の接合部が、脚部211、212、213と継鉄部221との2つの接合部の間の領域にある場合について説明する。このように本実施形態と第1の実施形態とは、継鉄部の構成の一部が主として異なる。従って、本実施形態の説明において、第1の実施形態と同一の部分については、図1〜図5に付した符号と同一の符号を付す等して詳細な説明を省略する。
Second Embodiment
Next, a second embodiment will be described. In the first embodiment, the X-Y plane of the area of the joint (for example, joint 231a) of two yoke parts (for example, yoke parts 221a and 221b) arranged at mutually adjacent positions. The case where the upper coordinates are included in the coordinates on the XY plane of the region of the leg (for example, the leg 211) has been described as an example. On the other hand, in the present embodiment, without doing this, the joint between the two yoke components is in the region between the two joints between the legs 211, 212, 213 and the yoke 221. The case will be described. As described above, the present embodiment and the first embodiment mainly differ in a part of the configuration of the yoke portion. Therefore, in the description of the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals as those in FIGS. 1 to 5, and the detailed description is omitted.

図6は、三相変圧器の構成の一例を示す図であり、三相変圧器をその正面から見た正面図である。図7は、三相変圧器の構成の一例を示す図であり、三相変圧器をその上方(高さ方向)から見た上面図(図7(a))と、三相変圧器をその下方(高さ方向)から見た底面図(図7(b))である。尚、三相変圧器の高さ方向の中央における横断面を示す図(図6のI−I断面図)は、図2(b)と同じである(ただし、符号200aは符号600aに置き換えられる)。   FIG. 6 is a view showing an example of the configuration of the three-phase transformer, and is a front view of the three-phase transformer as viewed from the front thereof. FIG. 7 is a view showing an example of the configuration of a three-phase transformer, and a top view (FIG. 7 (a)) of the three-phase transformer viewed from above (height direction) and the three-phase transformer It is a bottom view (Drawing 7 (b)) seen from the bottom (height direction). A diagram showing a cross section at the center in the height direction of the three-phase transformer (I-I cross-sectional view of FIG. 6) is the same as FIG. 2B (however, reference numeral 200a is replaced by reference numeral 600a) ).

三相変圧器は、積鉄心600と、3つのコイル群310、320、330とを有する。
積鉄心600は、3つの脚部211、212、213と、2つの継鉄部621、622とを有する。
3つのコイル群310、320、330および3つの脚部211、212、213は、第1の実施形態で説明したものと同じもので実現することができる。
The three-phase transformer has a piled iron core 600 and three coil groups 310, 320, 330.
The pile core 600 has three legs 211, 212, 213 and two yokes 621, 622.
The three coil groups 310, 320, 330 and the three legs 211, 212, 213 can be realized with the same as described in the first embodiment.

2つの継鉄部621、622は、略同じもの(形状および大きさが略同じ)である。図7(a)および図7(b)に示すように2つの継鉄部621、622は、積鉄心600の軸600aの回りを周回する形状を有する。具体的に本実施形態でも、第1の実施形態の継鉄部221、222と同様に、2つの継鉄部621、622の形状が、中空の正六角柱である場合を例に挙げて説明する。   The two yoke portions 621 and 622 are substantially the same (substantially the same in shape and size). As shown in FIGS. 7A and 7B, the two yoke portions 621 and 622 have a shape that orbits around an axis 600a of the pile core 600. Specifically, also in the present embodiment, as in the case of the yoke portions 221 and 222 of the first embodiment, the case where the shapes of the two yoke portions 621 and 622 are hollow regular hexagonal columns will be described as an example. .

2つの継鉄部621、622は、それぞれ、3つの脚部211、212、213の上端部の領域、下端部の領域と接合された状態で配置される。これにより、継鉄部621、622および脚部211、212、213は磁気的に結合される。この際、継鉄部621、622と脚部211、212、213とは、それらを構成する方向性電磁鋼板の板面の一部の領域が相互に重なるようにするのが好ましい。   The two yoke portions 621 and 622 are disposed in a state of being joined to the upper end region and the lower end region of the three legs 211, 212 and 213, respectively. Thus, the yoke portions 621 and 622 and the legs 211, 212 and 213 are magnetically coupled. Under the present circumstances, it is preferable to make it the area | regions of a part of the plate surface of the directionality electromagnetic steel plate which comprises them as the yoke parts 621 and 622 and the leg parts 211, 212, and 213 mutually overlap.

継鉄部621は、積層された(積み重ねられた)複数の方向性電磁鋼板の組として同じ構成の組621a〜621cを3つ有する。以下の説明では、この組を、必要に応じて継鉄構成部分621a〜621cと称する。各継鉄構成部分621a〜621cを構成する複数の方向性電磁鋼板は、長手方向の長さおよび折り曲げ位置が異なる。各継鉄構成部分を構成する複数の方向性電磁鋼板は、その長手方向の2箇所の位置で、略同じ折り曲げ角度で折り曲げられた形状(折曲部)を有する。図7(a)および図7(b)に示す例では、当該折り曲げ角度は、略60°である。前述したように、折り曲げ角度とは、継鉄構成部分621a〜621cを構成する方向性電磁鋼板の、平面の状態からの折り曲げ角度である。従って、継鉄構成部分621a〜621cの2つの角部の角度(のうち小さい方の角度)は、それぞれ略120°である。   The yoke portion 621 has three sets 621 a to 621 c of the same configuration as a set of stacked (stacked) directional electromagnetic steel sheets. In the following description, this set will be referred to as yoke components 621a to 621c as needed. The plurality of directional electromagnetic steel plates constituting each of the yoke component portions 621a to 621c have different lengths in the longitudinal direction and bending positions. The plurality of directional electromagnetic steel plates constituting each yoke component have shapes (bent portions) bent at substantially the same bending angle at two positions in the longitudinal direction. In the example shown in FIGS. 7 (a) and 7 (b), the bending angle is approximately 60 degrees. As mentioned above, a bending angle is a bending angle from the state of a plane of the directionality electromagnetic steel plate which constitutes yoke part constituent parts 621a-621c. Therefore, the angle (smaller one of the two angles) of the two corner portions of the yoke portions 621a to 621c is approximately 120 °.

図7(a)および図7(b)に示すように、各継鉄構成部分621a〜621cは、それらを構成する複数の方向性電磁鋼板の折り曲げ部の凹面が、積鉄心600の軸600a側を向き、且つ、当該複数の方向性電磁鋼板の板面が、積鉄心600の軸600aに垂直な仮想平面に対して略垂直な方向を向き、且つ、各継鉄構成部分621a〜621cと積鉄心600の軸600aとの距離が略等距離になるように配置される。従って、各継鉄構成部分621a〜621cの長手方向の端部同士が接合される。   As shown in FIGS. 7 (a) and 7 (b), in each of the yoke component parts 621a to 621c, the concave surfaces of the bent parts of the plurality of directional electromagnetic steel plates constituting them are on the side of the shaft 600a of the pile core 600. And the plate surfaces of the plurality of directional electromagnetic steel plates are directed substantially perpendicular to a virtual plane perpendicular to the axis 600a of the pile core 600, and stacked with the respective yoke component portions 621a to 621c. It arrange | positions so that distance with the axis | shaft 600a of the iron core 600 may become substantially equal distance. Therefore, the longitudinal direction end parts of the respective yoke component parts 621a to 621c are joined.

本実施形態では、相互に隣接する位置に配置される2つの継鉄構成部分621a・621b、621b・621c、621c・621aの接合部631a、631b、631cの、積鉄心600の軸600aに垂直な仮想平面(X−Y平面)上の座標は、脚部211、212、213の、積鉄心600の軸600aに垂直な仮想平面(X−Y平面)上の座標に含まれない。具体的に本実施形態では、相互に隣接する位置に配置される2つの継鉄構成部分621a・621b、621b・621c、621c・621aの接合部631a、631b、631cが、それぞれ、積鉄心600の周方向(軸600a回りの方向)において相互に隣接する2つの脚部(3つの脚部211〜213の重心(軸)を頂点とする略正三角形の各辺の両端に位置する2つの脚部)211・213、211・212、212・213と、継鉄部621との接合部の中間の位置になるようにする。   In this embodiment, the joints 631a, 631b, 631c of the two yoke component parts 621a, 621b, 621b, 621c, 621c, 621a arranged at mutually adjacent positions are perpendicular to the axis 600a of the core 600. The coordinates on the virtual plane (X-Y plane) are not included in the coordinates on the virtual plane (X-Y plane) perpendicular to the axis 600 a of the pile core 600 of the legs 211, 212, 213. Specifically, in the present embodiment, the joint portions 631a, 631b, 631c of the two yoke component parts 621a, 621b, 621b, 621c, 621c, 621a arranged at mutually adjacent positions are respectively of the stacked iron core 600. Two legs adjacent to each other in the circumferential direction (direction around the axis 600a) (two legs located at both ends of each side of a substantially regular triangle whose apexes are the centers (axes) of the three legs 211 to 213) 21), 213, 211, 212, 212, and 213, and the intermediate position of the junction of the yoke portion 621).

以上のようにして各継鉄構成部分621a〜621cを構成および配置することで、各継鉄構成部分621a〜621cにおいて、当該継鉄構成部分621a〜621cを構成する複数の方向性電磁鋼板の折り曲げられた2箇所の位置の間の領域が、継鉄部621の平面形状である中空の略正六角形の一辺を構成する。また、当該継鉄構成部分621a〜621cを構成する複数の方向性電磁鋼板のその他の領域(折り曲げられた2箇所の位置の間の領域以外の領域)と、当該継鉄構成部分621a〜621cと接合される継鉄構成部分621a〜621cの当該その他の領域(折り曲げられた2箇所の位置の間の領域以外の領域)とで、継鉄部621の平面形状である中空の略正六角形の一辺を構成する。   As described above, by forming and arranging each of the yoke component parts 621a to 621c, in each of the yoke component parts 621a to 621c, bending of the plurality of directional electromagnetic steel plates constituting the yoke component parts 621a to 621c is performed. A region between the two positions described above constitutes one side of a hollow substantially regular hexagon which is a planar shape of the yoke portion 621. In addition, the other regions (regions other than the region between the two bent positions) of the plurality of directional electromagnetic steel plates constituting the yoke component portions 621a to 621c, and the yoke component portions 621a to 621c and A side of the hollow substantially regular hexagon which is a planar shape of the yoke portion 621 with the other regions (regions other than the region between the two bent positions) of the yoke structural portions 621a to 621c to be joined. Configure

図2(b)、図6(a)、図6(b)に示すように、継鉄部621を構成する複数の方向性電磁鋼板のうち、脚部211、212、213と接合される領域に配置される複数の方向性電磁鋼板の積層方向は、当該脚部211、212、213を構成する複数の方向性電磁鋼板の積層方向と略同じになる。継鉄部621(継鉄構成部分621a〜621c)を構成する複数の方向性電磁鋼板の積層方向は、前述した折り曲げ位置において異なる方向に変更される。継鉄部621(継鉄構成部分621a〜621c)を構成する複数の方向性電磁鋼板の積層方向であって、相互に異なる積層方向のなす角度は略60°である。   As shown in FIG. 2 (b), FIG. 6 (a), and FIG. 6 (b), regions of the plurality of directional electromagnetic steel plates constituting the yoke portion 621 that are joined to the legs 211, 212, and 213 The lamination direction of the plurality of directional electromagnetic steel sheets disposed in the direction is substantially the same as the lamination direction of the plurality of directional electromagnetic steel sheets constituting the leg portions 211, 212, and 213. The stacking direction of the plurality of directional electromagnetic steel plates constituting the yoke portion 621 (the yoke component portions 621a to 621c) is changed to a different direction at the bending position described above. It is a lamination direction of a plurality of directionality electromagnetic steel plates which constitute relay part 621 (relay constituent parts 621a to 621c), and an angle formed by mutually different lamination directions is approximately 60 °.

ここで、方向性電磁鋼板の折り曲げは、例えば、ユニコア加工機等、公知の技術を用いて行うことができる。
前述したように継鉄部622は、継鉄部621と略同じものであり、継鉄部622の説明は、以上の継鉄部621の説明において、符号621を622に、符号631を632に置き換えたものになる。従って、継鉄部622の詳細な説明を省略する。
また、方向性電磁鋼板の折り曲げられている部分に、熱処理を施すことや、方向性電磁鋼板に磁区細分化を行うことが可能であることは第1の実施形態で説明した通りである。
Here, the bending of the grain-oriented electrical steel sheet can be performed using, for example, a known technique such as a unicore processing machine.
As described above, the yoke portion 622 is substantially the same as the yoke portion 621, and in the description of the yoke portion 621 described above, the reference numerals 621 and 621 and 631 and 632 are respectively described. It will be replaced. Therefore, the detailed description of the yoke portion 622 is omitted.
Further, as described in the first embodiment, it is possible to perform heat treatment on the bent portion of the grain-oriented electrical steel sheet or to perform magnetic domain fragmentation on the grain-oriented electrical steel sheet.

前述したように、3つの継鉄構成部分621a〜621c、622a〜622cを接合することにより(1つの)継鉄部621、622が構成される。また、脚部211〜213と継鉄部621、622とを接合することにより、積鉄心600が構成される。これらの接合方法は、例えば、第1の実施形態と同様に、ステップラップ接合または交互ラップ接合により実現することができる。以下に、これらの接合方法の一例を説明する。   As described above, the joining of the three yoke component parts 621a to 621c and 622a to 622c constitutes a (one) yoke part 621 or 622. A stacked iron core 600 is formed by joining the leg portions 211 to 213 and the yoke portions 621 and 622. These bonding methods can be realized by, for example, step lap bonding or alternate lap bonding as in the first embodiment. Below, an example of these joining methods is demonstrated.

図8は、積鉄心600を展開した様子の第1の例を示す図である。図8(a)は、積鉄心600の内周面の領域を展開して示す図である。図8(b)は、積鉄心600の上面の領域(Z軸の正の方向から負の方向に向けて見た場合の積鉄心600の領域)を展開して示す図である。図8(c)は、積鉄心600の下面の領域(Z軸の負の方向から正の方向に向けて見た場合の積鉄心600の領域)を展開して示す図である。尚、図8では、表記の都合上、方向性電磁鋼板の積層枚数を、図7と異ならせている。また、図8(a)において、破線は、最表面の方向性電磁鋼板の裏側(Y軸の正の方向側)にある方向性電磁鋼板の輪郭を示す。   FIG. 8 is a diagram showing a first example of a state in which the piled iron core 600 is developed. FIG. 8A is a developed view of the region of the inner peripheral surface of the pile core 600. As shown in FIG. FIG. 8B is a developed view of a region on the upper surface of the pile core 600 (a region of the pile core 600 when viewed from the positive direction of the Z-axis toward the negative direction). FIG. 8C is a developed view of a region on the lower surface of the pile core 600 (a region of the pile core 600 when viewed from the negative direction of the Z-axis toward the positive direction). In FIG. 8, for convenience of description, the number of laminated directional electromagnetic steel sheets is different from that in FIG. 7. Moreover, in FIG. 8 (a), a broken line shows the outline of the directionality electromagnetic steel sheet in the back side (the positive direction side of the Y-axis) of the directionality steel sheet of the outermost surface.

図8(a)〜図8(c)に示すように、継鉄部621、622の継鉄構成部分621a〜621c、622a〜622cは、長方形に対し、脚部211〜213の長手方向の端の形状に合わせて三角形状に凹んだ形状の複数の方向性電磁鋼板を、当該長方形の長辺(長手方向)に沿う方向(継鉄部621、622の長手方向)の端部の位置が階段状に繰り返しずれるように積層することにより構成される。ここで、当該方向性電磁鋼板の圧延方向は、当該長方形の長辺(長手方向)に沿う方向(継鉄部621、622の長手方向)と略平行である(図8の継鉄構成部分621a〜621c、622a〜622cの中に示す両矢印線を参照)。   As shown in FIGS. 8A to 8C, the yoke constituent portions 621a to 621c and 622a to 622c of the yoke portions 621 and 622 have longitudinal ends of leg portions 211 to 213 with respect to a rectangle. The position of the end of the direction (longitudinal direction of the yoke portions 621 and 622) along the long side (longitudinal direction) of the rectangle is a stair It is comprised by laminating | stacking so that it may shift repeatedly in shape. Here, the rolling direction of the grain-oriented electrical steel sheet is substantially parallel to the direction (longitudinal direction of the yoke portions 621 and 622) along the long side (longitudinal direction) of the rectangle (the yoke constituent portion 621a of FIG. 8). ~ 621c, see double arrow lines shown in 622a-622c).

図8(a)ではこのようにして積層された複数の方向性電磁鋼板を、それぞれ方向性電磁鋼板群801〜806として示す。継鉄構成部分621a〜621c、622a〜622cを構成する複数の方向性電磁鋼板は、継鉄構成部分621a〜621c、622a〜622cの折り曲げ位置と合う位置で、折り曲げ角度が略60°になるように折り曲げられる。図7(a)、図7(b)に示すように、継鉄構成部分621a〜621c、622a〜622cを構成する複数の方向性電磁鋼板の長手方向の長さは、積鉄心600の内周側よりも外周側(図8(a)の紙面の手前側よりも奥側)の方が長い。折り曲げ位置が相互に合うように方向性電磁鋼板を積層した際に、積層された方向性電磁鋼板の長手方向の端の位置が揃うように、継鉄構成部分621a〜621c、622a〜622cを構成する複数の方向性電磁鋼板の長手方向の長さ、折り曲げ位置、および三角形状の凹んだ部分の位置が定められる。   In FIG. 8A, a plurality of directional electromagnetic steel plates stacked in this manner are shown as directional electromagnetic steel plate groups 801 to 806, respectively. The plurality of directional electromagnetic steel plates constituting the yoke construction portions 621a to 621c and 622a to 622c have a bending angle of approximately 60 ° at a position that matches the bending position of the yoke construction portions 621a to 621c and 622a to 622c It is bent to As shown in FIGS. 7 (a) and 7 (b), the length in the longitudinal direction of the plurality of directional electromagnetic steel sheets constituting the yoke components 621a to 621c and 622a to 622c is the inner circumference of the pile core 600. The outer peripheral side (the back side than the front side of the paper surface of FIG. 8A) is longer than the side. The yoke component portions 621a to 621c and 622a to 622c are configured such that when the directional electromagnetic steel plates are stacked so that the bending positions are mutually fitted, the positions of the longitudinal ends of the stacked directional magnetic steel plates are aligned. The longitudinal length, the bending position, and the position of the triangular recessed portion are determined.

図8(a)に示すように、脚部211〜213は、六角形の複数の方向性電磁鋼板を、当該六角形の最も長い辺に沿う方向(脚部211〜213の長手方向)の位置が階段状に繰り返しずれるように積層することにより構成される。ここで、当該方向性電磁鋼板の圧延方向は、当該六角形の最も長い辺(長手方向)に沿う方向(脚部211〜213の長手方向)と略平行である(図8(a)の脚部211〜213の中に示す両矢印線を参照)。   As shown to Fig.8 (a), the legs 211-213 are a position of the direction (longitudinal direction of the legs 211-213) along the longest side of the hexagon concerned with a plurality of hexagonal directional electromagnetic steel plates. Are stacked in a stepwise manner so as to be repeatedly displaced. Here, the rolling direction of the grain-oriented electrical steel sheet is substantially parallel to the direction (longitudinal direction of the legs 211 to 213) along the longest side (longitudinal direction) of the hexagon (the leg of FIG. 8A) See the double arrow lines shown in sections 211-213).

図8(a)ではこのようにして積層された複数の方向性電磁鋼板を、それぞれ方向性電磁鋼板群807〜809として示す。脚部211〜213を構成する六角形の複数の方向性電磁鋼板の長手方向の長さは同じであり、且つ、折り曲げられていない。   In FIG. 8A, a plurality of directional electromagnetic steel plates stacked in this manner are shown as directional electromagnetic steel plate groups 807 to 809, respectively. The lengths in the longitudinal direction of the plurality of hexagonal directional electromagnetic steel plates constituting the legs 211 to 213 are the same and are not bent.

このようにして構成した方向性電磁鋼板群801〜809をステップラップ接合することにより積鉄心600が構成される。
図8に示す例では、継鉄構成部分621aを構成する方向性電磁鋼板群801の長手方向の一端と、継鉄構成部分621bを構成する方向性電磁鋼板群802の長手方向の一端とがステップラップ接合される。また、継鉄構成部分621bを構成する方向性電磁鋼板群802の長手方向の他端と、継鉄構成部分621cを構成する方向性電磁鋼板群803の長手方向の一端とがステップラップ接合される。また、継鉄構成部分621cを構成する方向性電磁鋼板群803の長手方向の他端と、継鉄構成部分621aを構成する方向性電磁鋼板群801の長手方向の他端とがステップラップ接合される。また、脚部211を構成する方向性電磁鋼板群807の長手方向の一端と、継鉄構成部分621aを構成する方向性電磁鋼板群801の長手方向の中央の下端において凹んでいる部分とがステップラップ接合される。また、脚部213を構成する方向性電磁鋼板群808の長手方向の一端と、継鉄構成部分621bを構成する方向性電磁鋼板群802の長手方向の中央の下端において凹んでいる部分とがステップラップ接合される。また、脚部212を構成する方向性電磁鋼板群809の長手方向の一端と、継鉄構成部分621cを構成する方向性電磁鋼板群803の長手方向の中央の下端において凹んでいる部分とがステップラップ接合される。継鉄構成部分222a〜222cについても継鉄構成部分221a〜221cと同様に、脚部211〜213、および、当該継鉄構成部分に隣接して配置される2つの継鉄構成部分とステップラップ接合される。
A stacked iron core 600 is configured by step-lap bonding the directional electromagnetic steel sheet groups 801 to 809 configured in this manner.
In the example shown in FIG. 8, one end in the longitudinal direction of the directional electromagnetic steel plate group 801 constituting the yoke component portion 621a and one end in the longitudinal direction of the directional electromagnetic steel plate group 802 constituting the yoke component portion 621b are steps. Wrap jointed. In addition, the other end in the longitudinal direction of the directional electromagnetic steel plate group 802 forming the yoke construction portion 621b and the one end in the longitudinal direction of the directional electromagnetic steel plate group 803 forming the yoke construction portion 621c are step-lap bonded . Further, the other end in the longitudinal direction of the directional electromagnetic steel plate group 803 constituting the yoke construction portion 621c and the other end in the longitudinal direction of the directional electromagnetic steel plate group 801 constituting the yoke construction portion 621a are step-lap joined Ru. Further, one end in the longitudinal direction of the directional electromagnetic steel plate group 807 constituting the leg portion 211 and a recessed portion in the lower end in the longitudinal center of the directional electromagnetic steel plate group 801 constituting the yoke construction portion 621a are steps. Wrap jointed. Further, one end in the longitudinal direction of the directional electromagnetic steel plate group 808 constituting the leg portion 213, and a recessed portion in the lower end in the longitudinal central portion of the directional electromagnetic steel plate group 802 constituting the yoke construction portion 621b are steps. Wrap jointed. In addition, one end in the longitudinal direction of the directional electromagnetic steel plate group 809 constituting the leg portion 212 and a recessed portion in the lower end in the longitudinal center of the directional electromagnetic steel plate group 803 constituting the yoke construction portion 621c are steps. Wrap jointed. As in the case of the yoke components 221a to 221c, the step parts of the yoke components 222a to 222c and the legs 211 to 213 and two yoke components disposed adjacent to the yoke component are connected to the step-lap joint. Be done.

図9は、積鉄心600を展開した様子の第2の例を示す図である。図9(a)は、積鉄心600の内周面の領域を展開して示す図である。図9(b)は、積鉄心600の上面の領域(Z軸の正の方向から負の方向に向けて見た場合の積鉄心600の領域)を展開して示す図である。図9(c)は、積鉄心600の下面の領域(Z軸の負の方向から正の方向に向けて見た場合の積鉄心600の領域)を展開して示す図である。尚、図9でも、図8と同様に、表記の都合上、方向性電磁鋼板の積層枚数を、図2と異ならせている。また、図9(a)において、破線は、最表面の方向性電磁鋼板の裏側(Y軸の正の方向側)にある方向性電磁鋼板の輪郭を示す。   FIG. 9 is a view showing a second example of the state in which the piled iron core 600 is developed. FIG. 9A is a developed view of the region of the inner peripheral surface of the pile core 600. As shown in FIG. FIG. 9B is a developed view of a region on the upper surface of the pile core 600 (a region of the pile core 600 when viewed from the positive direction of the Z-axis toward the negative direction). FIG. 9C is a developed view of a region on the lower surface of the pile core 600 (a region of the pile core 600 when viewed from the negative direction of the Z-axis toward the positive direction). In FIG. 9 as well as FIG. 8, the number of laminated directional electromagnetic steel sheets is different from that in FIG. 2 for convenience of description. Moreover, in FIG. 9 (a), a broken line shows the outline of the directionality electromagnetic steel plate in the back side (the positive direction side of the Y-axis) of the directionality steel plate of the outermost surface.

図9(a)〜図9(c)に示すように、継鉄部621、622の継鉄構成部分621a〜621c、622a〜622cは、長方形に対し、脚部211〜213の長手方向の端の形状に合わせて三角形状に凹んだ形状の複数の方向性電磁鋼板を、当該長方形の長辺(長手方向)に沿う方向(継鉄部621、622の長手方向)の端部が第1の位置および第2の位置の2つの位置に交互に配置されるように積層することにより構成される。ここで、当該方向性電磁鋼板の圧延方向は、当該長方形の最も長辺(長手方向)に沿う方向(継鉄部621、622の長手方向)と略平行である(図9の継鉄構成部分621a〜621c、622a〜622cの中に示す両矢印線を参照)。   As shown in FIGS. 9A to 9C, the yoke component parts 621a to 621c and 622a to 622c of the yoke parts 621 and 622 are longitudinal ends of the leg parts 211 to 213 with respect to a rectangle. The end of the direction (longitudinal direction of the yoke portions 621 and 622) along the long side (longitudinal direction) of the rectangle has a first end. It is comprised by laminating | stacking so that it may be arrange | positioned by two positions of a position and a 2nd position alternately. Here, the rolling direction of the grain-oriented electrical steel sheet is substantially parallel to the direction (longitudinal direction of the yoke portions 621 and 622) along the longest side (longitudinal direction) of the rectangle (the yoke component shown in FIG. 9) 621a to 621c, 622a to 622c, see the double arrow lines).

図9(a)ではこのようにして積層された複数の方向性電磁鋼板を、それぞれ方向性電磁鋼板群901〜906として示す。継鉄構成部分621a〜621c、622a〜622cを構成する複数の方向性電磁鋼板は、継鉄構成部分621a〜621c、622a〜622cの折り曲げ位置と合う位置で、折り曲げ角度が略60°になるように折り曲げられる。図7(a)、図7(b)に示すように、継鉄構成部分621a〜621c、622a〜622cを構成する複数の方向性電磁鋼板の長手方向の長さは、積鉄心600の内周側よりも外周側(図9(a)の紙面の手前側よりも奥側)の方が長い。折り曲げ位置が相互に合うように方向性電磁鋼板を積層した際に、積層された方向性電磁鋼板の長手方向の端の位置が揃うように、継鉄構成部分621a〜621c、622a〜622cを構成する複数の方向性電磁鋼板の長手方向の長さが定められる。   In FIG. 9A, a plurality of directional electromagnetic steel plates stacked in this manner are shown as directional electromagnetic steel plate groups 901 to 906, respectively. The plurality of directional electromagnetic steel plates constituting the yoke construction portions 621a to 621c and 622a to 622c have a bending angle of approximately 60 ° at a position that matches the bending position of the yoke construction portions 621a to 621c and 622a to 622c It is bent to As shown in FIGS. 7 (a) and 7 (b), the length in the longitudinal direction of the plurality of directional electromagnetic steel sheets constituting the yoke components 621a to 621c and 622a to 622c is the inner circumference of the pile core 600. The outer peripheral side (the back side than the front side of the paper surface of FIG. 9A) is longer than the side. The yoke component portions 621a to 621c and 622a to 622c are configured such that when the directional electromagnetic steel plates are stacked so that the bending positions are mutually fitted, the positions of the longitudinal ends of the stacked directional magnetic steel plates are aligned. The lengths in the longitudinal direction of the plurality of oriented electromagnetic steel sheets are determined.

図9(a)に示すように、脚部211〜213は、六角形の複数の方向性電磁鋼板を、当該六角形の最も長い辺(長手方向)に沿う方向(脚部211〜213の長手方向)の端部が第1の位置および第2の位置の2つの位置に交互に配置されるように積層することにより構成される。ここで、当該方向性電磁鋼板の圧延方向は、当該六角形の最も長い辺(長手方向)に沿う方向(脚部211〜213の長手方向)と略平行である(図9(a)の脚部211〜213の中に示す両矢印線を参照)。   As shown to Fig.9 (a), the legs 211-213 are the direction (the length of the legs 211-213 along the longest side (longitudinal direction) of the hexagon of a plurality of hexagonal directional electromagnetic steel sheets. It is constructed by laminating so that the end of the direction is alternately arranged at two positions of the first position and the second position. Here, the rolling direction of the grain-oriented electrical steel sheet is substantially parallel to the direction (longitudinal direction of the legs 211 to 213) along the longest side (longitudinal direction) of the hexagon (the leg of FIG. 9A) See the double arrow lines shown in sections 211-213).

図9(a)ではこのようにして積層された複数の方向性電磁鋼板を、それぞれ方向性電磁鋼板群907〜909として示す。脚部211〜213を構成する六角形の複数の方向性電磁鋼板の長手方向の長さは同じであり、且つ、折り曲げられていない。   In FIG. 9A, a plurality of directional electromagnetic steel sheets stacked in this manner are shown as directional electromagnetic steel sheet groups 907 to 909, respectively. The lengths in the longitudinal direction of the plurality of hexagonal directional electromagnetic steel plates constituting the legs 211 to 213 are the same and are not bent.

このようにして構成した方向性電磁鋼板群901〜909を交互ラップ接合することにより積鉄心600が構成される。
図9に示す例では、方向性電磁鋼板群901〜909を接合する方法は、前述した方向性電磁鋼板群801〜809を接合する方法の説明において、符号801〜809を901〜909に、ステップラップ接合を交互ラップ接合に置き換えたものになる。従って、方向性電磁鋼板群901〜909を接合する方法の詳細な説明を省略する。
尚、第1の実施形態で説明したように、ステップラップ接合および交互ラップ接合自体は、公知の技術で実現することができ、ステップラップ接合および交互ラップ接合の方法として、図8および図9に示す以外にも種々の方法を採用することができる。
A pile iron core 600 is configured by alternately lap-joining the directional electromagnetic steel plate groups 901 to 909 configured as described above.
In the example shown in FIG. 9, in the method of joining the directional electromagnetic steel plate groups 901 to 909, in the description of the method of joining the directional electromagnetic steel plate groups 801 to 809 described above, reference numerals 801 to 809 are 901 to 909, and The lap joint is replaced with an alternate lap joint. Therefore, the detailed description of the method of joining the directional electromagnetic steel plate groups 901 to 909 is omitted.
As described in the first embodiment, the step wrap junction and the alternate wrap junction itself can be realized by known techniques, and as a method of the step wrap junction and the alternate wrap junction, FIGS. Various methods can be adopted other than the indication.

方向性電磁鋼板群401〜409の固定の方法は、例えば、第1の実施形態で説明したのと同じようにして実現される。
以上のようにして積鉄心600が構成される。
The method of fixing the directional electromagnetic steel sheet groups 401 to 409 is realized, for example, in the same manner as described in the first embodiment.
A piled iron core 600 is configured as described above.

以上のように、相互に隣接する位置に配置される2つの継鉄構成部分(例えば、継鉄構成部分621a・621b)が、積鉄心600の周方向において相互に隣接する2つの脚部(例えば、脚部211・213)と、継鉄部(例えば、継鉄部621)との接合部の中間の位置になるようにしても、第1の実施形態で説明したのと同様の効果を奏する。   As described above, the two yoke parts (for example, the yoke parts 621a and 621b) disposed at positions adjacent to each other are two legs (for example, adjacent to each other in the circumferential direction of the pile core 600) The same effect as described in the first embodiment can be obtained even when the joint portion between the leg portions 211 and 213) and the yoke portion (for example, the yoke portion 621) is located at an intermediate position. .

本実施形態においても、第1の実施形態で説明したように、脚部の横断面の形状は四角形に限定されない。例えば、脚部の横断面において、方向性電磁鋼板の板面方向の長さ(幅)が、方向性電磁鋼板の積層方向の中央から端に向けて段階的に小さくなるようにしてもよい。また、3つの脚部の横断面において、3つの脚部の重心が、積鉄心の軸を重心の位置とする三角形の頂点と略同じ位置に位置するようにしていれば、当該三角形は必ずしも略正三角形でなくてもよい。   Also in the present embodiment, as described in the first embodiment, the shape of the cross section of the leg portion is not limited to the square. For example, in the cross section of the leg portion, the length (width) of the directional electromagnetic steel sheet in the plate surface direction may be gradually reduced from the center to the end in the stacking direction of the directional electromagnetic steel sheet. In addition, if the center of gravity of the three legs is located at substantially the same position as the apex of the triangle whose center of gravity is at the center of the pile core in the cross section of the three legs, the triangle is necessarily approximately the same. It does not have to be an equilateral triangle.

尚、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   The embodiments of the present invention described above are merely examples of implementation for carrying out the present invention, and the technical scope of the present invention should not be interpreted limitedly by these. It is a thing. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

200,600,600:積鉄心、211〜213,511〜513:脚部、221〜222,621〜622:継鉄部、221a〜221c,222a〜222c,621a〜621c,622a〜622c:継鉄構成部分、231a〜231c,232a〜232c,631a〜631c,632a〜632c:接合部、310,320,330,510,520,530:コイル群、301〜309,301〜409,801〜809、901〜909:方向性電磁鋼板群   200, 600, 600: piled iron core, 211 to 213, 511 to 513: legs, 221 to 222, 621 to 622: yoke portions, 221a to 221c, 222a to 222c, 621a to 621c, 622a to 622c: yoke Component parts, 231a to 231c, 232a to 232c, 631a to 631c, 632a to 632c: joints, 310, 320, 330, 510, 520, 530: coil groups, 301 to 309, 301 to 409, 801 to 809, 901 ~ 909: Directional electromagnetic steel sheet group

Claims (15)

積層された複数の軟磁性体板を有し、略同じ構成を有する3つの脚部と、積層された複数の軟磁性体板を有し、略同じ構成を有する2つの継鉄部とを有し、当該3つの脚部と当該2つの継鉄部とが磁気的に結合された状態の積鉄心であって、
前記3つの脚部は、それぞれ、前記積鉄心の高さ方向に延設され、
前記3つの脚部の横断面において、当該3つの脚部の軸の位置は、前記積鉄心の軸の位置を重心の位置とする三角形の頂点の位置と略同じ位置にあり、
前記3つの脚部を構成する前記軟磁性体板の板面が、前記三角形の重心と、当該脚部が位置する前記三角形の頂点とを相互に結ぶ仮想線が延びる方向に対して略垂直な方向を向くように、前記3つの脚部を構成する前記軟磁性体板は積層された状態であり、
前記継鉄部を構成する軟磁性体板は、少なくとも1箇所において折り曲げられた状態であり、
前記2つの継鉄部のうち、一方の前記継鉄部は、前記3つの脚部の長手方向の一方の端部の領域と接合された状態であり、他方の前記継鉄部は、前記3つの脚部の長手方向の他方の端部の領域と接合された状態であり、
前記継鉄部および前記脚部の接合される領域において、前記継鉄部および前記脚部を構成する軟磁性体板の積層方向は、略同じ方向であることを特徴とする積鉄心。
It has a plurality of stacked soft magnetic plates, has three legs having substantially the same configuration, has a plurality of stacked soft magnetic plates, and has two yoke portions having substantially the same configuration. A pile core in a state where the three legs and the two yokes are magnetically coupled,
Each of the three legs extends in the height direction of the pile core,
In the cross sections of the three legs, the positions of the axes of the three legs are substantially the same as the positions of the apexes of triangles whose positions of the axes of the pile cores are the positions of the centers of gravity;
The surface of the soft magnetic material plate constituting the three legs is substantially perpendicular to the direction in which a virtual line connecting the center of gravity of the triangle and the apex of the triangle in which the legs are located is extended. The soft magnetic material plates constituting the three legs are in a laminated state so as to face the direction,
The soft magnetic material plate constituting the yoke portion is in a bent state at at least one place,
Of the two yoke parts, one of the yoke parts is in a state of being joined to a region of one end of the three legs in the longitudinal direction, and the other of the yoke parts is the one of the three yoke parts. Joined with the area of the other longitudinal end of the two legs,
A pile core characterized in that, in a region where the yoke portion and the leg portion are joined, laminating directions of soft magnetic material plates forming the yoke portion and the leg portion are substantially the same.
前記継鉄部は、前記積鉄心の軸の周りを周回する形状を有し、
前記継鉄部の形状は、中空の3角柱であることを特徴とする請求項1に記載の積鉄心。
The yoke portion has a shape that orbits around an axis of the pile core,
The pile iron core according to claim 1, wherein a shape of the yoke portion is a hollow triangular prism.
前記継鉄部の形状は、nを6以上の3の倍数の整数とする中空のn角柱であることを特徴とする請求項1に記載の積鉄心。   The pile iron core according to claim 1, wherein the shape of the yoke portion is a hollow n-shaped prism in which n is an integer of a multiple of 3 or more of six or more. 前記n角柱は、略正n角柱であることを特徴とする請求項3に記載の積鉄心。   The pile core according to claim 3, wherein the n-prism is a substantially positive n-prism. 前記継鉄部は、略同じ構成の3つの継鉄構成部分を有し、
前記継鉄構成部分は、積層された複数の軟磁性体板を有し、
前記継鉄構成部分は、前記積鉄心の軸の周りを周回する方向において、他の前記継鉄構成部分と相互に接合された状態であることを特徴とする請求項1〜4の何れか1項に記載の積鉄心。
The yoke has three yoke components of substantially the same configuration,
The yoke component includes a plurality of stacked soft magnetic material plates,
The said yoke construction part is a state mutually joined with the other said yoke construction part in the direction which goes around the axis of the said pile core. The piled iron core described in Section.
相互に隣接する位置に配置される2つの前記継鉄構成部分の接合部の、前記積鉄心の軸に垂直な仮想平面上の座標は、前記脚部の、前記積鉄心の軸に垂直な仮想平面上の座標に含まれる状態であることを特徴とする請求項5に記載の積鉄心。   The coordinates on the imaginary plane perpendicular to the axis of the core of the joint of the two yoke parts arranged adjacent to each other are virtual that are perpendicular to the axis of the core of the leg. The pile iron core according to claim 5, being in a state included in coordinates on a plane. 相互に隣接する位置に配置される2つの前記継鉄構成部分の接合部の、前記積鉄心の軸に垂直な仮想平面上の座標は、前記脚部の、前記積鉄心の軸に垂直な仮想平面上の座標に含まれておらず、2つの前記脚部と前記継鉄部との接合部の間の領域にあることを特徴とする請求項5に記載の積鉄心。   The coordinates on the imaginary plane perpendicular to the axis of the core of the joint of the two yoke parts arranged adjacent to each other are virtual that are perpendicular to the axis of the core of the leg. A pile core according to claim 5, characterized in that it is not included in the coordinates on the plane, but is in the area between the junctions of the two legs and the yoke. 前記継鉄構成部分を構成する軟磁性体板と、前記積鉄心の軸の周りを周回する方向において、当該継鉄構成部分と隣り合う他の前記継鉄構成部分を構成する軟磁性体板とは、ステップラップ接合または交互ラップ接合により接合された状態であることを特徴とする請求項5〜7の何れか1項に記載の積鉄心。   A soft magnetic plate constituting the yoke component, and a soft magnetic plate constituting another yoke component adjacent to the yoke component in a direction around the axis of the pile core The stator core according to any one of claims 5 to 7, which is in a state of being joined by a step lap joint or an alternate lap joint. 前記3つの脚部の横断面において、当該3つの脚部の軸の位置は、前記積鉄心の軸の位置を重心の位置とする略正三角形の頂点の位置と略同じ位置にあることを特徴とする請求項1〜8の何れか1項に記載の積鉄心。   In the cross sections of the three legs, the positions of the axes of the three legs are substantially the same as the positions of the vertices of a substantially equilateral triangle whose center of gravity is the position of the axis of the pile core. The pile core according to any one of claims 1 to 8, wherein 前記脚部を構成する軟磁性体板と、前記継鉄部を構成する軟磁性体板とは、ステップラップ接合または交互ラップ接合により接合された状態であることを特徴とする請求項1〜9の何れか1項に記載の積鉄心。   The soft magnetic material plate constituting the leg portion and the soft magnetic material plate constituting the yoke portion are in a state of being joined by step lap bonding or alternate lap bonding. The pile core according to any one of the above. 前記脚部の横断面において、前記脚部を構成する軟磁性体板の板面方向の長さは、略同じであることを特徴とする請求項1〜10の何れか1項に記載の積鉄心。   The cross section of the said leg part WHEREIN: The length of the plate surface direction of the soft-magnetic material board which comprises the said leg part is substantially the same, The product in any one of Claims 1-10 characterized by the above-mentioned Iron core. 前記脚部の横断面において、前記脚部を構成する軟磁性体板の積層方向に垂直な方向における当該軟磁性体板の板面方向の長さは、前記脚部を構成する軟磁性体板の積層方向の中央から端に向けて段階的に小さくなることを特徴とする請求項1〜10の何れか1項に記載の積鉄心。   In the cross section of the leg, the length of the soft magnetic plate in the plate surface direction in the direction perpendicular to the stacking direction of the soft magnetic plates constituting the leg is the soft magnetic plate constituting the leg The pile iron core according to any one of claims 1 to 10, wherein the pile iron core becomes smaller stepwise from the center to the end in the lamination direction of the pile. 前記軟磁性体板の前記折り曲げられている領域における鉄損値の、当該軟磁性体板のその他の領域における鉄損値に対する比が1.5以下であることを特徴とする請求項1〜12の何れか1項に記載の積鉄心。   The ratio of the iron loss value in the bent region of the soft magnetic plate to the iron loss value in the other region of the soft magnetic plate is 1.5 or less. The pile core according to any one of the above. 前記軟磁性体板は、電磁鋼板であることを特徴とする請求項1〜13の何れか1項に記載の積鉄心。   The piled iron core according to any one of claims 1 to 13, wherein the soft magnetic material plate is a magnetic steel plate. 三相交流電力が印加される電気機器であって、
請求項1〜14の何れか1項に記載の積鉄心と、
前記脚部に巻き回されたコイルと、を有することを特徴とする電気機器。
An electrical device to which three-phase AC power is applied,
A pile core according to any one of claims 1 to 14,
And a coil wound around the legs.
JP2018004344A 2018-01-15 2018-01-15 Pile core and electric device Pending JP2019125651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018004344A JP2019125651A (en) 2018-01-15 2018-01-15 Pile core and electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018004344A JP2019125651A (en) 2018-01-15 2018-01-15 Pile core and electric device

Publications (1)

Publication Number Publication Date
JP2019125651A true JP2019125651A (en) 2019-07-25

Family

ID=67398995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018004344A Pending JP2019125651A (en) 2018-01-15 2018-01-15 Pile core and electric device

Country Status (1)

Country Link
JP (1) JP2019125651A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB680206A (en) * 1949-02-24 1952-10-01 Muirhead & Co Ltd Improvements in and relating to transformers
JPS4917922Y1 (en) * 1969-12-17 1974-05-10
JPS599527U (en) * 1982-07-12 1984-01-21 富士電機株式会社 Reactor core with gap
JPS6136914A (en) * 1984-07-30 1986-02-21 Tokuden Kk Three phase, side abutting type core
JP2001326127A (en) * 2000-05-17 2001-11-22 Nissin Electric Co Ltd Three-phase transformer
JP2017157806A (en) * 2016-03-04 2017-09-07 新日鐵住金株式会社 Wound core and method of manufacturing wound core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB680206A (en) * 1949-02-24 1952-10-01 Muirhead & Co Ltd Improvements in and relating to transformers
JPS4917922Y1 (en) * 1969-12-17 1974-05-10
JPS599527U (en) * 1982-07-12 1984-01-21 富士電機株式会社 Reactor core with gap
JPS6136914A (en) * 1984-07-30 1986-02-21 Tokuden Kk Three phase, side abutting type core
JP2001326127A (en) * 2000-05-17 2001-11-22 Nissin Electric Co Ltd Three-phase transformer
JP2017157806A (en) * 2016-03-04 2017-09-07 新日鐵住金株式会社 Wound core and method of manufacturing wound core

Similar Documents

Publication Publication Date Title
JP6185616B2 (en) Transformer core
ES2598156T3 (en) Hybrid Transformer Cores
US20170352466A1 (en) Laminated Iron Core Structure and Transformer Including the Same
WO2020071512A1 (en) Wound core and transformer
JP5722941B2 (en) Iron core for static induction equipment
JP2010161289A (en) Transformer
KR200488717Y1 (en) Transformer core
WO2020121691A1 (en) Iron core for stationary induction apparatus, and stationary induction apparatus
CN112259339A (en) Transformer, transformer iron core and manufacturing method and device of transformer iron core
JP2019125651A (en) Pile core and electric device
JP2019125650A (en) Pile core and electric device
JP5898248B2 (en) Manufacturing method of iron core for stationary induction device
US20210327644A1 (en) Transformer and reactor cores with new designs and methods for manufacturing
TW201814743A (en) Magnetic core strip and magnetic core
JP7003466B2 (en) Stacked iron core for three-phase transformer
JP2017054896A (en) Iron core for transformer and transformer using the same
JP2013012584A (en) Noise cutting transformer and method of manufacturing the same
JP7092643B2 (en) Laminated iron core for static induction equipment
JP7427351B2 (en) stacked iron core
JP2003217939A (en) Iron core for electric apparatus
JP7337589B2 (en) Stacked iron asystole induction device and manufacturing method thereof
JP4381351B2 (en) Three-phase winding core
JP6926787B2 (en) Iron core structure, transformer, and iron loss suppression method
JP7413299B2 (en) Stationary induction appliance and method for manufacturing stationary induction appliance
JP7430115B2 (en) Stacked iron core stationary induction device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308