[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019119790A - Fiber reinforced composite and manufacturing method therefor - Google Patents

Fiber reinforced composite and manufacturing method therefor Download PDF

Info

Publication number
JP2019119790A
JP2019119790A JP2017254849A JP2017254849A JP2019119790A JP 2019119790 A JP2019119790 A JP 2019119790A JP 2017254849 A JP2017254849 A JP 2017254849A JP 2017254849 A JP2017254849 A JP 2017254849A JP 2019119790 A JP2019119790 A JP 2019119790A
Authority
JP
Japan
Prior art keywords
fiber
reinforced composite
cement
fiber mat
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017254849A
Other languages
Japanese (ja)
Inventor
村 広 一 片
Koichi Katamura
村 広 一 片
野 淳 司 浦
Atsushi Urano
野 淳 司 浦
照 男 濱
Teruo Hama
照 男 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Priority to JP2017254849A priority Critical patent/JP2019119790A/en
Priority to PCT/EP2018/084873 priority patent/WO2019129504A1/en
Priority to CN201880083504.0A priority patent/CN111491783A/en
Priority to EP18825952.7A priority patent/EP3732030A1/en
Publication of JP2019119790A publication Critical patent/JP2019119790A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/16Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1816Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Laminated Bodies (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

To provide a composite of a cement-based inorganic material and expandable polyurethane, having right weight and high flexure strength needed in JIS A 5908.SOLUTION: There is provided a fiber reinforced composite having a fiber mat and a polyurethane-based foam layer, in which the polyurethane-based foam layer is a foam body of a mixture containing a cement-based inorganic filler consisting of cement, cement and sand or cement, sand and gravel, polyisocyanate, polyol, a foam stabilizer, a catalyst and water, the fiber mat is arranged on at least one single surface area of the fiber reinforced composite, density of the fiber reinforced composite is 800 kg/mor less and flexure strength measured according to JIS A 5908 is 18 MPa or more.SELECTED DRAWING: Figure 4

Description

本発明は、繊維補強複合体及びその製造方法に関する。より詳細には、優れた軽量性と曲げ強度を有する、繊維マットとポリウレタン系発泡体層とを備えた繊維補強複合体およびその製造方法に関する。   The present invention relates to a fiber reinforced composite and a method of manufacturing the same. More particularly, the present invention relates to a fiber-reinforced composite comprising a fiber mat and a polyurethane foam layer, which has excellent lightness and flexural strength, and a method of producing the same.

セメント、モルタル及びコンクリート(以下、「セメント系無機材料」ともいう)は、建築や土木分野における基礎的構造材料であり、比較的安価で汎用性のある素材である。軽量化と強度発現の観点から、セメント系無機材料と発泡性ポリウレタンとの複合材を創出することが従前検討されてきた。   Cement, mortar and concrete (hereinafter, also referred to as “cement-based inorganic material”) are basic structural materials in the field of architecture and civil engineering, and are relatively inexpensive and versatile materials. From the viewpoint of weight reduction and strength development, it has been studied to create a composite of cement-based inorganic material and foamable polyurethane.

特許文献1では、セメント100重量部、ポリイソシアネート6重量部、ポリオール0.6重量部、砂120重量部、砂利180重量部、水60重量部からなる原料組成物を成型機に入れて凝結させ、72時間後に脱型し、更に28日間養生して、圧縮強度160〜300kg/cm2(16〜30MPa)の複合コンクリート材料を得たことが開示されている。   In Patent Document 1, a raw material composition comprising 100 parts by weight of cement, 6 parts by weight of polyisocyanate, 0.6 parts by weight of polyol, 120 parts by weight of sand, 180 parts by weight of gravel, 60 parts by weight of water is put into a molding machine and condensed. It is disclosed that after 72 hours, it was removed from the mold and further cured for 28 days to obtain a composite concrete material having a compressive strength of 160 to 300 kg / cm 2 (16 to 30 MPa).

特許文献2では、ポルトランドセメント250重量部、水290重量部、及びウレタン原料組成物(ジフェニルメタンジイソシアネートとポリプロピレングリコールとの等モル混合物)100重量部とを混合して型枠内に充填し、その後、混合物を養生させて完全に硬化させて10kgf/cm2(1MPa)以上の圧縮強度を有するセメント系ポリウレタン複合材を得たことが開示されている(同文献、実施例3)。   In Patent Document 2, 250 parts by weight of Portland cement, 290 parts by weight of water, and 100 parts by weight of a urethane raw material composition (equimolar mixture of diphenylmethane diisocyanate and polypropylene glycol) are mixed and filled in a mold, and then It is disclosed that the mixture was cured and completely cured to obtain a cement-based polyurethane composite having a compressive strength of 10 kgf / cm 2 (1 MPa) or more (the same document, Example 3).

特許文献3及び4では、ウレタン系硬化剤主剤(ポリイソシアナート基プレポリマー)300g、ウレタン系硬化剤助剤(ポリオール及び触媒)15g、高炉セメントB種(シリカ系の高炉スラグ30〜60%以下に、ポルトランドセメント及び石膏を加えて混合粉砕した混合セメント)600g及び水240〜360gを含む配合物を混合してスラリーとし、次いでこれを硬化させて発泡性固体を形成したことが開示されている。硬化開始時間は1〜3分であり、硬化時の発熱により76〜78℃に達し、1日養生後の発泡性固体の圧縮強度は69.4〜29.0kgf/cm(6.9〜2.9MPa)と高強度を実現している(文献3及び4の実施例1、No.11〜13)。 In Patent Documents 3 and 4, 300 g of a urethane-based curing agent main agent (polyisocyanate-based prepolymer), 15 g of a urethane-based curing agent auxiliary (polyol and catalyst), and a blast furnace cement B type (silica blast furnace slag 30 to 60% or less It is disclosed that a composition containing 600 g of Portland cement and gypsum and mixed and pulverized and mixed and mixed with 600 g of water and 240 to 360 g of water is mixed to form a slurry, which is then hardened to form a foamable solid. . The curing start time is 1 to 3 minutes, and heat generation during curing reaches 76 to 78 ° C., and the compressive strength of the foamable solid after one-day aging is 69.4 to 29.0 kgf / cm 2 (6.9 to A high strength of 2.9 MPa) is realized (Example 1, Nos. 11 to 13 of documents 3 and 4).

特許文献5では、特定のポリエーテルポリオールを選択することにより、短時間での脱型性、低比重、高圧縮硬度を兼ね備えたセメント系ポリウレタン発泡複合体が得られたことが開示されている。そして、1週間養生後のセメント系ポリウレタン発泡複合体の圧縮強度は、密度409〜618kg/m3で、1.2〜1.7MPaを示している。   Patent Document 5 discloses that, by selecting a specific polyether polyol, a cement-based polyurethane foam composite having both short mold removability, low specific gravity and high compression hardness is obtained. And the compressive strength of the cement-type polyurethane foam composite after curing for one week has shown 1.2-1.7 Mpa by density 409-618 kg / m <3>.

一方、Letizia Verdolottiら(非特許文献1)は、セメントパウダーとポリオール、触媒、シリコーン界面活性剤、架橋剤と発泡剤としての水を常温で混合し、2分撹拌後にイソシアネート(ジフェニルメタンジイソシアネート(MDI))を加えてウレタンとセメントの比率は2/3の一定として、ポリウレタン・セメント発泡体組成物(ポリマーセメント)を得たことを報告している。特に、その組成物を40秒撹拌して、50×50×5cm3の木型に充填して常温で20分間固化し、得られた成型品を水中で60℃で72時間水和したポリマーセメント(「HIRP−C」)を得、水和していないポリマーセメント(「P−C」)と圧縮強度を比較した結果が開示されている。この試験結果によれば、HIRP−C及びP−Cの圧縮強度はそれぞれ、4.31MPa及び3.4Mpaと高強度を示している。   On the other hand, Letizia Verdolotti et al (Non-patent document 1) mix cement powder with a polyol, a catalyst, a silicone surfactant, a crosslinking agent and water as a foaming agent at room temperature, and after stirring for 2 minutes, an isocyanate (diphenylmethane diisocyanate (MDI) It is reported that a polyurethane-cement foam composition (polymer cement) is obtained, with the ratio of urethane to cement being constant at 2/3 by adding. In particular, the composition is stirred for 40 seconds, filled in a 50 × 50 × 5 cm 3 tree mold and solidified at normal temperature for 20 minutes, and the obtained molded product is hydrated in water at 60 ° C. for 72 hours for polymer cement ( Disclosed are the results of obtaining "HIRP-C") and comparing the compressive strength with unhydrated polymer cement ("PC"). According to the test results, the compressive strengths of HIRP-C and PC show high strengths of 4.31 MPa and 3.4 Mpa, respectively.

しかしながら、JIS A 5908:2015によれば、構造用パーティクルボードには18MPa以上の曲げ強度(密度0.4〜0.9g/cm))が必要とされる。これまでのセメント系無機材料と発泡性ポリウレタンとの複合材においてこのような強度を達成したことは何ら報告されていない。一方で、構造材料は作業性を勘案すれば低密度性(軽量性)も求められる。さらに、材料製造の迅速性を考慮すれば、複合材は短い脱型時間で得ることも必要とされるといえる。 However, according to JIS A 5908: 2015, a structural particle board is required to have a bending strength (density of 0.4 to 0.9 g / cm 3 ) of 18 MPa or more. It has not been reported at all that such strengths have been achieved in composites of conventional cement-based inorganic materials and foamable polyurethanes. On the other hand, structural materials are also required to have low density (light weight) in consideration of workability. Furthermore, in view of the rapidity of the material production, it can be said that the composite material is also required to be obtained in a short demolding time.

特公昭50−6213号公報Japanese Patent Publication No. 50-6213 特開2002−38619号公報JP 2002-38619 A 特開平06−80483号公報Japanese Patent Application Laid-Open No. 06-80483 特開平06−80966号公報Japanese Patent Application Laid-Open No. 06-80966 特開2016−56077号公報JP, 2016-56077, A

Letizia Verdolotti et al.“J.Mater.Sci.(2012)47:6948-6957”Letizia Verdolotti et al. "J. Mater. Sci. (2012) 47: 6948-6957"

本発明は、上記先行技術の抱える諸問題を解決することを目的とする。即ち、本発明は、セメント系無機材料と発泡性ポリウレタンとの複合材において、低密度性(軽量性)とJIS A 5908:2015で必要とされる高い曲げ強度(以下、「曲げ強さ」ともいう)とを同時に達成することを一つの目的とする。さらに本発明は、かかる複合材を短い脱型時間で取得することを別の目的とする。   The present invention aims to solve the problems of the prior art. That is, according to the present invention, in the composite material of cement-based inorganic material and foamable polyurethane, low density (light weight) and high flexural strength required by JIS A 5908: 2015 (hereinafter referred to as "flexural strength") One goal is to simultaneously achieve Furthermore, another object of the present invention is to obtain such a composite in a short demolding time.

本発明は、以下を包含する。
(1)繊維マットと、ポリウレタン系発泡体層とを備えた繊維補強複合体であって、
上記ポリウレタン系発泡体層が、セメント、セメントと砂、又はセメントと砂と砂利のいずれかからなるセメント系無機充填剤、ポリイソシアネート、ポリオール、整泡剤、触媒及び水を含んでなる混合物の発泡体であり、
上記繊維マットが、繊維補強複合体の少なくとも一つの片面領域に配置されており、
上記繊維補強複合体の密度800kg/m以下でありかつJIS A 5908により測定される曲げ強度が18MPa以上である、繊維補強複合体。
(2)上記繊維マットが、ガラス繊維マット、炭素繊維マット、アラミド繊維マット、不飽和ポリエステル繊維マット、ビニルエステル繊維マット、エポキシ繊維マット、アミド繊維マット、植物繊維マットの少なくとも一種から選択される、(1)に記載の繊維補強複合体。
(3)上記繊維マットが、チョップドストランドマット又はロービングクロスである、(1)又は(2)に記載の繊維補強複合体。
(4)上記繊維マットがJIS R 3411で規定されるガラスチョップドストランドマットである、(1)〜(3)のいずれかに記載の繊維補強複合体。
(5)上記繊維マットの単位重量が200g/m以上である、(1)〜(4)のいずれかに記載の繊維補強複合体。
(6)セメント系無機充填剤と、ポリイソシアネート及びポリオールの合計との重量比率が、50:50〜90:10である、(1)〜(5)のいずれかに記載の繊維補強複合体。
(7)上記ポリウレタン系発泡体層と、繊維マットとの重量比率が100:0.5〜100:10である、(1)〜(6)のいずれかに記載の繊維補強複合体。
(8)上記片面領域が、上記繊維補強複合体の片面表面から内側5mm以内の領域である、(1)〜(7)のいずれかに記載の繊維補強複合体。
(9)上記セメント系無機充填剤がセメントと砂、又はセメントと砂と砂利である、(1)〜(8)のいずれかに記載の繊維補強複合体。
(10)上記セメントと、砂と砂利の合計との重量比率が、1:1〜1:3である、(1)〜(9)のいずれかに記載の繊維補強複合体。
(11)上記ポリイソシアネートと、ポリオールとの重量比率が70:30〜90:10である、(1)〜(10)のいずれかに記載の繊維補強複合体。
(12)上記混合物が、以下の(A)〜(C)のうち少なくとも一つの特徴を有する、(1)〜(11)のいずれかに記載の繊維補強複合体。
(A)液温25℃における上記混合物のクリームタイムが10〜30秒である
(B)液温25℃における上記混合物のゲルタイムが40〜70秒である
(C)液温25℃における上記混合物のタックタイムが70〜110秒である。
(13)(1)〜(12)のいずれかに記載の繊維補強複合体の製造方法であって、
上記混合物を型に注入し、脱型する工程を少なくとも含んでなる、製造方法。
(14)上記混合物を型に注入してから脱型するまでの5分以内である、(13)に記載の製造方法。
(15)上記混合物が発泡して得られるポリウレタン系発泡体層と前記繊維マットとが接着するように、前記型内に前記繊維マットが予め配置されている、(13)又は(14)に記載の製造方法。
The present invention includes the following.
(1) A fiber-reinforced composite comprising a fiber mat and a polyurethane foam layer,
Foaming of a mixture comprising the above-mentioned polyurethane-based foam layer, cement-based inorganic filler consisting of cement, sand with sand or cement and sand with gravel, polyisocyanate, polyol, foam stabilizer, catalyst and water Is the body,
The fiber mat is disposed in at least one side area of the fiber reinforced composite,
A fiber-reinforced composite, wherein the density of the fiber-reinforced composite is 800 kg / m 3 or less and the flexural strength measured by JIS A 5908 is 18 MPa or more.
(2) The fiber mat is selected from at least one of glass fiber mat, carbon fiber mat, aramid fiber mat, unsaturated polyester fiber mat, vinyl ester fiber mat, epoxy fiber mat, amide fiber mat, vegetable fiber mat, The fiber reinforced composite as described in (1).
(3) The fiber reinforced composite according to (1) or (2), wherein the fiber mat is a chopped strand mat or a roving cross.
(4) The fiber reinforced composite according to any one of (1) to (3), wherein the fiber mat is a glass chopped strand mat defined by JIS R 3411.
(5) The fiber reinforced composite according to any one of (1) to (4), wherein a unit weight of the fiber mat is 200 g / m 2 or more.
(6) The fiber reinforced composite according to any one of (1) to (5), wherein the weight ratio of the cement-based inorganic filler to the total of polyisocyanate and polyol is 50:50 to 90:10.
(7) The fiber reinforced composite according to any one of (1) to (6), wherein the weight ratio of the polyurethane foam layer to the fiber mat is 100: 0.5 to 100: 10.
(8) The fiber-reinforced composite according to any one of (1) to (7), wherein the single-sided region is a region within 5 mm inward from the single-sided surface of the fiber-reinforced composite.
(9) The fiber reinforced composite according to any one of (1) to (8), wherein the cement-based inorganic filler is cement and sand, or cement and sand and gravel.
(10) The fiber reinforced composite according to any one of (1) to (9), wherein the weight ratio of the cement to the total of sand and gravel is 1: 1 to 1: 3.
(11) The fiber reinforced composite according to any one of (1) to (10), wherein the weight ratio of the polyisocyanate to the polyol is 70:30 to 90:10.
(12) The fiber reinforced composite according to any one of (1) to (11), wherein the mixture has at least one of the following (A) to (C):
(A) The cream time of the above mixture at a liquid temperature of 25 ° C is 10 to 30 seconds (B) The gel time of the above mixture at a liquid temperature of 25 ° C is 40 to 70 seconds (C) The above mixture of the above mixture at a liquid temperature of 25 ° C The tack time is 70 to 110 seconds.
(13) A method for producing a fiber-reinforced composite according to any one of (1) to (12),
The manufacturing method which comprises at least the steps of pouring the above mixture into a mold and demolding.
(14) The production method according to (13), which is within 5 minutes from injecting the mixture into a mold to releasing the mold.
(15) The method according to (13) or (14), wherein the fiber mat is arranged in advance in the mold such that the polyurethane foam layer obtained by foaming the mixture adheres to the fiber mat. Manufacturing method.

本発明によれば、低密度(軽量性)とJIS A 5908で必要とされる高い曲げ強度とを備えた繊維補強複合体を提供することができる。また、本発明によれば、かかる繊維補強複合体を顕著に短い脱型時間で製造することができる。かかる繊維補強複合体は、短時間で製造可能で有り、軽量化と強度向上を備える一方で、ポリウレタンをはじめとする高価な材料の使用量を低割合としうることから、建築、土木分野における基礎的構造材料として有利に利用することができる。   According to the present invention, it is possible to provide a fiber reinforced composite having low density (light weight) and high flexural strength required by JIS A5908. Also, according to the present invention, such a fiber reinforced composite can be manufactured in a remarkably short demolding time. Such a fiber-reinforced composite can be manufactured in a short time, and can reduce the amount of use of an expensive material such as polyurethane while providing weight reduction and strength improvement, and thus it is a foundation in the construction and civil engineering fields. Can be used advantageously as structural structural materials.

本発明の繊維補強複合体の一実施態様を示す模式図である。枠線は、繊維補強複合体を示し、点線は繊維マットを示す。It is a schematic diagram which shows one embodiment of the fiber reinforced composite body of this invention. The frame line indicates a fiber reinforced composite and the dotted line indicates a fiber mat. 本発明の繊維補強複合体の別の実施態様を示す模式図である。FIG. 5 is a schematic view showing another embodiment of the fiber-reinforced composite of the present invention. 繊維マットをポリウレタン系発泡体層の中程に配置した比較例の模式図である。It is a schematic diagram of the comparative example which arrange | positioned the fiber mat in the middle of the polyurethane-type foam layer. 本発明の繊維補強複合体の一実施態様の断面写真である。It is a cross-sectional photograph of one embodiment of the fiber reinforced composite of the present invention.

本発明の繊維補強複合体は、繊維マットと、ポリウレタン系発泡体層とを備え、ポリウレタン系発泡体層が、セメント、セメントと砂、又はセメントと砂と砂利のいずれかからなるセメント系無機充填剤、ポリイソシアネート、ポリオール、整泡剤、触媒及び水を含んでなる混合物の発泡体であり、繊維マットが、ポリウレタン系発泡体層の少なくとも一つの片面領域に配置されており、繊維補強複合体の密度800kg/m以下でありかつJIS A 5908:2015に準拠して測定される曲げ強度が18MPa以上であることを特徴としている。
以下、本発明の各構成成分について説明する。
The fiber-reinforced composite of the present invention comprises a fiber mat and a polyurethane foam layer, and the polyurethane foam layer is a cement-based inorganic filler comprising any of cement, cement and sand, or cement and sand and gravel. Fiber reinforced composite, wherein the fiber mat is disposed on at least one side region of a polyurethane foam layer, wherein the fiber mat is disposed on at least one side of the polyurethane foam layer. It has a density of 800 kg / m 3 or less and a flexural strength of 18 MPa or more measured in accordance with JIS A 5908: 2015.
Hereinafter, each component of the present invention will be described.

繊維マット
本発明で用いる「繊維マット」は、補強繊維と、熱可塑性樹脂などの結合剤とを構成成分とするマット状の成形体であり、本発明の効果を妨げない限り種々の材料が使用できる。
Fiber Mat The "fiber mat" used in the present invention is a mat-like molded article having reinforcing fibers and a binder such as a thermoplastic resin as its components, and various materials may be used unless the effects of the present invention are impaired. it can.

繊維マットの単位密度(目付)及び厚さ等は、本発明の効果を妨げない限り特に限定されず、補強繊維の種類及び配合割合により種々のものとすることができる。繊維マットの単位密度としては、補強強を十分に確保する観点から、好ましくは200g/m以上であり、より好ましくは200〜1000g/mであり、さらに好ましくは200〜600g/mであり、さらに好ましくは200〜500g/mである。 The unit density (area weight), thickness and the like of the fiber mat are not particularly limited as long as the effects of the present invention are not impaired, and may be various depending on the type and blending ratio of the reinforcing fibers. The unit density of the fiber mat, from the viewpoint of sufficiently securing the reinforcement strength, preferably 200 g / m 2 or more, more preferably 200 to 1000 g / m 2, more preferably at 200 to 600 g / m 2 And more preferably 200 to 500 g / m 2 .

また、繊維マットの厚さは、本発明の効果を妨げない限り特に限定されないが、好ましくは5mm以下であり、より好ましくは0.5〜5mmであり、さらに好ましくは1〜5mmさらに好ましくは1〜2mmである。   The thickness of the fiber mat is not particularly limited as long as the effects of the present invention are not impaired, but is preferably 5 mm or less, more preferably 0.5 to 5 mm, still more preferably 1 to 5 mm more preferably 1 ~ 2 mm.

繊維マットは、本発明の効果が発揮出来るのであれば1枚で使用しても複数枚を重ね合わせて使用してもよい。繊維マットを重ねて使用する場合、複数枚の繊維マットの厚さの合計および重量の合計の好適な範囲はそれぞれ、1枚の繊維マットを使用する場合の好適な範囲と同様とされる。   As long as the effects of the present invention can be exhibited, the fiber mat may be used as a single sheet or a plurality of sheets may be overlapped. When the fiber mats are used in layers, the preferable ranges of the total thickness and the total weight of the plurality of fiber mats are respectively the same as the preferable ranges when using a single fiber mat.

上記「補強繊維」は、得られる繊維複合体において補強材として機能する繊維材料である。この補強繊維同士が熱可塑性樹脂等の結合剤により結着された構造を有することで、繊維複合体全体の強度を確保できる。この補強繊維の材質は特に限定されず、合成樹脂、植物性繊維及び無機繊維が含まれるが、好ましくは無機繊維である。   The “reinforcing fiber” is a fiber material that functions as a reinforcing material in the obtained fiber composite. The strength of the entire fiber composite can be secured by having a structure in which the reinforcing fibers are bound by a binder such as a thermoplastic resin. The material of the reinforcing fiber is not particularly limited, and includes synthetic resin, vegetable fiber and inorganic fiber, preferably inorganic fiber.

上記「合成樹脂」は、特に種類を特定することなく種々の材料が使用できる。例えばアラミド繊維、不飽和ポリエステル繊維、ビニルエステル繊維、エポキシ繊維、アミド繊維等である。
上記「植物性繊維」は、植物に由来する繊維である。植物から取りだした繊維及び植物から取りだした繊維を各種処理に供した繊維等が含まれる。
この植物性繊維としては、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、各種針葉樹(スギ及びヒノキ等)、広葉樹及び綿花等の各種植物体から得られた植物性繊維が挙げられる。この植物性繊維は1種のみを用いてもよく2種以上を併用してもよい。これらのなかではケナフ(即ち、植物性繊維としてはケナフ繊維)が好ましい。ケナフは成長が極めて早い一年草であり、優れた二酸化炭素吸収性を有するため、大気中の二酸化炭素量の削減、森林資源の有効利用等に貢献できるからである。
Various materials can be used for the above-mentioned "synthetic resin" without specifying the type in particular. For example, aramid fibers, unsaturated polyester fibers, vinyl ester fibers, epoxy fibers, amide fibers and the like.
The "plant fiber" is a fiber derived from a plant. It includes fibers obtained from plants and fibers obtained by treating fibers obtained from plants.
As this vegetable fiber, kenaf, jute hemp, manila hemp, sisal hemp, cocoon, mulberry, persimmon, banana, pineapple, coconut, coconut, corn, sugar cane, bagasse, palm, papyrus, persimmon, esparto, savigrass, wheat, rice, bamboo And vegetable fibers obtained from various plants such as various conifers (eg, cedar and cypress), broadleaf trees and cotton flowers. This vegetable fiber may use only 1 type and may use 2 or more types together. Among these, kenaf (ie, kenaf fiber as vegetable fiber) is preferred. Kenaf is an extremely fast-growing annual grass and has excellent carbon dioxide absorbability, so it can contribute to the reduction of the amount of carbon dioxide in the atmosphere and the effective use of forest resources.

また、上記植物性繊維として用いる植物体の部位は、特に限定されず、木質部、非木質部、葉部、茎部及び根部等の植物体を構成するいずれの部位であってもよい。更に、特定部位のみを用いてもよく2ヶ所以上の異なる部位を併用してもよい。   Moreover, the site | part of the plant body used as said vegetable fiber is not specifically limited, It may be any site | part which comprises plant bodies, such as a wood part, a non-wood part, a leaf part, a stem part, and a root part. Furthermore, only a specific site may be used, or two or more different sites may be used in combination.

上記ケナフは、木質茎を有し、アオイ科に分類される植物である。このケナフには、学名におけるhibiscus cannabinus及びhibiscus sabdariffa等が含まれ、通称名における紅麻、キューバケナフ、洋麻、タイケナフ、メスタ、ビムリ、アンバリ麻及びボンベイ麻等が含まれる。また、上記ジュートは、ジュート麻から得られる繊維である。このジュート麻には、黄麻(コウマ、Corchorus capsularis L.)、及び、綱麻(ツナソ)、シマツナソ並びにモロヘイヤ、を含む麻及びシナノキ科の植物を含むものとする。
上記植物性繊維は単用してもよく併用してもよい。
The above-mentioned kenaf is a plant having woody stems and classified into mallow. The kenaf includes hibiscus cannabinus and hibiscus sabdariffa in scientific names, etc., and includes commonly known names such as red hemp, cuban kenaf, hemp, taikenafu, mesta, bimuri, ambari hemp and bombay hemp. The jute is a fiber obtained from jute hemp. The jute hemp includes hemp and linnaceous plants including jute (Couma, Corchorus capsularis L.), and Tunishes (Tunaso), Shimatsunaso and Morohiya.
The vegetable fibers may be used singly or in combination.

上記「無機繊維」としては、ガラス繊維(グラスウール等も含む)及び炭素繊維等が挙げられるが、好ましくはガラス繊維である。これらの無機繊維は単用してもよく併用してもよい。   Examples of the above-mentioned "inorganic fibers" include glass fibers (including glass wool and the like) and carbon fibers and the like, with preference given to glass fibers. These inorganic fibers may be used singly or in combination.

更に、合成繊維、植物性繊維及び無機繊維は、いずれか一方のみを単用してもよく、合成繊維、植物性繊維と無機繊維とを併用してもよい。   Furthermore, any one of synthetic fibers, vegetable fibers and inorganic fibers may be used alone, or synthetic fibers, vegetable fibers and inorganic fibers may be used in combination.

補強繊維の形状及び大きさは特に限定されないが、その繊維長は1〜150mmであることが好ましい。これにより得られる繊維複合体に高い強度(曲げ強さ等)を付与できる。この繊維長は1〜100mmがより好ましく、1〜20mmがより好ましく、1〜10mmが特に好ましい。   The shape and size of the reinforcing fiber are not particularly limited, but the fiber length is preferably 1 to 150 mm. High strength (bending strength etc.) can be imparted to the fiber composite obtained thereby. The fiber length is more preferably 1 to 100 mm, more preferably 1 to 20 mm, and particularly preferably 1 to 10 mm.

また、その繊維径は特に限定されないが、1mm以下が好ましく、0.01〜1mmがより好ましく、0.02〜0.7mmがさらに好ましく、0.03〜0.5mmが特に好ましい。この繊維径が上記範囲にあると、特に高い強度を有する繊維複合体を得ることができる。また、その繊維の含有量は特に限定されないが、補強繊維の全体に対して0.5〜10質量%(特に0.5〜3質量%)であることが好ましい。   The fiber diameter is not particularly limited, but is preferably 1 mm or less, more preferably 0.01 to 1 mm, still more preferably 0.02 to 0.7 mm, and particularly preferably 0.03 to 0.5 mm. When the fiber diameter is in the above range, a fiber composite having particularly high strength can be obtained. The content of the fiber is not particularly limited, but is preferably 0.5 to 10% by mass (particularly 0.5 to 3% by mass) based on the whole of the reinforcing fiber.

尚、上記繊維長は平均繊維長を意味し(以下同様)、JIS L1015に準拠して、直接法にて無作為に単繊維を1本ずつ取り出し、置尺上で繊維長を測定し、合計200本について測定した平均値である。さらに、上記繊維径は平均繊維径を意味し(以下同様)、無作為に単繊維を1本ずつ取り出し、繊維の長さ方向の中央における繊維径を、光学顕微鏡を用いて実測し、合計200本について測定した平均値である。   In addition, the said fiber length means an average fiber length (it is the same as that of the following), According to JISL1015, a single fiber is taken out at a time at random at a direct method at a direct method, A fiber length is measured on a scale, and a total It is the average value measured about 200 pieces. Further, the above fiber diameter means an average fiber diameter (the same applies hereinafter), randomly take out one single fiber at a time, and measure the fiber diameter at the center in the longitudinal direction of the fiber using an optical microscope. It is an average value measured for the book.

補強繊維同士を結合させるため、結合剤として熱可塑性樹脂繊維が好適に使用される。「熱可塑性樹脂繊維」は、上記繊維マットに熱可塑性樹脂繊維として含有され、成形工程等において溶融されて、補強繊維同士を結着させることができる成分である。
熱可塑性樹脂繊維を構成する熱可塑性樹脂としては、ポリオレフィン、ポリエステル樹脂、ポリスチレン、アクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂及びABS樹脂等が挙げられる。このうち、ポリオレフィンとしては、ポリプロピレン、ポリエチレン、エチレン・プロピレンランダム共重合体等が挙げられる。ポリエステル樹脂としては、ポリ乳酸、ポリカプロラクトン及びポリブチレンサクシネート等の脂肪族ポリエステル樹脂、並びに、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート及びポリブチレンテレフタレート等の芳香族ポリエステル樹脂等が挙げられる。アクリル樹脂はメタクリレート及び/又はアクリレート等を用いて得られた樹脂である。これらの熱可塑性樹脂は、補強繊維(特に補強繊維の表面)に対する親和性を高めるために変性された樹脂であってもよい。また、上記熱可塑性樹脂は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In order to bond the reinforcing fibers together, thermoplastic resin fibers are suitably used as a binder. The “thermoplastic resin fiber” is a component which is contained as a thermoplastic resin fiber in the above-mentioned fiber mat and is melted in a molding step or the like to bond reinforcing fibers together.
Examples of the thermoplastic resin constituting the thermoplastic resin fiber include polyolefin, polyester resin, polystyrene, acrylic resin, polyamide resin, polycarbonate resin, polyacetal resin, and ABS resin. Among these, as polyolefin, polypropylene, polyethylene, an ethylene propylene random copolymer, etc. are mentioned. Examples of polyester resins include aliphatic polyester resins such as polylactic acid, polycaprolactone and polybutylene succinate, and aromatic polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate and polybutylene terephthalate. The acrylic resin is a resin obtained by using methacrylate and / or acrylate and the like. These thermoplastic resins may be resins which have been modified to enhance the affinity to the reinforcing fibers (in particular, the surface of the reinforcing fibers). Moreover, the said thermoplastic resin may be used individually by 1 type, and may be used combining 2 or more types.

上記変性された樹脂としては、例えば、補強繊維(補強繊維を構成する材料)に対する親和性を高めたポリオレフィンが挙げられる。より具体的には、補強繊維が植物性繊維である場合には、カルボキシル基又はその誘導体(無水物基等)を有する化合物により酸変性されたポリオレフィンを用いることが好ましい。更には、未変性のポリオレフィンと無水マレイン酸変性ポリオレフィンとを併用することがより好ましく、未変性のポリプロピレンと無水マレイン酸変性ポリプロピレンとを併用することが特に好ましい。   As said modified resin, the polyolefin which improved the affinity with respect to a reinforcement fiber (material which comprises a reinforcement fiber) is mentioned, for example. More specifically, when the reinforcing fiber is a vegetable fiber, it is preferable to use a polyolefin acid-modified with a compound having a carboxyl group or a derivative thereof (such as an anhydride group). Furthermore, it is more preferable to use an unmodified polyolefin and a maleic anhydride modified polyolefin in combination, and it is particularly preferable to use an unmodified polypropylene and a maleic anhydride modified polypropylene in combination.

また、この無水マレイン酸変性ポリプロピレンとしては、低分子量タイプが好ましい。具体的には、例えば、重量平均分子量(GPC法による)が25000〜45000であることが好ましい。また、酸価(JIS K0070による)は20〜60であることが好ましい。本発明では、特に重量平均分子量25000〜45000且つ酸価20〜60である無水マレイン酸変性ポリプロピレンを用いることが好ましく、この無水マレイン酸変性ポリプロピレンを未変性のポリプロピレンと併用することがとりわけ好ましい。この併用においては変性ポリプロピレンと未変性ポリプロピレンとの合計を100質量%とした場合に、変性ポリプロピレンは1〜10質量%であることが好ましく、2〜6質量%がより好ましい。この範囲ではとりわけ高い機械的特性を得ることができる。   Moreover, as this maleic anhydride modified polypropylene, a low molecular weight type is preferable. Specifically, for example, the weight average molecular weight (by GPC method) is preferably 25,000 to 45,000. The acid value (according to JIS K 0070) is preferably 20 to 60. In the present invention, it is particularly preferable to use a maleic anhydride-modified polypropylene having a weight average molecular weight of 25,000 to 45,000 and an acid value of 20 to 60, and it is particularly preferable to use this maleic anhydride-modified polypropylene in combination with an unmodified polypropylene. In this combined use, when the total of the modified polypropylene and the unmodified polypropylene is 100% by mass, the modified polypropylene is preferably 1 to 10% by mass, and more preferably 2 to 6% by mass. In this range, particularly high mechanical properties can be obtained.

これらの熱可塑性樹脂のなかでは、ポリオレフィン及びポリエステル樹脂が好ましい。 上記ポリオレフィンのなかでは、ポリプロピレンが好ましい。
上記ポリエステル樹脂としては、生分解性を有するポリエステル樹脂(以下、単に「生分解性樹脂」ともいう)が好ましい。この生分解性樹脂は、以下に例示される。
(1)乳酸、リンゴ酸、グルコース酸、3−ヒドロキシ酪酸等のヒドロキシカルボン酸の単独重合体;これらのヒドロキシカルボン酸のうちの少なくとも1種を用いた共重合体等のヒドロキシカルボン酸系脂肪族ポリエステル。
(2)ポリカプロラクトン、上記ヒドロキシカルボン酸のうちの少なくとも1種と、カプロラクトンとの共重合体等のカプロラクトン系脂肪族ポリエステル。
(3)ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペート等の二塩基酸ポリエステル。
これらのうち、ポリ乳酸、乳酸と、乳酸以外の他の上記ヒドロキシカルボン酸との共重合体、ポリカプロラクトン、及び、上記ヒドロキシカルボン酸のうちの少なくとも1種と、カプロラクトンとの共重合体が好ましく、ポリ乳酸が特に好ましい。これらの生分解性樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。尚、上記乳酸は、L−乳酸及びD−乳酸を含むものとし、これらの乳酸は単独で用いてもよく、併用してもよい。
Among these thermoplastic resins, polyolefins and polyester resins are preferred. Among the above-mentioned polyolefins, polypropylene is preferred.
The polyester resin is preferably a biodegradable polyester resin (hereinafter, also simply referred to as "biodegradable resin"). This biodegradable resin is exemplified below.
(1) Homopolymers of hydroxycarboxylic acids such as lactic acid, malic acid, glucose acid and 3-hydroxybutyric acid; Hydroxycarboxylic acid based aliphatics such as copolymers using at least one of these hydroxycarboxylic acids polyester.
(2) Polycaprolactone, a caprolactone based aliphatic polyester such as a copolymer of caprolactone with at least one of the above-mentioned hydroxycarboxylic acids.
(3) Dibasic acid polyester such as polybutylene succinate, polyethylene succinate, polybutylene adipate and the like.
Among these, polylactic acid, a copolymer of lactic acid and the above-mentioned hydroxycarboxylic acid other than lactic acid, polycaprolactone, and a copolymer of at least one of the above hydroxycarboxylic acids and caprolactone are preferable. And polylactic acid are particularly preferred. These biodegradable resins may be used alone or in combination of two or more. The above-mentioned lactic acid includes L-lactic acid and D-lactic acid, and these lactic acids may be used alone or in combination.

熱可塑性樹脂繊維の形状及び大きさは特に限定されないが、その繊維長は10mm以上であることが好ましい。これにより得られる繊維複合体に高い強度(曲げ強さ及び曲げ弾性率等、以下同様)を付与できる。この繊維長は10〜150mmがより好ましく、20〜100mmが更に好ましく、30〜80mmが特に好ましい。   The shape and size of the thermoplastic resin fiber are not particularly limited, but the fiber length is preferably 10 mm or more. It is possible to impart high strength (flexural strength and flexural modulus, etc. hereinafter) to the fiber composite obtained thereby. As for this fiber length, 10-150 mm is more preferable, 20-100 mm is still more preferable, 30-80 mm is especially preferable.

また、その繊維径は0.001〜1.5mmが好ましく、0.005〜0.7mmがより好ましく、0.008〜0.5mmが更に好ましく、0.01〜0.3mmが特に好ましい。この繊維径が上記範囲にあると、熱可塑性樹脂繊維を切断させず、補強繊維と分散性よく交絡できる。なかでも補強繊維が植物性繊維である場合に特に適する。   The fiber diameter is preferably 0.001 to 1.5 mm, more preferably 0.005 to 0.7 mm, still more preferably 0.008 to 0.5 mm, and particularly preferably 0.01 to 0.3 mm. When the fiber diameter is in the above range, the thermoplastic resin fiber is not cut, and the fiber can be entangled with the reinforcing fiber with good dispersibility. Particularly suitable when the reinforcing fiber is a vegetable fiber.

繊維マットを構成する補強繊維と熱可塑性樹脂繊維との割合は特に限定されないが、補強繊維と熱可塑性樹脂繊維との合計を100質量%とした場合に、補強繊維は10〜95質量%(好ましくは20〜90質量%、より好ましくは30〜80質量%)とすることが好ましい。この範囲では本発明による優れた軽量性と高強度性とを両立させやすいからである。   Although the ratio of the reinforcing fiber and the thermoplastic resin fiber constituting the fiber mat is not particularly limited, when the total of the reinforcing fiber and the thermoplastic resin fiber is 100% by mass, the reinforcing fiber is 10 to 95% by mass (preferably Is preferably 20 to 90% by mass, more preferably 30 to 80% by mass. Within this range, it is easy to achieve both the excellent lightness and high strength according to the present invention.

なお、繊維マットには、補強繊維及び熱可塑性樹脂繊維以外にも、酸化防止剤、可塑剤、帯電防止剤、難燃剤、抗菌剤、防かび剤、着色剤等の添加剤が含まれていてもよい。   In addition to the reinforcing fibers and the thermoplastic resin fibers, the fiber mat contains additives such as an antioxidant, a plasticizer, an antistatic agent, a flame retardant, an antibacterial agent, an antifungal agent, and a coloring agent. It is also good.

本発明で用いる繊維マットは、繊維補強複合体の曲げ強度を目的の値とする観点から、それ自体もある程度の強度を有することが必要である。そのため、繊維マットの好適な具体例としては、ガラス繊維マット、炭素繊維マット、アラミド繊維マット、ポリエステル繊維マット、不飽和ポリエステル繊維マット、ビニルエステル繊維マット、エポキシ繊維マット、アミド繊維マット、植物繊維マット(やし類、ケナフ類等)等が挙げられるが、入手の容易さと強度の発現性から特にガラス繊維マットが好ましい。   The fiber mat used in the present invention is required to have a certain degree of strength from the viewpoint of setting the bending strength of the fiber reinforced composite to a target value. Therefore, preferable specific examples of the fiber mat include glass fiber mat, carbon fiber mat, aramid fiber mat, polyester fiber mat, unsaturated polyester fiber mat, vinyl ester fiber mat, epoxy fiber mat, amide fiber mat, plant fiber mat There may be mentioned (palms, kenafs, etc.), but a glass fiber mat is particularly preferable in terms of availability and expression of strength.

なお、ガラス繊維の種類としては、ガラス繊維マットの他にガラス短繊維があげられる。ガラス短繊維としては、例えばチョップドストランド(例えば長さ1〜10mm、繊維径1〜20μm)やミルドファイバー(例えば長さ10〜500μm、繊維径1〜20μm)等が知られているが、後述の実験で示すように本発明のような補強の効果がほとんど確認されなかった。セメントや樹脂の補強にガラス短繊維類が汎用的に使用されていることを考えると、ガラス短繊維と比較してガラス繊維マットの使用に顕著な強度付与が可能となることは当業者にとって意外な事実である。   In addition to glass fiber mats, examples of glass fibers include short glass fibers. For example, chopped strands (for example, 1 to 10 mm in length and 1 to 20 μm in fiber diameter) and milled fibers (for example, 10 to 500 μm in length and 1 to 20 μm in fiber diameter) are known as short glass fibers. As shown in the experiment, the effect of reinforcement as in the present invention was hardly confirmed. It is surprising to those skilled in the art that, given the general use of short glass fibers for reinforcing cement and resin, it is possible to impart remarkable strength to the use of the glass fiber mat as compared to short glass fibers. It is a true fact.

また、本発明のより好ましい態様によれば、ガラス繊維マットはチョップドストランドマット(不織布)、又はロービングクロス(織物)であることが好ましい。ここで、チョップドストランドマットは、ガラス繊維ストランドを約50mmにカットし、無方向に均一に分散させ、結合剤を用いてシート状(不織布)に成形したものとすることができる。また、ロービングクロスは、たて糸及びよこ糸にロービングガラス長繊維を用いて製織した織物とすることができる。   Also, according to a more preferred embodiment of the present invention, the glass fiber mat is preferably a chopped strand mat (nonwoven fabric) or a roving cloth (woven fabric). Here, in the chopped strand mat, glass fiber strands may be cut to about 50 mm, dispersed uniformly in a nondirectional direction, and formed into a sheet (non-woven fabric) using a binder. Also, the roving cloth can be a woven fabric woven using roving glass long fibers in the warp and weft.

本発明で用いるガラス繊維マットにおけるガラスの種類としては、セメントを使用してかつ長期の物性安定を求める観点からは、耐アルカリ性グレードを使用することが好ましい。   As a type of glass in the glass fiber mat used in the present invention, it is preferable to use an alkali resistant grade from the viewpoint of using cement and obtaining long-term stability of physical properties.

ガラス繊維マットとしては、JIS R 3411:2014の分類に従い各社(セントラルグラスファイバー(株)、日東紡(株)、旭ファイバーグラス(株)、日本電気硝子(株)、オーウエンス・コーニング(株) 等)より販売されている市販品を用いてもよい。   As glass fiber mats, according to the classification of JIS R 3411: 2014 (Central Glass Fiber Co., Ltd., Nittobo Co., Ltd., Asahi Fiber Glass Co., Ltd., Nippon Electric Glass Co., Ltd., Owens Corning Co., Ltd. etc.) ) May be used.

ポリウレタン系発泡体層
本発明で用いるポリウレタン系発泡体層は、上述の通り、セメント、セメントと砂、又はセメントと砂と砂利のいずれかからなるセメント系無機充填剤、ポリイソシアネート、ポリオール、整泡剤、触媒及び水を含んでなる混合物の発泡体である。
Polyurethane-Based Foam Layer The polyurethane-based foam layer used in the present invention is, as described above, a cement-based inorganic filler consisting of cement, cement and sand, or cement and sand and gravel, polyisocyanate, polyol, foam control It is a foam of a mixture comprising an agent, a catalyst and water.

本発明で用いるセメント系無機充填剤は、セメント、セメントと砂、又はセメントと砂と砂利のいずれかからなる。セメントは、特に限定されるものではないが、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、白色セメント等の最も一般的に用いられるポルトランドセメントの他、高炉セメント、シリカセメント、フライアッシュセメント等の混合セメント、アルミナセメント、超速硬セメント、コロイドセメント、油井セメント等の特殊セメント、水硬性石灰、ローマンセメント、天然セメント等が挙げられる。この中でも、例えば、ポルトランドセメント類が好ましい。   The cement-based inorganic filler used in the present invention comprises either cement, cement and sand, or cement and sand and gravel. The cement is not particularly limited, but most commonly used Portland cement such as ordinary Portland cement, early-strength Portland cement, ultra-early-strength Portland cement, moderate heat Portland cement, sulfate resistant Portland cement, white cement, etc. Other than the above, mixed cements such as blast furnace cement, silica cement and fly ash cement, alumina cement, super rapid-hardening cement, colloidal cement, special cement such as oil well cement, hydraulic lime, roman cement, natural cement and the like can be mentioned. Among these, for example, portland cements are preferable.

本発明で用いる骨材としての砂は、特に限定されるものではないが、通常細骨材として分類される10mmふるいをすべて通過し、粒径6mm以下のものが重量で85%以上含まれる砂を指す。中でも、粒径0.3〜6mmのモルタル用砂が好ましい。上記セメントと砂に水を加えた混合物が所謂モルタルの主要構成成分である。本発明の繊維補強複合体においては、セメントの水和反応の生起の有無に拘らず、本発明所定の良好な物性値を持った繊維補強複合体が得られる。   Sand as an aggregate used in the present invention is not particularly limited, but sand which passes all 10 mm sieves usually classified as fine aggregate and which has a particle diameter of 6 mm or less is contained 85% or more by weight Point to Among them, mortar sand having a particle diameter of 0.3 to 6 mm is preferable. The above-mentioned mixture of cement and sand with water is the main component of the so-called mortar. In the fiber-reinforced composite of the present invention, a fiber-reinforced composite having good physical properties according to the present invention can be obtained regardless of the occurrence of hydration reaction of cement.

セメントと砂の量比、即ちモルタル成分中の両者の重量比率は、用いる用途に応じて変化し得るが、通常モルタル製品で用いられる範囲にあってよく、例えばセメント:砂=1:1.5〜1:5の範囲、好ましくは1:2〜1:4、例えば1:3重量比であってよい。   The ratio of cement to sand, that is, the weight ratio of the two in the mortar component, may vary depending on the application used, but may be in the range generally used for mortar products, for example, cement: sand = 1: 1.5. It may be in the range of 1: 5, preferably 1: 2 to 1: 4, for example 1: 3 weight ratio.

上記の他、通常モルタル成分に添加される混和材(フライアッシュ、スラグ粉末、シリカヒューム等の粉末)を用途に応じて適宜添加することができる。   In addition to the above, admixtures (powders such as fly ash, slag powder, silica fume and the like) which are usually added to mortar components can be appropriately added according to the application.

本発明で用いる骨材としての砂利は、特に限定されるものではないが、通常粗骨材として分類される粒径5mm以上のものが重量で85%以上含まれる砂利が好ましい。セメントと砂と砂利に水を加えた混合物が所謂コンクリートの主要構成成分である。本発明の繊維補強複合体においては、セメントの水和反応の生起の有無に拘らず、本発明所定の良好な繊維補強複合体が得られる。   Although the gravel as an aggregate used by this invention is not specifically limited, The gravel in which the particle diameter of 5 mm or more normally classified as a coarse aggregate is contained 85% or more by weight is preferable. A mixture of cement, sand and gravel with water is the main component of so-called concrete. In the fiber-reinforced composite of the present invention, a good fiber-reinforced composite according to the present invention can be obtained regardless of the occurrence of hydration of cement.

セメントと、砂と砂利の合計との量比は、用いる用途に応じて変化し得るが、例えばセメント:砂と砂利の合計=1:0.5〜3:0.5〜4の範囲、好ましくは1:1〜1:3の重量比であってよい。   The ratio by weight of cement to the sum of sand and gravel may vary depending on the application used, but for example, the sum of cement: sand and gravel = 1: 0.5-3: 0.5-4, preferably May be in a weight ratio of 1: 1 to 1: 3.

また、セメントと砂と砂利との量比、即ちコンクリート成分中のこれら3成分の重量比率は、用いる用途に応じて変化し得るが、例えばセメント:砂:砂利=1:0.5〜3:0.5〜4の範囲、好ましくは、1:1〜2:1.5〜3.5、例えば、1:2:3重量比であってよい。   Also, the ratio of cement to sand to gravel, that is, the weight ratio of these three components in the concrete component may vary depending on the application used, for example, cement: sand: gravel = 1: 0.5-3: The weight ratio may be in the range of 0.5 to 4, preferably 1: 1 to 2: 1.5 to 3.5, such as 1: 2: 3.

上記の他、通常コンクリート成分に添加される混和材(フライアッシュ、スラグ粉末、シリカヒューム等の粉末)を用途に応じて適宜添加することができる。   In addition to the above, admixtures (powders such as fly ash, slag powder, silica fume and the like) which are usually added to concrete components can be appropriately added according to the application.

本発明で用いるポリイソシアネートは、特に限定されるものではないが、イソシアネート基を2以上有する芳香族系、脂環族系、又は脂肪族系のポリイソシアネート、それら2種類以上の混合物、及びそれらを変性して得られる変性ポリイソシアネートがある。具体的には、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニルポリイソシアネート(通称:ポリメリックMDI又はクルードMDIとも称する)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HMDI)、等のポリイソシアネート及びそれらの変性体、たとえばイソシアヌレート変性体、ウレタン変性体、ウレア変性体、アダクト変性体、ビウレット変性体、アロファネート変性体、カルボジイミド変性体等が挙げられる。それらの中でも、ポリメリックMDIや、MDI及び/又はポリメリックMDIをウレタン化反応することにより得られるウレタン変性MDI及び/又はウレタン変性ポリメリックMDIが特に好ましい。   The polyisocyanate used in the present invention is not particularly limited, and may be aromatic, alicyclic or aliphatic polyisocyanate having two or more isocyanate groups, a mixture of two or more of them, and There are modified polyisocyanates obtained by modification. Specifically, for example, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (generally called: polymeric MDI or crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI) Polyisocyanates such as hexamethylene diisocyanate (HMDI) and their modified products such as isocyanurate modified products, urethane modified products, urethane modified products, urea modified products, adduct modified products, biuret modified products, allophanate modified products, carbodiimide modified products etc. Be Among them, polymeric MDI and urethane-modified MDI and / or urethane-modified polymeric MDI obtained by urethanizing MDI and / or polymeric MDI are particularly preferable.

本発明で用いるポリオールは、イソシアネートと反応してポリウレタンを形成すると同時に、ポリオールの官能性に応じて架橋剤としても作用し、得ガラス繊維補強複合体への強度付与の観点から添加することが好ましい。   The polyol used in the present invention reacts with an isocyanate to form a polyurethane, and at the same time, acts as a crosslinking agent according to the functionality of the polyol, and is preferably added from the viewpoint of imparting strength to the obtained glass fiber reinforced composite .

本発明で用いるポリオールは、本発明の効果を妨げない限り特に限定されないが、好ましくは、水酸基価を5〜300mgKOH/gとしかつ官能基数を2〜6とするポリエーテルポリオールであり、より好ましくは、上記ポリエーテルポリオールは、水溶解性試験において溶解しない。さらに,好ましくは上記ポリエーテルポリオールのデイビス法HLB値は11以下である。   The polyol used in the present invention is not particularly limited as long as the effects of the present invention are not impaired, but is preferably a polyether polyol having a hydroxyl value of 5 to 300 mg KOH / g and a functional group number of 2 to 6, and more preferably The above polyether polyols do not dissolve in the water solubility test. Furthermore, preferably, the Davis method HLB value of the polyether polyol is 11 or less.

ここで、水溶解性試験とは、水/ポリオール=6/1重量比の条件下にポリオールと水とを試験管中にて混合撹拌し、1日放置後の状態を目視で確認する試験方法である。目視の結果、「白濁ないし層分離」している場合を「溶解しない」と評価する。一方、水溶解試験において溶解するとは、1日放置後の状態が「透明ないしやや白濁」する場合を「溶解する」と評価する。   Here, in the water solubility test, a polyol and water are mixed and stirred in a test tube under the condition of water / polyol = 6/1 weight ratio, and a test method for visually confirming the state after standing for 1 day It is. As a result of visual observation, the case of "white turbidity or layer separation" is evaluated as "not dissolved". On the other hand, dissolution in the water dissolution test is evaluated as "dissolving" when the state after standing for one day is "transparent or slightly cloudy".

また、デイビス法HLB値とは、官能基の種類によって決まる基数を定め(例えば親油基のメチル基やメチレン鎖の基数は、共に−0.475であり、親水基のエチレンオキシ基や水酸基の基数は、それぞれ0.33及び1.9である(表1参照))、式1で算出する値である(Xiaowen Guo, Zongming Rong, Xugen Ying, “Calculation of hydrophile-lipophile balance for polyethoxylated surfactants by group contribution method” Journal of Colloid and Interface Science 298 (2006) 441-450に準拠)。   In addition, with the Davis Method HLB value, the number of groups determined by the type of functional group is determined (for example, the number of methyl groups of the lipophilic group and the number of methylene chains are both -0.475, and ethyleneoxy groups of the hydrophilic group and hydroxyl groups The radix is 0.33 and 1.9, respectively (see Table 1), which is the value calculated by equation 1 (Xiaowen Guo, Zongming Rong, Xugen Ying, “Calculation of hydrophile-lipophile balance for polyethoxylated surfactants by group” contribution method "Journal of Colloid and Interface Science 298 (2006) 441-450).

HLB値=7+親水基の基数の総和−親油基の基数の総和 (式1)。     HLB value = 7 + sum of base numbers of hydrophilic groups−sum of base numbers of lipophilic groups (Formula 1).

デイビス法HLB値は、相対的な親水性−親油性の程度を示し、値が大きいほど親水性程度が強く、値が小さいほど親油性程度が強いことを示す。本発明ではHLB値が11以下、好ましくは0〜11、より好ましくは5〜11、さらに好ましくは7〜11であってよい。   The Davis's HLB value indicates the relative degree of hydrophilicity-lipophilicity; the larger the value, the stronger the degree of hydrophilicity, and the smaller the value, the stronger the degree of lipophilicity. In the present invention, the HLB value may be 11 or less, preferably 0 to 11, more preferably 5 to 11, and further preferably 7 to 11.

本発明において、上述のような特徴を備えたポリオールを用いることは、短い脱型時間で高い圧縮強度をガラス繊維補強複合体に付与する上で特に有利である。理論に拘束されるものでないが、この理由は、本発明者らはその理由を以下の様に考察する。即ち、ポリオールの水溶解性が高いと、多量に存在する水にポリオールが溶解してしまい、ポリオールとイソシアネートの反応が阻害されるために、短時間での成型性(脱型性)に不具合が発生する場合がある。一方、ポリオールの水溶解性が低ければ、ポリオールとイソシアネートの反応がスムースに進み、短時間での成型性(脱型性)が良好となると考えられる。またポリオールが存在しない条件(後述の比較例5)では、やはり成型性(脱型性)が不良であることから、この反応にポリオールが有効に関与することが重要であると考えられる。   In the present invention, the use of a polyol having the characteristics as described above is particularly advantageous for imparting high compressive strength to a glass fiber reinforced composite in a short demolding time. While not being bound by theory, the present inventors consider the reasons as follows. That is, when the water solubility of the polyol is high, the polyol dissolves in a large amount of water, and the reaction between the polyol and the isocyanate is inhibited, so that the moldability in a short time (removal property) is defective. It may occur. On the other hand, if the water solubility of the polyol is low, the reaction between the polyol and the isocyanate proceeds smoothly, and it is considered that the moldability (removalability) in a short time becomes good. In addition, under the condition in which no polyol is present (Comparative Example 5 described later), it is considered that it is important that the polyol effectively participates in this reaction because the moldability (removal property) is also poor.

本発明に用いるポリオールのうち、特に好適なポリエーテルポリオールとしては、例えば、グリセリンを出発物質とし、アルキレンオキシドを開環付加重合させて得られる、官能基数3、水酸基価約28mgKOH/gのポリエーテルポリオール(例えば、住化コベストロウレタン(株)社の「SBU ポリオール 0248」。デイビス法HLB値=10)、プロピレングリコールを出発物質とし、それにアルキレンオキシドを開環付加重合させて得られる、官能基数2、水酸基価約110mgKOH/gのポリエーテルポリオール(例えば、住化コベストロウレタン(株)社の「スミフェン1600U」。デイビス法HLB値=9.5)、及び官能基数約2.7、水酸基価約160mgKOH/gのポリエステル系ポリオールであるひまし油(デイビス法HLB値=7.6)等が挙げられるが、これらに限定されるものではない。   Among the polyols used in the present invention, particularly preferred polyether polyols are, for example, polyethers having a functionality of 3 and a hydroxyl value of about 28 mg KOH / g, obtained by ring-opening addition polymerization of alkylene oxides using glycerin as a starting material. Polyol (for example, "SBU Polyol 0248" manufactured by Sumika Kobe Soro Urethane Co., Ltd., HLB value of Davis method = 10), propylene glycol as a starting material, and ring opening addition polymerization of the alkylene oxide thereto, the number of functional groups 2. Polyether polyol having a hydroxyl value of about 110 mg KOH / g (for example, "Sumiphen 1600 U" manufactured by Sumika Kobe Soro Urethane Co., Ltd., Davis method HLB value = 9.5), and functional group number about 2.7, hydroxyl value Castor that is about 160 mg KOH / g polyester-based polyol (Davis method HLB value = 7.6) and others as mentioned, but not limited thereto.

本発明におけるセメント系無機充填剤(セメント、セメントと砂、又はセメントと砂と砂利、のいずれかから成る)とポリウレタン樹脂(即ち、ポリイソシアネート+ポリオール)との重量比は、軽量性、強度、コスト面等を勘案して適宜調節することができ、通常、セメント系無機充填剤:ポリウレタン(重量比)の比率が、40:60〜95:5、好ましくは50:50〜90:10、特に好ましくは55:45〜85:15、例えば、80:20又は、60:40であってよい。   In the present invention, the weight ratio of cement-based inorganic filler (cement, cement and sand, or either cement and sand or gravel) to polyurethane resin (that is, polyisocyanate + polyol) is lightness, strength, The ratio can be suitably adjusted in consideration of the cost etc., and usually, the ratio of cement-based inorganic filler: polyurethane (weight ratio) is 40:60 to 95: 5, preferably 50:50 to 90:10, in particular Preferably, 55: 45 to 85: 15, for example 80: 20 or 60: 40.

本発明で用いる整泡剤は良好な気泡を形成するための助剤である。気泡は連通孔となって、得られるガラス繊維補強複合体の縮小を防ぎ、軽量化と強度発現に寄与する。整泡剤としては、特に限定されるものではないが、例えばシリコーン系整泡剤(例として、東レ・ダウコーニング社のSH−193、L−5420A、SZ1325、SF2937F、モメンティブ社のL−580、エボニックデグサ社のB8462)や含フッ素化合物系整泡剤等が挙げられる。整泡剤の量はポリエーテルポリオール100重量部に対して20重量部まで、特に1〜10重量部、例えば0.5重量部であってよい。   The foam stabilizer used in the present invention is an auxiliary agent for forming good air bubbles. The air bubbles become communication holes, prevent the reduction of the obtained glass fiber reinforced composite, and contribute to weight reduction and strength development. The foam stabilizer is not particularly limited. For example, silicone foam stabilizers (eg, SH-193, L-5420A, SZ1325, SF2937F from Toray Dow Corning, L-580 from Momentive, Inc.) Examples thereof include B8462) manufactured by Evonik Degussa Co., Ltd. and fluorine-containing compound type foam stabilizers. The amount of foam stabilizer may be up to 20 parts by weight, in particular 1 to 10 parts by weight, for example 0.5 parts by weight, based on 100 parts by weight of polyether polyol.

本発明の繊維補強複合体の密度は、ポリウレタンとセメント系無機充填剤(セメント、セメントと砂、又はセメントと砂と砂利、のいずれかからなる)の比率及び発泡率により調節することができる。   The density of the fiber-reinforced composite of the present invention can be controlled by the ratio of polyurethane and cement-based inorganic filler (comement, cement and sand, or either cement and sand and gravel) and the foaming ratio.

本発明で用いる触媒は、ポリイソシアネートとポリオールとのウレタン形成反応を促進するものである。触媒としては、ウレタン形成反応を促進するものであれば特に限定されるものではないが、トリエチレンジアミン、トリエチルアミン、ビス(2−ジメチルアミノエチル)エ−テル、イミダゾール化合物、1,8−ジアザビシクロ[5.4.0]ウンデセン−7とその有機酸塩、及びN,N,N−トリス(ジメチルアミノプロピル)ヘキサヒドロ−S−トリアジン等が挙げられる。これらの内、例えば、エアプロダクツ社のPolycat8等の三級アミンが触媒として好ましい。   The catalyst used in the present invention promotes the urethane formation reaction of polyisocyanate and polyol. The catalyst is not particularly limited as long as it promotes urethane formation reaction, but triethylenediamine, triethylamine, bis (2-dimethylaminoethyl) ether, imidazole compound, 1,8-diazabicyclo [5 4.0] undecene-7 and its organic acid salts, and N, N, N-tris (dimethylaminopropyl) hexahydro-S-triazine. Among these, for example, tertiary amines such as Aircat's Polycat 8 are preferred as catalysts.

触媒の量はイソシアネート基1当量に対して0.01〜5%当量、好ましくは0.1〜1%当量、例えば0.5%当量であってよい。   The amount of catalyst may be 0.01 to 5% equivalents, preferably 0.1 to 1% equivalents, such as 0.5% equivalents, based on 1 equivalent of isocyanate groups.

本発明で用いる水は、原料を分散してスラリーを形成する媒体として用いられると同時に、一部はイソシアネート基と反応して炭酸ガスを発生させて発泡を形成する観点から好適に添加される。   The water used in the present invention is preferably used as a medium for dispersing the raw material to form a slurry, and at the same time, a part of the water reacts with an isocyanate group to generate carbon dioxide gas to form a foam.

水の量は、水とセメント系無機充填剤を撹拌混合して分散し、スラリー状態とするために十分な量があれば特に制限されるものではない。水の量は、セメントの水和反応及び使用するポリイソシアネート基と反応して発泡するために必要な量を含むことが求められるが、通常は、良好なスラリー状態とするために必要な水の量は、前記反応に必要な水の量に較べれば大過剰である。   The amount of water is not particularly limited as long as it is sufficient to stir and mix water and the cement-based inorganic filler and disperse it into a slurry. The amount of water is required to include the amount necessary to react and foam with the hydration reaction of the cement and the polyisocyanate groups used, but usually the amount of water required to make a good slurry state The amount is a large excess compared to the amount of water required for the reaction.

本発明の繊維補強複合体を低密度化するためには、ポリイソシアネートが水と反応して発生する炭酸ガスを発泡源として利用することが好ましい。   In order to reduce the density of the fiber-reinforced composite of the present invention, it is preferable to use carbon dioxide gas generated by the reaction of polyisocyanate with water as a foaming source.

また、ポリオール:ポリイソシアネートの比率は、本発明の効果を妨げない限り特に限定されないが、例えば、60:40〜100:1、好ましくは65:35〜95:5、より好ましくは70:30〜90:10とすることができる。   Further, the ratio of polyol: polyisocyanate is not particularly limited as long as the effect of the present invention is not impaired, but, for example, 60:40 to 100: 1, preferably 65:35 to 95: 5, more preferably 70:30 to It can be 90:10.

繊維補強複合体の製造方法
次に、本発明の繊維補強複合体の製造方法について説明する。
本発明の繊維補強発泡複合体の製造方法は、型(「モールド」又は「成形用型」ともいう)セメント系無機充填剤(セメント、セメントと砂、又はセメントと砂と砂利、のいずれかからなる)、ポリイソシアネート、ポリオール、整泡剤、触媒及び水を含んでなる混合物を型に注入し、脱型する工程を少なくとも含んでなる。
Method of Producing Fiber-Reinforced Composite Next, a method of producing the fiber-reinforced composite of the present invention will be described.
The method for producing a fiber-reinforced foam composite according to the present invention comprises either of a mold (also referred to as "mold" or "mold type") cement-based inorganic filler (cement, cement and sand, or cement and sand and gravel) And at least the step of injecting a mixture comprising polyisocyanate, polyol, foam stabilizer, catalyst and water into a mold and demolding.

本発明の製造方法においては、繊維マットを型内の適切な場所に配置し、上記混合物を発泡させてポリウレタン系発泡体層を形成し、かつ繊維マットと一体化させることが好ましい。したがって、本発明の好ましい態様によれば、上記混合物が発泡して得られるポリウレタン系発泡体層と、前記繊維マットとが接着するように、前記型内に前記繊維マットが予め配置されている。   In the manufacturing method of the present invention, it is preferable to place the fiber mat in a suitable place in the mold, foam the above mixture to form a polyurethane foam layer, and integrate it with the fiber mat. Therefore, according to a preferred embodiment of the present invention, the fiber mat is arranged in advance in the mold so that the polyurethane foam layer obtained by foaming the mixture adheres to the fiber mat.

上記混合物中の各成分の混合順序に特段の制限はないが、ポリイソシアネートがポリオールと接触するとウレタン形成反応(ウレタン化反応、尿素化反応、ビウレット結合性反応等を含む)が開始することから、通常、両者の接触が混合の最終過程で行なわれる様な混合順序とすることが好ましい。所謂、「二液反応型組成物」である。   There is no particular limitation on the order of mixing the components in the above mixture, but when the polyisocyanate comes in contact with a polyol, a urethane forming reaction (including a urethanization reaction, a urea formation reaction, a biuret binding reaction, etc.) starts. In general, it is preferable to use a mixing order such that the contact between the two takes place in the final stage of mixing. It is a so-called "two-component reaction type composition".

より具体的には、繊維補強複合体の型中でセメント、セメントと砂、又はセメントと砂と砂利、のいずれかからなるセメント系無機充填剤、ポリオール、整泡剤、触媒及び水を混合・撹拌してスラリーを形成し、該スラリー中にポリイソシアネート(及び/又は、それらのプレポリマー型変性体)を添加・混合して、該ポリイソシアネートとスラリー中の水との反応で生成する炭酸ガスによって発泡させつつ、ポリイソシアネートとポリオールとを重合させ、該重合により形成されるポリウレタン中にスラリー中のセメント、セメントと砂、又はセメントと砂と砂利のいずれかからなるセメント系無機充填剤粉末を分散したポリウレタン系発泡体層を形成することができる。   More specifically, in the mold of fiber reinforced composite, cement based inorganic filler consisting of cement, sand with sand, or cement and sand with sand, gravel, polyol, foam stabilizer, catalyst and water are mixed. Agitation forms a slurry, and polyisocyanate (and / or a prepolymer type modified product thereof) is added and mixed in the slurry to generate carbon dioxide gas generated by the reaction of the polyisocyanate and water in the slurry. Polymerize the polyisocyanate and the polyol, and form a cement-based inorganic filler powder composed of cement in the slurry, cement and sand, or cement and sand and gravel in the polyurethane formed by the polymerization; A dispersed polyurethane foam layer can be formed.

また、上記成分(ポリイソシアネート、セメント系無機充填剤、ポリオール、整泡剤、触媒及び水)の混合撹拌は、型枠中で直接行なってもよいが、型枠は通常直方体をしていることが多いことから、混合効率を勘案すれば円形のカップ(例えば、小規模実験にあってはポリカップ、大規模製造においてはポリマーライナー円形撹拌槽など)中に成分を添加してミキサー(例えば、小規模実験にあってはハンドミキサー、大規模製造においては電動撹拌装置など)で撹拌・混合した後に、直ちに型枠に移入することが好ましい。ポリイソシアネート又は触媒の添加と共に直ちにウレタン化反応が開始することから、それらの添加以前に、他の成分を予め添加し十分に撹拌混合してスラリー化しておくことが好ましい。ポリイソシアネート又は触媒の添加撹拌開始後には直ちに反応がスタートすることから、円形カップ中での撹拌は短時間(例えば、数秒間)に止めて、直ちに型枠に移送する。この際、短時間の撹拌で十分な混合効率を得るために、高速回転での撹拌が好ましい。   In addition, mixing and stirring of the above components (polyisocyanate, cement-based inorganic filler, polyol, foam stabilizer, catalyst and water) may be carried out directly in the mold, but the mold is usually a rectangular solid. If the mixing efficiency is taken into consideration, the ingredients are added to a circular cup (for example, a polycup for small scale experiments, a polymer liner circular stirring tank for large scale production, etc.) in consideration of mixing efficiency. In a scale experiment, it is preferable to immediately transfer to the mold after stirring and mixing with a hand mixer, and in a large scale production, a motorized stirring device etc.). Since the urethanization reaction starts immediately with the addition of the polyisocyanate or the catalyst, it is preferable to previously add other components and sufficiently stir and mix them into a slurry prior to their addition. Since the reaction starts immediately after the addition of the polyisocyanate or the catalyst starts stirring, the stirring in the circular cup is stopped for a short time (for example, several seconds) and immediately transferred to the mold. At this time, in order to obtain sufficient mixing efficiency by short-time stirring, stirring at high speed rotation is preferable.

次いで、カップ内での短時間(数秒間)の混合後、得られた混合物を型内に移送することで、本発明の繊維補強複合体の形成が開始することができる。モールドの初期温度設定は常温程度(20℃〜30℃程度)でよい。繊維補強複合体の形成は、発泡と共にポリウレタン生成の重合熱発生を伴い、モールド内の温度が上昇する。モールドの形状、大きさにもよるが、モールド内の温度は通常30〜40℃程度に上昇する。発泡に伴いモールド内圧力も若干上昇するが、0.5MPa程度であってよい。
また、型枠の形状は一般的には直方体であるが、必要に応じて他の形状でもよい。
Then, after mixing for a short time (several seconds) in a cup, the resulting mixture can be transferred into a mold to start the formation of the fiber-reinforced composite of the present invention. The initial temperature setting of the mold may be about normal temperature (about 20 ° C. to 30 ° C.). The formation of the fiber-reinforced composite involves the generation of heat of polymerization of polyurethane formation along with foaming, and the temperature in the mold rises. Although depending on the shape and size of the mold, the temperature in the mold usually rises to about 30 to 40 ° C. The pressure in the mold slightly increases with the foaming, but may be about 0.5 MPa.
Further, the shape of the mold is generally a rectangular parallelepiped, but may be another shape as needed.

なお、上記カップ内の状態で表面状態を視観察及び指蝕観察して、クリームタイム、ゲルタイム及びタックタイムを指標として硬化(重合及び架橋)反応の進捗状況の目安とすることができる。本発明において、液温25℃における上記成分の混合物のクリームタイムは、好ましくは10〜30秒であり、より好ましくは10〜20秒である。また、液温25℃における上記成分の混合物のゲルタイムは、好ましくは40〜70秒であり、より好ましくは50〜65秒である。また、液温25℃における上記成分の混合物のタックタイムは、好ましくは70〜110秒であり、80〜100秒である。   In addition, visual observation and finger corrosion observation of the surface state in the state in the above-mentioned cup can be used as an index of the progress of curing (polymerization and crosslinking) reaction using cream time, gel time and tack time as indexes. In the present invention, the cream time of the mixture of the above components at a liquid temperature of 25 ° C. is preferably 10 to 30 seconds, more preferably 10 to 20 seconds. The gel time of the mixture of the above components at a liquid temperature of 25 ° C. is preferably 40 to 70 seconds, more preferably 50 to 65 seconds. The tack time of the mixture of the above components at a liquid temperature of 25 ° C. is preferably 70 to 110 seconds, and 80 to 100 seconds.

本発明においては、繊維マットの配置場所は、繊維補強複合体の片面表面から内側5mm以内に配置されるように予め型内に配置しておくことが好ましい。具体的には、繊維補強複合体の曲げ強度が必要とされる少なくとも片面の、表面から内側5mm以内に、少なくとも一層の繊維マットが含まれるように、繊維マットの配置場所を設計し、モールド内に配置することが好ましい。曲げ強度が必要とされる少なくとも片面とは、図1に示される通り、加重が一方向からかかると想定した場合の片面が好適に選択される。図1において、枠線は、繊維補強複合体を示し、点線は繊維マットを示す。また、図2に示される通り、成形品(繊維補強複合体)の両面領域(好ましくは各表面から内側5mm以内)に配置してもよい。
なお、本発明においては、繊維補強複合体の少なくとも一つの片面領域に繊維マットを配置している限りにおいて、片面領域以外の部分(ポリウレタン系発泡体層中)に別の繊維マットを配置してもよく、本発明にはかかる態様も包含される。
In the present invention, it is preferable to place the fiber mat in advance in the mold so as to be disposed within 5 mm of the inner surface of the fiber reinforced composite. Specifically, the place of placement of the fiber mat is designed so that at least one fiber mat is included within 5 mm inside from the surface on at least one side where the flexural strength of the fiber reinforced composite is required, and It is preferable to arrange in. With respect to at least one side where bending strength is required, as shown in FIG. 1, one side where load is assumed to be applied from one direction is suitably selected. In FIG. 1, the frame line indicates a fiber reinforced composite and the dotted line indicates a fiber mat. In addition, as shown in FIG. 2, it may be disposed on both side regions (preferably within 5 mm from each surface) of the molded article (fiber-reinforced composite).
In the present invention, as long as the fiber mat is disposed in at least one side region of the fiber reinforced composite, another fiber mat is disposed in a portion (in the polyurethane foam layer) other than the one side region. Such embodiments are also included in the present invention.

なお、後述の実験例で示される通り、上記以外の場所(例えば繊維補強複合体の中程に配置:図3)に繊維マットを配置してもその効果は限られたものになる。理論に拘束されるものではないが、本発明の繊維補強複合体では、図4の写真に示される通り、ポリウレタン系発泡体層の表面に発泡程度が低く密度が比較的高い層(いわゆるスキン層)が形成され、この層が機械的物性に影響を及ぼすことから、このスキン層の近傍に繊維マットを配置することが強度向上に効果的であると考えられる。   In addition, as shown in the below-mentioned experiment example, even if it arrange | positions a fiber mat in the place (For example, arrangement | positioning in the middle of a fiber reinforced composite: FIG. 3) other than the above, the effect is limited. While not being bound by theory, in the fiber-reinforced composite of the present invention, as shown in the photograph of FIG. 4, a layer having a low degree of foaming and a relatively high density on the surface of the polyurethane foam layer (so-called skin layer Because the layer is formed and this layer affects the mechanical properties, it is considered that placing a fiber mat in the vicinity of the skin layer is effective for improving the strength.

また、繊維マットへのポリウレタン系発泡体の含浸がスムースに進むように、ポリイソシアネートを除く各成分を混合した少量の混合物で繊維マットを予め濡らして(塗布して)おき、ポリイソシアネートを繊維マットに添加してもよい。このような処理を行うことは、繊維マットに樹脂成分が十分に浸透した繊維補強複合体を得る上で有利である。   Also, as the impregnation of the polyurethane-based foam into the fiber mat proceeds smoothly, the fiber mat is pre-wetted (applied) with a small amount of a mixture of each component except polyisocyanate, and the polyisocyanate is made into a fiber mat May be added to Performing such treatment is advantageous in obtaining a fiber-reinforced composite in which the resin component sufficiently penetrates the fiber mat.

本発明の製造方法では、短時間で脱型して、ポリウレタン系発泡体層と繊維マットとが一体化した繊維補強複合体を得ることができる。しかも脱型直後でも繊維補強複合体は十分に高い硬度を発現することができる。即ち、脱型時間は通常5分程度とすることができ、脱型直後の圧縮強度も1MPa以上の高い値を与えることができる。したがって、本発明の製造方法では短時間での生産タイムサイクルを組むことができ、生産効率の高い工程で良好な硬化物性を持つ繊維補強複合体を得ることが可能となる。圧縮強度は、例えば5分後の脱型直後でほぼ一定値に達し、1日〜1週間後でも同程度の圧縮強度である。即ち、本発明の製造方法によれば、顕著な短時間で、良好な初期物性値を安定的に得ることができる。   In the production method of the present invention, the fiber-reinforced composite in which the polyurethane foam layer and the fiber mat are integrated can be obtained by demolding in a short time. In addition, even immediately after demolding, the fiber reinforced composite can exhibit sufficiently high hardness. That is, the demolding time can be usually about 5 minutes, and the compressive strength immediately after the demolding can also give a high value of 1 MPa or more. Therefore, according to the production method of the present invention, a production time cycle can be established in a short time, and a fiber-reinforced composite having good cured physical properties can be obtained in a process with high production efficiency. The compressive strength, for example, reaches a substantially constant value immediately after demolding after 5 minutes, and is a similar compressive strength even after 1 day to 1 week. That is, according to the production method of the present invention, good initial physical property values can be stably obtained in a remarkably short time.

繊維補強複合体/機能用途
本発明の繊維補強複合体は、上述のような製造方法により、ポリウレタン系発泡体層と繊維マットとを接着又は一体化させて得ることができる。本発明の繊維補強複合体において、ポリウレタン系発泡体層と、繊維マットとの重量比率は、本発明の効果を妨げない限り特に限定されず、好ましくは100:0.5〜100:10、好ましくは100:1〜100:10の範囲とすることができる。
Fiber-Reinforced Composite / Functional Application The fiber-reinforced composite of the present invention can be obtained by bonding or integrating a polyurethane foam layer and a fiber mat by the manufacturing method as described above. In the fiber-reinforced composite of the present invention, the weight ratio of the polyurethane foam layer to the fiber mat is not particularly limited as long as the effects of the present invention are not impaired, and preferably 100: 0.5 to 100: 10, preferably Can range from 100: 1 to 100: 10.

また、本発明の繊維補強複合体において、ポリウレタン系発泡体層と、繊維マットとの厚さの比率は、本発明の効果を妨げない限り特に限定されず、好ましくは10:0.01〜10:2.0、好ましくは10:0.1〜10:2.0、さらに好ましくは10:0.3〜10:1.0の範囲とすることができる。   In the fiber-reinforced composite of the present invention, the thickness ratio of the polyurethane foam layer to the fiber mat is not particularly limited as long as the effects of the present invention are not impaired, and preferably 10: 0.01 to 10 It can be in the range of 2.0, preferably 10: 0.1 to 10: 2.0, and more preferably 10: 0.3 to 10: 1.0.

また、本発明の繊維補強複合体は、上述の通り軽量性とJIS A 5908で必要とされる高い曲げ強度とを備えた構造体であることから、建築材(断熱材、壁材等)等として好適に使用することができる。かかる本発明の繊維補強複合体の曲げ強度は、好ましくは18MPa以上であり、好ましくは18〜30MPaであり、より好ましくは18〜25MPaであり、さらに好ましくは20〜25MPaである。   Further, since the fiber-reinforced composite of the present invention is a structure provided with the lightness as described above and the high bending strength required in JIS A 5908, construction materials (heat insulation materials, wall materials, etc.), etc. It can be suitably used as The flexural strength of the fiber-reinforced composite of the present invention is preferably 18 MPa or more, preferably 18 to 30 MPa, more preferably 18 to 25 MPa, and still more preferably 20 to 25 MPa.

また、本発明の繊維補強構造体においては、軽量性確保の観点から、密度800kg/m以下とされる。本発明の繊維補強複合体の密度は、好ましくは500〜800kg/mであり、より好ましくは550〜700kg/mであり、さらに好ましくは580〜680kg/mであり、さらに好ましくは600〜650kg/mである。 Further, in the fiber reinforced structure of the present invention, the density is set to 800 kg / m 3 or less from the viewpoint of securing the lightness. The density of the fiber-reinforced composite of the present invention is preferably 500 to 800 kg / m 3 , more preferably 550 to 700 kg / m 3 , still more preferably 580 to 680 kg / m 3 , still more preferably 600. It is ̃650 kg / m 3 .

また、本発明の繊維補強構造体は、建築材としての使用の観点から好適な圧縮強度を有していることが好ましい。本発明の繊維補強複合体の圧縮強度は、上述の通り、1MPa以上とすることができ、好ましくは5.0〜7.0MPaであり、より好ましくは5.1〜6.2MPaである。   Moreover, it is preferable that the fiber reinforced structure of this invention has a suitable compressive strength from a viewpoint of use as a construction material. The compressive strength of the fiber-reinforced composite of the present invention can be 1 MPa or more, as described above, preferably 5.0 to 7.0 MPa, more preferably 5.1 to 6.2 MPa.

以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。なお、本発明の単位及び各パラメータの測定は後述する実施例に準じて行われるが、特段の記載がなければ、JIS(日本工業規格)の規定に従う。   Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these examples. In addition, although the measurement of the unit and each parameter of this invention is performed according to the Example mentioned later, if there is no notice in particular, according to the prescription | regulation of JIS (Japanese Industrial Standard).

原材料
以下の原材料を用いて後述する実験を行った。
ガラス繊維マットA:ECM300−501(セントラルグラスファイバー社製)
(チョップドストランドマット;単位重量300g/m2、厚さ約1mm)
ガラス短繊維A:ECS03−615(セントラルグラスファイバー社製)
(ガラスチョップドストランド、平均繊維長3mm、繊維径9μm)
ガラス短繊維B:EFH100−31(セントラルグラスファイバー社製)
(ガラスミルドファイバー、平均繊維長30μm、繊維径11μm)
Raw Materials The following experiments were conducted using the following raw materials.
Glass fiber mat A: ECM 300-501 (made by Central Glass Fiber Co., Ltd.)
(Chopped strand mat; unit weight 300 g / m 2, thickness about 1 mm)
Glass staple fiber A: ECS 03-615 (made by Central Glass Fiber Co., Ltd.)
(Glass chopped strand, average fiber length 3 mm, fiber diameter 9 μm)
Glass staple fiber B: EFH 100-31 (made by Central Glass Fiber Co., Ltd.)
(Glass milled fiber, average fiber length 30 μm, fiber diameter 11 μm)

セメント:ポルトランドセメント
砂:モルタル用砂(平均粒径約1mm)
ポリオール:ポリオールA(スミフェン1600U;官能基数2、水酸基価110mgKOH/g)(住化コベストロウレタン株式会社製)
整泡剤:シリコーン系整泡剤(シリコーンSH−193,東レ・ダウコーニング社製)
触媒:Polycat8(三級アミン))(エアプロダクツ社製)
ポリイソシアネート:ポリイソシアネートA(ポリメリックMDI(ジフェニルメタンジイソシアネート;イソシアネート基含有率約31.5%: スミジュール44V20L(住化コベストロウレタン株式会社製)
Cement: Portland cement Sand: Mortar sand (average particle size about 1 mm)
Polyol: Polyol A (Sumiphen 1600 U; functional group number 2, hydroxyl value 110 mg KOH / g) (manufactured by Sumika Kobe Soro Urethane Co., Ltd.)
Foam control agent: silicone type foam control agent (Silicone SH-193, Toray Dow Corning Co., Ltd.)
Catalyst: Polycat 8 (tertiary amine) (manufactured by Air Products)
Polyisocyanate: Polyisocyanate A (Polymeric MDI (Diphenylmethane Diisocyanate; about 31.5% of Isocyanate Group Content: Sumidur 44 V 20 L (manufactured by Sumika Kobe Soro Urethane Co., Ltd.)

測定方法
以下の測定方法により各パラメータを測定した。
発泡品密度(kg/m):次の式により求めた。
[発泡品の重量÷モールド容量]
Measurement Method Each parameter was measured by the following measurement method.
Foamed product density (kg / m 3 ): Determined by the following equation.
[Weight of foam ÷ mold capacity]

反応性(クリームタイム,ゲルタイム,タックフリータイム):
ポリカップにおける同一のスラリー混合物をモールドに移送せずに、そのままポリカップ中にてその反応性を観察した(25℃)。反応性の指標は、以下の通りである。
(A)クリームタイム:スラリー混合後から混合物が発泡して上昇を始めるまでの時間(秒)
(B)ゲルタイム:スラリー混合後から混合物がゲル化し始めるまでの時間(秒)
(C)タックフリータイム:スラリー混合後、上昇してくる発泡体表面を指先で触れたとき、指先に付着しなくなるまでに要する時間(秒)。
Reactivity (cream time, gel time, tack free time):
The reactivity was observed as it is in the polycup (25 ° C.) without transferring the same slurry mixture in the polycup to the mold. The index of reactivity is as follows.
(A) Cream time: time (seconds) until the mixture foams and starts rising after slurry mixing
(B) Gel time: time (seconds) until the mixture starts to gel after slurry mixing
(C) Tack free time: The time (seconds) required to stop sticking to the fingertip when the rising foam surface is touched with a fingertip after slurry mixing.

曲げ強度(曲げ強さ):JIS A 5908:2015(パーティクルボード)に準拠し、曲げ強度を測定した。
圧縮強度:JIS K 7220:2006(硬質発泡プラスチック−圧縮特性の求め方)に準拠し、圧縮強度を測定した。
Bending strength (bending strength): The bending strength was measured in accordance with JIS A 5908: 2015 (particle board).
Compressive strength: The compressive strength was measured in accordance with JIS K 7220: 2006 (hard foamed plastic-how to determine the compression characteristics).

[実施例1]<ガラス繊維マット補強複合体の製造例>
1. ガラス繊維マットのモールド内への配置
210x210mmにカットした13.8gのガラス繊維マットAをモールドの下面に配置した。
2.反応混合物のモールドへの投入
容量1000mlのポリカップ中に、ポルトランドセメントを150g、砂300g、ポリオールAを30g、水を90g、整泡剤を3.7g及び触媒を3.7g添加し、ハンドミキサーにて4,000rpmで4秒間撹拌して、均一なスラリーとした。次いで、イソシアネートAを270g添加し、ハンドミキサー(使用機器ホモミキサー:プライミクス社製 T.K.ロボミクスF Model;撹拌羽根:直径50mm)にて4,000rpmで4秒間撹拌した後、得られたスラリー混合物を直ちに、上記のガラス繊維マットAが配置されたモールドに充填し密封した。モールド初期温度(初期型温)は30℃であった。5分後に、型温(「モールド温度」とも称する)は40℃に達していた。直ちに脱型し、5分後に得られた各サンプルについて、訓練されたパネラー(n=10)により、外観評価、キュア性評価及び強度発現評価を以下の基準に従い実施した。
Example 1 <Production Example of Glass Fiber Mat Reinforced Composite>
1. Placement of Glass Fiber Mat in Mold 13.8 g of glass fiber mat A, cut to 210 × 210 mm, was placed on the bottom of the mold.
2. Charge the reaction mixture into a mold Add 1000g of Portland cement, 300g of sand, 30g of Polyol A, 90g of water, 3.7g of a foam stabilizer and 3.7g of a catalyst into a hand mixer in a 1000ml polycup. The mixture was stirred at 4,000 rpm for 4 seconds to form a uniform slurry. Then, 270 g of Isocyanate A was added, and the resulting slurry was stirred at 4,000 rpm for 4 seconds with a hand mixer (equipment homomixer: T.K. Robotics F Model; manufactured by Primix Inc .; stirring blade: diameter 50 mm) for 4 seconds. The mixture was immediately filled into a mold in which the above glass fiber mat A was placed and sealed. The mold initial temperature (initial mold temperature) was 30 ° C. After 5 minutes, the mold temperature (also referred to as "mold temperature") had reached 40.degree. Immediately after demolding, each sample obtained after 5 minutes was subjected to appearance evaluation, curing evaluation and strength expression evaluation according to the following criteria by trained panelists (n = 10).

外観評価(目視)
○:表面が均一で平滑性がある
×:表面が不均一で平滑性がない
Appearance evaluation (visual)
○: The surface is uniform and smooth ×: The surface is uneven and not smooth

キュア性評価(硬化表面を人差し指で1秒間押して離したときの指触感)
○:ベタつき無し
×:ベタつきあり
Cure evaluation (Feeling of the finger when the hardened surface is pressed and released for 1 second with the index finger)
○: no stickiness ×: with stickiness

強度発現評価(硬化表面を人差し指の爪のある指先で1秒間押して離したとき、硬化表面に爪痕が残るか否かの評価)
○:爪痕残り無し
×:爪痕残りあり
Evaluation of strength development (evaluation of whether or not a mark remains on the hardened surface when the hardened surface is pressed and released for 1 second with a finger tip of a forefinger)
○: There is no trace left ×: There is a trace left

実施例1の評価結果は、表2に示されるとおりであった。
具体的には、外観評価、キュア評価及び強度発現評価はいずれも良好(○)であった。
脱型後3日経過後の繊維補強複合体の密度を測定した結果、620kg/mであった。
脱型後3日経過後の繊維補強複合体の曲げ強度を測定した結果、20.3MPaであった。
脱型後3日経過後の圧縮強度を測定した結果、5.6MPaであった。
The evaluation results of Example 1 are as shown in Table 2.
Specifically, the appearance evaluation, the cure evaluation and the strength expression evaluation were all good (o).
As a result of measuring the density of the fiber reinforced composite 3 days after demolding, it was 620 kg / m 3 .
As a result of measuring the bending strength of the fiber reinforced composite 3 days after demolding, it was 20.3 MPa.
As a result of measuring the compressive strength 3 days after demolding, it was 5.6 MPa.

なお、この実施例1において、別途ポリカップにおける同一のスラリー混合物をモールドに移送せずに、そのままポリカップ中にてその反応性を観察した(液温25℃)。
観察の結果、スラリーのクリームタイムは20秒、ゲルタイムは60秒、そしてタックフリータイムは92秒であった。
In this Example 1, the reactivity was observed in the polycup as it was (liquid temperature 25 ° C.) without transferring the same slurry mixture in the polycup separately to the mold.
As a result of observation, the cream time of the slurry was 20 seconds, the gel time was 60 seconds, and the tack free time was 92 seconds.

[実施例2]
1.ガラス繊維マットのモールド内への配置
210x210mmにカットした2枚のガラス繊維マットA(計27.6g)をモールドの上面と下面に配置した。ガラス繊維マットAの上面については、マットの四隅を両面テープでモールドの上面に貼り付けた。
2.反応混合物のモールドへの投入
実施例1と同様に反応混合物を用いて繊維補強複合体を得た。その評価結果は表2に示される通りであった。また、実施例2で得られたガラス繊維補強複合体の断面を写真撮影したところ、図4に示される通りであった。図4において、ガラス繊維補強複合体の厚さは25mmであり、ガラス繊維補強複合体の上面表面及び下面表面から5mm以内の領域にガラス繊維マットAは配置されていた。また、図4で示される通り、ガラス繊維補強複合体の断面写真では、ポリウレタン系発泡体層の表面にスキン層が形成され、ガラス繊維マットと一体化していたことが確認された。
Example 2
1. Placement of Glass Fiber Mat in Mold Two glass fiber mats A (27.6 g in total) cut to 210 × 210 mm were placed on the top and bottom of the mold. For the upper surface of the glass fiber mat A, the four corners of the mat were attached to the upper surface of the mold with a double-sided tape.
2. Loading of reaction mixture into mold The reaction mixture was used as in Example 1 to obtain a fiber reinforced composite. The evaluation results are as shown in Table 2. In addition, when a cross section of the glass fiber reinforced composite obtained in Example 2 was photographed, it was as shown in FIG. In FIG. 4, the thickness of the glass fiber reinforced composite was 25 mm, and the glass fiber mat A was disposed in an area within 5 mm from the upper surface and the lower surface of the glass fiber reinforced composite. Further, as shown in FIG. 4, in the cross-sectional photograph of the glass fiber reinforced composite, it was confirmed that the skin layer was formed on the surface of the polyurethane foam layer and was integrated with the glass fiber mat.

[比較例1]
ガラス繊維マットを使用しない以外は実施例1と同様に反応混合物を用いて発泡体を得た。その評価結果は表2に示される通りであった。
Comparative Example 1
The reaction mixture was used as in Example 1 except that no glass fiber mat was used to obtain a foam. The evaluation results are as shown in Table 2.

[比較例2]
ガラス繊維マットのモールド内への配置をモールド高さの中間位置とする以外は、実施例1と同様に反応混合物を用いて繊維補強体を得た。その評価結果は表2に示される通りであった。
Comparative Example 2
A fiber reinforced body was obtained using the reaction mixture in the same manner as in Example 1 except that the arrangement of the glass fiber mat in the mold was at an intermediate position of the mold height. The evaluation results are as shown in Table 2.

[比較例3]
ガラス繊維マットを使用せずかつ22.5gのガラス短繊維Aを加えてスラリーを得る以外は、実施例1と同様に反応混合物を用いて繊維補強複合体を得た。その評価結果は表2に示される通りであった。
なお、ガラス短繊維Aを30g加えてスラリーを得ることも検討したが、高粘度のため撹拌することができず、最終的に繊維補強複合体を得ることはできなかった。
Comparative Example 3
The reaction mixture was used in the same manner as in Example 1 except that a glass fiber mat was not used and 22.5 g of glass short fibers A were added to obtain a slurry, to obtain a fiber reinforced composite. The evaluation results are as shown in Table 2.
In addition, although 30 g of short glass fibers A was added to obtain a slurry, it was also considered that the slurry could not be stirred because of its high viscosity, and finally a fiber-reinforced composite could not be obtained.

[比較例4]
ガラス繊維マットを使用せずかつ22.5gのガラス短繊維Bを加えてスラリーを得る以外は、実施例1と同様に反応混合物を用いて繊維補強複合体を得た。その評価結果は表2に示される通りであった。
なお、ガラス短繊維Bを30g加えてスラリーを得ることも検討したが、高粘度のため撹拌することができず、最終的に繊維補強複合体を得ることはできなかった。
Comparative Example 4
A fiber reinforced composite was obtained using the reaction mixture in the same manner as in Example 1, except that a glass fiber mat was not used and 22.5 g of glass short fibers B were added to obtain a slurry. The evaluation results are as shown in Table 2.
In addition, although 30 g of short glass fibers B was added to obtain a slurry, it was also studied that the slurry could not be stirred because of the high viscosity, and finally a fiber-reinforced composite could not be obtained.

実施例1及び実施例2のようにガラス繊維マットを所定の位置に配置すると、曲げ強度が大幅に改善され、密度610〜620kg/mにおいて20MPa以上となった。また、実施例1及び実施例2においては、反応性も高く5分で脱型することも十分可能であった。
一方で、補強材を何も使用しない比較例1では、曲げ強度が8MPa程度であった。
また、ガラス繊維マットの配置位置が適切でない場合には、比較例2に示される通り、曲げ強度がほとんど向上されなかった。
また、ガラス繊維マットの代わりにガラス短繊維を使用した比較例3及び比較例4では、曲げ強度がほとんど向上されなかった。
When the glass fiber mat was placed at a predetermined position as in Example 1 and Example 2, the bending strength was significantly improved and became 20 MPa or more at a density of 610 to 620 kg / m 3 . In addition, in Example 1 and Example 2, the reactivity was also high, and it was sufficiently possible to demold in 5 minutes.
On the other hand, in Comparative Example 1 in which no reinforcing material was used, the bending strength was about 8 MPa.
In addition, when the arrangement position of the glass fiber mat was not appropriate, as shown in Comparative Example 2, the bending strength was hardly improved.
Moreover, in Comparative Example 3 and Comparative Example 4 in which short glass fibers were used instead of the glass fiber mat, the bending strength was hardly improved.

本発明の繊維補強複合体によれば、高い曲げ強度(18MPa以上)と軽量性(密度800kg/m以下)を達成することができる。また、本発明のガラス繊維補強複合体は、極めて短い脱型時間で取得することができ、建築材として有利に利用することができる。 According to the fiber-reinforced composite of the present invention, high flexural strength (18 MPa or more) and lightness (density 800 kg / m 3 or less) can be achieved. In addition, the glass fiber reinforced composite of the present invention can be obtained in a very short demolding time, and can be advantageously used as a construction material.

Claims (15)

繊維マットと、ポリウレタン系発泡体層とを備えた繊維補強複合体であって、
前記ポリウレタン系発泡体層が、セメント、セメントと砂、又はセメントと砂と砂利のいずれかからなるセメント系無機充填剤、ポリイソシアネート、ポリオール、整泡剤、触媒及び水を含んでなる混合物の発泡体であり、
前記繊維マットが、繊維補強複合体の少なくとも一つの片面領域に配置されており、
前記繊維補強複合体の密度800kg/m以下でありかつJIS A 5908に準拠して測定される曲げ強度が18MPa以上である、繊維補強複合体。
A fiber reinforced composite comprising a fiber mat and a polyurethane foam layer,
Foaming of a mixture comprising the cement-based inorganic filler, which is composed of cement, cement and sand, or cement and sand and gravel, the polyurethane foam layer, polyisocyanate, polyol, foam stabilizer, catalyst and water Is the body,
Said fiber mat is arranged in at least one side area of the fiber reinforced composite,
A fiber reinforced composite, wherein the density of the fiber reinforced composite is 800 kg / m 3 or less and the flexural strength measured according to JIS A 5908 is 18 MPa or more.
前記繊維マットが、ガラス繊維マット、炭素繊維マット、アラミド繊維マット、不飽和ポリエステル繊維マット、ビニルエステル繊維マット、エポキシ繊維マット、アミド繊維マット、植物繊維マットの少なくとも一種から選択される、請求項1に記載の繊維補強複合体   The fiber mat is selected from at least one of glass fiber mat, carbon fiber mat, aramid fiber mat, unsaturated polyester fiber mat, vinyl ester fiber mat, epoxy fiber mat, amide fiber mat, vegetable fiber mat. Fiber-reinforced composite as described in 前記繊維マットが、チョップドストランドマット又はロービングクロスである、請求項1又は2に記載の繊維補強複合体。   The fiber reinforced composite according to claim 1 or 2, wherein the fiber mat is a chopped strand mat or a roving cloth. 前記繊維マットがJIS R 3411で規定されるガラスチョップドストランドマットである、請求項1〜3のいずれか一項に記載の繊維補強複合体。   The fiber reinforced composite according to any one of claims 1 to 3, wherein the fiber mat is a glass chopped strand mat defined by JIS R 3411. 前記繊維マットの単位重量が200g/m以上である、請求項1〜4のいずれか一項に記載の繊維補強複合体。 The fiber reinforced composite as described in any one of Claims 1-4 whose unit weight of the said fiber mat is 200 g / m < 2 > or more. セメント系無機充填剤と、ポリイソシアネート及びポリオールの合計との重量比率が、50:50〜90:10である、請求項1〜5のいずれか一項に記載の繊維補強複合体。   The fiber reinforced composite according to any one of claims 1 to 5, wherein the weight ratio of the cementitious inorganic filler to the total of polyisocyanate and polyol is 50: 50 to 90: 10. 前記ポリウレタン系発泡体層と、繊維マットとの重量比率が100:0.5〜100:10である、請求項1〜6のいずれか一項に記載の繊維補強複合体。   The fiber reinforced composite according to any one of claims 1 to 6, wherein a weight ratio of the polyurethane foam layer to the fiber mat is 100: 0.5 to 100: 10. 前記片面領域が、前記繊維補強複合体の片面表面から内側5mm以内の領域である、請求項1〜7のいずれか一項に記載の繊維補強複合体。   The fiber reinforced composite according to any one of claims 1 to 7, wherein the single sided area is an area within 5 mm inside from the single sided surface of the fiber reinforced composite. 前記セメント系無機充填剤がセメントと砂、又はセメントと砂と砂利である、請求項1〜8のいずれか一項に記載の繊維補強複合体。   The fiber-reinforced composite according to any one of claims 1 to 8, wherein the cementitious inorganic filler is cement and sand, or cement and sand and gravel. 前記セメントと、砂と砂利の合計との重量比率が、1:1〜1:3である、請求項1〜9のいずれか一項に記載の繊維補強複合体。   The fiber reinforced composite according to any one of claims 1 to 9, wherein the weight ratio of the cement to the sum of sand and gravel is 1: 1 to 1: 3. 前記ポリイソシアネートと、ポリオールとの重量比率が70:30〜90:10である、請求項1〜8のいずれか一項に記載の繊維補強複合体。   The fiber reinforced composite according to any one of claims 1 to 8, wherein the weight ratio of the polyisocyanate to the polyol is 70:30 to 90:10. 前記混合物が、以下の(A)〜(C)のうち少なくとも一つの特徴を有する、請求項1〜9のいずれか一項に記載の繊維補強複合体。
(A)液温25℃における前記混合物のクリームタイムが10〜30秒である
(B)液温25℃における前記混合物のゲルタイムが40〜70秒である
(C)液温25℃における前記混合物のタックタイムが70〜110秒である。
The fiber reinforced composite according to any one of claims 1 to 9, wherein the mixture has at least one feature of the following (A) to (C).
(A) cream time of the mixture at a liquid temperature of 25 ° C is 10 to 30 seconds (B) gel time of the mixture at a liquid temperature of 25 ° C is 40 to 70 seconds (C) the mixture of the mixture at a liquid temperature of 25 ° C The tack time is 70 to 110 seconds.
請求項1〜12のいずれか一項に記載の繊維補強複合体の製造方法であって、
前記混合物を型に注入し、脱型する工程を少なくとも含んでなる、製造方法。
A method of producing a fiber reinforced composite according to any one of claims 1 to 12,
The method of manufacturing, comprising at least the steps of injecting the mixture into a mold and demolding.
前記混合物を型に注入してから脱型するまでの5分以内である、請求項13に記載の製造方法。   14. The method according to claim 13, wherein the mixture is poured into a mold and within 5 minutes of demolding. 前記混合物が発泡して得られるポリウレタン系発泡体層と、前記繊維マットとが接着するように、前記型内に前記繊維マットが予め配置されている、請求項13又は14に記載の製造方法。   The method according to claim 13 or 14, wherein the fiber mat is arranged in advance in the mold so that the polyurethane foam layer obtained by foaming the mixture adheres to the fiber mat.
JP2017254849A 2017-12-28 2017-12-28 Fiber reinforced composite and manufacturing method therefor Pending JP2019119790A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017254849A JP2019119790A (en) 2017-12-28 2017-12-28 Fiber reinforced composite and manufacturing method therefor
PCT/EP2018/084873 WO2019129504A1 (en) 2017-12-28 2018-12-14 Fiber-reinforced composite and method of producing the same
CN201880083504.0A CN111491783A (en) 2017-12-28 2018-12-14 Fiber-reinforced composite material and method for producing same
EP18825952.7A EP3732030A1 (en) 2017-12-28 2018-12-14 Fiber-reinforced composite and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017254849A JP2019119790A (en) 2017-12-28 2017-12-28 Fiber reinforced composite and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2019119790A true JP2019119790A (en) 2019-07-22

Family

ID=64870455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017254849A Pending JP2019119790A (en) 2017-12-28 2017-12-28 Fiber reinforced composite and manufacturing method therefor

Country Status (4)

Country Link
EP (1) EP3732030A1 (en)
JP (1) JP2019119790A (en)
CN (1) CN111491783A (en)
WO (1) WO2019129504A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117432A (en) * 2019-01-25 2020-08-06 ダイワボウホールディングス株式会社 Bundled fiber for adding hydraulic hardened body, premix cement composition and hydraulic hardened body containing the same, and method for producing the same
CN114590012A (en) * 2022-03-08 2022-06-07 宜兴市恒驰橡塑有限公司 Fiber-reinforced polyurethane foam board and production process thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995314B (en) * 2020-08-26 2021-12-10 山东交通学院 Method for bridge detection and monitoring and composite material used in method
AT524694B1 (en) * 2021-01-26 2023-06-15 Kpt Gmbh Refractory component, method of manufacture and container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305685A (en) * 1992-04-30 1993-11-19 Toyo Tire & Rubber Co Ltd Production of interior component for automobile
WO2000050233A1 (en) * 1999-02-22 2000-08-31 Sekisui Chemical Co., Ltd. Composite material and synthetic sleeper using the composite material
JP2014125560A (en) * 2012-12-26 2014-07-07 Sumika Bayer Urethane Kk Foamed polyurethane molded article reinforced by vegetable fiber and its manufacturing method
JP2016056077A (en) * 2014-09-12 2016-04-21 住化コベストロウレタン株式会社 Cement-based polyurethane foamed composite and method for producing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506213A (en) 1973-05-17 1975-01-22
JP3141559B2 (en) 1992-08-31 2001-03-05 株式会社大林組 Method for producing water-permeable cured material
JPH0680966A (en) 1992-08-31 1994-03-22 Ohbayashi Corp Water-permeable hardenable material
JP3652968B2 (en) 2000-07-31 2005-05-25 スチライト工業株式会社 Insulating incombustible material, method for manufacturing the same, and construction method for insulative incombustible wall
CN101177525B (en) * 2006-11-08 2010-05-12 上海昊海化工有限公司 Fibre-reinforced polyurethane modified polyisocyanurate composite material and preparation method thereof
CN101812876B (en) * 2009-11-06 2013-06-05 北京华丽联合高科技有限公司 Full cement-based flame-retardant foam sandwich panel
ITMI20100440A1 (en) * 2010-03-18 2011-09-19 Dow Global Technologies Inc PROCESS FOR THE PREPARATION OF POLYURETHANE REINFORCED WITH LONG FIBERS CONTAINING PARTICULAR FILLERS
TWI558567B (en) * 2010-08-30 2016-11-21 Inoue Mtp Kk Fiber reinforced shaped body and method for producing the same
CN102432330A (en) * 2011-09-16 2012-05-02 上海浦莲预拌混凝土有限公司 Anti-seismic and anti-compression concrete and preparation method thereof
ITMI20121330A1 (en) * 2012-07-31 2014-02-01 Dow Global Technologies Llc METHOD FOR THE PREPARATION OF INSULATING PANELS EXPANDED IN FLAME RESISTANT
CN103568331A (en) * 2012-08-10 2014-02-12 上海杰事杰新材料(集团)股份有限公司 Preparation method and product of glass fabric reinforced thermoplastic polyurethane composite material
WO2014112629A1 (en) * 2013-01-21 2014-07-24 カナフレックスコーポレーション株式会社 Floor panel
WO2017173361A1 (en) * 2016-04-01 2017-10-05 Certainteed Gypsum, Inc. Building board having high fastener sealability
CN107512057B (en) * 2016-06-17 2021-09-17 科思创德国股份有限公司 Polyurethane laminated moulded product and its preparation method
CN106120480A (en) * 2016-08-17 2016-11-16 中国铁道科学研究院铁道建筑研究所 A kind of high microsteping fibres in amounts strengthens hard polyurethane foam composite sleeper and preparation method thereof
CN106747031A (en) * 2016-11-15 2017-05-31 中南林业科技大学 A kind of string enhancing inorganic light weight composite and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305685A (en) * 1992-04-30 1993-11-19 Toyo Tire & Rubber Co Ltd Production of interior component for automobile
WO2000050233A1 (en) * 1999-02-22 2000-08-31 Sekisui Chemical Co., Ltd. Composite material and synthetic sleeper using the composite material
JP2014125560A (en) * 2012-12-26 2014-07-07 Sumika Bayer Urethane Kk Foamed polyurethane molded article reinforced by vegetable fiber and its manufacturing method
JP2016056077A (en) * 2014-09-12 2016-04-21 住化コベストロウレタン株式会社 Cement-based polyurethane foamed composite and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117432A (en) * 2019-01-25 2020-08-06 ダイワボウホールディングス株式会社 Bundled fiber for adding hydraulic hardened body, premix cement composition and hydraulic hardened body containing the same, and method for producing the same
JP7364836B2 (en) 2019-01-25 2023-10-19 大和紡績株式会社 Bundled fiber for adding hydraulic hardening material, premix cement composition and hydraulic hardening material containing the same, and manufacturing method thereof
CN114590012A (en) * 2022-03-08 2022-06-07 宜兴市恒驰橡塑有限公司 Fiber-reinforced polyurethane foam board and production process thereof

Also Published As

Publication number Publication date
CN111491783A (en) 2020-08-04
WO2019129504A1 (en) 2019-07-04
EP3732030A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP2019119790A (en) Fiber reinforced composite and manufacturing method therefor
Kurańska et al. Porous polyurethane composites based on bio-components
US9512260B2 (en) Storage stable resin films and fibre composite components produced therefrom
JP3179504B2 (en) Composition having a formability of rigid polyurethane foam molded article, molded article, and model obtained from the molded article
CN104045806B (en) Polyurethane composition for preparing polyurethane composite material
US9399705B2 (en) Storage-stable polyurethane-prepregs and fibre composite components produced therefrom
TWI421113B (en) Novel tennis ball
CZ280163B6 (en) Process for preparing cold mouldable polyurethane solid foamy materials with opened pores and their utilization for the manufacture of car roof lower ceilings
JP6995475B2 (en) Non-yellowing cement-based polyurethane foam composite and its manufacturing method
EP2758459A2 (en) Medium density foams having good impact resistance and a process for their production
CN103201304A (en) Fiber composite component and a process for production thereof
WO2015170960A1 (en) Lightweight concrete composite from renewable resources
CN107614615A (en) Introduce the thermoplastic polyurethane for being available for Jiao Lian Wei Ge and the method for crosslinked foaming is carried out using it
US20160052824A1 (en) Treated Polyoxymethylene Fibers For Use In Structural Matrices
JP6466115B2 (en) Cement-based polyurethane foam composite and method for producing the same
US20030220035A1 (en) Reinforced unsaturated polyester resin compositions
US10167369B2 (en) Lightfast polyurethane prepregs and fiber composite elements produced therefrom
US11053344B2 (en) Hybrid composition
JP2023504859A (en) ultralight ski boots
JPH08169740A (en) Dispersion liquid and its use
JPS5857457B2 (en) rigid polyurethane syntact foam
JPH1142654A (en) Panel and its manufacture
WO2023078758A1 (en) Method for the production of a polyurethane sandwich element
CN111757787B (en) Method for producing composite materials at low temperatures
KR20090117487A (en) Polyether polyurethane foam with improved strength and use using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207