JP2019182739A - 超電導体 - Google Patents
超電導体 Download PDFInfo
- Publication number
- JP2019182739A JP2019182739A JP2019048908A JP2019048908A JP2019182739A JP 2019182739 A JP2019182739 A JP 2019182739A JP 2019048908 A JP2019048908 A JP 2019048908A JP 2019048908 A JP2019048908 A JP 2019048908A JP 2019182739 A JP2019182739 A JP 2019182739A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- layer
- superconducting
- high entropy
- block layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 70
- 239000000126 substance Substances 0.000 claims description 16
- 229910052727 yttrium Inorganic materials 0.000 claims description 10
- 229910052746 lanthanum Inorganic materials 0.000 claims description 9
- 229910052779 Neodymium Inorganic materials 0.000 claims description 8
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 8
- 229910052684 Cerium Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 230000001747 exhibiting effect Effects 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 2
- 230000007704 transition Effects 0.000 abstract description 16
- 239000000203 mixture Substances 0.000 description 20
- 229910052761 rare earth metal Inorganic materials 0.000 description 13
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 12
- 239000008188 pellet Substances 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- 230000005291 magnetic effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000005751 Copper oxide Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910052772 Samarium Inorganic materials 0.000 description 6
- 229910000431 copper oxide Inorganic materials 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- -1 bismuth chalcogenide Chemical class 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 229910052797 bismuth Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 238000003991 Rietveld refinement Methods 0.000 description 2
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical group [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910001451 bismuth ion Inorganic materials 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- BRCWHGIUHLWZBK-UHFFFAOYSA-K bismuth;trifluoride Chemical compound F[Bi](F)F BRCWHGIUHLWZBK-UHFFFAOYSA-K 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005404 magnetometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
超電導の性質を生かし、超電導体は電力ケーブルや強磁場マグネットなどに応用されており、現在主に実用化されている超電導体はNb−Ti合金、Nb3Sn等であるが、(液体ヘリウムで冷却しないと超電導現象を発現しないため高コストである。)さらなる超電導技術の発展のために、より高温・強磁場下で超電導を示し、低コスト、加工の簡便性などを備えた新しい超電導体の開発が求められている。
かかる観点から、非特許文献1〜4等の超電導体が提案されている。
これらは次世代の超電導体として期待されており、銅酸化物(高温)超電導体は共通の超電導構造としてCuO2層を、鉄系超電導体は共通の超電導構造としてFeAs層やFeSe層を含み、層状構造をとっているという特性がある。
しかしながら、上記の層状超電導体を利用するうえで、その特性を使途に合わせて自在に制御できる提案はなされていないのが現状であり、超電導体の特性を自在に制御するための手法の開発が求められている。
また、転移温度においても、現時点では銅酸化物系超電導体の135kが常圧下で最も高い転移温度であり、より高い超電導特性(より高い転移温度、臨界電流密度)の超電導体が求められている。
また、非特許文献4においては、高エントロピー合金(HEA)が超電導体として使用できる可能性を示しているが、未だ超伝導体として機能する高エントロピー合金を含む物質の提案はなされていないのが現状である。
したがって、本発明の目的は、超電導転移温度(Tc)や臨界電流密度において従来の提案にかかる超電導体を凌駕できる可能性を有し、かつその特性を使途に合わせて自在に制御できる新しい超電導体を提供することにある。
本発明はかかる観点から完成されたものであり、以下の発明を提案するものである。
1.超電導挙動を示す超電導層と、上記超電導層に隣接し、高エントロピー構造を有するブロック層とを具備する超電導体。
2.上記ブロック層は、上記高エントロピー構造とOFとを含むブロック層であり、上記高エントロピー構造は、一つの原子サイトを2種以上の異種元素が占有する1記載の超電導体。
3.上記高エントロピー構造を5種以上の異種元素が占有し、構成する各元素の含有比率が、それぞれ、高エントロピー構造全体に対して5〜35モル%である1記載の超電導体。
4.上記高エントロピー構造は、La若しくはY, Ce, Pr, Nd及びSmを含む合金により一つの原子サイトが占有されている1又は2記載の超電導体。
5.上記超電導層が、BiS2系の層である1〜3のいずれか記載の超電導体。
6.上記超電導体は、下記化学式で表される1〜4のいずれか記載の超電導体。
(MvCewPrxNdySmz)(O1―aFa)BiS2〔式中,Mは、LaまたはYを示し、v, w, x, y及びzはそれぞれ0.1〜0.3の数を示し、aは0〜1の数を示す。〕
本発明の超電導体は、超電導挙動を示す超電導層と、上記超電導層に隣接し、高エントロピー構造を有するブロック層とを具備し、それぞれ1層ずつ積層した積層体またはランダムにもしくは交互に複数積層した積層構造体であるのが好ましく、このように交互に積層構造をとることで結晶化しているものが好ましい。好ましくは空間群P4/nmmの正方晶構造である。ここで、超電導体の結晶構造はX線回折を用いた構造解析により行うことができる。
以下さらに詳細に説明する。
(組成、構造)
上記超電導層の組成は、BiS2、Bi(S,Se)2等のBiS2系、FeAs等のFeAs系、層状ビスマスカルコゲナイド系(BiCh2系)、CuO2等の銅酸化物系の層等が挙げられる。
また、上記超電導層の構造は、例えば、超電導層としてBiS2系を用いた場合、図1に示すように、BiS2層が2枚重なった状態になっていると考えられる。これらの2枚のBiS2層はファンデルワールス力で結合していると考えられる。
(層の厚みなど)
上記超電導層の厚みは各原子の結合状態及び結晶構造に起因し、特に制限されるものではなく、比較的大きい硫黄イオンや酸素イオンの大きさがそのまま層の厚さとなる場合や、硫黄イオンとビスマスイオンからなる層の厚さとなる場合もある。特に、BiS2系及びFeAs系の超電導層においては、ある程度3次元構造となることもあり、硫黄イオンの大きさよりも厚みのほうが大きくなる場合があるが、銅酸化物系においてはOイオンの半径とほぼ同じとなると考えられる。
また、超電導層及びブロック層の間隔は、超電導層を構成する成分とブロック層を構成する成分分子のイオン半径やそれらの間の化学結合力により決定されるため、特に制限されない。
上記ブロック層は、高エントロピー構造を有し、好ましくは高エントロピー構造と連結構造(図1に示すOF)とが結合されてなる。
また、上記ブロック層は、希土類単体または希土類元素の酸化物により構成されているのが好ましい。上記希土類元素の酸化物における希土類と酸化物部分については後述するが、希土類元素部分が以下に記述する高エントロピー構造を有し、酸化物部分が、以下に記述する連結構造を有するものであるのが好ましい。
本発明におけるブロック層は、電気的に絶縁な物質の層であることが好ましく、結晶構造を有するのが好ましい。
本発明において高エントロピー構造とは、好ましくは5種以上16種以下の元素からなる、固溶した多結晶試料で構成された構造を意味する。上記高エントロピー構造は、従来、ブロック層やスペーサー層を構成する希土類元素の酸化物において、1つまたは2つの希土類元素(RE)が占有していたサイト(原子の配置場所)を当該高エントロピー構造で置換するように、上記ブロック層に存在するのが好ましい。
上記多結晶試料を構成する上記元素としては以下の元素を挙げることができる。
希土類元素(RE)=La,Pr,Ce,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,YまたはBi
上記REは高エントロピー構造中における各種原子の組成比がそれぞれ5〜35モル%の範囲内で定義され、好ましくは10〜30モル%の範囲内で組成され、5種以上16種以下の元素で構成されているのが好ましい。
特に本発明における上記高エントロピー構造は、LaまたはY、Ce、Pr、Nd、Smの5種元素で固溶した多結晶試料で構成されているのが好ましい。すなわち、具体的にはLa、Ce、Pr、Nd及びSmの5種元素;又はY、Ce、Pr、Nd及びSmの5種元素からなるのが好ましい。
すなわち、上記高エントロピー構造の組成は、以下の例などが挙げられる。 La0.3Ce0.3Pr0.2Nd0.1Sm0.1、La0.2Ce0.2Pr0.2Nd0.2Sm0.2、La0.1Ce0.1Pr0.3Nd0.3Sm0.2、La0.1Ce0.1Pr0.3Nd0.2Sm0.3、Y0.1Ce0.1Pr0.3Nd0.3Sm0.2
本明細書において連結構造とは、従来、希土類酸化物ブロック層において、酸素原子(O)が占有していたサイト(原子の配置場所)の一部または全部をフッ素原子(F)で置き換えた構造を意味する。好ましくは酸素とフッ素のモル比(物質量比)が1対1であるが、これに限定されるものではなく、この比率に特に制限されることなく自由に配合可能である。例えば高エントロピー構造が鉄を含有する系である場合には酸素とフッ素のモル比(物質量比)が8対2を限度として種々配合比を採用することができる。
(含有比率)
ブロック層における高エントロピー構造と連結構造とのモル比(物質量比)は1対1であることが好ましいが、これに限定されるものではなく、この比率に特に制限されることなく自由に量比を変えて配合可能である。
(層の厚みなど)
ブロック層の厚みは各原子の結合状態および構造に起因し、特に制限されるものではない。
本発明の超電導体は、超電導挙動を示す上記超電導層と、高エントロピー構造を有し電気的に絶縁なブロック層とを具備し、それぞれ1層ずつ積層した積層体またはランダムにもしくは交互に複数積層した積層構造体であり、好ましくは結晶構造である。
本発明の超電導体の構造を模式的に図1に示す。
図1に示す本実施形態の超電導体1は、超電導層10とブロック層20とが交互に積層されている。超電導層10は、Bi12と2つのS14とが複数連結されてなる。ブロック層20は、高エントロピー構造(RE)22と連結構造24とが複数連結されてなる。このように複数の超電導層10と複数のブロック層20とが積層されて形成されている。本実施形態において、高エントロピー構造(RE)22としてはLa0.2Ce0.2Pr0.2Nd0.2Sm0.2が、連結構造24としてはO0.5F0.5が、用いられている。
(組成)
上記超電導体は、上述の通り高エントロピー構造を有するブロック層と超電導層とが積層されていればその組成は特に制限されるものではないが、下記化学式で表される組成を有するのが好ましい。
(La又はYvCewPrxNdySmz)(O1―aFa)BiS2
〔式中、v, w, x, y及びzはそれぞれ0.1〜0.3の数を示し、aは0〜1の数を示す。〕
本発明の超電導体の組成は、特に制限されないが、具体的には好ましくは以下の例が挙げられる。
La0.3Ce0.3Pr0.2Nd0.1Sm0.1O0.5F0.5BiS2、
La0.2Ce0.2Pr0.2Nd0.2Sm0.2O0.5F0.5BiS2、
La0.1Ce0.1Pr0.3Nd0.3Sm0.2O0.5F0.5BiS2、
La0.1Ce0.1Pr0.3Nd0.2Sm0.3O0.5F0.5BiS2、
Y0.1Ce0.1Pr0.3Nd0.3Sm0.2O0.5F0.5BiS2
上述の組成には制限されず、酸化銅系の高温超電導体においては以下の組成等を上げることができる。
Y0.2La0.2Pr0.2Nd0.2Sm0.2Ba2Cu3O7-d
この場合ブロック層が2種存在し、具体的には、Ba2CuO3-dブロック層/CuO2層・REブロック層・CuO2層・Ba2CuO3-dブロック層の積層構造を取る。なお、式中、dは0でないのが通常であり、超電導性を示す範囲で且つ酸素量が0とならない範囲(すなわち7未満)である。これは通常超電導体が銅酸化物系である場合は酸素量の不定比性が一般的であるためであり、dが0でないことにより超電導性を示すことになる。
また、組成比はエネルギー分散型X線分光(EDX)により分析できる。
本発明の超電導体は、後述する実施例に示すように、超電導転移を示すものである。ここで、超電導転移は、磁化率測定の反磁性シグナルが発現する温度を超電導転移温度として評価でき、超電導転移温度とは冷却により物質が常電導状態から超電導状態に転移する温度のことである。
また、超電導転移は、電気抵抗率の測定からも確認できる。
本実施形態の超電導体の製造方法は、例えば以下の通りである。
ランタン(またはイットリウム)、セシウム、プラセオジム、ネオジム、サマリウム(LaまたはY, Ce, Pr, Nd, Sm)の硫化物、ビスマス酸化物、ビスマスフッ化物、ビスマス単体元素、硫黄単体元素の粉末を秤量し、乳鉢ですり潰し、上記原料混合物を、圧力(好ましくは5〜30MPa)を加えてペレット状に押し固めるペレット作成工程、
上記ペレットを、石英管に真空封入して電気炉にて700℃程度で20時間焼結して結晶を作る焼結工程、
上記結晶試料を粉砕し、混合する二次混合物形成工程、
上記二次混合物を、5-30MPaの圧力を加えペレット状にする第二次ペレット作成工程、及び
上記第二次ペレット試料を均質化するために、石英管に真空封入して電気炉にて700℃程度(好ましくは500〜900℃)で20時間程度(好ましくは5〜50時間)焼結して結晶を作る第二次焼結工程、
を行うことにより目的の超電導体を得ることができる。
〔実施例1〕La0.3Ce0.3Pr0.2Nd0.1Sm0.1O0.5F0.5BiS2(超電導体1)の製造
出発原料にBi2O3(高純度化学社製、Bi2O3粉末、99.99%)、、La2S3(高純度化学社製、La2S3粉末、99.9%)、Bi2S3、Bi(高純度化学社製、Bi粒状、99.99%)、Ce2S3(99.9%)、Bi(99.999%)、BiF3(99.9%)、Bi(99.9%)、Pr2S3(99.9%)、Nd2S3(99.999%)、S(高純度化学社製、S粒状、99.99%)を用い、組成比がLa0.3Ce0.3Pr0.2Nd0.1Sm0.1O0.5F0.5BiS2になるように秤量した。これらを混合して原料混合物を得、これをペレット状に成形することで原料のペレットを得た。
続いて、得られたペレットを石英ガラス管に真空封入し、電気炉にて700℃で20時間焼成した。
得られた試料を粉砕し、混合し、ペレット化して第2次ペレットを得、この第2次ペレットについて試料を均質化するために再度700℃で20時間加熱し、目的の超電導体1を得た。
La0.2Ce0.2Pr0.2Nd0.2Sm0.2O0.5F0.5BiS2(超電導体2)、
La0.1Ce0.1Pr0.3Nd0.3Sm0.2O0.5F0.5BiS2(超電導体3)、
La0.1Ce0.1Pr0.2Nd0.3Sm0.3O0.5F0.5BiS2(超電導体4)、
Y0.1Ce0.1Pr0.2Nd0.3Sm0.3O0.5F0.5BiS2(超電導体5)
粉末X線回折はCuKα放射線を用いて−2Δ法で測定した。RIETAN−FPソフトウェアを使用し、リートベルト法により得られたXRDデータを解析した。また、結晶構造を視覚化するために、VESTAソフトウェアを使用した。
高エネルギー構造における組成は、エネルギー分散線分光分析(EDX)を用いて分析した。表1に示すように、分析した希土類の配合濃度は、すべてのサンプルの公称値にほぼ一致した。
電気抵抗率の温度依存性を、4端子法にて1mAの電流を流し計測した。その結果を図4に示す。
超電導体1〜4の磁化率の温度依存性を、両方のゼロ磁場中冷却後にSQUID(Superconducting Quantum lnerference Device :超電導量子干渉素子)磁束計(米国Quantum Design社製Magnetic Property Measurement System (MPMS)、感度:1x10−8emu、試料温度:1.8K〜300K)によって測定した。SQUIDは磁束変化に伴う誘導起電力を測定する方法(電磁誘導法)である。その結果を図2に示す。
なお、ゼロ磁場中冷却(ZFC)および磁場中冷却(FC)は典型的な適用分野10Oeで実施した。
また、図3に、超電導体2(La0.2Ce0.2Pr0.2Nd0.2Sm0.2O0.5F0.5BiS2)の典型的なXRDパターンとリートベルトフィッティングの結果を示す。なお、リートベルト解析では正方晶P4/nmmモデルを用いて精密化した。
また、超電導体5についても超電導特性(磁化率の温度依存性)を評価した。その結果を図5に示す。この結果から、Yでも超電導特性が得られることがわかった。
Claims (6)
- 超電導挙動を示す超電導層と、上記超電導層に隣接し、高エントロピー構造を有するブロック層とを具備する超電導体。
- 上記ブロック層は、上記高エントロピー構造とOFとを含むブロック層であり、上記高エントロピー構造は、一つの原子サイトを2種以上の異種元素が占有する請求項1記載の超電導体。
- 上記高エントロピー構造を5種以上の異種元素が占有し、構成する各元素の含有比率が、それぞれ、高エントロピー構造全体に対して5〜35モル%である請求項1記載の超電導体。
- 上記高エントロピー構造は、La若しくはY, Ce, Pr, Nd及びSmを含む合金により一つの原子サイトが占有されている請求項1又は2記載の超電導体。
- 上記超電導層が、BiS2系の層である請求項1〜3のいずれか記載の超電導体。
- 上記超電導体は、下記化学式で表される請求項1〜4のいずれか記載の超電導体。(MvCewPrxNdySmz)(O1―aFa)BiS2〔式中,Mは、LaまたはYを示し、v, w, x, y及びzはそれぞれ0.1〜0.3の数を示し、aは0〜1の数を示す。〕
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018074414 | 2018-04-09 | ||
JP2018074414 | 2018-04-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019182739A true JP2019182739A (ja) | 2019-10-24 |
JP7298869B2 JP7298869B2 (ja) | 2023-06-27 |
Family
ID=68339535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019048908A Active JP7298869B2 (ja) | 2018-04-09 | 2019-03-15 | 超電導体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7298869B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113072091A (zh) * | 2021-03-25 | 2021-07-06 | 南昌航空大学 | 一种五元铈钕钇基高熵稀土氧化物及其制备方法 |
CN113788677A (zh) * | 2021-09-28 | 2021-12-14 | 上海电机学院 | 一种倍半稀土硫化物高熵陶瓷材料及其制备方法和应用 |
JP2022549957A (ja) * | 2019-09-30 | 2022-11-29 | ニアルコス ディミトリオス | 永久磁石用の新規磁性相を合成するためのビルディングブロックとしての希土類の高エントロピー合金および遷移金属の高エントロピー合金 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63252952A (ja) * | 1987-04-08 | 1988-10-20 | Kazuo Fueki | 超電導セラミツクス |
JPH02311396A (ja) * | 1989-05-24 | 1990-12-26 | Matsushita Electric Ind Co Ltd | 薄膜超伝導体とその製造方法 |
WO2005088653A1 (ja) * | 2004-03-12 | 2005-09-22 | International Superconductivity Technology Center, The Juridical Foundation | 希土類系酸化物超電導体及びその製造方法 |
JP2014031307A (ja) * | 2012-07-12 | 2014-02-20 | Tokyo Metropolitan Univ | BiS2系超伝導体 |
JP2016058725A (ja) * | 2014-09-08 | 2016-04-21 | 公立大学法人首都大学東京 | 層状ビスマスカルコゲナイド系熱電変換材料及びその製造方法 |
-
2019
- 2019-03-15 JP JP2019048908A patent/JP7298869B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63252952A (ja) * | 1987-04-08 | 1988-10-20 | Kazuo Fueki | 超電導セラミツクス |
JPH02311396A (ja) * | 1989-05-24 | 1990-12-26 | Matsushita Electric Ind Co Ltd | 薄膜超伝導体とその製造方法 |
WO2005088653A1 (ja) * | 2004-03-12 | 2005-09-22 | International Superconductivity Technology Center, The Juridical Foundation | 希土類系酸化物超電導体及びその製造方法 |
JP2014031307A (ja) * | 2012-07-12 | 2014-02-20 | Tokyo Metropolitan Univ | BiS2系超伝導体 |
JP2016058725A (ja) * | 2014-09-08 | 2016-04-21 | 公立大学法人首都大学東京 | 層状ビスマスカルコゲナイド系熱電変換材料及びその製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022549957A (ja) * | 2019-09-30 | 2022-11-29 | ニアルコス ディミトリオス | 永久磁石用の新規磁性相を合成するためのビルディングブロックとしての希土類の高エントロピー合金および遷移金属の高エントロピー合金 |
JP7428791B2 (ja) | 2019-09-30 | 2024-02-06 | ニアルコス ディミトリオス | 永久磁石用の新規磁性相を合成するためのビルディングブロックとしての希土類の高エントロピー合金および遷移金属の高エントロピー合金 |
CN113072091A (zh) * | 2021-03-25 | 2021-07-06 | 南昌航空大学 | 一种五元铈钕钇基高熵稀土氧化物及其制备方法 |
CN113072091B (zh) * | 2021-03-25 | 2022-05-20 | 南昌航空大学 | 一种五元铈钕钇基高熵稀土氧化物及其制备方法 |
CN113788677A (zh) * | 2021-09-28 | 2021-12-14 | 上海电机学院 | 一种倍半稀土硫化物高熵陶瓷材料及其制备方法和应用 |
CN113788677B (zh) * | 2021-09-28 | 2022-10-11 | 上海电机学院 | 一种倍半稀土硫化物高熵陶瓷材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
JP7298869B2 (ja) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Matsuishi et al. | Cobalt-substitution-induced superconductivity in a new compound with ZrCuSiAs-type structure, SrFeAsF | |
Fang et al. | Superconductivity close to magnetic instability in Fe (Se 1− x Te x) 0.82 | |
US4843059A (en) | Superconductive mixed valence copper oxide, and method of making it | |
JP7298869B2 (ja) | 超電導体 | |
US8688181B1 (en) | Superconductive compounds having high transition temperature, and methods for their use and preparation | |
Sefat et al. | Variation of physical properties in the nominal Sr4V2O6Fe2As2 | |
Yamaura et al. | Synthesis, crystal structure, electrical, and magnetic properties of the new layered cobalt oxides (Sr, Ca, Ln) 3Co2O6±δ (Ln= Sm, Eu, Gd, Tb, Dy, Ho, and Y) | |
JP5518295B2 (ja) | 層状化合物からなる超伝導体及びその製造方法 | |
US8288321B2 (en) | Layered compound, superconductor and method for producing same | |
JPS63222068A (ja) | 新超伝導材料を基礎としたデバイス及びシステム | |
Boudjadja et al. | Microstructural and magneto-transport properties of Bi1. 6Pb0. 4Sr2Ca1− xGdxCu2O8+ δ superconducting ceramics | |
Singh et al. | Effect of Pb addition on microstructure, transport properties, and the critical current density in a polycrystalline FeSe0. 5Te0. 5 | |
Hassen et al. | Structural, magnetic, and electric properties of Dy1− xSrxCoO3− δ (0.65≤ x≤ 0.90) | |
JP6210587B2 (ja) | BiS2系超伝導体 | |
US8060169B1 (en) | Superconductive compounds having high transition temperature, and methods for their use and preparation | |
Aliev et al. | Effect of a magnetic field on the thermal and kinetic properties of the Sm 0.55 Sr 0.45 MnO 3.02 manganite | |
Yu et al. | Co-doping induced coexistence of superconductivity and ferromagnetism in Bi3. 9Co0. 1O4S3 | |
JPH01503060A (ja) | 新しい超伝導物質に基づくデバイスおよびシステム | |
Sharma | High-Temperature Cuprate Superconductors and Later Discoveries | |
JPH06263441A (ja) | 金属酸化物材料及びその製造方法 | |
Chen et al. | Optimization for preparing Bi1. 68Pb0. 32Sr1. 75Ca1. 85Cu2. 85O10+ y powders by wet ball milling | |
Kurtul et al. | Improvement of superconducting, morphological, and flux pinning ability of YBa2Cu3O7− y matrix with oxygen and Mn2O3 impurity | |
Nakano et al. | Synthesis and physical properties of (Pb0. 5M0. 5)(Sr, La) 2CuOz (z∼ 5; M= Fe, Co, Cu, and Zn) | |
Wang et al. | Metal oxide-based superconductors in AC power transportation and transformation | |
Sharma | Iron-Based Practical Superconductors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230608 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7298869 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |